JP3354611B2 - Non-aqueous electrolyte secondary battery and method of manufacturing the same - Google Patents

Non-aqueous electrolyte secondary battery and method of manufacturing the same

Info

Publication number
JP3354611B2
JP3354611B2 JP33915992A JP33915992A JP3354611B2 JP 3354611 B2 JP3354611 B2 JP 3354611B2 JP 33915992 A JP33915992 A JP 33915992A JP 33915992 A JP33915992 A JP 33915992A JP 3354611 B2 JP3354611 B2 JP 3354611B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
battery
electrode
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33915992A
Other languages
Japanese (ja)
Other versions
JPH06187990A (en
Inventor
謙介 田原
英樹 石川
明史 坂田
文晴 岩崎
誠治 矢作
Original Assignee
セイコーインスツルメンツ株式会社
株式会社エスアイアイ・マイクロパーツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社, 株式会社エスアイアイ・マイクロパーツ filed Critical セイコーインスツルメンツ株式会社
Priority to JP33915992A priority Critical patent/JP3354611B2/en
Publication of JPH06187990A publication Critical patent/JPH06187990A/en
Application granted granted Critical
Publication of JP3354611B2 publication Critical patent/JP3354611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを吸蔵放出可
能な物質を負極活物質及び/又は正極活物質とし、リチ
ウムイオン導電性の非水電解質を用いる非水電解質二次
電池に関するものであり、特に、高電圧、高エネルギー
密度で且つ充放電特性が優れ、サイクル寿命の長い新規
な二次電池を提供する新規な負極活物質及び正極活物質
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a material capable of inserting and extracting lithium as a negative electrode active material and / or a positive electrode active material and using a lithium ion conductive non-aqueous electrolyte. More particularly, the present invention relates to a novel negative electrode active material and a new positive electrode active material which provide a new secondary battery having high voltage, high energy density, excellent charge / discharge characteristics, and a long cycle life.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギ−密度で、かつ自己
放電が小さく長期信頼性に優れる等々の利点により、一
次電池としてはメモリ−バックアップ用、カメラ用等の
電源として既に広く用いられている。
2. Description of the Related Art A non-aqueous electrolyte battery using lithium as a negative electrode active material has advantages such as high voltage, high energy density, small self-discharge, and excellent long-term reliability. It is already widely used as a power source for cameras and the like.

【0003】しかしながら、近年携帯型の電子機器、通
信機器等の著しい発展に伴い、電源としての電池に対し
大電流出力を要求する機器が多種多様に出現し、経済性
と機器の小型軽量化の観点から、再充放電可能で、かつ
高エネルギ−密度の二次電池が強く要望されている。こ
のため、高エネルギ−密度を有する前記非水電解質電池
の二次電池化を進める研究開発が活発に行われ、一部実
用化されているが、エネルギ−密度、充放電サイクル寿
命、信頼性等々まだまだ不十分である。
However, with the remarkable development of portable electronic devices and communication devices in recent years, a variety of devices that require a large current output from a battery as a power supply have appeared, which has led to economical efficiency and reduction in size and weight of the devices. From the viewpoint, there is a strong demand for a secondary battery that can be recharged and discharged and has a high energy density. For this reason, research and development for promoting the conversion of the non-aqueous electrolyte battery having a high energy density into a secondary battery has been actively carried out, and some of them have been put to practical use. However, energy density, charge / discharge cycle life, reliability, etc. Not enough.

【0004】従来、この種の二次電池の正極を構成する
正極活物質としては、充放電反応の形態に依り下記の3
種のタイプのものが見い出されている。第1のタイプ
は、TiS2,MoS2,NbSe3等の金属カルコゲン
化物や、MnO2,MoO3,V25 ,LiXCoO2
LiXNiO2,LixMn24等の金属酸化物等々の様
に、結晶の層間や格子位置又は格子間隙間にリチウムイ
オン(カチオン)のみがインターカレーション、デイン
ターカレーション反応等に依り出入りするタイプ。
Conventionally, as a positive electrode active material constituting a positive electrode of this type of secondary battery, the following three types are used depending on the form of charge / discharge reaction.
Species types have been found. The first type is a metal chalcogenide such as TiS 2 , MoS 2 , NbSe 3 , MnO 2 , MoO 3 , V 2 O 5 , Li X CoO 2 ,
Li X NiO 2, Li x Mn 2 O 4 or the like as a so metal oxides, only crystals of the interlayer and the grating position or the interstitial gap lithium-ion (cation) of intercalation and deintercalation reactions and the like Type that comes in and out.

【0005】第2のタイプは、ポリアニリン、ポリピロ
ール、ポリパラフェニレン等の導電性高分子の様な、主
としてアニオンのみが安定にドープ、脱ドープ反応に依
り出入りするタイプ。第3のタイプは、グラファイト層
間化合物やポリアセン等の導電性高分子等々の様な、リ
チウムカチオンとアニオンが共に出入り可能なタイプ
(インターカレーション、デインターカレーション又は
ドープ、脱ドープ等)である。
[0005] The second type is a type in which only anions mainly come in and out by stable doping and undoping reactions, such as conductive polymers such as polyaniline, polypyrrole, and polyparaphenylene. The third type is a type (intercalation, deintercalation or doping, undoping, etc.) in which both lithium cations and anions can enter and exit, such as graphite intercalation compounds and conductive polymers such as polyacene. .

【0006】一方、この種電池の負極を構成する負極活
物質としては、金属リチウムを単独で用いた場合が電極
電位が最も卑であるため、上記の様な正極活物質を用い
た正極と組み合わせた電池としての出力電圧が最も高
く、エネルギー密度も高く好ましいが、充放電に伴い負
極上にデンドライトや不働体化合物が生成し、充放電に
よる劣化が大きく、サイクル寿命が短いという問題があ
った。この問題を解決するため、負極活物質として
(1)リチウムとAl,Zn,Sn,Pb,Bi,Cd
等の他金属との合金、(2)WO2,MoO2,Fe
23,TiS2 等の無機化合物やグラファイト、有機物
を焼成して得られる炭素質材料等々の結晶構造中にリチ
ウムイオンを吸蔵させた層間化合物あるいは挿入化合
物、(3)リチウムイオンをド−プしたポリアセンやポ
リアセチレン等の導電性高分子等々のリチウムイオンを
吸蔵放出可能な物質を用いることが提案されている。
On the other hand, as the negative electrode active material constituting the negative electrode of this type of battery, since the electrode potential is the lowest when metallic lithium is used alone, it is combined with the positive electrode using the above positive electrode active material. Although the battery has the highest output voltage and the highest energy density, it is preferable. However, dendrites and passive compounds are generated on the negative electrode during charging and discharging, and there is a problem that the deterioration due to charging and discharging is large and the cycle life is short. In order to solve this problem, (1) lithium and Al, Zn, Sn, Pb, Bi, Cd
(2) WO 2 , MoO 2 , Fe
Inorganic compounds such as 2 O 3 , TiS 2 , graphite, intercalation compounds or insertion compounds in which lithium ions are occluded in the crystal structure of a carbonaceous material obtained by calcining an organic substance, and (3) doping lithium ions It has been proposed to use a material capable of inserting and extracting lithium ions, such as conductive polymers such as polyacene and polyacetylene.

【0007】[0007]

【発明が解決しようとする課題】しかし乍、一般に、負
極活物質として上記の様な金属リチウム以外のリチウム
イオンを吸蔵放出可能な物質を用いた負極と、前記の様
な正極活物質を用いた正極とを組合せて電池を構成した
場合には、これらの負極活物質の電極電位が金属リチウ
ムの電極電位より貴であるため、電池の作動電圧が負極
活物質として金属リチウムを単独で用いた場合よりかな
り低下するという欠点がある。例えば、リチウムとA
l,Zn,Pb,Sn,Bi,Cd等の合金を用いる場
合には0.2〜0.8V、炭素−リチウム層間化合物で
は0〜1V、MoO2 やWO2 等のリチウムイオン挿入
化合物では0.5〜1.5V作動電圧が低下する。
However, in general, a negative electrode using a material capable of inserting and extracting lithium ions other than lithium metal as described above and a positive electrode active material as described above are used as the negative electrode active material. When a battery is configured by combining the positive electrode and the positive electrode, the operating voltage of the battery is higher than that of the negative electrode active material because the electrode potential of these negative electrode active materials is more noble than the electrode potential of metallic lithium. There is the disadvantage that it is much lower. For example, lithium and A
l, Zn, Pb, Sn, Bi, 0.2~0.8V in the case of using an alloy of Cd, etc., carbon - 0 to 1 V in a lithium intercalation compound, a lithium ion insertion compound such as MoO 2 and WO 2 0 The operating voltage is reduced by 0.5 to 1.5 V.

