JP3008228B2 - A nonaqueous electrolyte secondary battery and a manufacturing method of the anode active material - Google Patents

A nonaqueous electrolyte secondary battery and a manufacturing method of the anode active material

Info

Publication number
JP3008228B2
JP3008228B2 JP3335326A JP33532691A JP3008228B2 JP 3008228 B2 JP3008228 B2 JP 3008228B2 JP 3335326 A JP3335326 A JP 3335326A JP 33532691 A JP33532691 A JP 33532691A JP 3008228 B2 JP3008228 B2 JP 3008228B2
Authority
JP
Japan
Prior art keywords
lithium
boron
active material
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3335326A
Other languages
Japanese (ja)
Other versions
JPH05174818A (en
Inventor
謙介 田原
英樹 石川
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP3335326A priority Critical patent/JP3008228B2/en
Publication of JPH05174818A publication Critical patent/JPH05174818A/en
Application granted granted Critical
Publication of JP3008228B2 publication Critical patent/JP3008228B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、リチウムを吸蔵放出可能な物質を負極活物質とし、リチウムイオン導電性の非水電解質を用いる非水電解質二次電池に関するものであり、特に、高電圧、高エネルギー密度で且つ充放電特性が優れ、サイクル寿命の長い新規な二次電池を提供する新規な負極活物質に関するものである。 The present invention relates to a lithium was capable of absorbing and releasing material and negative electrode active material, relates a non-aqueous electrolyte secondary battery using a lithium ion conductive non-aqueous electrolyte, in particular, a high voltage, excellent and charge-discharge characteristics at high energy density, it relates to a novel anode active material to provide a long novel secondary battery cycle life.

【0002】 [0002]

【従来の技術】負極活物質としてリチウムを用いる非水電解質電池は、高電圧、高エネルギー密度で、かつ自己放電が小さく長期信頼性に優れる等々の利点により、一次電池としてはメモリーバックアップ用、カメラ用等の電源として既に広く用いられている。 Nonaqueous electrolyte battery using lithium as the Prior Art the anode active material, a high voltage, high energy density, and the like advantages self-discharge is excellent in reduced long-term reliability, for memory backup as a primary battery, a camera already widely used as a power source for such use.

【0003】しかしながら、近年携帯型の電子機器、通信機器等の著しい発展に伴い、電源としての電池に対し大電流出力を要求する機器が多種多様に出現し、経済性と機器の小型軽量化の観点から、再充放電可能で、かつ高エネルギー密度の二次電池が強く要望されている。 However, recent portable electronic devices, with the remarkable development of such communication equipment, equipment that requires a large current output to the battery as a power source great variety appeared, economy and equipment size and weight reduction terms, recharge and discharge possible, and a secondary battery having a high energy density has been demanded strongly. このため、高エネルギー密度を有する前記非水電解質電池の二次電池化を進める研究開発が活発に行われ、一部実用化されているが、エネルギー密度、充放電サイクル寿命、信頼性等々まだまだ不十分である。 Therefore, research and development to proceed with the secondary battery of the nonaqueous electrolyte battery having a high energy density is performed actively, has been partially put to practical use, the energy density, charge-discharge cycle life, etc. reliability still not It is enough.

