JP3079344B2 - Non-aqueous electrolyte secondary battery and method of manufacturing the same - Google Patents

Non-aqueous electrolyte secondary battery and method of manufacturing the same

Info

Publication number
JP3079344B2
JP3079344B2 JP05203479A JP20347993A JP3079344B2 JP 3079344 B2 JP3079344 B2 JP 3079344B2 JP 05203479 A JP05203479 A JP 05203479A JP 20347993 A JP20347993 A JP 20347993A JP 3079344 B2 JP3079344 B2 JP 3079344B2
Authority
JP
Japan
Prior art keywords
active material
battery
lithium
negative electrode
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05203479A
Other languages
Japanese (ja)
Other versions
JPH0757780A (en
Inventor
謙介 田原
英樹 石川
次夫 酒井
明史 坂田
文晴 岩崎
誠治 矢作
Original Assignee
セイコーインスツルメンツ株式会社
株式会社エスアイアイ・マイクロパーツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社, 株式会社エスアイアイ・マイクロパーツ filed Critical セイコーインスツルメンツ株式会社
Priority to JP05203479A priority Critical patent/JP3079344B2/en
Priority to US08/127,960 priority patent/US5401599A/en
Publication of JPH0757780A publication Critical patent/JPH0757780A/en
Priority to US08/539,825 priority patent/USRE35818E/en
Application granted granted Critical
Publication of JP3079344B2 publication Critical patent/JP3079344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを吸蔵放出可
能な物質を負極活物質及び/又は正極活物質とし、リチ
ウムイオン導電性の非水電解質を用いる非水電解質二次
電池に関するものであり、特に、高電圧、高エネルギー
密度で且つ充放電特性が優れ、サイクル寿命の長い新規
な二次電池を提供する新規な負極活物質及び正極活物質
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a material capable of inserting and extracting lithium as a negative electrode active material and / or a positive electrode active material and using a lithium ion conductive non-aqueous electrolyte. More particularly, the present invention relates to a novel negative electrode active material and a new positive electrode active material which provide a new secondary battery having high voltage, high energy density, excellent charge / discharge characteristics, and a long cycle life.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギー密度で、かつ自己
放電が小さく長期信頼性に優れる等々の利点により、一
次電池としてはメモリーバックアップ用、カメラ用等の
電源として既に広く用いられている。しかしながら、近
年携帯型の電子機器、通信機器等の著しい発展に伴い、
電源としての電池に対し大電流出力を要求する機器が多
種多様に出現し、経済性と機器の小型軽量化の観点か
ら、再充放電可能で、かつ高エネルギー密度の二次電池
が強く要望されている。このため、高エネルギー密度を
有する前記非水電解質電池の二次電池化を進める研究開
発が活発に行われ、一部実用化されているが、エネルギ
ー密度、充放電サイクル寿命、信頼性等々まだまだ不十
分である。
2. Description of the Related Art Nonaqueous electrolyte batteries using lithium as a negative electrode active material have advantages such as high voltage, high energy density, low self-discharge, and excellent long-term reliability. It is already widely used as a power source for applications. However, with the recent remarkable development of portable electronic devices and communication devices,
With the emergence of a wide variety of devices that require a large current output from batteries as power sources, there is a strong demand for rechargeable and high-density secondary batteries that can be recharged and discharged from the viewpoint of economy and reduction in size and weight of the devices. ing. For this reason, research and development to promote the non-aqueous electrolyte battery having a high energy density into a secondary battery has been actively carried out, and some of them have been put to practical use. However, energy density, charge / discharge cycle life, reliability, etc. are still insufficient. It is enough.

【0003】従来、この種の二次電池の正極を構成する
正極活物質としては、充放電反応の形態に依り下記の3
種のタイプのものが見い出されている。第1のタイプ
は、TiS2 ,MoS2 ,NbSe3 等の金属カルコゲ
ン化物や、MnO2 ,MoO3,V25 ,LixCoO2
,LixNiO2 ,LixMn24等の金属酸化物等々
の様に、結晶の層間や格子位置又は格子間隙間にリチウ
ムイオン(カチオン)のみがインターカレーション、デ
インターカレーション反応等に依り出入りするタイプ。
第2のタイプは、ポリアニリン、ポリピロール、ポリパ
ラフェニレン等の導電性高分子の様な、主としてアニオ
ンのみが安定にドープ、脱ドープ反応に依り出入りする
タイプ。第3のタイプは、グラファイト層間化合物やポ
リアセン等の導電性高分子等々の様な、リチウムカチオ
ンとアニオンが共に出入り可能なタイプ(インターカレ
ーション、デインターカレーション又はドープ、脱ドー
プ等)である。
Conventionally, as a positive electrode active material constituting a positive electrode of this type of secondary battery, the following three types are used depending on the form of charge / discharge reaction.
Species types have been found. The first type is a metal chalcogenide such as TiS 2 , MoS 2 , NbSe 3 , MnO 2 , MoO 3 , V 2 O 5 , Li x CoO 2
, Li x NiO 2 , Li x Mn 2 O 4 and other metal oxides, etc., only lithium ions (cations) intercalate, deintercalate, etc., between crystal layers or between lattice positions or lattice gaps. Type that goes in and out depending on
The second type is a type such as a conductive polymer such as polyaniline, polypyrrole, and polyparaphenylene, in which only anions mainly stably enter and leave by doping and undoping reactions. The third type is a type (intercalation, deintercalation or doping, undoping, etc.) in which both lithium cations and anions can enter and exit, such as graphite intercalation compounds and conductive polymers such as polyacene. .

【0004】一方、この種の電池の負極を構成する負極
活物質としては、金属リチウムを単独で用いた場合が電
極電位が最も卑であるため、上記の様な正極活物質を用
いた正極と組み合わせた電池としての出力電圧が最も高
く、エネルギー密度も高く好ましいが、充放電に伴い負
極上にデンドライトや不働体化合物が生成し、充放電に
よる劣化が大きく、サイクル寿命が短いという問題があ
った。この問題を解決するため、負極活物質として
(1)リチウムとAl,Zn,Sn,Pb,Bi,Cd
等の他金属との合金、(2)WO2 ,MoO2 ,Fe2
3 ,TiS2等の無機化合物やグラファイト、有機物
を焼成して得られる炭素質材料等々の結晶構造中にリチ
ウムイオンを吸蔵させた層間化合物あるいは挿入化合
物、(3)リチウムイオンをドープしたポリアセンやポ
リアセチレン等の導電性高分子等々のリチウムイオンを
吸蔵放出可能な物質を用いることが提案されている。
On the other hand, as the negative electrode active material constituting the negative electrode of this type of battery, when metallic lithium is used alone, the electrode potential is the lowest, so that a positive electrode using the above-described positive electrode active material is used. The output voltage of the combined battery is the highest, and the energy density is high, which is preferable.However, dendrites and passive compounds are generated on the negative electrode due to charge and discharge, and there is a problem that deterioration due to charge and discharge is large and cycle life is short. . In order to solve this problem, (1) lithium and Al, Zn, Sn, Pb, Bi, Cd
Alloys with other metals such as (2) WO 2 , MoO 2 , Fe 2
Inorganic compounds such as O 3 and TiS 2 , graphite, intercalation compounds or insertion compounds in which lithium ions are occluded in the crystal structure of a carbonaceous material obtained by baking an organic material, (3) lithium-doped polyacene, It has been proposed to use a substance capable of inserting and extracting lithium ions, such as a conductive polymer such as polyacetylene.

【0005】[0005]

【発明が解決しようとする課題】しかし乍、一般に、負
極活物質として上記の様な金属リチウム以外のリチウム
イオンを吸蔵放出可能な物質を用いた負極と、前記の様
な正極活物質を用いた正極とを組合せて電池を構成した
場合には、これらの負極活物質の電極電位が金属リチウ
ムの電極電位より貴であるため、電池の作動電圧が負極
活物質として金属リチウムを単独で用いた場合よりかな
り低下するという欠点がある。例えば、リチウムとA
l,Zn,Pb,Sn,Bi,Cd等の合金を用いる場
合には0.2〜0.8V、炭素−リチウム層間化合物で
は0〜1V、MoO2やWO2等のリチウムイオン挿入化
合物では0.5〜1.5V作動電圧が低下する。
However, in general, a negative electrode using a material capable of inserting and extracting lithium ions other than lithium metal as described above and a positive electrode active material as described above are used as the negative electrode active material. When a battery is configured by combining the positive electrode and the positive electrode, the operating voltage of the battery is higher than that of the negative electrode active material because the electrode potential of these negative electrode active materials is more noble than the electrode potential of metallic lithium. There is the disadvantage that it is much lower. For example, lithium and A
l, Zn, Pb, Sn, Bi, 0.2~0.8V in the case of using an alloy of Cd, etc., carbon - 0 to 1 V in a lithium intercalation compound, a lithium ion insertion compound such as MoO 2 and WO 2 0 The operating voltage is reduced by 0.5 to 1.5 V.

【0006】又、リチウム以外の元素も負極構成要素と
なるため、体積当り及び重量当りの容量及びエネルギー
密度が著しく低下する。
In addition, since elements other than lithium also serve as negative electrode components, the capacity and energy density per volume and weight are significantly reduced.

【0007】更に、上記の(1)のリチウムと他金属と
の合金を用いた場合には、充放電時のリチウムの利用効
率が低く、且つ充放電の繰り返しにより電極にクラック
が発生し割れを生じる等のためサイクル寿命が短いとい
う問題があり、(2)のリチウム層間化合物又は挿入化
合物の場合には、過充放電により結晶構造の崩壊や不可
逆物質の生成等の劣化があり、又電極電位が高い(貴
な)ものが多い為、これを用いた電池の出力電圧が低い
という欠点があり、(3)の導電性高分子の場合には、
充放電容量、特に体積当りの充放電容量が小さいという
問題がある。
Further, when an alloy of lithium and another metal of the above (1) is used, the utilization efficiency of lithium at the time of charge and discharge is low, and cracks occur in the electrodes due to repetition of charge and discharge, and cracks occur. Therefore, there is a problem that the cycle life is short due to the generation of the compound. In the case of the lithium intercalation compound or the intercalation compound of (2), deterioration such as collapse of the crystal structure or generation of an irreversible substance due to overcharging and discharging occurs. However, there is a drawback that the output voltage of a battery using this is low because there are many (noble) materials having high (noble). In the case of the conductive polymer of (3),
There is a problem that the charge / discharge capacity, particularly the charge / discharge capacity per volume is small.

【0008】このため、高電圧、高エネルギー密度で、
且つ充放電特性が優れ、サイクル寿命の長い二次電池を
得るためには、リチウムに対する電極電位が低く(卑
な)、充放電時のリチウムイオンの吸蔵放出に依る結晶
構造の崩壊や不可逆物質の生成等の劣化が無く、かつ可
逆的にリチウムイオンを吸蔵放出できる量即ち有効充放
電容量のより大きい負極活物質が必要である。
For this reason, high voltage, high energy density,
In addition, in order to obtain a secondary battery having excellent charge / discharge characteristics and a long cycle life, the electrode potential with respect to lithium is low (low), and the collapse of the crystal structure due to insertion and extraction of lithium ions during charge / discharge, It is necessary to use a negative electrode active material which has no deterioration such as generation and has a large amount capable of reversibly inserting and extracting lithium ions, that is, a large effective charge and discharge capacity.