【0008】又、リチウム以外の元素も負極構成要素と
なるため、体積当り及び重量当りの容量及びエネルギー
密度が著しく低下する。更に、上記の(1)のリチウム
と他金属との合金を用いた場合には、充放電時のリチウ
ムの利用効率が低く、且つ充放電の繰り返しにより電極
にクラックが発生し割れを生じる等のためサイクル寿命
が短いという問題があり、(2)のリチウム層間化合物
又は挿入化合物の場合には、過充放電により結晶構造の
崩壊や不可逆物質の生成等の劣化があり、又電極電位の
高い(貴な)ものが多いため、これを用いた電池の出力
電位が低いという欠点があり、(3)の導電性高分子の
場合には、充放電容量、特に体積当りの充放電容量が小
さいという問題がある。
In addition, since elements other than lithium also constitute the negative electrode, the capacity and energy density per volume and weight are significantly reduced. Further, when the alloy of lithium and another metal of the above (1) is used, the efficiency of use of lithium during charge and discharge is low, and cracks occur in the electrodes due to repetition of charge and discharge, causing cracks and the like. Therefore, there is a problem that the cycle life is short, and in the case of the lithium intercalation compound or the insertion compound of (2), deterioration such as collapse of a crystal structure or generation of an irreversible substance due to overcharging / discharging occurs, and a high electrode potential ( There is a drawback that the output potential of a battery using the same is low because there are many precious materials. In the case of the conductive polymer of (3), the charge / discharge capacity, particularly, the charge / discharge capacity per volume is small. There's a problem.

【0009】このため、高電圧、高エネルギ−密度で且
つ充放電特性が優れ、サイクル寿命の長い二次電池を得
るためには、リチウムに対する電極電位が低く(卑
な)、充放電時のリチウムイオンの吸蔵放出に依る結晶
構造の崩壊や不可逆物質の生成等の劣化が無く、かつ可
逆的にリチウムイオンを吸蔵放出できる量即ち有効充放
電容量のより大きい負極活物質が必要である。
Therefore, in order to obtain a secondary battery having a high voltage, a high energy density, excellent charge / discharge characteristics, and a long cycle life, an electrode potential with respect to lithium is low (low) and lithium during charge / discharge is required. It is necessary to use a negative electrode active material which is free from deterioration such as collapse of a crystal structure and generation of an irreversible substance due to occlusion and release of ions, and has a large amount capable of reversibly storing and releasing lithium ions, that is, an effective charge / discharge capacity.

【0010】一方、上記の正極活物質に於て、第1のタ
イプは、一般にエネルギー密度は大きいが、過充電や過
放電すると結晶の崩壊や不可逆物質の生成等による劣化
が大きいという欠点がある。又、第2、第3のタイプで
は、逆に容量及びエネルギー密度が小さいという欠点が
ある。
On the other hand, the above-mentioned positive electrode active material of the first type generally has a large energy density, but has a drawback that when overcharged or overdischarged, degradation due to crystal collapse or generation of an irreversible material is large. . On the other hand, the second and third types have a disadvantage that the capacity and the energy density are small.

【0011】このため、過充電特性及び過放電特性が優
れ、かつ高容量、高エネルギー密度の二次電池を得るた
めには過充電過放電に依る結晶の崩壊や不可逆物質の生
成が無く、かつ可逆的にリチウムイオンを吸蔵放出でき
る量のより大きい正極活物質が必要である。
Therefore, in order to obtain a secondary battery having excellent overcharge characteristics and overdischarge characteristics and a high capacity and a high energy density, there is no collapse of crystals or generation of irreversible substances due to overcharge and overdischarge, and It is necessary to use a positive electrode active material having a large amount capable of reversibly storing and releasing lithium ions.

【0012】[0012]

【課題を解決するための手段】本発明は、上記の様な問
題点を解決するため、この種の電池の負極と正極の少な
くとも一方の電極の活物質として、2価酸化物を生成し
得る金属もしくは類金属MとリチウムLiの各々の単体
もしくはそれらの化合物の混合物をMの原子価が2価と
なる様に酸素量又は酸素分圧を制御した雰囲気中で加熱
して得られる組成式Li2xMO1+x(但し、x>0)で
示される複合酸化物、又は該複合酸化物とリチウムもし
くはリチウム含有物との電気化学反応に依り該複合酸化
物に更にリチウムが吸蔵されるか、又は該複合酸化物か
ら電気化学反応によりリチウムが放出されて得られる組
成式Li2x+yMO1+x(但し、2x+y≧0)で示され
る複合酸化物から成る新規なリチウムイオン吸蔵放出可
能物質を用いることを提起するものである。
According to the present invention, a divalent oxide can be produced as an active material of at least one of a negative electrode and a positive electrode of a battery of this type in order to solve the above problems. A compositional formula Li obtained by heating a metal or a class of metals M and lithium Li alone or a mixture of these compounds in an atmosphere in which the amount of oxygen or oxygen partial pressure is controlled so that the valence of M is divalent. 2x MO 1 + x (where x> 0), or further lithium is occluded in the composite oxide by an electrochemical reaction between the composite oxide and lithium or a lithium-containing material; Or a novel lithium ion occluding and releasing substance comprising a composite oxide represented by a composition formula Li 2x + y MO 1 + x (2x + y ≧ 0) obtained by releasing lithium from the composite oxide by an electrochemical reaction Using It is intended to raise.

【0013】即ち、2価酸化物を生成し得る金属もしく
は類金属MとリチウムLiの各々の単体もしくはそれら
の化合物等を出発原料として、Mの原子価を2価に制御
する雰囲気と温度でそれらの混合物の直接の加熱に依る
固相反応もしくは溶融反応プロセスや該出発原料の溶液
中での化学反応後に加熱する方法等々の加熱反応プロセ
スに依り、予め組成式Li2xMO1+x(但し、x>0)
で示されるリチウム含有複合酸化物を合成する。
That is, a starting material is a metal or a similar metal M capable of forming a divalent oxide and lithium or a compound of lithium Li, or a starting material thereof, in an atmosphere and at a temperature in which the valence of M is controlled to be divalent. Solid state reaction or melting reaction process by direct heating of the mixture of the above, or a heating reaction process such as a method of heating after a chemical reaction in a solution of the starting material, and the composition formula Li 2x MO 1 + x (however, x> 0)
Is synthesized.

【0014】その後、得られた複合酸化物とリチウムも
しくはリチウム化合物との電気化学反応に依りこの複合
酸化物に更にリチウムを吸蔵させるか、又はこの複合酸
化物から電気化学反応によりリチウムを放出させること
に依りリチウム含有量が増加又は減少した複合酸化物L
2x+yMO1+x(但し、2x+y≧0)を活物質とす
る。
After that, lithium is further inserted into the composite oxide by an electrochemical reaction between the obtained composite oxide and lithium or a lithium compound, or lithium is released from the composite oxide by an electrochemical reaction. Oxide L whose lithium content has increased or decreased due to
i 2x + y MO 1 + x (2x + y ≧ 0) is used as an active material.

【0015】上述の、予め加熱反応プロセスに依り合成
される複合酸化物Li2xMO1+x は、形式的にMO・x
Li2Oと表すことができ、化学組成の形式上は2価酸
化物を生成し得る金属もしくは類金属Mの一酸化物MO
と酸化リチウムLi2Oとがモル比1:xで固相反応し
た形態の酸化物であり、金属もしくは類金属Mの原子価
は2価であり、その結晶構造中又は非晶質構造中にリチ
ウムを含有し、非水電解質中で電気化学反応に依りリチ
ウムイオンを吸蔵及び放出することが可能な複合酸化物
である。該複合酸化物を構成する金属もしくは類金属M
としては、Fe、Mn、Ti、V、Nb、Co、Ni等
の遷移金属、Zn、Cd、Mg、Ba、Pb、Sn等の
その他の金属やSi、B、Ge、Sb等の類金属等々の
2価酸化物もしくは一酸化物MOを生成し得るものを用
いる。
The above-mentioned composite oxide Li 2x MO 1 + x synthesized in advance by a heating reaction process is formally expressed as MO · x
Li 2 O, which can form a divalent oxide in the form of a chemical composition.
And lithium oxide Li 2 O are oxides in the form of a solid-phase reaction at a molar ratio of 1: x, and the valence of the metal or the like metal M is divalent. A composite oxide containing lithium and capable of inserting and extracting lithium ions in a non-aqueous electrolyte by an electrochemical reaction. Metal or similar metal M constituting the composite oxide
Examples include transition metals such as Fe, Mn, Ti, V, Nb, Co, and Ni; other metals such as Zn, Cd, Mg, Ba, Pb, and Sn; and similar metals such as Si, B, Ge, and Sb. Which can generate the divalent oxide or monoxide MO of

【0016】この様な金属もしくは類金属Mと酸素Oと
の組成比は上記のように1:1+xが標準であるが、合
成に際ししばしば金属もしくは類金属M又は酸素Oの欠
損又は過剰に依る不定比化合物を生じ、その不定比性の
範囲はMの種類に依って異なるが±25%に及ぶ。
As described above, the standard composition ratio of such a metal or a metal M and oxygen O is 1: 1 + x. However, in the synthesis, an indefinite ratio due to the deficiency or excess of the metal or the metal M or oxygen O is often used. Yields a specific compound, whose non-stoichiometric range varies depending on the type of M but extends to ± 25%.