【0004】従来、この種の二次電池の正極を構成する正極活物質としては、充放電反応の形態に依り下記の3 Conventionally, as a positive electrode active material constituting the positive electrode of this type of secondary battery, the following depending on the form of the charge-discharge reaction 3
種のタイプのものが見い出されている。 Those species of type have been found. 第1のタイプは、TiS 2 、MoS 2 、NbSe 3等の金属カルコゲン化物や、MnO 2 、MoO 3 、V 25 、Li x Co The first type, TiS 2, MoS 2, NbSe and 3 such metal chalcogenides, MnO 2, MoO 3, V 2 O 5, Li x Co
2 、Li x NiO 2 、Li x Mn 24等の金属酸化物等々のように、結晶の層間や格子位置又は格子間隙間にリチウムイオン(カチオン)のみがインターカレーション、デインターカレーション反応等に依り出入りするタイプ。 O 2, Li x NiO 2, Li x Mn as 2 O metal oxides such as 4, etc., crystals of the interlayer and the grating position or the interstitial gap lithium-ion (cation) only intercalation, deintercalation type in and out depending on the reaction or the like. 第2のタイプは、ポリアニリン、ポリピロール、ポリパラフェニレン等の導電性高分子のような、主としてアニオンのみが安定にドープ、脱ドープ反応に依り出入りするタイプ。 The second type, polyaniline, polypyrrole, such as a conductive polymer polyparaphenylene and the like, only mainly anions stably doped type and out depending on the dedoping reaction. 第3のタイプは、グラファイト層間化合物やポリアセン等の導電性高分子等々のような、 The third type, such as so conductive polymer graphite intercalation compounds and polyacene,
リチウムカチオンとアニオンが共に出入り可能なタイプ(インターカレーション、デインターカレーション又はドープ、脱ドープ等)である。 Lithium cations and anions are both out possible types (intercalation, deintercalation or doped, undoping etc.).

【0005】一方、この種の電池の負極を構成する負極活物質としては、金属リチウムを単独で用いた場合が電極電位が最も卑であるため、上記のような正極活物質を用いた正極と組み合わせた電池としての出力電圧が最も高く、エネルギー密度も高く好ましいが、充放電に伴い負極上にデンドライトや不働体化合物が生成し、充放電による劣化が大きく、サイクル寿命が短いという問題があった。 On the other hand, as the negative electrode active material constituting the negative electrode of this type of battery, for the case of using metallic lithium alone is most noble is the electrode potential, a positive electrode using the positive electrode active material as described above combined output voltage is highest as a battery, the energy density is high preferred, dendrites and non 働体 compound on the negative electrode during charge and discharge is generated, the deterioration due to charging and discharging is large, there is a problem that a short cycle life . この問題を解決するため、負極活物質として(1)リチウムとAl,Zn,Sn,Pb,Bi,Cd To solve this problem, as the negative electrode active material (1) lithium and Al, Zn, Sn, Pb, Bi, Cd
等の他金属との合金、(2)WO 2 、MoO 2 、Fe 2 Alloys with other metals etc., (2) WO 2, MoO 2, Fe 2
3 、TiS 2等の無機化合物やグラファイト、有機物を焼成して得られる炭素質材料等々の結晶構造中にリチウムイオンを吸蔵させた層間化合物あるいは挿入化合物、(3)リチウムイオンをドープしたポリアセンやポリアセチレン等の導電性高分子等々のリチウムイオンを吸蔵放出可能な物質を用いることが提案されている。 O 3, TiS 2, etc. inorganic compounds, graphite, intercalation compound was absorb lithium ions in the crystal structure of the so carbonaceous material obtained by baking an organic or insertion compounds, polyacene Ya doped (3) Lithium-ion the use of a conductive polymer capable of absorbing and releasing material lithium ions etc., such as polyacetylene have been proposed.

【0006】 [0006]

【発明が解決しようとする課題】しかしながら、一般に、負極活物質として上記のような金属リチウム以外のリチウムイオンを吸蔵放出可能な物質を用いた負極と、 [SUMMARY OF THE INVENTION However, generally, the negative electrode using the absorbing and releasing material capable of lithium ions other than metallic lithium as the negative electrode active material,
前記のような正極活物質を用いた正極とを組合せて電池を構成した場合には、これらの物質の電極電位が金属リチウムの電極電位より貴であるため、電池の作動電圧が負極活物質として金属リチウムを単独で用いた場合よりかなり低下するという欠点がある。 When a battery in combination with a positive electrode using the positive electrode active material as described above, since the electrode potential of these substances is nobler than the electrode potential of metallic lithium as the negative electrode active material is the operating voltage of the battery there is a disadvantage that considerably lower than the case of using metallic lithium alone. 例えば、リチウムとAl,Zn,Pb,Sn,Bi,Cd等の合金を用いる場合には0.2〜0.8V、炭素−リチウム層間化合物では0〜1V、MoO 2やWO 2等のリチウムイオン挿入化合物では0.5〜1.5V作動電圧が低下する。 For example, lithium and Al, Zn, Pb, Sn, Bi, 0.2~0.8V in the case of using an alloy of Cd, etc., carbon - 0 to 1 V in a lithium intercalation compound, lithium-ion, such as MoO 2 and WO 2 0.5~1.5V operating voltage is reduced in the insertion compound.