【0009】一方、上記の正極活物質に於て、第1のタ
イプは、一般にエネルギー密度は大きいが、過充電や過
放電すると結晶の崩壊や不可逆物質の生成等による劣化
が大きいという欠点がある。又、第2、第3のタイプで
は、逆に充放電容量特に体積当たりの充放電容量及びエ
ネルギー密度が小さいという欠点がある。
On the other hand, the above-mentioned positive electrode active material of the first type generally has a large energy density, but has a drawback that when overcharged or overdischarged, deterioration due to crystal collapse or generation of irreversible material is large. . On the other hand, the second and third types have the disadvantage that the charge / discharge capacity, particularly the charge / discharge capacity per volume and the energy density are small.

【0010】このため、過充電特性及び過放電特性が優
れ、かつ高容量、高エネルギー密度の二次電池を得るた
めには過充電過放電に依る結晶の崩壊や不可逆物質の生
成が無く、かつ可逆的にリチウムイオンを吸蔵放出でき
る量のより大きい正極活物質が必要である。
For this reason, in order to obtain a secondary battery having excellent overcharge characteristics and overdischarge characteristics, and having a high capacity and a high energy density, there is no collapse of crystals or generation of irreversible substances due to overcharge and overdischarge, and It is necessary to use a positive electrode active material having a large amount capable of reversibly storing and releasing lithium ions.

【0011】[0011]

【課題を解決するための手段】本発明は、上記の様な問
題点を解決するため、この種の電池の負極と正極の少な
くとも一方の電極の活物質として、組成式Lix MO
但し、0≦x)で示される金属MとリチウムLiとの
複合酸化物から成る新規なリチウムイオン吸蔵放出可能
物質を用いることを提起するものである。即ち、アルカ
リ金属以外の金属Mと酸素Oとの組成比が約1:1の酸
化物であり、その結晶構造中又は非晶質構造内にリチウ
ムを含有し、非水電解質中で電気化学反応に依りリチウ
ムイオンを吸蔵及び放出可能な複合酸化物を用いる。該
複合酸化物を構成する金属Mとしては、Mn、Ti、Z
の一酸化物を生成し得るものを用いる。
In order to solve the above-mentioned problems, the present invention uses a composition formula LixMO as an active material for at least one of a negative electrode and a positive electrode of this type of battery.
The present invention proposes to use a novel lithium ion occluding and releasing substance composed of a composite oxide of a metal M and lithium Li represented by the formula ( 0 ≦ x 2 ). That is, it is an oxide having a composition ratio of a metal M other than an alkali metal and oxygen O of about 1: 1. The oxide contains lithium in its crystal structure or amorphous structure and electrochemical reaction in a non-aqueous electrolyte. A composite oxide capable of occluding and releasing lithium ions is used. The metal M constituting the composite oxide is Mn, Ti, Z
A material that can generate n monoxide is used.

【0012】この様な金属Mと酸素Oとの組成比は上記
のように1:1が標準であるが、合成に際ししばしば
属M又は酸素Oの欠損又は過剰に依る不定比化合物を生
じ、その欠損又は過剰の範囲はMの種類に依って異なる
が±25%に及ぶ。特に、金属Mとして遷移金属を用い
る場合には、この金属M又は酸素Oの欠損による不定比
度の高い化合物を生成し易いため、生成物の結晶構造中
もしくは非晶質構造中にリチウムイオンを吸蔵できるサ
イトが多く、リチウムイオンの移動度が高く且つ電子伝
導度の高いものが得られ、充放電容量が大きく且つ分極
が小さいものが得られ易い等の利点があり、特に有利で
ある。又、リチウムの含有量xとしては該複合酸化物が
安定に存在する範囲であれば良く、0≦x≦2の範囲が
特に好ましい。
Although the composition ratio of such metal M to oxygen O is 1: 1 as described above, it is often the case that gold is used in the synthesis.
Defects or excesses of genus M or oxygen O result in non-stoichiometric compounds, the extent of which is deficient or excessive, depending on the type of M, but ranging up to ± 25%. In particular, when a transition metal is used as the metal M, it is easy to generate a compound having a high non-stoichiometric ratio due to the deficiency of the metal M or oxygen O. Therefore, lithium ions are contained in the crystal structure or the amorphous structure of the product. This is particularly advantageous because there are many sites that can be occluded, a material having high mobility of lithium ions and a high electron conductivity is obtained, and a material having a large charge / discharge capacity and a small polarization is easily obtained. Further, the content x of lithium may be within a range where the composite oxide is stably present, and a range of 0 ≦ x ≦ 2 is particularly preferable.

【0013】本発明電池の負極及び/又は正極の活物質
として用いられる金属Mとリチウムとの該複合酸化物の
好ましい製造方法としては、下記の2種類の方法が上げ
られるが、これらに限定はされない。
The preferred two methods for producing the composite oxide of metal M and lithium used as the active material of the negative electrode and / or the positive electrode of the battery of the present invention include the following two methods, but are not limited thereto. Not done.

【0014】第一の方法は、上記の金属とリチウムの各
々の単体又はそれらの酸素を有する化合物を所定のモル
比で混合し、不活性雰囲気中もしくは真空中等の非酸化
性雰囲気中や弱還元性ガス雰囲気中或は酸素量を制御し
た雰囲気中で加熱して合成する方法である。出発原料と
なる該金属及びリチウムのそれぞれの化合物としては、
各々の酸化物、水酸化物、もしくは炭酸塩、硝酸塩等の
塩或は有機化合物等々の不活性雰囲気中もしくは真空中
で加熱して酸化物を生成する化合物であれば良い。加熱
温度は、出発原料と加熱雰囲気によっても異なるが、4
00℃以上で合成が可能であり、好ましくは600℃以
上、より好ましくは700℃以上の温度がよい。
The first method is to mix each of the above-mentioned metals and lithium alone or their oxygen-containing compounds at a predetermined molar ratio, and to mix them in a non-oxidizing atmosphere such as an inert atmosphere or a vacuum or a weak reduction. This is a method in which synthesis is performed by heating in an inert gas atmosphere or an atmosphere in which the amount of oxygen is controlled. As the respective compounds of the metal and lithium as starting materials,
Any compound may be used as long as it is heated in an inert atmosphere or in a vacuum such as an oxide, a hydroxide, or a salt such as a carbonate or a nitrate, or an organic compound to form an oxide. The heating temperature depends on the starting material and the heating atmosphere,
Synthesis can be performed at a temperature of 00 ° C. or higher, preferably 600 ° C. or higher, more preferably 700 ° C. or higher.

【0015】この様にして得られる該金属とリチウムと
の複合酸化物は、これをそのままもしくは必要により粉
砕整粒や造粒等の加工を施した後に負極及び/又は正極
の活物質として用いることが出来るし、又、下記の第二
の方法と同様に、このリチウムを含有する複合酸化物と
金属リチウムもしくはリチウムを含有する物質との電気
化学的反応に依り、この複合酸化物に更にリチウムイオ
ンを吸蔵させるか、又は逆にこの複合酸化物からリチウ
ムイオンを放出させることに依り、リチウム含有量を増
加又は減少させたものを活物質として用いても良い。
The composite oxide of the metal and lithium obtained in this manner is used as an active material for a negative electrode and / or a positive electrode after being subjected to processing such as pulverization and sizing or granulation as needed. In addition, as in the second method described below, a lithium ion can be further added to the composite oxide by an electrochemical reaction between the lithium-containing composite oxide and metallic lithium or a substance containing lithium. By increasing or decreasing lithium content by absorbing lithium ions or releasing lithium ions from the composite oxide, an active material may be used as the active material.

【0016】第二の方法は、MnO、TiO、ZnOの
金属Mの一酸化物MOとリチウムもしくはリチウムを含
有する物質との電気化学的反応に依り該一酸化物MOに
リチウムイオンを吸蔵させて該金属もしくは該類金属と
リチウムとの複合酸化物を得る方法である。
The second method is to use MnO, TiO and ZnO.
Lithium ions are occluded in the monoxide MO by an electrochemical reaction between the monoxide MO of the metal M and lithium or a substance containing lithium to obtain a composite oxide of the metal or the similar metal and lithium. Is the way.

【0017】この電気化学的反応に用いる為のリチウム
を含有する物質としては、例えば、前述の従来の技術の
項で上げた正極活物質又は負極活物質等に用いられる様
なリチウムイオンを吸蔵放出可能な物質を用いることが
出来る。
As the lithium-containing substance for use in the electrochemical reaction, for example, lithium ions such as those used for the positive electrode active material or the negative electrode active material mentioned in the section of the prior art are inserted and released. Possible materials can be used.

【0018】この様な、金属の一酸化物MOへの電気化
学的反応に依るリチウムイオンの吸蔵は、電池組立後電
池内で、又は電池製造工程の途上に於て電池内もしくは
電池外で行うことが出来、具体的には次の様にして行う
ことが出来る。
Such occlusion of lithium ions by an electrochemical reaction to the metal monoxide MO is performed in the battery after the battery is assembled or in or outside the battery during the battery manufacturing process. Specifically, it can be performed as follows.

【0019】即ち、(1)該金属の一酸化物又はそれら
と導電剤及び結着剤等との混合合剤を所定形状に成形し
たものを一方の電極(作用極)とし、金属リチウム又は
リチウムを含有する物質をもう一方の電極(対極)とし
てリチウムイオン導電性の非水電解質に接して両電極を
対向させて電気化学セルを構成し、作用極がカソード反
応をする方向に適当な電流で通電もしくは放電し電気化
学的にリチウムイオンを該一酸化物に吸蔵させる方法。
得られた該作用極をそのまま負極及び/又は正極として
もしくは負極及び/又は正極を構成する活物質として用
いて非水電解質二次電池を構成する。(2)該金属の一
酸化物又はそれらと導電剤及び結着剤等との混合合剤を
所定形状に成形し、これにリチウムもしくはリチウムの
合金等を圧着もしくは接触させて積層電極としたものを
負極又は正極として非水電解質二次電池に組み込む。電
池内でこの積層電極が電解質に触れることにより一種の
局部電池を形成し自己放電し電気化学的にリチウムが該
一酸化物に吸蔵される方法。(3)該金属の一酸化物を
一方の電極の活物質とし、もう一方の電極にリチウムを
含有しリチウムイオンを吸蔵放出可能な物質を活物質と
して用いた非水電解質二次電池を構成する。電池として
使用時に充電もしくは放電を行うことにより該一酸化物
にリチウムイオンが吸蔵される方法。
That is, (1) one electrode (working electrode) is formed by molding the metal monoxide or a mixture thereof with a conductive agent, a binder and the like as one electrode (working electrode); The other electrode (counter electrode) is in contact with a lithium ion conductive non-aqueous electrolyte as the other electrode (counter electrode) so that both electrodes are opposed to each other to form an electrochemical cell, and an appropriate current is applied in the direction in which the working electrode performs a cathode reaction. A method in which lithium ions are electrochemically occluded in the monoxide by energizing or discharging.
A non-aqueous electrolyte secondary battery is formed by using the obtained working electrode as it is as a negative electrode and / or a positive electrode or as an active material constituting a negative electrode and / or a positive electrode. (2) A laminated electrode formed by molding a monoxide of the metal or a mixture thereof with a conductive agent, a binder and the like into a predetermined shape, and pressing or contacting lithium or an alloy of lithium or the like with this. Is incorporated in a nonaqueous electrolyte secondary battery as a negative electrode or a positive electrode. A method in which the laminated electrode contacts the electrolyte in the battery to form a kind of local battery, self-discharges, and electrochemically occludes lithium in the monoxide. (3) A non-aqueous electrolyte secondary battery in which the metal monoxide is used as an active material of one electrode and a material containing lithium and capable of inserting and extracting lithium ions in the other electrode is used as an active material. . A method in which lithium ions are occluded in the monoxide by charging or discharging during use as a battery.