【0017】この様な不定比組成のものも本発明に含ま
れる。特に、Mとして遷移金属やケイ素Siを用いる場
合には、M又は酸素Oの欠損による不定比度の高い化合
物を生成し易いため、生成物の結晶構造中もしくは非晶
質構造中にリチウムイオンを吸蔵できるサイトが多く、
リチウムイオンの移動度が高く且つ電子伝導度の高いも
のが得られ、充放電容量が大きく且つ分極が小さいもの
が得られ易い等の利点があり、特に有利である。又、複
合酸化物Li2x+yMO1+x のリチウムの含有量x及びy
としては該複合酸化物が安定に存在する範囲であれば良
いが、0<x≦2且つ0<2x+y≦2x+2の範囲が
充放電に依る劣化が少なく特に好ましい。
Such nonstoichiometric compositions are also included in the present invention. In particular, when a transition metal or silicon Si is used as M, a compound having a high non-stoichiometric ratio due to deficiency of M or oxygen O is easily generated, and thus lithium ions are formed in the crystal structure or amorphous structure of the product. There are many sites that can occlude,
It is particularly advantageous because it has a high mobility of lithium ions and a high electron conductivity, and has a large charge / discharge capacity and a small polarization. The lithium content x and y of the composite oxide Li 2x + y MO 1 + x
As long as the composite oxide is in a stable range, the range of 0 <x ≦ 2 and 0 <2x + y ≦ 2x + 2 is particularly preferable because deterioration due to charging and discharging is small.

【0018】本発明電池の負極及び/又は正極の活物質
として用いられる該複合酸化物は、具体的には次の様に
して製造することが出来る。上記の様な2価酸化物を生
成し得る金属もしくは類金属MとリチウムLiの各々の
単体もしくはそれらの化合物等を出発原料として所定の
モル比で混合し又は混合しながら、金属もしくは類金属
Mの原子価もしくは酸化数が約2となる様に酸素量又は
酸素分圧を制御した雰囲気中で加熱して組成式Li2x
1+x (但し、x>0)の複合酸化物とする。出発原料
となる該金属や該類金属及びリチウムのそれぞれの化合
物としては、各々の酸化物、水酸化物、もしくは炭酸
塩、硝酸塩等の塩或は有機化合物等々の様なそれぞれを
不活性雰囲気中もしくは真空中で加熱して各々の酸化物
もしくは単体を生成する化合物が好ましい。
The composite oxide used as the active material of the negative electrode and / or the positive electrode of the battery of the present invention can be specifically produced as follows. The above-mentioned metal or the like metal M capable of forming a divalent oxide and lithium Li alone or a compound thereof are mixed at a predetermined molar ratio as a starting material, or while the metal or the like metal M is mixed. Is heated in an atmosphere in which the amount of oxygen or the oxygen partial pressure is controlled so that the valence or oxidation number of the compound becomes about 2, and the composition formula Li 2x M
A composite oxide of O 1 + x (where x> 0) is used. As the respective compounds of the metal or the class of metals and lithium as starting materials, the respective oxides, hydroxides, salts such as carbonates and nitrates or organic compounds, etc., are placed in an inert atmosphere. Alternatively, a compound which generates each oxide or simple substance by heating in vacuum is preferable.

【0019】これらの出発原料の混合方法としては、こ
れらの原料の粉末を直接乾式混合する方法の他、これら
の原料を水、アルコ−ルやその他の溶媒に溶解もしくは
分散し、溶液中で均一に混合又は反応させた後、乾燥す
る方法、これらの原料を加熱や電磁波、光等によりアト
マイズ又はイオン化し、同時にもしくは交互に蒸着又は
析出させる方法等々種々の方法が可能である。
As a method of mixing these starting materials, in addition to a method of directly dry-mixing the powders of these materials, these materials are dissolved or dispersed in water, alcohol, or other solvents, and then uniformly mixed in the solution. Various methods are possible, such as a method of drying after mixing or reacting these materials, a method of atomizing or ionizing these materials by heating, electromagnetic waves, light, or the like, and simultaneously or alternately depositing or depositing them.

【0020】この様にして原料を混合した後、又は混合
しながら加熱する温度は、出発原料と加熱雰囲気によっ
ても異なるが、300゜C以上で合成が可能であり、好
ましくは600゜C以上、より好ましくは700゜C以
上の温度がよい。これらの出発原料の組合せの中で、M
の一酸化物MOやM(OH)2、MCO3、M(NO32
等の酸素を有するMの2価化合物とLiOHやLi
2O、Li2CO3又はLiNO3 等のような加熱により
酸化リチウムを生成するリチウム化合物とのM:Liの
モル比が1:2xの組合せ、及びMの単体とM34やM
23、MO2 等のMの高次酸化物又はM(OH)3、M2
(CO33やM(NO33等の様な酸素を有するMの3
価以上の化合物とLiOHやLi2O、Li2CO3 又は
LiNO3等のような加熱により酸化リチウムを生成す
るリチウム化合物とのM:Liの総モル比が1:2xで
ありMの平均原子価が2価となる組合せにおいては、不
活性雰囲気中又は真空中等のような酸素を断った雰囲気
中で加熱合成することが出来、加熱雰囲気中の酸素量も
しくは酸素分圧等の制御がしやすく製造が容易であり特
に好ましい。
The temperature at which the raw materials are mixed or heated while mixing varies depending on the starting materials and the heating atmosphere, but synthesis can be carried out at 300 ° C. or higher, preferably 600 ° C. or higher. More preferably, the temperature is 700 ° C. or higher. Of these starting material combinations, M
MO, M (OH) 2 , MCO 3 , M (NO 3 ) 2
M divalent compounds having oxygen such as LiOH and Li
A combination of a lithium compound such as 2 O, Li 2 CO 3, or LiNO 3 which generates lithium oxide by heating with a molar ratio of M: Li of 1: 2 ×, and a simple substance of M and M 3 O 4 or M
Higher oxides of M such as 2 O 3 and MO 2 or M (OH) 3 and M 2
(CO 3) 3 or M (NO 3) 3 of M with oxygen, such as 3, etc.
The total molar ratio of M: Li of the compound having a valency of more than 2 and a lithium compound such as LiOH, Li 2 O, Li 2 CO 3 or LiNO 3 which generates lithium oxide by heating is 1: 2 ×, and the average atom of M In a combination where the valency is divalent, the composition can be heated and synthesized in an inert atmosphere or an atmosphere in which oxygen is cut off, such as in a vacuum, and it is easy to control the amount of oxygen or the oxygen partial pressure in the heating atmosphere. It is easy to manufacture and particularly preferable.

【0021】例えば、前者の例としてはMOとLi2
のモル比1:xの組合せ、MOとLiOHのモル比1:
2xの組合せ、MCO3 とLi2CO3のモル比1:xの
組合せ等、また後者の例としてはMとMO2とLi2Oと
のモル比1:1:2xの組合せ、MとM(OH)3 とL
iOHとのモル比1:2:6xの組合せ、MとM(NO
33とLiNO3 のモル比1:2:6xの組合せ等々で
ある。
For example, as the former example, MO and Li 2 O
A molar ratio of 1: x, a molar ratio of MO and LiOH of 1: x
A combination of 2x, a combination of MCO 3 and Li 2 CO 3 at a molar ratio of 1: x, etc. Examples of the latter are a combination of M, MO 2 and Li 2 O at a molar ratio of 1: 1: 2x, M and M (OH) 3 and L
a combination of 1: 2: 6x molar ratio with iOH, M and M (NO
3 ) Combinations of 3 and LiNO 3 in a molar ratio of 1: 2: 6x, and the like.

【0022】又、Mとしてその酸化物の中で一酸化物が
安定であり、加熱によりその酸化数が変化しにくいもの
を用いる場合には、大気中で加熱合成することが出来
る。この様にして得られる複合酸化物Li2xMO1+x
は、これをそのままもしくは必要により粉砕整粒や造粒
等の加工を施した後に負極及び/又は正極の活物質とし
て用いることが出来るし、又、下記の様に、このリチウ
ムを含有する複合酸化物Li2xMO1+x と金属リチウム
もしくはリチウムを含有する物質との電気化学的反応に
依り、この複合酸化物に更にリチウムイオンを吸蔵させ
るか、又は逆にこの複合酸化物からリチウムイオンを放
出させることに依り、リチウム含有量を増加又は減少さ
せたものを活物質として用いても良い。
When M is an oxide which is stable among oxides and its oxidation number is hardly changed by heating, it can be synthesized by heating in air. The composite oxide Li 2x MO 1 + x thus obtained
Can be used as an active material of a negative electrode and / or a positive electrode as it is or after being subjected to processing such as pulverization and sizing or granulation as necessary. In addition, as described below, this lithium-containing composite oxide Depending on the electrochemical reaction between the substance Li 2x MO 1 + x and the metallic lithium or the substance containing lithium, the composite oxide can further absorb lithium ions or, on the contrary, release lithium ions from the composite oxide Depending on this, a material with an increased or decreased lithium content may be used as an active material.

【0023】この電気化学的反応に用いる為のリチウム
を含有する物質としては、例えば、前述の従来の技術の
項で上げた正極活物質又は負極活物質等に用いられる様
なリチウムイオンを吸蔵放出可能な物質を用いることが
出来る。この様な電気化学的反応に依るリチウムイオン
の吸蔵及び放出は、電池組立後電池内で、又は電池製造
工程の途上に於て電池内もしくは電池外で行うことが出
来、具体的には次の様にして行うことが出来る。
Examples of the lithium-containing substance to be used in the electrochemical reaction include, for example, insertion and extraction of lithium ions such as those used for the positive electrode active material or the negative electrode active material mentioned in the section of the prior art. Possible materials can be used. Occlusion and release of lithium ions by such an electrochemical reaction can be performed in the battery after the battery is assembled, or inside or outside the battery in the course of the battery manufacturing process. Can be performed in the following manner.