【0007】また、リチウム以外の元素も負極構成要素となるため、体積当り及び重量当りの容量及びエネルギー密度が著しく低下する。 Further, since the elements are also negative elements other than lithium, the capacity and energy density and weight per per volume is significantly reduced. 更に、上記の(1)のリチウムと他金属との合金を用いた場合には、充放電時のリチウムの利用効率が低く、且つ充放電の繰り返しにより電極にクラックが発生し割れを生じる等のためサイクル寿命が短いという問題があり、(2)のリチウム層間化合物又は挿入化合物の場合には、過充放電により結晶構造の崩壊や不可逆物質の生成等の劣化があり、又電極電位が高い(貴な)ものが多い為、これを用いた電池の出力電圧が低いという欠点があり、(3)の導電性高分子の場合には、充放電容量、特に体積当りの充放電容量が小さいという問題がある。 Further, in the case of using an alloy of lithium and other metals of the above (1) has a low utilization efficiency of lithium during charge and discharge, and cracks in the electrode by repeated charge and discharge, such as causing cracks occurred since there is a problem that the cycle life is short, in the case of a lithium intercalation compound or insertion compound (2), there is degradation of the product such as the collapse and irreversible material of the crystal structure by overcharge and overdischarge, and electrode potential is high ( for nobler) there are many, which has the disadvantage that the output voltage is low battery using, (3 in the case of conductive polymers), charge-discharge capacity, that in particular the charge-discharge capacity per volume is small There's a problem.

【0008】このため、高電圧、高エネルギ−密度で、 [0008] For this reason, high voltage, high energy - at a density,
且つ充放電特性が優れ、サイクル寿命の長い二次電池を得るためには、リチウムに対する電極電位が低く(卑な)、充放電時のリチウムイオンの吸蔵放出に依る結晶構造の崩壊や不可逆物質の生成等の劣化が無く、かつ可逆的にリチウムイオンを吸蔵放出できる量即ち有効充放電容量のより大きい負極活物質が必要である。 And excellent charge and discharge characteristics, in order to obtain a long secondary battery cycle life, the electrode potential (a noble) low to lithium, collapse and irreversible material of the crystal structure due to occlusion and release of charging and discharging time of the lithium-ion deterioration of the product or the like is not and there is a need for more negative electrode active material amount or effective charge and discharge capacity capable of reversibly occluding and releasing lithium ions.

【0009】 [0009]

【課題を解決するための手段】本発明は、上記のような課題を解決するため、この種の電池の負極活物質として、組成式LixByO 3 (但し、x≧0、y>0)で示されるリチウムとホウ素の複合酸化物もしくはホウ素の酸化物から成る新規なリチウムイオン吸蔵放出可能物質を用いることを提起するものである。 The present invention SUMMARY OF] In order to solve the above problems, as a negative electrode active material of this type of battery, represented by the composition formula LixByO 3 (where, x ≧ 0, y> 0 ) it is intended to raise the use of novel lithium ion absorbing and releasing substance made of a composite oxide or an oxide of boron in the lithium and boron to be. リチウム量xとホウ素量yはx≧0、y>0であれば良いが、特に4≧ Lithium content x and the amount of boron y may be any x ≧ 0, y> 0, but especially 4 ≧
x≧0且つ3≧y≧1に於て電極電位が低く(卑)、充放電特性が優れているので特に好ましい。 x ≧ 0 and 3 ≧ y ≧ 1 low electrode potential At a (noble), particularly preferable since superior charge and discharge characteristics.