【0020】この様にして得られるアルカリ金属以外の
金属Mとリチウムとの複合酸化物LixMOを負極及び
/または正極の活物質として用いる。
[0020] Other than the alkali metal thus obtained,
A composite oxide Li x MO of metal M and lithium is used as an active material of a negative electrode and / or a positive electrode.

【0021】本発明に依る該複合酸化物LixMOを活
物質とする電極は、これを正負両極の活物質として用い
て二次電池を構成することが出来るし、又、これを正極
または負極の何れか一方の電極として用い、前述のリチ
ウムもしくはリチウムイオンを吸蔵放出可能な各種の他
の負極活物質又は正極活物質を用いた電極をもう一方の
電極として組み合わせて用いることもできる。特に、本
発明に依る複合酸化物LixMOを活物質とする電極
は、金属リチウムに対する電極電位が1.9V以下の卑
な領域の充放電容量が大きく、且つ過充電過放電に依る
劣化が小さいため、これを負極として用い、前述のV2
5やLixCoO2、LixNiO2、LixMn24等の
金属酸化物の様な金属リチウムに対する電極電位が3V
もしくは4V以上の高電位の活物質を用いた正極と組み
合わせることにより高電圧高エネルギー密度でかつ大電
流充放電特性に優れ、過充電過放電による劣化の小さい
二次電池が得られるので、より好ましい。なかでも、該
複合酸化物LixMOを構成するMがMn、Ti、Zn
の場合には、金属リチウムに対する電極電位が1.5V
以下のより卑な領域の充放電容量が特に大きく、且つ過
充電過放電による劣化が小さい為、特に負極活物質とし
て優れている。
The electrode using the composite oxide Li x MO as the active material according to the present invention can be used as a positive or negative electrode active material to constitute a secondary battery. And any of the above-mentioned electrodes using various other negative electrode active materials or positive electrode active materials capable of inserting and extracting lithium or lithium ions can be used in combination as the other electrode. In particular, the electrode using the composite oxide Li x MO according to the present invention as an active material has a large charge / discharge capacity in a base region where the electrode potential with respect to metal lithium is 1.9 V or less, and the deterioration due to overcharge and overdischarge is low. small order, used as a negative electrode, the above-described V 2
O 5 and Li x CoO 2, Li x NiO 2, Li x Mn 2 electrode potential with respect to lithium metal, such as metal oxides O 4 and the like 3V
Alternatively, by combining with a positive electrode using an active material having a high potential of 4 V or more, a secondary battery having high voltage, high energy density, excellent current / discharge characteristics, and little deterioration due to overcharge and overdischarge can be obtained. . Among them, M constituting the composite oxide Li x MO is Mn, Ti, Zn.
In the case of , the electrode potential for metallic lithium is 1.5 V
The charge / discharge capacity of the following lower regions is particularly large, and the deterioration due to overcharge and overdischarge is small, so that it is particularly excellent as a negative electrode active material.

【0022】一方、本発明に依る該複合酸化物Lix
Oを負極活物質とする負極と共に、組成式がLiab
c2で示され、但し、Tは遷移金属元素、Lはホウ素B
及びケイ素Siの中から選ばれた1種以上の類金属元素
であり、a,b,cはそれぞれ0<a≦1.15、0.
85≦b+c≦1.3、0≦cであり、リチウムを含有
し層状構造を有する複合酸化物を正極活物質とする正極
とを組み合わせて用いることに依り、特に高エネルギー
密度で充放電特性が優れるとともに過充電過放電に依る
劣化が小さくサイクル寿命の長い二次電池が得られるの
で特に好ましい。
On the other hand, the composite oxide Li x M according to the present invention
Along with the negative electrode using O as the negative electrode active material, the composition formula is Li a T b L
c O 2 , where T is a transition metal element, L is boron B
And silicon is at least one metal element selected from silicon Si, where a, b, and c are respectively 0 <a ≦ 1.15, 0.
85 ≦ b + c ≦ 1.3, 0 ≦ c, and the charge / discharge characteristics are particularly high at high energy density by using a composite oxide containing lithium and having a layered structure in combination with a positive electrode as a positive electrode active material. It is particularly preferable because a secondary battery which is excellent, has little deterioration due to overcharge and overdischarge, and has a long cycle life can be obtained.

【0023】本発明電池の正極活物質として用いられる
該複合酸化物Liabc2は次のようにして合成する
ことが出来る。即ち、リチウムLi、遷移金属T及び元
素Lの各単体または各々の酸化物、水酸化物あるいは炭
酸塩、硝酸塩などの塩を所定比で混合し、空気中または
酸素を有する雰囲気中600℃以上の温度、好ましくは
700〜900℃の温度で加熱焼成することに依って得
られる。Li、T及びL等の供給源としてそれらの酸化
物、または、酸素を有する化合物を用いる場合には、不
活性雰囲気中で加熱合成することも可能である。加熱時
間は、通常4〜50時間で十分であるが、合成反応を促
進し、均一性を高めるため、焼成、冷却、粉砕混合のプ
ロセスを数回繰り返すことが有効である。
[0023] The composite oxide used as a positive electrode active material of the present invention battery Li a T b L c O 2 can be synthesized as follows. That is, lithium Li, each of the transition metal T and the element L, or their respective oxides, hydroxides, or salts such as carbonates and nitrates are mixed at a predetermined ratio, and the mixture is heated to 600 ° C. or more in air or an atmosphere containing oxygen. It is obtained by heating and calcining at a temperature, preferably 700 to 900 ° C. When an oxide or a compound containing oxygen is used as a supply source of Li, T, L, or the like, heat synthesis can be performed in an inert atmosphere. The heating time of 4 to 50 hours is usually sufficient, but it is effective to repeat the firing, cooling, and pulverizing and mixing processes several times in order to promote the synthesis reaction and improve the uniformity.

【0024】組成式Liabc2に於て、Li量aは
上記の加熱合成に於いては定比組成a=1が標準である
が、±15%程度の不定比組成も可能であり、又、電気
化学的なインターカレーション、デインターカレーショ
ン等により0<a≦1.15が可能である。遷移金属T
としては、Co,Ni,Fe,Mn,Cr,V等が好ま
しく、特にCo,Niが充放電特性が優れており好まし
い。ホウ素及び/又はケイ素の量c及び遷移金属Tの量
bとしては、0<cかつ0.85≦b+c≦1.3にお
いて充放電時の分極(内部抵抗)の低減、サイクル特性
向上等への効果が顕著であり好ましい。一方、各サイク
ル毎の充放電容量は、ホウ素及び/又はケイ素の量cが
多過ぎると逆に低下し、0<c≦0.5において最大と
なるため、この範囲が特に好ましい。
In the composition formula Li a Tb L c O 2 , the Li amount a is a stoichiometric composition a = 1 as a standard in the above-mentioned heating synthesis, but a non-stoichiometric composition of about ± 15% is also available. 0 <a ≦ 1.15 is possible by electrochemical intercalation and deintercalation. Transition metal T
Are preferably Co, Ni, Fe, Mn, Cr, V, etc., and Co and Ni are particularly preferred because of their excellent charge / discharge characteristics. As the amount c of boron and / or silicon and the amount b of the transition metal T, when 0 <c and 0.85 ≦ b + c ≦ 1.3, the polarization (internal resistance) during charging and discharging is reduced, and the cycle characteristics are improved. The effect is remarkable and preferable. On the other hand, the charge / discharge capacity in each cycle is conversely decreased when the amount c of boron and / or silicon is too large, and becomes maximum when 0 <c ≦ 0.5. Therefore, this range is particularly preferable.

【0025】又、電解質としては、γ−ブチロラクト
ン、プロピレンカーボネート、エチレンカーボネート、
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、メチルフォーメイト、1、2−ジメト
キシエタン、テトラヒドロフラン、ジオキソラン、ジメ
チルフォルムアミド等の有機溶媒の単独又は混合溶媒に
支持電解質としてLiClO4 ,LiPF6 ,LiBF
4 ,LiCF3SO3等のリチウムイオン解離性塩を溶解
した有機電解液、ポリエチレンオキシドやポリフォスフ
ァゼン架橋体等の高分子に前記リチウム塩を固溶させた
高分子固体電解質あるいはLi3N,LiI等の無機固
体電解質等々のリチウムイオン導電性の非水電解質であ
れば良い。特に、有機溶媒としてエチレンカーボネート
を含有する非水電解液(有機電解液)を用いた場合に、
充放電特性が優れ、サイクル寿命の長い二次電池が得ら
れるので特に好ましい。
As the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate,
LiClO 4 , LiPF 6 , LiBF as a supporting electrolyte in an organic solvent such as butylene carbonate, dimethyl carbonate, diethyl carbonate, methylformate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolan, dimethylformamide, alone or in a mixed solvent
4 , an organic electrolyte solution in which a lithium ion dissociable salt such as LiCF 3 SO 3 is dissolved, a polymer solid electrolyte in which the lithium salt is dissolved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene, or Li 3 N, Any non-aqueous electrolyte having lithium ion conductivity such as an inorganic solid electrolyte such as LiI may be used. In particular, when a non-aqueous electrolyte (organic electrolyte) containing ethylene carbonate as an organic solvent is used,
It is particularly preferable because a secondary battery having excellent charge / discharge characteristics and a long cycle life can be obtained.

【0026】[0026]

【作用】本発明のアルカリ金属以外の金属Mとリチウム
との複合酸化物LixMOを活物質とする電極は、非水
電解質中に於て金属リチウムに対し少なくとも0〜3V
の電極電位の範囲で安定に繰り返しリチウムイオンを吸
蔵放出することが出来、この様な電極反応により繰り返
し充放電可能な二次電池の負極及び/または正極として
用いることが出来る。又、リチウム基準極に対し0〜
1.9Vの卑な電位領域において、安定にリチウムイオ
ンを吸蔵放出し繰り返し充放電できる高容量領域を有す
るため、負極として用いた場合により優れた性能を有す
る。特に、MがMn、Ti、Znの金属の場合には、金
属リチウムに対する電極電位が1.5V以下のより卑な
領域の充放電容量が特に大きく、且つ過充電過放電によ
る劣化が小さい為、特に負極活物質として優れている。
又、従来この種の電池の電極として用いられてきたグラ
ファイト等の炭素質材料に比べ可逆的にリチウムイオン
を吸蔵放出できる量即ち充放電容量が著しく大きく、か
つ充放電の分極が小さいため、大電流での充放電が可能
であり、更に過充電過放電による分解や結晶崩壊等の劣
化が殆ど見られず、極めて安定でサイクル寿命の長い電
池を得ることが出来る。
The electrode using the composite oxide Li x MO of a metal M other than an alkali metal and lithium according to the present invention as an active material has a potential of at least 0 to 3 V with respect to metallic lithium in a non-aqueous electrolyte.
It is possible to stably and repeatedly absorb and release lithium ions within the range of the electrode potential described above, and it can be used as a negative electrode and / or a positive electrode of a secondary battery that can be repeatedly charged and discharged by such an electrode reaction. In addition, 0 to the lithium reference electrode
In a 1.9 V base potential region, a high-capacity region in which lithium ions can be stably inserted and released and repeatedly charged and discharged has a higher capacity, and thus has superior performance when used as a negative electrode. In particular, when M is a metal of Mn, Ti, and Zn, the charge / discharge capacity in a lower region where the electrode potential with respect to metallic lithium is 1.5 V or less is particularly large, and deterioration due to overcharge and overdischarge is small, Particularly, it is excellent as a negative electrode active material.
Further, as compared with carbonaceous materials such as graphite which have been conventionally used as electrodes of this type of battery, the amount of lithium ions that can be inserted and released reversibly, that is, the charge / discharge capacity is extremely large, and the charge / discharge polarization is small. The battery can be charged / discharged with a current, and furthermore, almost no degradation such as decomposition or crystal collapse due to overcharge / overdischarge is observed, and an extremely stable battery having a long cycle life can be obtained.