【0024】即ち、(1)該複合酸化物Li2xMO1+x
又はそれらと導電剤及び結着剤等との混合合剤を所定形
状に成形したものを一方の電極(作用極)とし、金属リ
チウム又はリチウムを含有する物質をもう一方の電極
(対極)としてリチウムイオン導電性の非水電解質に接
して両電極を対向させて電気化学セルを構成し、作用極
がカソ−ド反応をする方向に適当な電流で通電し電気化
学的にリチウムイオンを該複合酸化物に吸蔵させる方
法。得られた該作用極をそのまま負極及び/又は正極と
してもしくは負極及び/又は正極を構成する活物質とし
て用いて非水電解質二次電池を構成する。
That is, (1) the composite oxide Li 2x MO 1 + x
Alternatively, one obtained by molding a mixture thereof with a conductive agent, a binder and the like into a predetermined shape is used as one electrode (working electrode) and a metal containing lithium or a substance containing lithium is used as the other electrode (counter electrode). An electrochemical cell is constructed by contacting both electrodes in contact with an ion-conductive non-aqueous electrolyte, and an appropriate current is applied in the direction in which the working electrode undergoes a cathodic reaction to electrochemically convert lithium ions into the complex oxide. How to make the material occlude. A non-aqueous electrolyte secondary battery is formed by using the obtained working electrode as it is as a negative electrode and / or a positive electrode or as an active material constituting a negative electrode and / or a positive electrode.

【0025】(2)該複合酸化物Li2xMO1+x 又はそ
れらと導電剤及び結着剤等との混合合剤を所定形状に成
形し、これにリチウムもしくはリチウムの合金等を圧着
もしくは接触させて積層したものを電極として非水電解
質二次電池に組み込む。電池内でこの積層電極が電解質
に触れることにより一種の局部電池を形成し自己放電し
電気化学的にリチウムが該複合酸化物に吸蔵される方
法。
(2) The composite oxide Li 2x MO 1 + x or a mixture thereof with a conductive agent and a binder is formed into a predetermined shape, and lithium or an alloy of lithium or the like is pressed or contacted thereto. The stacked battery is incorporated into a non-aqueous electrolyte secondary battery as an electrode. A method in which the laminated electrode contacts the electrolyte in the battery to form a kind of local battery, self-discharges, and electrochemically occludes lithium in the composite oxide.

【0026】(3)該複合酸化物Li2xMO1+x を一方
の電極の活物質とし、もう一方の電極にリチウムを含有
しリチウムイオンを吸蔵放出可能な物質を活物質として
用いた非水電解質二次電池を構成する。電池として使用
時に充電もしくは放電を行うことにより該複合酸化物に
更にリチウムイオンが吸蔵される方法。
(3) Non-aqueous solution using the composite oxide Li 2x MO 1 + x as an active material of one electrode and the other electrode containing a material containing lithium and capable of inserting and extracting lithium ions as an active material. Construct an electrolyte secondary battery. A method in which lithium ions are occluded in the composite oxide by charging or discharging during use as a battery.

【0027】尚、該複合酸化物Li2xMO1+x からリチ
ウムイオンを放出し、リチウム含量を減少させる場合に
は、上記の方法(1)又は(3)において電流の向きを
逆向きに通電すればよい。この様にして得られる組成式
Li2x+yMO1+x (但し、2x+y≧0且つx>0)で
示される複合酸化物を負極及び/または正極の活物質と
して用いる。
When lithium ions are released from the composite oxide Li 2x MO 1 + x to reduce the lithium content, the direction of the current is reversed in the above method (1) or (3). do it. The thus obtained composite oxide represented by the composition formula Li 2x + y MO 1 + x (where 2x + y ≧ 0 and x> 0) is used as the active material of the negative electrode and / or the positive electrode.

【0028】本発明に依る該複合酸化物Li2x+yMO
1+x を活物質とする電極は、これを正負両極の活物質と
して用いて二次電池を構成することが出来るし、又、こ
れを正極または負極の何れか一方の電極として用い、前
述のリチウムもしくはリチウムイオンを吸蔵放出可能な
各種の他の負極活物質又は正極活物質を用いた電極をも
う一方の電極として組み合わせて用いることもできる。
The composite oxide Li 2x + y MO according to the present invention
An electrode using 1 + x as an active material can be used as a positive or negative electrode active material to constitute a secondary battery, or it can be used as one of a positive electrode and a negative electrode, as described above. An electrode using various other negative electrode active materials or positive electrode active materials capable of inserting and extracting lithium or lithium ions can be used in combination as the other electrode.

【0029】特に本発明に依る複合酸化物Li2x+yMO
1+x を活物質とする電極は、金属リチウムに対する電極
電位が1.9V以下の卑な領域の充放電容量が大きく、
且つ過充電過放電に依る劣化が小さいため、これを負極
として用い、前述のV25やLixCoO2、LixNi
2、LixMn24 等の金属酸化物の様な金属リチウ
ムに対する電極電位が3Vもしくは4V以上の高電位の
活物質を用いた正極と組み合わせることにより高電圧高
エネルギー密度でかつ大電流充放電特性に優れ、過充電
過放電による劣化の小さい二次電池が得られるので、特
に好ましい。
In particular, the composite oxide Li 2x + y MO according to the present invention
An electrode using 1 + x as an active material has a large charge / discharge capacity in a base region where the electrode potential with respect to metallic lithium is 1.9 V or less,
In addition, since deterioration due to overcharging and overdischarging is small, this is used as a negative electrode, and the above-mentioned V 2 O 5 , Li x CoO 2 , and Li x Ni are used.
A high voltage, high energy density and large current are obtained by combining with a positive electrode using an active material having a high potential of 3 V or 4 V or more for metal lithium such as metal oxides such as O 2 and Li x Mn 2 O 4. It is particularly preferable because a secondary battery having excellent charge / discharge characteristics and little deterioration due to overcharge and overdischarge can be obtained.

【0030】一方、電解質としては、γ−ブチロラクト
ン、プロピレンカ−ボネ−ト、エチレンカ−ボネ−ト、
ブチレンカ−ボネ−ト、ジメチルカ−ボネ−ト、ジエチ
ルカ−ボネ−ト、メチルフォ−メイト、1、2−ジメト
キシエタン、テトラヒドロフラン、ジオキソラン、ジメ
チルフォルムアミド等の有機溶媒の単独又は混合溶媒に
支持電解質としてLiClO4,LiPF6,LiB
4,LiCF3SO3 等のリチウムイオン解離性塩を溶
解した有機電解液、ポリエチレンオキシドやポリフォス
ファゼン架橋体等の高分子に前記リチウム塩を固溶させ
た高分子固体電解質あるいはLi3 N,LiI等の無機
固体電解質等々のリチウムイオン導電性の非水電解質で
あれば良い。
On the other hand, γ-butyrolactone, propylene carbonate, ethylene carbonate,
LiClO as a supporting electrolyte in a single or mixed organic solvent such as butylene carbonate, dimethyl carbonate, diethyl carbonate, methylformate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolan, dimethylformamide, etc. 4, LiPF 6, LiB
An organic electrolyte solution in which a lithium ion dissociable salt such as F 4 or LiCF 3 SO 3 is dissolved; a polymer solid electrolyte in which the lithium salt is dissolved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene; or Li 3 N , LiI, etc., as long as it is a lithium ion conductive non-aqueous electrolyte such as an inorganic solid electrolyte.

【0031】[0031]

【作用】本発明の2価酸化物を生成し得る金属もしくは
類金属MとリチウムLiとの複合酸化物Li2x+yMO
1+x を活物質とする電極は、非水電解質中に於て金属リ
チウムに対し少なくとも0〜3Vの電極電位の範囲で安
定に繰り返しリチウムを吸蔵放出(インターカレーショ
ン、デインターカレーションまたはドープ、脱ドープ
等)することが出来、この様な電極反応により繰り返し
充放電可能な二次電池の負極及び/または正極として用
いることが出来る。特にリチウム基準極に対し0〜1.
9Vの卑な電位領域において、安定にリチウムイオンを
吸蔵放出し繰り返し充放電できる高容量領域を有する。
The composite oxide Li2 x + y MO of a metal or a similar metal M capable of forming the divalent oxide of the present invention and lithium Li.
An electrode using 1 + x as an active material stably and repeatedly absorbs and releases lithium (intercalation, deintercalation or doping) in a non-aqueous electrolyte in the range of an electrode potential of at least 0 to 3 V with respect to metallic lithium. , Undoping, etc.), and can be used as a negative electrode and / or a positive electrode of a secondary battery that can be repeatedly charged and discharged by such an electrode reaction. In particular, 0 to 1.
In a low potential region of 9 V, a high-capacity region in which lithium ions can be stably inserted and released and charged and discharged repeatedly can be provided.

【0032】又、従来この種の電池の電極として用いら
れてきたグラファイト等の炭素質材料に比べ可逆的にリ
チウムイオンを吸蔵放出できる量即ち充放電容量が著し
く大きく、かつ充放電の分極が小さいため、大電流での
充放電が可能であり、更に過充電過放電による分解や結
晶崩壊等の劣化が殆ど見られず、極めて安定でサイクル
寿命の長い電池を得ることが出来る。
Further, as compared with a carbonaceous material such as graphite which has been conventionally used as an electrode of this type of battery, the amount capable of inserting and extracting lithium ions reversibly, that is, the charge / discharge capacity is extremely large, and the charge / discharge polarization is small. Therefore, the battery can be charged and discharged with a large current, and furthermore, deterioration such as decomposition and crystal collapse due to overcharge and overdischarge is hardly observed, so that an extremely stable battery having a long cycle life can be obtained.