【0010】本発明電池の負極活物質として用いられるリチウムとホウ素の複合酸化物の好ましい製造方法としては、下記の2種類の方法があげられるが、これらに限定されない。 [0010] Preferred method for producing a composite oxide of lithium and boron used as the negative electrode active material of the present invention the battery is two methods are given below, but not limited to. 第1の方法は、リチウムとホウ素の各々の単体又はその化合物を所定のモル比で混合し、空気中または酸素を有する雰囲気中で加熱して合成する方法である。 The first method is a method for the simple substance or a compound thereof of each of lithium and boron were mixed in a predetermined molar ratio, synthesized by heating in an atmosphere having air or oxygen. 出発原料となるリチウムとホウ素のそれぞれの化合物としては、各々の酸化物、水酸化物あるいは炭酸塩、 As each of the compounds of lithium and boron as the starting material, each oxide, hydroxide or carbonate,
硝酸塩等の塩あるいは有機化合物等々の空気中又は酸素を有する雰囲気中で加熱して酸化物を生成する化合物であれば良い。 It may be a compound which is heated in an atmosphere to produce an oxide having a salt or an organic compound like the air or oxygen nitrates. リチウムとホウ素の各々の化合物として各々の酸化物、水酸化物又はその他の酸素を有する化合物を用いる場合には、不活性雰囲気中或は真空中で加熱合成することも可能である。 Each oxide as compounds of each of lithium and boron, in the case of using a compound having a hydroxide or other oxygen, it is also possible to heat synthesized or in vacuum in an inert atmosphere. これらの出発原料の中で、リチウムの化合物としては酸化リチウムLi 2 O、水酸化リチウムLiOH、炭酸リチウムLi 2 CO 3 、硝酸リチウムLiNO 3等々、ホウ素の化合物としてはB 2 Among these starting materials, lithium oxide Li 2 O is a compound of lithium, lithium hydroxide LiOH, lithium carbonate Li 2 CO 3, etc. lithium nitrate LiNO 3, as the compounds of boron B 2 O
3や(BO) z等の酸化ホウ素やオルトホウ酸H 3 BO 3 and (BO) z boron oxide and orthoboric acid H 3 BO such
3 、メタホウ酸HBO 2 、テトラホウ酸H 24 3, metaboric acid HBO 2, tetraborate H 2 B 4 O 7 7,
次にホウ酸H 424等のホウ酸等々が、加熱により容易に分解し酸化物を生成し易く且つ固溶し易いので特に好ましい。 Then like boric acid such as boric acid H 4 B 2 O 4 are particularly preferable because easily decomposed oxides produced easily and solid solution easily by heating. また、これらの出発原料を水やアルコール、グリセリン等の溶媒に溶解もしくは分散し、溶液中で均一に混合又は反応させた後、乾燥し、次の加熱処理を行うことも出来る。 Further, these starting materials are dissolved or dispersed in water or alcohol, a solvent such as glycerin, after uniformly mixed or reacted in a solution, dried, may also be performed subsequent heat treatment. この方法に依れば、より均一な生成物が得られる利点がある。 According to this method, there is an advantage that a more uniform product is obtained. 加熱温度は、出発原料と加熱雰囲気に依っても異なるが、通常300゜C以上で合成が可能であり、好ましくは600゜C以上、より好ましくは700〜1000゜の温度がよい。 The heating temperature varies depending on the heating atmosphere as a starting material, it can be synthesized in the usual 300 ° C or higher, preferably 600 ° C or higher, more preferably from 700 to 1000 ° temperature. このようなリチウムの化合物とホウ素の化合物との混合物の加熱処理に依って得られるリチウムとホウ素の複合酸化物の例を上げるとLiBO 2 、Li 247 、Li 3 BO By way of example of a composite oxide of lithium obtained boron depending on the heat treatment of the mixture of the compound and the compound of boron such lithium LiBO 2, Li 2 B 4 O 7, Li 3 BO 3 3,
Li 424 、Li 425 、LiBO 3等の各種のホウ酸塩及びそれらの縮合物等や、また、これらの化学量論組成のものに対しリチウムが過剰又は不足した非化学量論組成のもの等々が上げられる。 Li 4 B 2 O 4, Li 4 B 2 O 5, LiBO 3 various borate salts and their condensation products such as such or, also, these stoichiometric non lithium is excessive or insufficient with respect to those of composition etc. that stoichiometry is increased. また、出発原料にホウ素の化合物として前記のような各種のホウ酸を用いた場合や、リチウム化合物として水酸化リチウム等を用いた場合には、加熱処理により水素が完全には脱離せず、熱処理後の生成物中に一部残り、リチウムと水素が共存することも可能であり、本発明に含まれる。 Further, and when using the various boric acids such as a compound of boron as a starting material, in the case of using a lithium hydroxide as a lithium compound, hydrogen is not completely desorbed by heat treatment, heat treatment the remaining part in the product after it is also possible to lithium and hydrogen coexist, are included in the present invention. 更に、 In addition,
リチウム化合物と同時に、ナトリウム、カリウム、ルビジウム等の他のアルカリ金属、マグネシウム、カルシウム等のアルカリ土類金属又はその他の金属の化合物等をも加えてホウ素化合物と混合し加熱処理することにより、これらのリチウム以外の金属イオンをリチウムイオンと共存させることもでき、これらの場合も本発明に含まれる。 Simultaneously with lithium compounds, sodium, potassium, other alkali metals rubidium, magnesium, by also mixing heat treatment with a boron compound added calcium alkaline earth metal or compound of other metals, such as such, these the metal ions other than lithium can coexist with lithium ions, even if these are included in the present invention.