【0027】この様に優れた充放電特性が得られる理由
は必ずしも明らかではないが、次の様に推定される。即
ち、本発明による新規な活物質であるアルカリ金属以外
金属Mとリチウムとの複合酸化物LixMOは、この
構造中でのリチウムイオンの移動度が高く、且つ、リチ
ウムイオンを吸蔵できるサイトが非常に多いためリチウ
ムイオンの吸蔵放出が容易である為と推定される。
The reason why such excellent charge / discharge characteristics are obtained is not necessarily clear, but is presumed as follows. That is, the composite oxide Li x MO of lithium and a metal M other than an alkali metal, which is a novel active material according to the present invention, has a high mobility of lithium ions in this structure and a site capable of occluding lithium ions. It is presumed that the absorption and release of lithium ions is easy due to the large number of

【0028】一方、正極活物質として用いられる複合酸
化物Liabc2は、金属リチウムに対する電極電位
が約4Vもしくはそれ以上の高電位を有し、かつ少なく
とも0<a≦1.15の間でLiイオンのインターカレ
ーション、デインターカレーションによる可逆的な充放
電が可能であり、かつ過充電過放電による劣化が小さ
く、優れたサイクル特性を有する。特にB及び/又はS
iの含有量cが0.05≦c<0.5において分極が小
さく、かつサイクル特性が優れている。この様に優れた
充放電特性が得られる理由は必ずしも明らかではない
が、次のように推定される。即ち、本発明による正極活
物質Liabc2は、B及びSiを含有しないα−N
aCrO2型の層状構造の酸化物Liab2 の遷移金
属元素Tの一部がB又はSiで置換されたα−NaCr
2 型に類似の骨格構造をしている。但し、B原子及び
Si原子は又、結晶の格子間隙間やLiサイト(Liと
置換)にも存在し得る。いずれにせよ、B又はSiの存
在により、結晶構造及び電子構造が変化するため、Li
イオン導電性が高まり、且つリチウムイオンの吸蔵放出
が容易になる為であると推定される。
On the other hand, the composite oxide Li a T b L c O 2 used as the positive electrode active material, the electrode potential with respect to metallic lithium has about 4V or more high potential, and at least 0 <a ≦ 1. Reversible charge / discharge by intercalation and deintercalation of Li ions is possible between 15 and 15, deterioration due to overcharge and overdischarge is small, and excellent cycle characteristics are obtained. Especially B and / or S
When the content c of i is 0.05 ≦ c <0.5, the polarization is small and the cycle characteristics are excellent. The reason why such excellent charge / discharge characteristics are obtained is not necessarily clear, but is presumed as follows. That is, the positive electrode active material according to the present invention Li a T b L c O 2 does not contain B and Si alpha-N
part of the oxide Li a T b O 2 transition metal element T of Acro 2 type layered structure is substituted with B or Si alpha-NACR
It has a skeletal structure similar to the O 2 type. However, B atoms and Si atoms can also exist in interstitial spaces of crystals and Li sites (substituted with Li). In any case, since the crystal structure and the electronic structure change due to the presence of B or Si, Li
It is presumed that this is because ion conductivity is increased and lithium ions are easily absorbed and released.

【0029】このため、これらの本発明による負極活物
質と正極活物質とを組み合わせて用いた電池は、4〜2
Vの高い作動電圧を有し、可逆的にリチウムイオンを吸
蔵放出できる量即ち充放電容量が著しく大きく、かつ充
放電の分極が小さいため、大電流での充放電が可能であ
り、更に過充電過放電による活物質の分解や結晶崩壊等
の劣化が殆ど見られず、極めて安定でサイクル寿命が長
い等々、特に優れた性能を有する。
For this reason, a battery using the combination of the negative electrode active material and the positive electrode active material according to the present invention is 4 to 2 times.
It has a high operating voltage of V and has an extremely large amount of reversible insertion and extraction of lithium ions, that is, a remarkably large charge / discharge capacity, and a small charge / discharge polarization. Deterioration of the active material due to overdischarge, deterioration of crystal collapse, and the like are hardly observed, and it is extremely stable and has a long cycle life.

【0030】以下、実施例により本発明を更に詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0031】[0031]

【実施例】図1は、本発明に依る非水電解質二次電池の
電極活物質の性能評価に用いたテストセルの一例を示す
コイン型電池の断面図である。図において、1は対極端
子を兼ねる対極ケースであり、外側片面をNiメッキし
たステンレス鋼製の板を絞り加工したものである。2は
ステンレス鋼製のネットから成る対極集電体であり対極
ケース1にスポット溶接されている。対極3は、所定厚
みのアルミニウム板を直径15mmに打ち抜き、対極集
電体2に固着し、その上に所定厚みのリチウムフォイル
を直径14mmに打ち抜いたものを圧着したものであ
る。7は外側片面をNiメッキしたステンレス鋼製の作
用極ケースであり、作用極端子を兼ねている。5は後述
の本発明に依る活物質又は従来法に依る比較活物質を用
いて構成された作用極であり、6はステンレス鋼製のネ
ット又は炭素を導電性フィラーとする導電性接着剤から
なる作用極集電体であり、作用極5と作用極ケース7と
を電気的に接続している。4はポリプロピレンの多孔質
フィルムからなるセパレータであり、電解液が含浸され
ている。8はポリプロピレンを主体とするガスケットで
あり、対極ケース1と作用極ケース7の間に介在し、対
極と作用極との間の電気的絶縁性を保つと同時に、作用
極ケース開口縁が内側に折り曲げられカシメられること
に依って、電池内容物を密封、封止している。電池の大
きさは、外径20mm、厚さ1.6mmであった。
FIG . 1 is a sectional view of a coin-type battery showing an example of a test cell used for evaluating the performance of an electrode active material of a nonaqueous electrolyte secondary battery according to the present invention. In the figure, reference numeral 1 denotes a counter electrode case also serving as a counter electrode terminal, which is formed by drawing a stainless steel plate having one outer surface Ni-plated. Reference numeral 2 denotes a counter electrode current collector made of a stainless steel net, which is spot-welded to the counter electrode case 1. The counter electrode 3 is obtained by punching an aluminum plate having a predetermined thickness to a diameter of 15 mm, fixing the aluminum plate to the counter electrode current collector 2, and punching a lithium foil having a predetermined thickness to a diameter of 14 mm. Reference numeral 7 denotes a working electrode case made of stainless steel with one outer surface Ni-plated, and also serves as a working electrode terminal. Reference numeral 5 denotes a working electrode formed by using an active material according to the present invention to be described later or a comparative active material according to a conventional method. Reference numeral 6 denotes a conductive adhesive using a stainless steel net or carbon as a conductive filler. The working electrode current collector electrically connects the working electrode 5 and the working electrode case 7. Reference numeral 4 denotes a separator made of a porous film of polypropylene, which is impregnated with an electrolytic solution. Reference numeral 8 denotes a gasket mainly composed of polypropylene, which is interposed between the counter electrode case 1 and the working electrode case 7 to maintain the electrical insulation between the counter electrode and the working electrode and to make the opening edge of the working electrode case inward. The battery contents are sealed and sealed by being bent and crimped. The size of the battery was 20 mm in outer diameter and 1.6 mm in thickness.

【0032】(比較例1) 活物質としてLi x MnOを用いた場合である。下記の
作用極及び電解液を用い、電池を作製した。
Comparative Example 1 This is a case where Li x MnO is used as an active material . below
A battery was fabricated using the working electrode and the electrolyte.

【0033】作用極5は次の様にして作製した。市販の
一酸化マンガンMnOを自動乳鉢に依り粒径53μm以
下に粉砕整粒したものを本発明に依る活物質cとし、こ
れに導電剤として実施例1で用いたものと同じグラファ
イトを、結着剤として架橋型アクリル酸樹脂等を重量比
65:20:15の割合で混合して作用極合剤とした。
次に、この作用極合剤を2ton/cm2で直径15m
m厚さ0.3mmのペレットに加圧成形して作用極5を
作製した。その後、この様にして得られた作用極5を炭
素を導電性フィラーとする導電性樹脂接着剤からなる作
用極集電体6を用いて作用極ケース7に接着し一体化し
た後、200℃で10時間減圧加熱乾燥したものを用い
て上述のコイン形電池を作製した。
The working electrode 5 was manufactured as follows. A commercially available manganese monoxide MnO was pulverized and sized using an automatic mortar to a particle size of 53 μm or less as an active material c according to the present invention, and the same graphite as that used in Example 1 as a conductive agent was bound thereto. A working electrode mixture was prepared by mixing a crosslinkable acrylic resin or the like in a weight ratio of 65:20:15 as an agent.
Next, this working electrode mixture was applied at 2 ton / cm 2 with a diameter of 15 m.
The working electrode 5 was produced by pressure molding into a 0.3 mm thick pellet. Thereafter, the working electrode 5 thus obtained is bonded and integrated with a working electrode case 7 using a working electrode current collector 6 made of a conductive resin adhesive containing carbon as a conductive filler. And dried under reduced pressure for 10 hours to produce the above-described coin-type battery.

【0034】又、比較のため、上記の本発明に依る活物
質cの代わりに、上記の導電剤に用いたと同じグラファ
イトを活物質(活物質r2と略記)として用いた他は、
上記の本発明の作用極の場合と同様にして、同様な電極
(比較用作用極)を作成した。
For comparison, the same graphite as that used for the conductive agent was used as the active material (abbreviated as active material r2) in place of the active material c according to the present invention.
A similar electrode (comparative working electrode) was prepared in the same manner as the working electrode of the present invention described above.

【0035】電解質はプロピレンカーボネートとエチレ
ンカーボネート、及び1,2−ジメトキシエタンの体積
比1:1:2混合溶媒に過塩素酸リチウムLiClO 4
を1モル/l溶解したものを用いた。
The electrolyte was lithium perchlorate LiClO 4 in a mixed solvent of propylene carbonate, ethylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1: 2.
Was dissolved at 1 mol / l.

【0036】この様にして作製された電池は、室温で1
週間放置エージングされた後、後述の充放電試験が行わ
れた。このエージングによって、対極のリチウム−アル
ミニウム積層電極は電池内で非水電解液に触れることに
より十分合金化が進行し、リチウムフォイルは実質的に
全てLi−Al合金となるため、電池電圧は、対極とし
て金属リチウムを単独で用いた場合に比べて約0.4V
低下した値となって安定した。
The battery manufactured in this manner has a capacity of 1 at room temperature.
After aged for a week, a charge / discharge test described later was performed. Due to this aging, the lithium-aluminum laminated electrode of the counter electrode is sufficiently alloyed by touching the non-aqueous electrolyte in the battery, and substantially all of the lithium foil becomes a Li-Al alloy. About 0.4V compared to the case where metallic lithium is used alone
The value decreased and became stable.