【0033】この様に優れた充放電特性が得られる理由
は必ずしも明らかではないが、次の様に推定される。即
ち、本発明による新規な活物質である複合酸化物Li
2x+yMO1+xは、一酸化物MOと酸化リチウムLi2Oと
が加熱により固相反応した組成構造を有し予めリチウム
を含有する複合酸化物Li2xMO1+x に更に電気化学的
にリチウムイオンが吸蔵もしくはLi2xMO1+x から電
気化学的にリチウムイオンが放出されたものであり、こ
の構造中でのリチウムイオンの移動度が高く、且つ、リ
チウムイオンを吸蔵できるサイトが非常に多いためリチ
ウムイオンの吸蔵放出が容易である為と推定される。
The reason why such excellent charge / discharge characteristics are obtained is not necessarily clear, but is presumed as follows. That is, the composite oxide Li which is a novel active material according to the present invention.
2x + y MO 1 + x has a composition structure in which a monoxide MO and a lithium oxide Li 2 O are reacted in a solid phase by heating, and the lithium-containing composite oxide Li 2x MO 1 + x is further electrochemically synthesized. Lithium ions are absorbed or lithium ions are electrochemically released from Li 2x MO 1 + x , and the mobility of lithium ions in this structure is high, and sites that can store lithium ions It is presumed that the absorption and release of lithium ions are easy due to the large number.

【0034】[0034]

【実施例】以下、実施例により本発明を更に詳細に説明
する。図1は、以下の実施例において、本発明に依る非
水電解質二次電池の電極活物質の性能評価に用いたテス
トセルの一例を示すコイン型電池の断面図である。
The present invention will be described in more detail with reference to the following examples. FIG. 1 is a cross-sectional view of a coin-type battery showing an example of a test cell used in the following examples for evaluating the performance of an electrode active material of a nonaqueous electrolyte secondary battery according to the present invention.

【0035】図において、1は対極端子を兼ねる対極ケ
ースであり、外側片面をNiメッキしたステンレス鋼製
の板を絞り加工したものである。
In the drawing, reference numeral 1 denotes a counter electrode case which also serves as a counter electrode terminal, which is formed by drawing a stainless steel plate having one outer side Ni-plated.

【0036】2はステンレス鋼製のネットから成る対極
集電体であり対極ケース1にスポット溶接されている。
対極3は、所定厚みのアルミニウム板を直径15mmに
打ち抜き、対極集電体2に固着し、その上に所定厚みの
リチウムフォイルを直径14mmに打ち抜いたものを圧
着したものである。
Reference numeral 2 denotes a counter electrode current collector made of a stainless steel net, which is spot-welded to the counter electrode case 1.
The counter electrode 3 is obtained by punching an aluminum plate having a predetermined thickness to a diameter of 15 mm, fixing the aluminum plate to the counter electrode current collector 2, and punching a lithium foil having a predetermined thickness to a diameter of 14 mm thereon.

【0037】7は外側片面をNiメッキしたステンレス
鋼製の作用極ケースであり、作用極端子を兼ねている。
5は後述の本発明に依る活物質又は従来法に依る比較活
物質を用いて構成された作用極であり、6はステンレス
鋼製のネット、金属バネ、導電性塗料又は導電性接着剤
等々からなる作用極集電体であり、作用極5と作用極ケ
ース7とを電気的に接続している。
Numeral 7 is a working electrode case made of stainless steel with one outer surface Ni-plated, and also serves as a working electrode terminal.
Reference numeral 5 denotes a working electrode formed by using an active material according to the present invention described later or a comparative active material according to a conventional method, and 6 denotes a stainless steel net, a metal spring, a conductive paint or a conductive adhesive, and the like. The working electrode current collector electrically connects the working electrode 5 and the working electrode case 7 to each other.

【0038】4はポリプロピレンの多孔質フィルムから
なるセパレ−タであり、電解液が含浸されている。8は
ポリプロピレンを主体とするガスケットであり、対極ケ
ース1と作用極ケース7の間に介在し、対極と作用極と
の間の電気的絶縁性を保つと同時に、作用極ケース開口
縁が内側に折り曲げられカシメられることに依って、電
池内容物を密封、封止している。電池の大きさは、外径
20mm、厚さ1.6mmであった。
Reference numeral 4 denotes a separator made of a porous film of polypropylene, which is impregnated with an electrolytic solution. Reference numeral 8 denotes a gasket mainly composed of polypropylene, which is interposed between the counter electrode case 1 and the working electrode case 7 to maintain the electrical insulation between the counter electrode and the working electrode and to make the opening edge of the working electrode case inward. The battery contents are sealed and sealed by being bent and crimped. The size of the battery was 20 mm in outer diameter and 1.6 mm in thickness.

【0039】(実施例1)作用極5を次の様にして作製
した。市販の一酸化鉄FeOと水酸化リチウムLiOH
・H2OとをFe:Liが所定のモル比となるよう秤量
し、乳鉢を用いて十分混合した後、この混合物を窒素気
流中900゜Cの温度で12時間加熱処理し、冷却後、
粒径53μm以下に粉砕整粒した。
Example 1 A working electrode 5 was manufactured as follows. Commercially available iron monoxide FeO and lithium hydroxide LiOH
After weighing H 2 O and Fe: Li so as to have a predetermined molar ratio and sufficiently mixing them using a mortar, the mixture was heated in a nitrogen stream at a temperature of 900 ° C. for 12 hours, and after cooling,
It was pulverized and sized to a particle size of 53 μm or less.

【0040】この様にして得られた生成物を本発明に依
る活物質とし、これに導電剤としてグラファイトを、結
着剤として架橋型アクリル酸樹脂等を重量比30:6
5:5の割合で混合して作用極合剤とし、次にこの作用
極合剤をステンレス鋼製のネットからなる作用極集電体
6と共に2ton/cm2で直径15mm厚さ0.5m
mのペレットに加圧成形した後、200℃で10時間減
圧加熱乾燥したものを作用極とした。本実施例では、F
e:Liのモル比として(活物質a1)1:1(LiF
eO1.5 )及び(活物質a2)1:2(Li2FeO
2 )の2種類のものを作製した。
The product thus obtained is used as an active material according to the present invention, and graphite is used as a conductive agent, and a crosslinkable acrylic resin is used as a binder in a weight ratio of 30: 6.
The working electrode mixture was mixed at a ratio of 5: 5 to form a working electrode mixture. Then, the working electrode mixture was mixed with a working electrode current collector 6 composed of a stainless steel net at 2 ton / cm 2 and a diameter of 15 mm and a thickness of 0.5 m.
After pressure molding into pellets of m, the pellets were dried by heating under reduced pressure at 200 ° C. for 10 hours to obtain a working electrode. In this embodiment, F
e: Li molar ratio (active material a1) 1: 1 (LiF
eO 1.5 ) and (active material a2) 1: 2 (Li 2 FeO)
2 ) were prepared.

【0041】又、比較のため、上記の本発明に依る活物
質a1又はa2の代わりに、上記の合成の原料に用いた
と同じ一酸化鉄FeOを粒径53μm以下に粉砕整粒し
たもの(活物質r1)及び上記の導電剤に用いたと同じ
グラファイト(活物質r2)をそれぞれ活物質として用
いた他は、上記の本発明の作用極の場合と同様にして、
同様な電極(比較用作用極)を作成した。
For comparison, instead of the active material a1 or a2 according to the present invention, the same iron monoxide FeO used as the raw material for the above synthesis was crushed and sized to a particle size of 53 μm or less (active Except that the same graphite (active material r2) as used for the substance r1) and the conductive agent was used as the active material, respectively, in the same manner as the working electrode of the present invention described above,
A similar electrode (working electrode for comparison) was prepared.

【0042】電解質はプロピレンカ−ボネ−トと1,2
−ジメトキシエタンの体積比1:1混合溶媒に過塩素酸
リチウムLiClO4を1モル/l溶解したものを用い
た。この様にして作製された電池は、室温で1週間放置
エ−ジングされた後、後述の充放電試験が行われた。こ
のエ−ジングによって、対極のリチウム−アルミニウム
積層電極は電池内で非水電解液に触れることにより十分
合金化が進行し、リチウムフォイルは実質的に全てLi
−Al合金となるため、電池電圧は、対極として金属リ
チウムを単独で用いた場合に比べて約0.4V低下した
値となって安定した。
The electrolyte was propylene carbonate and 1,2
Lithium perchlorate LiClO 4 dissolved at 1 mol / l in a mixed solvent of 1: 1 by volume of dimethoxyethane was used. The battery thus manufactured was aged at room temperature for one week, and then subjected to a charge / discharge test described later. By this aging, the lithium-aluminum laminated electrode of the counter electrode is sufficiently alloyed by contacting the non-aqueous electrolyte in the battery, and substantially all of the lithium foil is made of Li.
Since the battery was an -Al alloy, the battery voltage was stabilized at a value reduced by about 0.4 V as compared with a case where metallic lithium was used alone as a counter electrode.