【0011】このようにして得られたリチウムとホウ素の複合酸化物LixByO 3は、これをそのままもしくは必要により粉砕整粒や造粒等の加工を施した後に負極活物質として用いることが出来るし、また、下記の第2 [0011] In this way lithium composite oxide LixByO 3 boron thus obtained is to be can be used as the negative electrode active material after subjected to processing such as ground and graded and granulation it is or need thereof, in addition, the second of the following
の方法と同様に、この複合酸化物とリチウムもしくはリチウムを含有する物質との電気化学的反応に依りこの複合酸化物に更にリチウムイオンを吸蔵させるか、又は逆にこの複合酸化物からリチウムイオンを放出させることにより、リチウム量xを増加又は減少させたものを負極活物質として用いても良い。 Of the same method, either by electrochemical further absorb lithium ions to the composite oxide depending on the reaction with the substances containing this composite oxide and the lithium or lithium, or conversely lithium ions from the complex oxide by releasing, may be used after increasing or decreasing the amount of lithium x as the negative electrode active material.

【0012】第2の方法は、B 23や(BO) z等のホウ素の酸化物とリチウムもしくはリチウムを含有する物質との電気化学的反応に依りホウ素の酸化物にリチウムイオンを吸蔵させてリチウムとホウ素の複合酸化物を得る方法である。 [0012] The second method is to absorb lithium ions in an oxide of boron depending on the electrochemical reaction between B 2 O 3 and (BO) oxides of boron z such as lithium or material containing lithium it is a method to obtain a composite oxide of lithium and boron Te. リチウムを含有する物質としては、例えば、従来の技術で上げた正極活物質又は負極活物質等に用いられるようなリチウムイオンを吸蔵放出可能な活物質を用いることが出来る。 The substance containing lithium, for example, may be a lithium ion capable of occluding and releasing active material as used in the positive electrode active material or negative electrode active material such as raised in the prior art.