【0037】この様にして作製した電池を、以下、それ
ぞれの使用した作用極の活物質c,r2に対応し、電池
C,R2と略記する。
The batteries manufactured in this manner are hereinafter abbreviated as batteries C and R2, corresponding to the active materials c and r2 of the working electrodes used.

【0038】これらの電池C及びR2を1mAの定電流
で、充電(電解液中から作用極にリチウムイオンが吸蔵
される電池反応をする電流方向)の終止電圧−0.4
V、放電(作用極から電解液中へリチウムイオンが放出
される電池反応をする電流方向)の終止電圧2.5Vの
条件で充放電サイクルを行ったときの3サイクル目の放
電特性を図2に、充電特性を図3に示した。又、サイク
ル特性を図4に示した。尚、充放電サイクルは充電から
スタートした。図2〜4から明らかな様に、本発明によ
る電池Cは比較電池R2に比べ、充放電容量が著しく大
きく、充放電の可逆領域が著しく拡大することが分か
る。又、充放電の繰り返しによる放電容量の低下(サイ
クル劣化)が著しく小さい。更に、全充放電領域に渡っ
て充電と放電の作動電圧の差が著しく小さくなってお
り、電池の分極(内部抵抗)が著しく小さく、大電流充
放電が容易なことが分かる。
The final voltage of the batteries C and R2 at a constant current of 1 mA (current direction in which a battery reaction in which lithium ions are occluded from the electrolytic solution to the working electrode) is -0.4.
FIG. 2 shows the discharge characteristics in the third cycle when a charge / discharge cycle was performed under the condition of a final voltage of 2.5 V, and a discharge (current direction in which a lithium ion is released from the working electrode into the electrolytic solution in a battery reaction) . FIG. 3 shows the charging characteristics. FIG. 4 shows the cycle characteristics. The charge / discharge cycle started from charging. As is clear from FIGS. 2 to 4, the battery C according to the present invention has a remarkably large charge / discharge capacity and a reversible charge / discharge region significantly expanded as compared with the comparative battery R2. Further, a decrease in discharge capacity (cycle deterioration) due to repetition of charge and discharge is extremely small. Furthermore, the difference in operating voltage between charging and discharging is significantly reduced over the entire charging / discharging region, indicating that the polarization (internal resistance) of the battery is extremely small and that large-current charging / discharging is easy.

【0039】(比較例2) 比較例1の活物質cの代わりに、 市販の一酸化チタンT
iOを粒径53μm以下に粉砕整粒したものを作用極の
活物質(本発明による活物質d)として用いた。この作
用極の活物質以外は、すべての比較例1の電池Cと同様
にして同様な電池Dを作製した。
(Comparative Example 2) Instead of the active material c of Comparative Example 1, commercially available titanium monoxide T
A material obtained by pulverizing and sizing iO to a particle size of 53 μm or less was used as an active material of the working electrode (active material d according to the present invention). Except for the active material of the working electrode, a battery D similar to all the batteries C of Comparative Example 1 was produced.

【0040】この様にして得られた電池D及び前述の比
較電池R2についても比較例1と同様に、1mAの定電
流で充電の終止電圧−0.4V、放電の終止電圧2.5
Vの条件で充放電サイクル試験を行った。この時の3サ
イクル目の放電特性を図5に、充電特性を図6に、又サ
イクル特性を図7に示した。
The battery D thus obtained and the above-mentioned comparative battery R2 were similarly charged in the same manner as in Comparative Example 1 at a constant current of 1 mA and a cutoff voltage of -0.4 V and a cutoff voltage of 2.5.
A charge / discharge cycle test was performed under the condition of V. FIG. 5 shows the discharge characteristics in the third cycle, FIG. 6 shows the charge characteristics, and FIG . 7 shows the cycle characteristics.

【0041】図から明かな様に、電池Dは、本発明に依
る電池Cと同様に優れた充放電特性を有することが判
る。
As can be seen from the figure, the battery D is in accordance with the present invention.
It shows that the battery C has excellent charge / discharge characteristics in the same manner as the battery C.

【0042】(比較例3) 市販の一酸化亜鉛ZnOを粒径53μm以下に粉砕整粒
したものを作用極の活物質(本発明による活物質e)と
して用いた。この作用極の活物質以外は、すべて比較例
1の電池Cと同様にして同様な電池Eを作製した。この
様にして得られた電池E及び前述の比較電池R2につい
ても比較例1と同様に、1mAの定電流で充電の終止電
圧−0.4V、放電の終止電圧2.5Vの条件で充放電
サイクル試験を行った。この時の1サイクル目の放電特
性を図8に、充電特性を図9に示した。
Comparative Example 3 A commercially available zinc monoxide ZnO pulverized and sized to a particle size of 53 μm or less was used as the active material of the working electrode (active material e according to the present invention). All comparative examples except for the active material of this working electrode
Battery E similar to Battery C of Comparative Example 1 was produced. Similarly to Comparative Example 1, the battery E thus obtained and the above-mentioned comparative battery R2 were charged and discharged under the conditions of a constant current of 1 mA, an end voltage of charging of -0.4 V, and an end voltage of discharge of 2.5 V. A cycle test was performed. The discharge characteristics in the first cycle at this time are shown in FIG. 8 , and the charge characteristics are shown in FIG .

【0043】図から明かな様に、電池Eは、比較例1〜
2の本発明に依る電池と同様に優れた充放電特性を有す
ることが判る。即ち、本発明による電池Eは比較電池R
2に比べ、充放電容量が著しく大きく、充放電の可逆領
域が著しく拡大することが分かる。又、全充放電領域に
渡って充電と放電の作動電圧の差が著しく小さくなって
おり、電池の分極(内部抵抗)が著しく小さく、大電流
充放電が容易なことが分かる。
As is apparent from the figure, the battery E was obtained in Comparative Examples 1 to
It can be seen that the battery according to No. 2 has excellent charge / discharge characteristics similarly to the battery according to the present invention . That is, the battery E according to the present invention is a comparative battery R
It can be seen that the charge / discharge capacity is remarkably large and the reversible region of charge / discharge is remarkably expanded as compared with No. 2. In addition, the difference between the operating voltages of charging and discharging is extremely small over the entire charging / discharging region, indicating that the polarization (internal resistance) of the battery is extremely small, and that large-current charging / discharging is easy.

【0044】以上、本発明による電池の作用極の活物質
は1回目の充電によりリチウムを含有する複合酸化物L
xMO(MはMn、Ti、Zn)を生成する。即ち、
充電に依って対極のLi−Al合金から電解質中にリチ
ウムイオンが放出され、このリチウムイオンが電解質中
を移動して作用極の活物質MOと電極反応し、活物質M
Oに電気化学的にリチウムイオンが吸蔵されリチウムを
含有する複合酸化物LixMOが生成する。次に、放電
に際してはこの複合酸化物からリチウムイオンが電解質
中に放出され、電解質中を移動して対極のLi−Al合
金中に吸蔵されることに依り安定に繰り返し充放電でき
る。ここで、活物質(MO)は1回目の充電によりリチ
ウムを含有する複合酸化物Li x MOを生成した後は、
その後の放電−充電のサイクルに於ては、完全放電時以
外にはリチウムを含有する複合酸化物LixMOを形成
している。
As described above , the active material of the working electrode of the battery according to the present invention is a composite oxide L containing lithium upon the first charge.
i x MO (M is Mn, Ti, Zn) to generate. That is,
Lithium ions are released into the electrolyte from the Li-Al alloy of the counter electrode due to the charge, and the lithium ions move in the electrolyte and undergo an electrode reaction with the active material MO of the working electrode, and the active material M
Lithium ions are electrochemically occluded in O, and a lithium-containing composite oxide Li x MO is generated. Next, at the time of discharge, lithium ions are released from the composite oxide into the electrolyte, move in the electrolyte, and are absorbed in the Li-Al alloy at the counter electrode, whereby stable charge and discharge can be performed repeatedly. Here, after the active material (MO) generates the composite oxide Li x MO containing lithium by the first charge,
Subsequent discharge - Te is at the charging cycle, except during full discharge forms a composite oxide Li x MO containing lithium.

【0045】又、本発明に依る電池の活物質はLi−A
l合金電極に対して1.5〜2.5V(金属リチウムに
対して約1.9〜2.9Vに対応する)の貴な電位領域
と同様、もしくはそれ以上に、−0.4〜+1.5V
(金属リチウムに対して約0〜1.9Vに対応する)の
卑な電位領域の充放電容量が大きいことから、非水電解
質二次電池の正極活物質として用いられるのみならず、
特に負極活物質として優れていることが判る。活物質L
x MO(MはMn、Ti、Zn)はLi−Al合金電
極に対して−0.4〜+1.1V(金属リチウムに対し
て約0〜1.5Vに対応する)の卑な電位領域での充放
電容量がより大きく、かつより卑な電位を有しており、
負極活物質として特に優れている。
The active material of the battery according to the present invention is Li-A
As with or above the noble potential region of 1.5 to 2.5 V (corresponding to about 1.9 to 2.9 V for lithium metal) with respect to the alloy electrode, -0.4 to +1 .5V
Since the charge / discharge capacity in a low potential region (corresponding to about 0 to 1.9 V with respect to metallic lithium) is large, it is used not only as a positive electrode active material of a nonaqueous electrolyte secondary battery,
It turns out that it is particularly excellent as a negative electrode active material. Active material L
i x MO (M is Mn, Ti, Zn) baser potential region of -0.4 to + 1.1V with respect to Li-Al alloy electrode (corresponding to about 0~1.5V the metal lithium) Has a larger charge and discharge capacity, and has a lower potential,
It is particularly excellent as a negative electrode active material.