【0043】この様にして作製した電池を、以下、それ
ぞれの使用した作用極の活物質a1,a2,r1,r2
に対応し、それぞれ電池A1,A2,R1,R2と略記
する。これらの電池A1,A2及びR1,R2を0.4
mAの定電流で、充電(電解質中から作用極にリチウム
イオンが吸蔵される電池反応をする電流方向)の終止電
圧−0.4V、放電(作用極から電解質中へリチウムイ
オンが放出される電池反応をする電流方向)の終止電圧
2.5Vの条件で充放電サイクルを行ったときの3サイ
クル目の充電特性を図2に、放電特性を図3に示した。
又、サイクル特性を図4に示した。
The batteries fabricated in this manner are hereinafter referred to as active materials a1, a2, r1, r2 of the working electrodes used.
, And are abbreviated as batteries A1, A2, R1, and R2, respectively. These batteries A1, A2 and R1, R2 are
Battery with a constant current of mA, a final voltage of -0.4 V for charging (a current direction in which lithium ions are absorbed from the electrolyte to the working electrode and causing a battery reaction), and discharging (a lithium ion is released from the working electrode to the electrolyte). FIG. 2 shows the charge characteristics in the third cycle and FIG. 3 shows the discharge characteristics when a charge / discharge cycle was performed under the condition of a cut-off voltage of 2.5 V (current direction in which reaction occurs).
FIG. 4 shows the cycle characteristics.

【0044】尚、充放電サイクルは充電からスタ−トし
た。図2〜4から明らかな様に、本発明による電池A
1,A2は比較電池R1及びR2に比べ、充放電容量が
著しく大きく、充放電の可逆領域が著しく拡大すること
が分かる。又、充放電の繰り返しによる放電容量の低下
(サイクル劣化)が著しく小さい。更に、全充放電領域
に渡って充電と放電の作動電圧の差が著しく小さくなっ
ており、電池の分極(内部抵抗)が著しく小さく、大電
流充放電が容易なことが分かる。
The charge / discharge cycle was started from charging. As is clear from FIGS. 2 to 4, the battery A according to the present invention
It can be seen that the charge and discharge capacities of A1 and A2 are significantly larger than those of the comparative batteries R1 and R2, and the reversible region of charge and discharge is significantly expanded. Further, a decrease in discharge capacity (cycle deterioration) due to repetition of charge and discharge is extremely small. Furthermore, the difference in operating voltage between charging and discharging is significantly reduced over the entire charging / discharging region, indicating that the polarization (internal resistance) of the battery is extremely small and that large-current charging / discharging is easy.

【0045】(実施例2)実施例1の活物質a1の代わ
りに、市販の一酸化亜鉛ZnOと水酸化リチウムLiO
H・H2OとをZn:Li=1:1のモル比で乳鉢を用
いて十分混合した後、この混合物を大気中850゜Cの
温度で24時間加熱処理し、冷却後、粒径53μm以下
に粉砕整粒したものを作用極の活物質(本発明による活
物質b)として用いた。この作用極の活物質以外は、す
べて実施例1の電池A1と同様にして同様な電池Bを作
製した。
Example 2 In place of the active material a1 of Example 1, commercially available zinc monoxide ZnO and lithium hydroxide LiO were used.
And H · H 2 O Zn: Li = 1: After thoroughly mixed using a mortar in a molar ratio, the mixture was 24 hours of heat treatment at a temperature of 850 ° C in air, after cooling, particle size 53μm The material pulverized and sized below was used as the active material of the working electrode (active material b according to the present invention). Except for the active material of this working electrode, a battery B similar to that of the battery A1 of Example 1 was produced.

【0046】この様にして得られた電池Bについても実
施例1と同様な充放電サイクル試験を行った。この時の
3サイクル目の充電特性を図5に、放電特性を図6に、
又サイクル特性を図7に示した。図から明かな様に、本
実施例の電池Bは、実施例1の本発明に依る電池A1,
A2と同様に優れた充放電特性を有することが判る。即
ち、充電に依って対極のLi−Al合金から電解質中に
リチウムイオンが放出され、このリチウムイオンが電解
質中を移動して作用極の活物質a1,a2もしくはbと
電極反応し、活物質a1,a2もしくはbに電気化学的
にリチウムイオンが吸蔵されリチウムを含有する複合酸
化物Li1+yFeO1.5、Li2+yFeO2もしくはLi
1+yZnO1.5が生成する。
The battery B thus obtained was subjected to the same charge / discharge cycle test as in Example 1. FIG. 5 shows the charge characteristics at the third cycle and FIG. 6 shows the discharge characteristics at this time.
FIG. 7 shows the cycle characteristics. As is clear from the figure, the battery B of the present embodiment is different from the batteries A1 and
It turns out that it has excellent charge / discharge characteristics like A2. That is, lithium ions are released from the Li-Al alloy of the counter electrode into the electrolyte by charging, and the lithium ions move in the electrolyte and react with the active materials a1, a2, or b of the working electrode to form an electrode. , A2 or b electrochemically occludes lithium ions and contains lithium, ie, lithium-containing composite oxides Li 1 + y FeO 1.5 , Li 2 + y FeO 2 or Li
1 + y ZnO 1.5 is produced.

【0047】次に、放電に際してはこの複合酸化物から
リチウムイオンが電解質中に放出され、電解質中を移動
して対極のLi−Al合金中に吸蔵されることに依り安
定に繰り返し充放電できる。ここで、活物質a1,a2
もしくはbは1回目の充電によりリチウムを含有する複
合酸化物Li1+yFeO1.5、Li2+yFeO2もしくはL
1+yZnO1.5を生成した後は、その後の放電−充電の
サイクルに於ては、完全放電時以外にはリチウムを含有
する複合酸化物Li1+y'FeO1.5、Li2+y'FeO2
しくはLi1+y'ZnO1.5を形成している。
Next, at the time of discharging, lithium ions are released from the composite oxide into the electrolyte, move in the electrolyte, and are absorbed in the Li-Al alloy at the counter electrode, so that charging and discharging can be stably repeated. Here, the active materials a1, a2
Alternatively, b is lithium-containing composite oxide Li 1 + y FeO 1.5 , Li 2 + y FeO 2 or L
After the production of i 1 + y ZnO 1.5 , in the subsequent discharge-charge cycle, the lithium-containing composite oxides Li 1 + y ′ FeO 1.5 and Li 2 + y ′ except during the complete discharge. FeO 2 or Li 1 + y ′ ZnO 1.5 is formed.

【0048】(実施例3)本実施例の作用極5を次の様
にして作製した。市販の一酸化マンガンMnOと水酸化
リチウムLiOH・H2 OとをMn:Li=1:1のモ
ル比となるよう秤量し、乳鉢を用いて十分混合した後、
この混合物を窒素気流中750゜Cの温度で12時間加
熱処理し、冷却後、粒径53μm以下に粉砕整粒した。
この様にして得られた生成物(LiMnO1.5 )を本発
明に依る活物質cとし、これに導電剤として実施例1で
用いたものと同じグラファイトを、結着剤として架橋型
アクリル酸樹脂等を重量比65:20:15の割合で混
合して作用極合剤とした。次に、この作用極合剤を2t
on/cm2で直径15mm厚さ0.3mmのペレット
に加圧成形した後、炭素を導電性フィラーとする導電性
接着剤からなる作用極集電体6に依り作用極ケース7に
接着し、200℃で10時間減圧加熱乾燥したものを作
用極とした。
(Embodiment 3) The working electrode 5 of this embodiment was manufactured as follows. Commercially available manganese monoxide MnO and lithium hydroxide LiOH.H 2 O were weighed so as to have a molar ratio of Mn: Li = 1: 1, and thoroughly mixed using a mortar.
This mixture was heat-treated in a nitrogen stream at a temperature of 750 ° C. for 12 hours. After cooling, the mixture was pulverized to a particle size of 53 μm or less.
The product (LiMnO 1.5 ) thus obtained was used as an active material c according to the present invention, and the same graphite as that used in Example 1 was used as a conductive agent, and a cross-linked acrylic resin or the like was used as a binder. Were mixed at a weight ratio of 65:20:15 to obtain a working electrode mixture. Next, this working electrode mixture was used for 2 tons.
After being formed into a pellet having a diameter of 15 mm and a thickness of 0.3 mm at on / cm 2, the pellet was adhered to the working electrode case 7 by a working electrode current collector 6 made of a conductive adhesive containing carbon as a conductive filler. What was dried by heating under reduced pressure at 10 ° C. for 10 hours was used as a working electrode.

【0049】又、比較のため、上記の本発明に依る活物
質cの代わりに、上記の導電剤に用いたと同じグラファ
イトを活物質(活物質r3)として用いた他は、上記の
本発明の作用極の場合と同様にして、同様な電極(比較
用作用極)を作成した。この様にして作製した作用極を
用い、電解質としてプロピレンカ−ボネ−トとエチレン
カ−ボネ−トと1,2−ジメトキシエタンの体積比1:
1:2混合溶媒に過塩素酸リチウムLiClO4 を1モ
ル/l溶解したものを用い、又、対極のリチウム量を実
施例1の1.6倍にした他は全て実施例1と同様にして
同様な電池C及びR3を作製した。
Further, for comparison, the same graphite as used for the conductive agent was used as the active material (active material r3) in place of the active material c according to the present invention, except that A similar electrode (comparative working electrode) was prepared in the same manner as the working electrode. Using the working electrode thus prepared, the volume ratio of propylene carbonate, ethylene carbonate and 1,2-dimethoxyethane was 1:
The same procedure as in Example 1 was carried out except that lithium perchlorate LiClO 4 was dissolved at 1 mol / l in a 1: 2 mixed solvent, and the amount of lithium at the counter electrode was 1.6 times that of Example 1. Similar batteries C and R3 were produced.