【0013】このホウ素の酸化物への電気化学的反応に依るリチウムイオンの吸蔵は、電池組立後電池内で、又は電池製造工程の途上において電池内もしくは電池外で行うことが出来、具体的には次のようにして行うことが出来る。 [0013] occlusion of lithium ions due to electrochemical reaction of the oxide of boron, in the battery after the battery assembly, or it is possible to carry out in the course of the battery manufacturing process or within the battery outside the battery, specifically it is possible to do in the following manner. 即ち、(1)該ホウ素の酸化物又は該ホウ素の酸化物と導電剤及び結着剤等との混合合剤を所定形状に成形したものを一方の電極(作用極)とし、金属リチウム又はリチウムを含有する物質をもう一方の電極(対極)としてリチウムイオン導電性の非水電解質に接して両電極を対向させて電解セルを構成し、作用極がカソード反応をする方向に適当な電流で通電し電気化学的にリチウムイオンをホウ素の酸化物に吸蔵させる。 That is, (1) those mixed mixture of the oxides of boron or the oxide of the boron and the electrically conductive agent and a binder, and the like and molded into a predetermined shape as one electrode (working electrode), a metal lithium or lithium both electrodes in contact with the lithium ion conductive non-aqueous electrolyte constituting the electrolytic cell to face the other electrode a material containing (counter electrode), energized with a suitable current in a direction the working electrode is the cathode reaction thereby occluding electrochemically lithium ions oxides of boron. 得られた該作用極をそのまま負極として又は負極を構成する負極活物質として用いて非水電解質二次電池を構成する。 Using the obtained said working electrode as a negative electrode active material constituting directly or anode as the negative electrode constituting the non-aqueous electrolyte secondary battery. (2)該ホウ素の酸化物又は該ホウ素の酸化物と導電剤及び結着剤等との混合合剤を所定形状に成形し、これにリチウムもしくはリチウムの合金等を圧着して、もしくは接触させて積層電極としたものを負極として非水電解質二次電池に組み込む。 (2) an oxide of an oxide or the boron of the boron and the electrically conductive agent and a mixed mixture of binder, and the like and molded into a predetermined shape, to which was crimped alloy of lithium or lithium, or contacted incorporated into non-aqueous electrolyte secondary battery obtained by a laminated electrode as a negative electrode Te. 電池内でこの積層電極が電解質に触れることにより自己放電し電気化学的にリチウムがホウ素の酸化物に吸蔵される方法。 How self-discharge electrochemically lithium is occluded in the oxide of boron by the laminated electrode touches the electrolyte in the battery. (3)該ホウ素の酸化物を負極活物質とし、リチウムを含有しリチウムイオンを吸蔵放出可能な物質を正極活物質として用いた非水電解質二次電池を構成する。 (3) an oxide of the boron and the negative electrode active material, constituting the non-aqueous electrolyte secondary battery using the lithium ion containing lithium capable of absorbing and releasing material as a positive electrode active material. 電池として使用時に充電を行うことにより正極から放出されたリチウムイオンが該ホウ素の酸化物に吸蔵される方法。 How lithium ions released from the positive electrode by charging when used as a battery are inserted in the oxide of the boron.

【0014】このようにして得られるリチウムとホウ素の複合酸化物もしくはホウ素の酸化物であるLixBy [0014] a composite oxide or an oxide of boron in the lithium and boron thus obtained LixBy
3を負極活物質として用いる。 Using O 3 as a negative electrode active material. 一方、正極活物質としては、前述のようにTiS 2 , MoS 2 , NbSe 3等の金属カルコゲン化物や、MnO 2 , MoO 3 ,2 On the other hand, as a cathode active material, TiS 2, MoS 2, etc. NbSe 3 of metal chalcogenide and as described above, MnO 2, MoO 3, V 2 O
5 , Li x CoO 2 , Li x NiO 2 , Li x Mn 2 5, Li x CoO 2, Li x NiO 2, Li x Mn 2 O
4等の金属酸化物、ポリアニリン、ポリピロール、ポリパラフェニレンポリアセン等の導電性高分子、及びグラファイト層間化合物等々のリチウムイオン又はアニオンを吸蔵放出可能な各種の物質を用いることが出来る。 Metal oxides such as 4, polyaniline, polypyrrole, polyparaphenylene, conductive polymers such as polyacene, and graphite intercalation compounds of lithium ions or anions, etc. may be used capable of absorbing and releasing various substances.
特に、本発明のリチウムとホウ素の複合酸化物を負極活物質とする負極は、金属リチウムに対する電極電位が低く(卑)且つ1V以下の卑な領域の充放電容量が著しく大きいという利点を有している為、前述の金属酸化物や金属カルコゲン化物等々のような金属リチウムに対する電極電位が2V以上、より好ましくはV 25 、MnO In particular, the negative electrode of a composite oxide of lithium and boron present invention and the negative electrode active material, charge and discharge capacity of the lower electrode potential for lithium metal (noble) and 1V following baser region has the advantage of significantly greater and are therefore, the electrode potential is greater than 2V for lithium metal, such as like a metal oxide, metal chalcogenide described above, more preferably V 2 O 5, MnO
2 、Li x CoO 2 、Li x Ni0 2やLi x Mn 2 2, Li x CoO 2, Li x Ni0 2 and Li x Mn 2 O
4等々のような3Vもしくは4V以上の高電位を有する(貴な)活物質を用いた正極と組み合わせることにより高電圧高エネルギー密度でかつ充放電特性の優れた二次電池が得られるので、特に好ましい。 4 so excellent secondary battery of 3V or having more high potential 4V (nobler) active material at a high voltage and high energy density by combining a positive electrode using the and charge-discharge characteristics, such as so to obtain, in particular preferable.