【0046】(実施例1)図10 は、本発明に依る非水電解質二次電池の一例を示
すコイン型電池の断面図である。図において、11は負
極端子を兼ねる負極ケースであり、外側片面をNiメッ
キしたステンレス鋼製の板を絞り加工したものである。
13は、後述の本発明に依る負極活物質を用いて構成さ
れた負極であり、炭素を導電性フィラーとする導電性接
着剤からなる負極集電体12により負極ケース11に接
着されている。17は外側片面をNiメッキしたステン
レス鋼製の正極ケースであり、正極端子を兼ねている。
15は後述の本発明に依る正極活物質を用いて構成され
た正極であり、炭素を導電性フィラーとする導電性接着
剤からなる正極集電体16により正極ケース17に接着
されている。14はポリプロピレンの多孔質フィルムか
らなるセパレータであり、電解液が含浸されている。1
8はポリプロピレンを主体とするガスケットであり、負
極ケース11と正極ケース17の間に介在し、負極と正
極との間の電気的絶縁性を保つと同時に、正極ケース開
口縁が内側に折り曲げられカシメられることに依って、
電池内容物を密封、封止している。電解液はプロピレン
カーボネートとエチレンカーボネートと1,2−ジメト
キシエタンの体積比1:1:2混合溶媒に過塩素酸リチ
ウムLiClO4を1モル/l溶解したものを用いた。
電池の大きさは、外径20mm、厚さ1.6mmであっ
た。
Example 1 FIG. 10 is a sectional view of a coin-type battery showing an example of a non-aqueous electrolyte secondary battery according to the present invention. In the figure, reference numeral 11 denotes a negative electrode case also serving as a negative electrode terminal, which is formed by drawing a stainless steel plate having one outer surface Ni-plated.
Reference numeral 13 denotes a negative electrode formed by using a negative electrode active material according to the present invention described later, and is bonded to the negative electrode case 11 by a negative electrode current collector 12 made of a conductive adhesive using carbon as a conductive filler. Reference numeral 17 denotes a positive electrode case made of stainless steel with one outer surface Ni-plated, and also serves as a positive electrode terminal.
Reference numeral 15 denotes a positive electrode constituted by using a positive electrode active material according to the present invention described later, and is bonded to a positive electrode case 17 by a positive electrode current collector 16 made of a conductive adhesive using carbon as a conductive filler. Reference numeral 14 denotes a separator made of a porous film of polypropylene, which is impregnated with an electrolytic solution. 1
Reference numeral 8 denotes a gasket mainly composed of polypropylene, which is interposed between the negative electrode case 11 and the positive electrode case 17 to maintain the electrical insulation between the negative electrode and the positive electrode, and at the same time, the opening edge of the positive electrode case is bent inward and caulked. Depending on
The battery contents are sealed and sealed. The electrolyte used was a solution in which lithium perchlorate LiClO 4 was dissolved at a ratio of 1 mol / l in a mixed solvent of propylene carbonate, ethylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1: 2.
The size of the battery was 20 mm in outer diameter and 1.6 mm in thickness.

【0047】負極13は次の様にして作製した。市販の
純度99.9%の一酸化マンガンMnOを自動乳鉢に依
り粒径53μm以下に粉砕整粒したものを本発明に依る
負極活物質とし、これに導電剤としてグラファイトを、
結着剤として架橋型アクリル酸樹脂等を重量比65:2
0:15の割合で混合して負極合剤とし、次にこの負極
合剤を2ton/cm2で直径15mm、厚さ0.23
mmのペレットに加圧成形した後、200℃で10時間
減圧加熱乾燥したものを負極とした。
The negative electrode 13 was manufactured as follows. A commercially available manganese monoxide, MnO, having a purity of 99.9% was crushed and sized using an automatic mortar to a particle size of 53 μm or less as a negative electrode active material according to the present invention.
Crosslinkable acrylic resin or the like is used as a binder in a weight ratio of 65: 2.
The mixture was mixed at a ratio of 0:15 to form a negative electrode mixture. Then, the negative electrode mixture was mixed at 2 ton / cm 2 with a diameter of 15 mm and a thickness of 0.23.
After pressure-molding into a pellet having a diameter of 200 mm, the material was dried under reduced pressure at 200 ° C. for 10 hours to obtain a negative electrode.

【0048】正極15は次の様にして作製した。水酸化
リチウムLiOH・H2Oと炭酸コバルトCoCO3とを
Li:Coのモル比が1:1となる様に秤量し、乳鉢を
用いて十分混合した後、この混合物を大気中850℃の
温度で12時間加熱焼成し、冷却後、粒径53μm以下
に粉砕整粒した。この焼成、粉砕整粒を2回繰り返して
本発明に依る正極活物質LiCoO2を合成した。
The positive electrode 15 was manufactured as follows. Lithium hydroxide LiOH.H 2 O and cobalt carbonate CoCO 3 are weighed so that the molar ratio of Li: Co becomes 1: 1 and sufficiently mixed using a mortar, and the mixture is heated to 850 ° C. in the atmosphere. For 12 hours, cooled and then crushed and sized to a particle size of 53 μm or less. This firing and pulverizing and sizing were repeated twice to synthesize the positive electrode active material LiCoO 2 according to the present invention.

【0049】この生成物を正極活物質とし、これに導電
剤としてグラファイトを、結着剤としてフっ素樹脂等を
重量比80:15:5の割合で混合して正極合剤とし、
次にこの正極合剤を2ton/cm2で直径16.2m
m厚さ0.67mmのペレットに加圧成形した後、10
0℃で10時間減圧加熱乾燥したものを正極とした。
This product was used as a positive electrode active material, and graphite was mixed as a conductive agent with fluorine resin or the like as a binder in a weight ratio of 80: 15: 5 to form a positive electrode mixture.
Next, this positive electrode mixture was applied at 2 ton / cm 2 and a diameter of 16.2 m.
m after being pressed into 0.67 mm thick pellets
What was dried by heating under reduced pressure at 0 ° C. for 10 hours was used as a positive electrode.

【0050】この様にして作製された電池(電池Gとす
る)は、室温で1週間放置エージングされた後、後述の
充放電試験が行われた。
The battery (battery G) manufactured in this manner was aged at room temperature for one week, and then subjected to a charge / discharge test described later.

【0051】この電池Gを1mAの定電流で、充電の終
止電圧4.4V、放電の終止電圧2.0Vの条件で充放
電サイクルを行ったときの1サイクル目と2サイクル目
の充放電特性を図11に、サイクル特性を図12に示し
た。尚、充放電サイクルは充電からスタートした。
Charging / discharging characteristics of the first and second cycles when this battery G was subjected to a charging / discharging cycle at a constant current of 1 mA and a charging end voltage of 4.4 V and a discharging end voltage of 2.0 V. 11 is shown in FIG. 11 , and the cycle characteristics are shown in FIG . The charge / discharge cycle started from charging.

【0052】この電池Gは、充電に依って正極活物質L
iCoO2から電解液中にリチウムイオンが放出され、
このリチウムイオンが電解液中を移動して負極活物質と
電極反応し、負極活物質に電気化学的にリチウムイオン
が吸蔵されリチウムを含有するリチウムマンガン複合酸
化物LixMnOが生成する。次に、放電に際しては負
極のリチウムマンガン複合酸化物からリチウムイオンが
電解液中に放出され、電解液中を移動して正極活物質に
吸蔵されることに依り安定に繰り返し充放電できる。こ
こで、負極活物質は1回目の充電によりリチウムを含有
する複合酸化物Li x MnOを生成した後は、その後の
放電-充電のサイクルに於ては、完全放電時以外にはリ
チウムを含有する複合酸化物LixMnOを形成してい
る。
The battery G has a positive electrode active material L
Lithium ions are released from the iCoO 2 into the electrolyte,
The lithium ions move in the electrolytic solution and undergo an electrode reaction with the negative electrode active material, whereby lithium ions are electrochemically occluded in the negative electrode active material to generate lithium-manganese composite oxide Li x MnO containing lithium. Next, at the time of discharging, lithium ions are released from the lithium manganese composite oxide of the negative electrode into the electrolytic solution, move in the electrolytic solution and are occluded by the positive electrode active material, and thus can be repeatedly charged and discharged stably. Here, after the negative electrode active material generates the lithium-containing composite oxide Li x MnO by the first charge, in the subsequent discharge-charge cycle, the negative electrode active material contains lithium except at the time of complete discharge. A composite oxide Li x MnO is formed.

【0053】図11〜12から明らかな様に、本発明に
よる電池Gは、充放電容量が著しく大きいことが分か
る。又、充電容量に対する放電容量(充放電効率)の低
下は、1サイクル目以外では著しく小さく、充放電の繰
り返しによる放電容量の低下(サイクル劣化)も小さ
い。更に、全充放電領域に渡って充電と放電の作動電圧
の差が著しく小さく、電池の分極(内部抵抗)が著しく
小さく、大電流充放電が容易なことが分かる。
As is clear from FIGS. 11 to 12 , the battery G according to the present invention has a remarkably large charge / discharge capacity. Further, the decrease in the discharge capacity (charge / discharge efficiency) relative to the charge capacity is extremely small except in the first cycle, and the decrease in the discharge capacity (cycle deterioration) due to repeated charge / discharge is also small. Furthermore, it can be seen that the difference in operating voltage between charging and discharging is extremely small over the entire charging and discharging region, the polarization (internal resistance) of the battery is extremely small, and large-current charging and discharging is easy.

【0054】尚、1サイクル目の充電容量に対する1サ
イクル目の放電容量の低下(初期ロス)が大きい原因
は、1サイクル目の充電に於いて、負極活物質に電気化
学的にリチウムイオンが吸蔵される際に、負極合剤に導
電剤として加えたグラファイトや結着剤等とLiとの間
で発生する副反応が主原因であり、又、負極活物質のM
nOに吸蔵され、放電時に放出されないで残存するLi
も存在するためと考えられる。
The cause of the large decrease in the first cycle discharge capacity (initial loss) with respect to the first cycle charge capacity is that lithium ions are electrochemically occluded in the negative electrode active material during the first cycle charge. Is mainly caused by a side reaction that occurs between Li and graphite or a binder added as a conductive agent to the negative electrode mixture, and the negative electrode active material M
Li that is occluded by nO and remains without being released during discharge
It is considered that there is also

【0055】(実施例2) 本実施例では、実施例1の負極13及び正極15の代わ
りに下記の様にして作製した負極23及び正極25を用
いた以外は、全て実施例1と同様にして同様な電池Hを
作製した。
[0055] Example 2 In this example, except for using negative electrode 23 and positive electrode 25 manufactured in the manner described below instead of the negative electrode 13 and positive electrode 15 of Example 1, the same procedure as in Example 1 To produce a similar battery H.

【0056】負極23は次の様にして作製した。実施例
と同じ負極活物質、負極合剤を用いて、2ton/c
2で直径15mm、厚さが0.33mmのペレットに
加圧成形して負極ペレットを得た。この負極ペレットを
炭素を導電性フィラーとする導電性接着剤から成る負極
集電体12に依り負極ケース11に接着し、200℃で
10時間減圧加熱乾燥した後、この負極ペレットの上に
所定厚みのリチウムフォイルを直径14mmに打ち抜い
たものを圧着した。この様にして得られたリチウム−負
極ペレット積層電極を負極として用いた。
The negative electrode 23 was manufactured as follows. Example
Using the same negative electrode active material and negative electrode mixture as in 1 , 2ton / c
A negative electrode pellet was obtained by pressure molding into a pellet having a diameter of 15 mm and a thickness of 0.33 mm in m 2 . The negative electrode pellet is adhered to the negative electrode case 11 by a negative electrode current collector 12 made of a conductive adhesive containing carbon as a conductive filler, and dried by heating under reduced pressure at 200 ° C. for 10 hours. Was punched out to a diameter of 14 mm and pressed. The thus obtained lithium-negative electrode pellet laminated electrode was used as a negative electrode.

【0057】正極25は次の様にして作製した。水酸化
リチウムLiOH・H2Oと炭酸コバルトCoCO3と酸
化ホウ素B23をLi:Co:Bのモル比が1:0.
9:0.1となる様に秤量し、乳鉢を用いて十分混合し
た後、この混合物を大気中850℃の温度で12時間加
熱焼成し、冷却後、粒径53μm以下に粉砕整粒した。
この焼成、粉砕整粒を2回繰り返して本発明に依る正極
活物質LiCo0.90.12を合成した。
The positive electrode 25 was manufactured as follows. Lithium hydroxide LiOH.H 2 O, cobalt carbonate CoCO 3, and boron oxide B 2 O 3 were prepared at a molar ratio of Li: Co: B of 1: 0.
The mixture was weighed so as to be 9: 0.1, sufficiently mixed using a mortar, and heated and fired in the air at a temperature of 850 ° C. for 12 hours. After cooling, the mixture was pulverized and sized to a particle size of 53 μm or less.
This firing and pulverization and sizing were repeated twice to synthesize the positive electrode active material LiCo 0.9 B 0.1 O 2 according to the present invention.