【0050】この様にして得られた電池C及びR3につ
いても実施例1と同様な充放電サイクル試験を行った。
この時の3サイクル目の充電特性を図8に、放電特性を
図9に示した。図から明かな様に、本実施例の電池C
は、実施例1の本発明に依る電池A1,A2と同様に優
れた充放電特性を有することが判る。
The batteries C and R3 thus obtained were subjected to the same charge / discharge cycle test as in Example 1.
FIG. 8 shows the charge characteristics in the third cycle and FIG. 9 shows the discharge characteristics. As is clear from the figure, the battery C of the present embodiment is
It can be seen that has excellent charge / discharge characteristics similarly to the batteries A1 and A2 according to the present invention of Example 1.

【0051】又、本発明に依る電池A1,A2,B及び
Cの活物質a1,a2,b及びcはLi−Al合金電極
に対して1.5〜2.5V(金属リチウムに対して約
1.9〜2.9Vに対応する)の貴な電位領域と同様、
もしくはそれ以上に、−0.4〜+1.5V(金属リチ
ウムに対して約0〜1.9Vに対応する)の卑な電位領
域の充放電容量が大きいことから、非水電解質二次電池
の正極活物質として用いられるのみならず、特に負極活
物質として優れていることが判る。特に、実施例2の活
物質b及び実施例3の活物質cは卑な電位領域での充放
電容量がより大きく、かつより卑な電位を有しており、
負極活物質として特に優れている。
The active materials a1, a2, b and c of the batteries A1, A2, B and C according to the present invention are 1.5 to 2.5 V with respect to the Li-Al alloy electrode (about 1.5 to 2.5 V with respect to lithium metal). 1.9 to 2.9 V).
Or more than that, since the charge / discharge capacity in a low potential region of −0.4 to +1.5 V (corresponding to about 0 to 1.9 V with respect to metallic lithium) is large, the non-aqueous electrolyte secondary battery It turns out that it is not only used as a positive electrode active material, but is particularly excellent as a negative electrode active material. In particular, the active material b of Example 2 and the active material c of Example 3 have a larger charge / discharge capacity in a lower potential region and a lower potential.
It is particularly excellent as a negative electrode active material.

【0052】尚、実施例においては、対極としてリチウ
ム−アルミニウム合金の場合のみを示したが、本発明は
実施例に限定されず、前述の様に、金属リチウム、リチ
ウムとZn,Sn,Pb,Bi等の他金属との合金、炭
素やMoO2,WO2,Fe23 等のリチウム挿入化合
物、ポリアセチレン,ポリピロ−ル,ポリアセン等のリ
チウムイオンをド−プ可能な導電性高分子等々のリチウ
ムを吸蔵放出可能な物質を活物質とする負極や、TiS
2,MoS2,NbSe3 等の金属カルコゲン化物、Mn
2,MoO3,V25,LiXCoO2,LiXNiO2
LixMn24等の金属酸化物、ポリアニリン、ポリピ
ロール、ポリパラフェニレン、ポリアセン等の導電性高
分子、グラファイト層間化合物等々の様なリチウムカチ
オン及び/またはアニオンを吸蔵放出可能な物質を活物
質とする正極を対極として本発明に依る電極と組合わせ
て用いることが出来ることは言うまでもない。
In the examples, only the case of a lithium-aluminum alloy was shown as a counter electrode. However, the present invention is not limited to the examples, and as described above, metallic lithium, lithium and Zn, Sn, Pb, Alloys with other metals such as Bi, carbon and lithium insertion compounds such as MoO 2 , WO 2 , Fe 2 O 3 , and conductive polymers capable of doping lithium ions such as polyacetylene, polypyrrol, and polyacene; A negative electrode using a material capable of absorbing and releasing lithium as an active material, TiS
Metal chalcogenide such as 2 , MoS 2 , NbSe 3 , Mn
O 2 , MoO 3 , V 2 O 5 , Li x CoO 2 , Li x NiO 2 ,
An active material capable of inserting and extracting lithium cations and / or anions, such as metal oxides such as Li x Mn 2 O 4 , conductive polymers such as polyaniline, polypyrrole, polyparaphenylene, and polyacene, and graphite intercalation compounds. Needless to say, the positive electrode described above can be used as a counter electrode in combination with the electrode according to the present invention.

【0053】[0053]

【発明の効果】以上詳述した様に、本発明は、非水電解
質二次電池の負極と正極の少なくとも一方の電極の活物
質として、2価酸化物を生成し得る金属もしくは類金属
MとリチウムLiの各々の単体もしくはそれらの化合物
の混合物を加熱して得られる組成式Li2xMO1+x (但
し、x>0)で示される複合酸化物、又は該複合酸化物
とリチウムもしくはリチウム化合物との電気化学反応に
依り該複合酸化物に更にリチウムが吸蔵されるか、又は
該複合酸化物から電気化学反応によりリチウムが放出さ
れて得られる組成式Li2x+yMO1+x (但し、2x+y
≧0)で示される複合酸化物から成る新規なリチウムイ
オン吸蔵放出可能物質を用いたものであり、充放電によ
り可逆的にリチウムイオンを吸蔵放出出来る量即ち充放
電容量が著しく大きく、かつ充放電の分極が小さいた
め、大電流での充放電が可能であり、更に過充電過放電
による分解や結晶崩壊等の劣化が殆ど見られず、極めて
安定でサイクル寿命の長い電池を得ることが出来る。
又、特に、本発明による該活物質を負極活物質として用
いた場合には、高電圧かつ高エネルギ−密度の電池を得
ることが出来る等々優れた効果を有する。
As described in detail above, the present invention relates to a metal or a similar metal M capable of forming a divalent oxide as an active material of at least one of a negative electrode and a positive electrode of a nonaqueous electrolyte secondary battery. A composite oxide represented by a composition formula Li 2x MO 1 + x (where x> 0) obtained by heating each single substance of lithium Li or a mixture of these compounds, or the composite oxide and lithium or lithium compound Li is further absorbed in the composite oxide by an electrochemical reaction with or a lithium is released from the composite oxide by an electrochemical reaction, and a composition formula Li 2x + y MO 1 + x (provided that 2x + y
.Gtoreq.0) using a novel lithium-ion occluding and releasing substance composed of a composite oxide. The amount capable of reversibly occluding and releasing lithium ions by charging and discharging, that is, the charge-discharge capacity is extremely large, and the charge-discharge capacity is large. Because of its small polarization, charging and discharging with a large current is possible, and furthermore, deterioration such as decomposition and crystal collapse due to overcharging and overdischarging is hardly observed, and an extremely stable battery having a long cycle life can be obtained.
In particular, when the active material according to the present invention is used as a negative electrode active material, a high voltage and high energy density battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において実施した電池の構造の一例を示
した説明図である。
FIG. 1 is an explanatory diagram showing an example of the structure of a battery implemented in the present invention.

【図2】本発明による電池と従来電池の3サイクル目の
充電特性の比較を示した説明図である。
FIG. 2 is an explanatory diagram showing a comparison of charging characteristics at the third cycle between a battery according to the present invention and a conventional battery.

【図3】本発明による電池と従来電池の3サイクル目の
放電特性の比較を示した説明図である。
FIG. 3 is an explanatory diagram showing a comparison of the discharge characteristics at the third cycle between the battery according to the present invention and the conventional battery.

【図4】本発明による電池と従来電池のサイクル特性の
比較を示した説明図である。
FIG. 4 is an explanatory diagram showing a comparison of cycle characteristics between a battery according to the present invention and a conventional battery.

【図5】本発明による電池と従来電池の3サイクル目の
充電特性の比較を示した説明図である。
FIG. 5 is an explanatory diagram showing a comparison of charging characteristics at the third cycle between a battery according to the present invention and a conventional battery.

【図6】本発明による電池と従来電池の3サイクル目の
放電特性の比較を示した説明図である。
FIG. 6 is an explanatory diagram showing a comparison of the discharge characteristics at the third cycle between the battery according to the present invention and the conventional battery.

【図7】本発明による電池と従来電池のサイクル特性の
比較を示した説明図である。
FIG. 7 is an explanatory diagram showing a comparison of cycle characteristics between a battery according to the present invention and a conventional battery.

【図8】本発明による電池と従来電池の3サイクル目の
充電特性の比較を示した説明図である。
FIG. 8 is an explanatory diagram showing a comparison of charging characteristics at the third cycle between a battery according to the present invention and a conventional battery.

【図9】本発明による電池と従来電池の3サイクル目の
放電特性の比較を示した説明図である。
FIG. 9 is an explanatory diagram showing a comparison of the discharge characteristics at the third cycle between the battery according to the present invention and the conventional battery.