【0015】また、電解質としては、γ−ブチロラクトン、プロピレンカーボネート、エチレンカーボネート、 [0015] As the electrolyte, .gamma.-butyrolactone, propylene carbonate, ethylene carbonate,
ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルフォーメイト、1,2−ジメトキシエタン、テトラヒドロフラン、ジオキソラン、ジメチルフォルムアミド等の有機溶媒の単独又は混合溶媒に支持電解質としてLiClO 4 ,LiPF 6 ,LiBF Butylene carbonate, dimethyl carbonate, diethyl carbonate, LiClO 4, LiPF 6, LiBF methyl Four Mate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolane, as a supporting electrolyte alone or organic solvents such as dimethylformamide
4 ,LiCF 3 SO 3等のリチウムイオン解離性塩を溶解した有機電解液、ポリエチレンオキシドやポリフォスファゼン架橋体等の高分子に前記リチウム塩を固溶させた高分子固体電解質あるいはLi 3 N,LiI等の無機固体電解質等々のリチウムイオン導電性の非水電解質であれば良い。 4, LiCF 3 SO organic electrolyte prepared by dissolving lithium ion dissociable salts such as 3, polyethylene oxide, polyphosphazene crosslinked such polymers in the lithium salt dissolved is not solid polymer electrolyte or Li 3 N, and it may be a non-aqueous electrolyte of a lithium-ion-conductive so inorganic solid electrolytes such as LiI.

【0016】 [0016]

【作用】本発明のリチウムとホウ素の複合酸化物もしくはホウ素の酸化物を負極活物質とする負極は、非水電解質中に於て金属リチウムに対し少なくとも0〜3Vの電極電位の範囲で安定に繰り返しリチウムイオンを吸蔵放出することが出来、このような電極反応により繰り返し充放電可能な二次電池の負極として用いることが出来る。 Negative for the complex oxide or an oxide of boron and the negative electrode active material of lithium and boron DETAILED DESCRIPTION OF THE INVENTION The present invention, stable in a range of electrode potential of at least 0~3V at Te to metallic lithium in the nonaqueous electrolyte repeating lithium ion can be occluded release, such electrode reaction by can be used as the negative electrode of the repeating rechargeable secondary battery. 特にリチウム基準極(金属リチウム)に対し0〜1 In particular 0-1 to lithium reference electrode (lithium metal)
Vの卑な電位領域において、安定にリチウムイオンを吸蔵放出し繰り返し充放電できる高容量の充放電領域を有する。 In lower potential region and V, with a charging and discharging areas of high capacity that can be repeatedly charged and discharged stably absorbing and releasing lithium ions. また、従来この種の電池の負極活物質として用いられてきたグラファイト等の炭素質材料に比べ可逆的にリチウムイオンを吸蔵放出できる量即ち有効充放電容量が著しく大きく、かつ充放電の分極が小さいため、大電流での充放電が可能であり、更に過充電過放電による不可逆物質の生成等の劣化が殆ど見られず、極めて安定でサイクル寿命の長い二次電池を得ることが出来る。 The amount i.e. effective charge and discharge capacity can be reversibly occluding and releasing lithium ions as compared to the carbonaceous material of graphite or the like have been used as the negative electrode active material is extremely large, and the charge and discharge polarization is small this type of conventional battery Therefore, it can be charged and discharged at a large current, further deterioration such as generation of irreversible substances due to overcharging overdischarge hardly observed, it can be obtained a long battery extremely stable cycle life.