【0058】この生成物を正極活物質とし、これに導電
剤としてグラファイトを、結着剤としてフっ素樹脂等を
重量比80:15:5の割合で混合して正極合剤とし、
次にこの正極合剤を2ton/cm2 で直径16.2m
m厚さ0.47mmのペレットに加圧成形した後、10
0℃で10時間減圧加熱乾燥したものを正極とした。
This product was used as a positive electrode active material, and graphite was mixed as a conductive agent with fluororesin as a binder in a weight ratio of 80: 15: 5 to form a positive electrode mixture.
Next, this positive electrode mixture was applied at 2 ton / cm 2 and a diameter of 16.2 m.
m after being pressed into a 0.47 mm thick pellet.
What was dried by heating under reduced pressure at 0 ° C. for 10 hours was used as a positive electrode.

【0059】この様にして作製された電池(以下、電池
Hと略記)は、室温で1週間放置エージングされた後、
後述の充放電試験が行われた。このエージングによっ
て、負極23のリチウム−負極ペレット積層電極は電池
内で非水電解液に触れることにより自発的に電気化学反
応し、リチウムフォイルは実質的に全て負極合剤に電気
化学的に吸蔵された。
The battery manufactured in this manner (hereinafter abbreviated as Battery H) was aged at room temperature for one week,
The following charge / discharge test was performed. Due to this aging, the lithium-negative electrode laminated electrode of the negative electrode 23 spontaneously electrochemically reacts by touching the non-aqueous electrolyte in the battery, and substantially all of the lithium foil is electrochemically occluded in the negative electrode mixture. Was.

【0060】この様にして得られた電池Hについても、
実施例1と同様に1mAの定電流で充電の終止電圧4.
4V、放電の終止電圧2.0Vの条件で充放電サイクル
試験を行った。この時の1サイクル目と2サイクル目の
充放電特性を図13に、サイクル特性を図14に示し
た。
The battery H thus obtained is also
3. End voltage of charging at a constant current of 1 mA as in Example 1 .
A charge / discharge cycle test was performed under the conditions of 4 V and a discharge end voltage of 2.0 V. The charge and discharge characteristics of the first and second cycles at this time are shown in FIG. 13 , and the cycle characteristics are shown in FIG .

【0061】図から明かな様に、本実施例の電池Hは、
実施例1の電池Gに比べ著しく優れた充放電特性を有す
ることが判る。特に、1サイクル目の充電容量に対する
1サイクル目の放電容量の低下(初期ロス)がほとんど
無く、実施例1の電池Gと比較して著しく改善されてい
ることが判る。これは、充放電に伴って発生するリチウ
ムイオンと導電剤や結着剤等との副反応や充電時にMn
Oへ吸蔵され放電時に放出されないで残存するリチウム
等々に相当する量のリチウムを、予め負極合剤に積層し
て電池を組立て、電池組立後、電池内でこの積層電極が
電解液に触れることにより、自発的にこのリチウムが負
極合剤と反応し吸蔵される様にしたため、その後の充放
電時の負極におけるリチウムのロスが発生しないためで
ある。
As is clear from the figure, the battery H of this embodiment is
It can be seen that the battery G has significantly better charge / discharge characteristics than the battery G of Example 1 . In particular, there is almost no decrease (initial loss) in the discharge capacity in the first cycle with respect to the charge capacity in the first cycle, and it can be seen that it is significantly improved as compared with the battery G of Example 1 . This is because a side reaction between lithium ions generated during charge and discharge and a conductive agent or a binder, or Mn during charging.
Lithium in an amount equivalent to the amount of lithium occluded in O and remaining without being released at the time of discharge, etc., is previously laminated on the negative electrode mixture to assemble the battery, and after the battery is assembled, the laminated electrode contacts the electrolyte in the battery. This is because the lithium reacts spontaneously with the negative electrode mixture to be occluded, so that no lithium loss occurs in the negative electrode during subsequent charge and discharge.

【0062】又、正極活物質としてホウ素を含有する複
合酸化物を用いることにより、充放電容量が増加し、且
つサイクル劣化が著しく改善されていることが判る。
It is also found that the use of a boron-containing composite oxide as the positive electrode active material increases the charge / discharge capacity and significantly reduces cycle deterioration.

【0063】(実施例3) 本実施例は、実施例2の正極活物質の代わりに、下記の
正極活物質を用いた場合である。正極活物質以外は全て
実施例2と同様にして同様な電池を作製した。
Example 3 In this example, the following positive electrode active material was used in place of the positive electrode active material of Example 2 . All except positive electrode active material
A similar battery was manufactured in the same manner as in Example 2 .

【0064】本実施例の正極活物質を次の様にして作製
した。水酸化リチウムLiOH・H2Oと炭酸コバルト
CoCO3と二酸化ケイ素SiO2をLi:Co:Siの
モル比が1:0.9:0.1となる様に秤量し、乳鉢を
用いて十分混合した後、この混合物を大気中850℃の
温度で12時間加熱焼成し、冷却後、粒径53μm以下
に粉砕整粒した。この焼成、粉砕整粒を2回繰り返して
LiCo0.9Si0.12の近似組成を有する層状構造の
複合酸化物を得た。これを本発明による正極活物質とし
て用いた。
The positive electrode active material of this example was produced as follows. Lithium hydroxide LiOH.H 2 O, cobalt carbonate CoCO 3, and silicon dioxide SiO 2 are weighed so that the molar ratio of Li: Co: Si is 1: 0.9: 0.1, and sufficiently mixed using a mortar. After that, the mixture was heated and fired at 850 ° C. for 12 hours in the atmosphere, cooled, and crushed and sized to a particle size of 53 μm or less. This firing and pulverizing and sizing were repeated twice to obtain a layered composite oxide having an approximate composition of LiCo 0.9 Si 0.1 O 2 . This was used as a positive electrode active material according to the present invention.

【0065】この様にして得られた電池(電池Iと略
記)についても、実施例2と同様な充放電サイクル試験
を行ったところ、電池Hとほぼ同様な優れた充放電特性
及びサイクル特性を示した。
The battery (abbreviated as battery I) thus obtained was subjected to the same charge / discharge cycle test as in Example 2. As a result, it was found that the same excellent charge / discharge characteristics and cycle characteristics as battery H were obtained. Indicated.

【0066】(実施例4実施例2 の電解液の代わりに、エチレンカーボネートと
ジエチルカーボネートの体積比1:1混合溶媒にLiP
6 を1モル/l溶解したものを用いた。電解液以外は
全て実施例2と同様にして同様な電池Jを作製した。
Example 4 Instead of the electrolytic solution of Example 2 , ethylene carbonate was used.
LiP in a 1: 1 mixed solvent of diethyl carbonate by volume
The F 6 was prepared by dissolving 1 mol / l. A similar battery J was prepared in the same manner as in Example 2 except for the electrolytic solution.

【0067】この電池Jについても、実施例2と同様な
充放電サイクル試験を行ったところ、電池Hに比べ1〜
4サイクル目の充放電容量は20〜3%小さい値を示し
たが、その後の充放電サイクルの繰り返しに依る放電容
量の低下(サイクル劣化)が小さく、より優れたサイク
ル特性を示した。
This battery J was also subjected to the same charge / discharge cycle test as in Example 2 .
Although the charge / discharge capacity at the fourth cycle showed a value smaller by 20 to 3%, a decrease in the discharge capacity (cycle deterioration) due to the repetition of the subsequent charge / discharge cycle was small, and more excellent cycle characteristics were exhibited.

【0068】尚、実施例においては、対極としてリチウ
ム−ルミニウム合金、LiCoO2及びLiabc2
の場合のみを示したが、本発明は実施例に限定されず、
前述の様に、金属リチウム、リチウムとZn,Sn,P
b,Bi等の他金属との合金、炭素やMoO2 ,WO
2 ,Fe23等のリチウム挿入化合物、ポリアセチレ
ン,ポリピロール,ポリアセン等のリチウムイオンをド
ープ可能な導電性高分子等々のリチウムを吸蔵放出可能
な物質を活物質とする負極や、TiS2 ,MoS2,N
bSe3等の金属カルコゲン化物、MnO2 ,MoO
3 ,V25 ,LixCoO2 ,LixNiO2 ,Lix
24等の金属酸化物、ポリアニリン、ポリピロール、
ポリパラフェニレン、ポリアセン等の導電性高分子、グ
ラファイト層間化合物等々の様なリチウムカチオン及び
/またはアニオンを吸蔵放出可能な物質を活物質とする
正極を対極として本発明に依る電極と組合わせて用いる
ことが出来ることは言うまでもない。
[0068] In the embodiments, lithium as a counter electrode - aluminum alloy, LiCoO 2 and Li a T b L c O 2
Although only the case of was shown, the present invention is not limited to the examples,
As described above, metallic lithium, lithium and Zn, Sn, P
alloys with other metals such as b, Bi, carbon, MoO 2 , WO
2, Fe 2 O 3 such as a lithium insertion compound, and a negative electrode of polyacetylene, polypyrrole, and capable of absorbing and desorbing lithium material like a lithium ion capable doping conductive polymers such as polyacene and the active material, TiS 2, MoS 2 , N
metal chalcogenides such as bSe 3 , MnO 2 , MoO
3 , V 2 O 5 , Li x CoO 2 , Li x NiO 2 , Li x M
metal oxides such as n 2 O 4 , polyaniline, polypyrrole,
A positive electrode having a material capable of storing and releasing lithium cations and / or anions, such as a conductive polymer such as polyparaphenylene and polyacene, and a graphite intercalation compound, is used as a counter electrode in combination with the electrode according to the present invention. It goes without saying that you can do this.

【0069】[0069]

【発明の効果】以上詳述した様に、本発明は、非水電解
質二次電池の負極と正極の少なくとも一方の電極の活物
質として、金属Mとリチウムとの複合酸化物LixMO
から成る新規な活物質を用いたものであり、充放電によ
り可逆的にリチウムイオンを吸蔵放出出来る量即ち充放
電容量が著しく大きく、かつ充放電の分極が小さいた
め、大電流での充放電が可能であり、更に過充電過放電
による分解や結晶崩壊等の劣化が殆ど見られず、極めて
安定でサイクル寿命の長い電池を得ることが出来る。
又、特に、本発明による該活物質を負極活物質として用
い、V25 、MnO2、LixCoO2 、LixNiO2
やLixMn24等々の金属酸化物、特にLiabc
2の様な金属リチウムに対する電極電位が3Vないし4
V以上の高電位を有する(貴な)活物質を用いた正極と
組み合わせることに依り、より高電圧高エネルギー密度
で且つ充放電特性が優れサイクル寿命の長い二次電池を
得ることが出来る等々優れた効果を有する。
As described above in detail, the present invention provides a composite oxide Li x MO of metal M and lithium as an active material of at least one of a negative electrode and a positive electrode of a nonaqueous electrolyte secondary battery.
It uses a new active material consisting of: The amount of lithium ions that can be inserted and released reversibly by charge and discharge, that is, the charge and discharge capacity is extremely large, and the charge and discharge polarization is small. It is possible to obtain a battery which is extremely stable and has a long cycle life, with almost no degradation such as decomposition or crystal collapse due to overcharge and overdischarge.
Particularly, the active material according to the present invention is used as a negative electrode active material, and V 2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2
And metal oxides such as Li x Mn 2 O 4 , particularly Li a Tb L c O
The electrode potential for metallic lithium such as 2 is 3 V to 4
By combining with a positive electrode using a (noble) active material having a high potential of V or higher, a secondary battery having higher voltage, higher energy density, superior charge / discharge characteristics and a long cycle life can be obtained, and the like. Has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明において電極活物質の比較評価に用い
た電池の構造の一例を示した説明図である。
FIG. 1 is an explanatory view showing an example of the structure of a battery used for comparative evaluation of an electrode active material in the present invention.