【符号の説明】[Explanation of symbols]

1 対極ケ−ス 2 対極集電体 3 対極 4 セパレ−タ 5 作用極 6 作用極集電体 7 作用極ケ−ス 8 ガスケット DESCRIPTION OF SYMBOLS 1 Counter electrode case 2 Counter electrode current collector 3 Counter electrode 4 Separator 5 Working electrode 6 Working electrode current collector 7 Working electrode case 8 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂田 明史 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (72)発明者 岩崎 文晴 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (72)発明者 矢作 誠治 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (56)参考文献 特開 昭60−216452(JP,A) 特開 昭64−24365(JP,A) 特開 昭56−30266(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akifumi Sakata 6-31-1, Kameido, Koto-ku, Tokyo Inside Seiko Electronics Industries Co., Ltd. (72) Inventor Fumiharu Iwasaki 6-31, Kameido, Koto-ku, Tokyo No. Seiko Electronics Co., Ltd. (72) Inventor Seiji Yahagi 6-31-1, Kameido, Koto-ku, Tokyo Seiko Electronics Co., Ltd. (56) References JP-A-60-216452 (JP, A) JP-A-64-24365 (JP, A) JP-A-56-30266 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池にお
いて、負極と正極の少なくとも一方の電極の活物質とし
て、2価酸化物を生成し得るFe、Mn、Znから選ば
れる一種以上の金属MとリチウムLiの各々の単体もし
くはそれらの化合物の混合物をMの原子価が2価となる
様に酸素量又は酸素分圧を制御した雰囲気中で加熱して
得られる組成式Li2xMO1+x(但し、0<x≦1)で
示される複合酸化物を用いたことを特徴とする非水電解
質二次電池。
In a non-aqueous electrolyte secondary battery comprising at least a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte, a divalent oxide can be generated as an active material of at least one of the negative electrode and the positive electrode. At least one metal M selected from Fe, Mn, and Zn, and each of Li and a mixture of lithium Li or a mixture of these compounds are placed in an atmosphere in which the amount of oxygen or oxygen partial pressure is controlled so that the valence of M is divalent. A nonaqueous electrolyte secondary battery using a composite oxide represented by a composition formula Li 2x MO 1 + x (where 0 <x ≦ 1) obtained by heating.
【請求項2】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池にお
いて、負極と正極の少なくとも一方の電極の活物質とし
て、2価酸化物を生成し得るFe、Mn、Znから選ば
れる一種以上の金属MとリチウムLiの各々の単体もし
くはそれらの化合物の混合物をMの原子価が2価となる
様に酸素量又は酸素分圧を制御した雰囲気中で加熱して
得られる組成式Li2xMO1+x(但し、0<x≦1)で
示される複合酸化物、又は該複合酸化物とリチウムもし
くはリチウム含有物との電気化学反応に依り該複合酸化
物に更にリチウムが吸蔵されるか、又は該複合酸化物か
ら電気化学反応によりリチウムが放出されて得られる組
成式Li2x+yMO1+x(但し、0<x≦1且つ、−2
y≦2)で示される複合酸化物を用いたことを特徴と
する非水電解質二次電池。
2. A non-aqueous electrolyte secondary battery comprising at least a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte, capable of producing a divalent oxide as an active material of at least one of the negative electrode and the positive electrode. At least one metal M selected from Fe, Mn, and Zn, and each of Li and a mixture of lithium Li or a mixture of these compounds are placed in an atmosphere in which the amount of oxygen or oxygen partial pressure is controlled so that the valence of M is divalent. A composite oxide represented by a composition formula Li 2x MO 1 + x (where 0 <x ≦ 1) obtained by heating, or the composite oxide formed by an electrochemical reaction between the composite oxide and lithium or a lithium-containing substance. The composition formula Li 2x + y MO 1 + x (where 0 <x ≦ 1 and −2 x) obtained by further absorbing lithium in the substance or releasing lithium from the composite oxide by an electrochemical reaction.
A nonaqueous electrolyte secondary battery using a composite oxide represented by < y ≦ 2).
【請求項3】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池の製
造方法において、Fe、Mn、Znから選ばれる一種以
上の金属Mの酸素を有する2価化合物と酸素を有するリ
チウム化合物とを混合し、非酸化性雰囲気中で加熱して
組成式Li2xMO1+x(但し、0<x≦1)で示される
複合酸化物を得、次にこの複合酸化物を負極と正極の少
なくとも一方の電極の活物質として用い、電池を組立後
電池内で、又は電池製造工程の途上において電池内もし
くは電池外で、この複合酸化物Li2xMO1+xとリチウ
ムもしくはリチウム含有物との電気化学的反応に依りこ
の複合酸化物組成式Li2xMO1+xに更にリチウムを含
有させるか、又はこの複合酸化物からリチウムイオンを
放出させることを特徴とする非水電解質二次電池の製造
方法。
3. A method for manufacturing a non-aqueous electrolyte secondary battery comprising at least a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte, comprising a method of producing a non-aqueous electrolyte secondary battery comprising at least one metal M selected from Fe, Mn, and Zn. A valence compound and a lithium compound having oxygen are mixed and heated in a non-oxidizing atmosphere to obtain a composite oxide represented by a composition formula Li 2x MO 1 + x (where 0 <x ≦ 1). Using this composite oxide as an active material of at least one electrode of the negative electrode and the positive electrode, in a battery after assembling the battery, or in or out of the battery during the battery manufacturing process, this composite oxide Li 2x MO 1+ or is contained electrochemical reaction depends on more lithium composite oxide compositional formula Li 2x MO 1 + x with x lithium or lithium-containing compound, or especially that to release lithium ions from the complex oxide Non-aqueous method for producing electrolyte secondary battery according to.
【請求項4】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池の製
造方法において、Fe、Mn、Znから選ばれる一種以
上の金属Mの酸素を有する2価化合物と酸素を有するリ
チウム化合物とを混合し、非酸化性雰囲気中で加熱して
組成式Li2xMO1+x(但し、0<x≦1)で示される
複合酸化物を得、次にこの複合酸化物を負極と正極の少
なくとも一方の電極の活物質として用い、電池を組立後
電池内で、又は電池製造工程の途上において電池内もし
くは電池外で、この複合酸化物Li2xMO1+xとリチウ
ムもしくはリチウム含有物との電気化学的反応に依りこ
の複合酸化物Li2xMO1+xに更にリチウムを含有させ
るか、又はこの複合酸化物からリチウムイオンを放出さ
せることに依り複合酸化物Li2x+yMO1+x(但し、0
<x≦1且つ−2x<y≦2)を得ることを特徴とする
非水電解質二次電池の製造方法。
4. A method for producing a non-aqueous electrolyte secondary battery comprising at least a negative electrode, a positive electrode, and a lithium-ion conductive non-aqueous electrolyte, the method comprising: A valence compound and a lithium compound having oxygen are mixed and heated in a non-oxidizing atmosphere to obtain a composite oxide represented by a composition formula Li 2x MO 1 + x (where 0 <x ≦ 1). Using this composite oxide as an active material of at least one electrode of the negative electrode and the positive electrode, in a battery after assembling the battery, or in or out of the battery during the battery manufacturing process, this composite oxide Li 2x MO 1+ either by containing the composite oxide Li 2x MO further lithium 1 + x depending on the electrochemical reaction between the x and the lithium or lithium-containing substance or complex depending on the thereby releasing lithium ions from the complex oxide Monster Li 2x + y MO 1 + x ( where 0
<X ≦ 1 and −2x <y ≦ 2). A method for producing a non-aqueous electrolyte secondary battery, comprising:
JP33915992A 1992-12-18 1992-12-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Lifetime JP3354611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33915992A JP3354611B2 (en) 1992-12-18 1992-12-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33915992A JP3354611B2 (en) 1992-12-18 1992-12-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06187990A JPH06187990A (en) 1994-07-08
JP3354611B2 true JP3354611B2 (en) 2002-12-09

Family

ID=18324804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33915992A Expired - Lifetime JP3354611B2 (en) 1992-12-18 1992-12-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3354611B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0728702B1 (en) * 1995-02-27 1999-05-06 Matsushita Electric Industrial Co., Ltd. Lithium iron oxide, synthesis of the same, and lithium cell utilizing the same
JP3547575B2 (en) * 1996-10-15 2004-07-28 松下電器産業株式会社 Lithium iron oxide, method for producing the same, and lithium battery
JP3466045B2 (en) * 1997-03-27 2003-11-10 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery
JP2005276612A (en) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery, its manufacturing method, battery using it, and manufacturing method of battery

Also Published As

Publication number Publication date
JPH06187990A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3008228B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US5401599A (en) Non-aqueous electrolyte secondary battery and method of producing the same
JP3162437B2 (en) Non-aqueous electrolyte secondary battery
EP0696075B1 (en) Non-aqueous electrolyte secondary battery
EP1494302A1 (en) Nonaqueous electrolyte secondary battery
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
USRE35818E (en) Non-aqueous electrolyte secondary battery and method of producing the same
US6656638B1 (en) Non-aqueous electrolyte battery having a lithium manganese oxide electrode
JP2000348722A (en) Nonaqueous electrolyte battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2000243449A (en) Nonaqueous electrolyte secondary battery
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP2952367B2 (en) Non-aqueous electrolyte secondary battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP2000082459A (en) Nonaqueous electrolyte secondary battery and its manufacture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11