【図2】 本発明による電池と従来電池の活物質の3サFIG. 2 shows three types of active materials of a battery according to the present invention and a conventional battery.
イクル目の放電特性の比較を示した説明図である。FIG. 4 is an explanatory diagram showing a comparison of discharge characteristics of a cycle.

【図3】 本発明による電池と従来電池の活物質の3サFIG. 3 shows three types of active materials of a battery according to the present invention and a conventional battery.
イクル目の充電特性の比較を示した説明図である。FIG. 9 is an explanatory diagram showing a comparison of charging characteristics of a cycle.

【図4】 本発明による電池と従来電池の活物質のサイFIG. 4 shows the size of the active material of the battery according to the present invention and the conventional battery.
クル特性の比較を示した説明図である。FIG. 4 is an explanatory diagram showing a comparison of the wheel characteristics.

【図5】 本発明による電池と従来電池の活物質の3サFIG. 5 shows three active materials of the battery according to the present invention and the conventional battery.
イクル目の放電特性の比較を示した説明図である。FIG. 4 is an explanatory diagram showing a comparison of discharge characteristics of a cycle.

【図6】 本発明による電池と従来電池の活物質の3サFIG. 6 shows three types of active materials of the battery according to the present invention and the conventional battery.
イクル目の充電特性の比較を示した説明図である。FIG. 9 is an explanatory diagram showing a comparison of charging characteristics of a cycle.

【図7】 本発明による電池と従来電池の活物質のサイFIG. 7 shows the size of the active material of the battery according to the present invention and the conventional battery.
クル特性の比較を示した説明図である。FIG. 4 is an explanatory diagram showing a comparison of the wheel characteristics.

【図8】 本発明による電池と従来電池の活物質の1サFIG. 8 shows one of active materials of the battery according to the present invention and the conventional battery.
イクル目の放電特性の比較を示した説明図である。FIG. 4 is an explanatory diagram showing a comparison of discharge characteristics of a cycle.

【図9】 本発明による電池と従来電池の活物質の1サFIG. 9 shows one of active materials of a battery according to the present invention and a conventional battery.
イクル目の充電特性の比較を示した説明図である。FIG. 9 is an explanatory diagram showing a comparison of charging characteristics of a cycle.

【図10】 本発明において実施した電池の構造の一例FIG. 10 shows an example of the structure of a battery implemented in the present invention.
を示した説明図である。FIG.

【図11】 本発明による電池の1サイクル目と2サイFIG. 11 shows the first cycle and the second cycle of the battery according to the present invention.
クル目の充放電特性を示した説明図である。FIG. 4 is an explanatory diagram showing the charge / discharge characteristics of a cell.

【図12】 本発明による電池のサイクル特性を示したFIG. 12 shows the cycle characteristics of the battery according to the present invention.
説明図である。FIG.

【図13】 本発明による電池の1サイクル目と2サイFIG. 13 shows the first cycle and the second cycle of the battery according to the present invention.
クル目の充放電特性を示した説明図である。FIG. 4 is an explanatory diagram showing the charge / discharge characteristics of a cell.

【図14】 本発明による電池のサイクル特性を示したFIG. 14 shows the cycle characteristics of the battery according to the present invention.
説明図である。FIG.

【符号の説明】[Explanation of symbols]

1 対極ケース 2 対極集電体 3 対極 4 セパレータ 5 作用極 6 作用極集電体 7 作用極ケース 8 ガスケット 11 負極ケース 12 負極集電体 13 負極 14 セパレータ 15 正極 16 正極集電体 17 正極ケース 18 ガスケット DESCRIPTION OF SYMBOLS 1 Counter electrode case 2 Counter electrode current collector 3 Counter electrode 4 Separator 5 Working electrode 6 Working electrode current collector 7 Working electrode case 8 Gasket 11 Negative case 12 Negative current collector 13 Negative electrode 14 Separator 15 Positive electrode 16 Positive electrode collector 17 Positive case 18 gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 英樹 宮城県仙台市太白区西多賀5丁目30番1 号 セイコー電子部品株式会社内 (72)発明者 酒井 次夫 宮城県仙台市太白区西多賀5丁目30番1 号 セイコー電子部品株式会社内 (72)発明者 坂田 明史 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (72)発明者 岩崎 文晴 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (72)発明者 矢作 誠治 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (56)参考文献 特開 昭60−225360(JP,A) 特開 平3−291862(JP,A) 特開 平5−54889(JP,A) 特開 平6−275268(JP,A) 特開 平6−275266(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideki Ishikawa 5-30-1, Nishitaga, Taihaku-ku, Sendai, Miyagi Prefecture Inside Seiko Electronic Components Co., Ltd. No. 30 No. 1 Seiko Electronic Components Co., Ltd. (72) Inventor Akifumi Sakata 6-1, Kameido, Koto-ku, Tokyo 31-1 Inside Seiko Electronics Industries Co., Ltd. (72) Fumiharu Iwasaki 6, Kameido, Koto-ku, Tokyo 31-1 Inside Seiko Electronic Industries Co., Ltd. (72) Inventor Seiji Yahagi 6-31-1, Kameido, Koto-ku, Tokyo Seiko Electronic Industries Co., Ltd. (56) References JP-A-60-225360 (JP, A) JP-A-3-291862 (JP, A) JP-A-5-54889 (JP, A) JP-A-6-275268 (JP, A) JP-A-6-275266 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池にお
いて、負極活物質が一般式LixMO(但し、0≦x)
で示される酸化物であり、MはMnである非水電解質二
次電池。
1. A non-aqueous electrolyte secondary battery comprising at least a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte, wherein the negative electrode active material has a general formula Li x MO (where 0 ≦ x).
A non-aqueous electrolyte secondary battery in which M is Mn.
【請求項2】 前記負極活物質が一般式Li x MO(但
し、0≦x≦2)で示される酸化物であり、MはMnで
ある請求項1記載の非水電解質二次電池。
2. The method according to claim 1, wherein the negative electrode active material has a general formula Li x MO (wherein
And an oxide represented by 0 ≦ x ≦ 2), wherein M is Mn
The non-aqueous electrolyte secondary battery according to claim 1.
【請求項3】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池にお
いて、負極活物質が一般式Li x MO(但し、0≦x)
で示される酸化物であり、MはTiである非水電解質二
次電池。
3. A negative electrode, a positive electrode and a lithium ion conductive non-conductive material.
A non-aqueous electrolyte secondary battery comprising at least a water electrolyte.
And the negative electrode active material has a general formula Li x MO (where 0 ≦ x).
Is a non-aqueous electrolyte, wherein M is Ti.
Next battery.
【請求項4】 前記負極活物質が一般式Li4. The method according to claim 1, wherein the negative electrode active material has a general formula Li xx MO(但MO (however
し、0≦x≦2)で示される酸化物であり、MはTiでAnd 0 ≦ x ≦ 2), wherein M is Ti
ある請求項3記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 3.
【請求項5】 負極と正極とリチウムイオン導電性の非5. A negative electrode, a positive electrode and a lithium ion conductive non-conductive material.
水電解質とから少なくとも成る非水電解質二次電池におA non-aqueous electrolyte secondary battery comprising at least a water electrolyte.
いて、負極活物質が一般式LiAnd the negative electrode active material has the general formula Li xx MO(但し、0≦x)MO (0 ≦ x)
で示される酸化物であり、MはZnである非水電解質二And M is Zn.
次電池。Next battery.
【請求項6】 前記負極活物質が一般式Li6. The negative electrode active material has a general formula Li xx MO(但MO (however
し、0≦x≦2)で示される酸化物であり、MはZnでAnd 0 ≦ x ≦ 2), wherein M is Zn
ある請求項5記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 5.
JP05203479A 1992-10-01 1993-08-17 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Lifetime JP3079344B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05203479A JP3079344B2 (en) 1993-08-17 1993-08-17 Non-aqueous electrolyte secondary battery and method of manufacturing the same
US08/127,960 US5401599A (en) 1992-10-02 1993-09-28 Non-aqueous electrolyte secondary battery and method of producing the same
US08/539,825 USRE35818E (en) 1992-10-01 1995-10-06 Non-aqueous electrolyte secondary battery and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05203479A JP3079344B2 (en) 1993-08-17 1993-08-17 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0757780A JPH0757780A (en) 1995-03-03
JP3079344B2 true JP3079344B2 (en) 2000-08-21

Family

ID=16474832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05203479A Expired - Lifetime JP3079344B2 (en) 1992-10-01 1993-08-17 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3079344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11804598B2 (en) 2015-03-31 2023-10-31 Murata Manufacturing Co., Ltd. Negative electrode active material and method for producing the same, negative electrode, and battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466045B2 (en) * 1997-03-27 2003-11-10 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery
US6555272B2 (en) 1998-09-11 2003-04-29 Nippon Steel Corporation Lithium secondary battery and active material for negative electrode in lithium secondary battery
JP2001023603A (en) * 1999-07-13 2001-01-26 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
TWI431833B (en) 2006-10-20 2014-03-21 Ishihara Sangyo Kaisha Electric energy storage device
JP5532296B2 (en) * 2009-06-24 2014-06-25 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
KR20180108584A (en) * 2016-02-09 2018-10-04 맥셀 홀딩스 가부시키가이샤 Non-aqueous electrolyte cell
TWI663128B (en) 2018-03-27 2019-06-21 國立清華大學 Electrode material for secondary battery and secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067487B2 (en) * 1984-04-20 1994-01-26 松下電器産業株式会社 Organic electrolyte battery
JP2847885B2 (en) * 1990-04-06 1999-01-20 松下電器産業株式会社 Lithium secondary battery
JP3162437B2 (en) * 1990-11-02 2001-04-25 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery
JP2887632B2 (en) * 1993-03-22 1999-04-26 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11804598B2 (en) 2015-03-31 2023-10-31 Murata Manufacturing Co., Ltd. Negative electrode active material and method for producing the same, negative electrode, and battery

Also Published As

Publication number Publication date
JPH0757780A (en) 1995-03-03

Similar Documents

Publication Publication Date Title
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US9985262B2 (en) Battery
US5401599A (en) Non-aqueous electrolyte secondary battery and method of producing the same
EP0484187B2 (en) Positive active material for non-aqueous electrolyte secondary battery
EP0696075B1 (en) Non-aqueous electrolyte secondary battery
JP3008228B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
WO1997001193A1 (en) Nonaqueous electrolyte secondary battery
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JP2001345101A (en) Secondary battery
USRE35818E (en) Non-aqueous electrolyte secondary battery and method of producing the same
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP2000251887A (en) Nonaqueous electrolyte battery
JP2000243449A (en) Nonaqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP2952367B2 (en) Non-aqueous electrolyte secondary battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

EXPY Cancellation because of completion of term