【0017】このように優れた充放電特性が得られる理由は必ずしも明らかではないが、次のように推定される。 [0017] The reason why the excellent charge-discharge characteristics are obtained is not necessarily clear, it is estimated as follows. 即ち、本発明による新規な負極活物質であるリチウムとホウ素の複合酸化物は、共有結合性の強いホウ素原子と酸素原子がホウ素原子を中心に酸素原子が三配位もしくは四配位した三角形もしくは四面体が連なって骨格構造をなす鎖状構造又は平面層構造又は3次元網目構造を形成しており、この構造中でのリチウムイオンの移動度が高く、且つ、リチウムイオンを吸蔵できるサイトが非常に多いためリチウムイオンの吸蔵放出が容易である為と推定される。 That is, a composite oxide of lithium and boron is a novel negative active material according to the invention, triangular strong boron atom and an oxygen atom of covalent oxygen atoms around the boron atom is three-coordinate or tetracoordinate or It forms a chain structure or a planar layer structure or three-dimensional network structure forming a framework structure continuous tetrahedron, high mobility of lithium ions in the structure, and, very site capable of occluding lithium ions storage and release of lithium ions is estimated to be because it is easy for many to.

【0018】以下、実施例により本発明を更に詳細に説明する。 [0018] Hereinafter, further detailed description of the present invention through examples.

【0019】 [0019]

【実施例】 【Example】

(実施例1)図1は、本発明に依る非水電解質二次電池の負極活物質の性能評価に用いたテストセルの一例を示すコイン型電池の断面図である。 (Example 1) FIG. 1 is a cross-sectional view of a coin-type battery of an example of a test cell used in performance evaluation of the negative electrode active material for nonaqueous electrolyte secondary battery according to the present invention. 図において、1は対極端子を兼ねる対極ケースであり、外側片面をNiメッキしたステンレス鋼製の板を絞り加工したものである。 In FIG, 1 is a counter electrode case also serving as a counter electrode terminal, in which the outer side surface is Ni-plated stainless steel plate. 2
はステンレス鋼製のネットから成る対極集電体であり対極ケース1にスポット溶接されている。 Is spot welded to the counter electrode case 1 is a counter electrode current collector made of net made of stainless steel. 対極3は、所定厚みのアルミニウム板を直径15mmに打ち抜き、対極集電体2に固着し、その上に所定厚みのリチウムフォイルを直径14mmに打ち抜いたものを圧着したものである。 Counter electrode 3 is punched aluminum plate diameter 15mm having a predetermined thickness, fixed to the counter electrode current collector 2 is obtained by bonding one punched out of lithium foil having a predetermined thickness to diameter 14mm thereon. 7は外側片面をNiメッキしたステンレス鋼製の作用極ケースであり、作用極端子を兼ねている。 7 is a working electrode case made of stainless steel whose outer side surface is Ni-plated, also serves as a working electrode terminal. 5は後述の本発明に依る活物質又は従来法に依る比較活物質を用いて構成された作用極であり、ステンレス鋼製のネットからなる作用極集電体6と一体に加圧成形されている。 5 is a comparison active material working electrode constructed with due to the active material or conventional methods according to the present invention which will be described later, is press-molded integrally with the working electrode collector 6 made of stainless steel net there.
4はポリプロピレンの多孔質フィルムからなるセパレータであり、電解液が含浸されている。 4 is a separator made of a porous film of polypropylene, is impregnated with an electrolyte solution. 8はポリプロピレンを主体とするガスケットであり、対極ケース1と作用極ケース7の間に介在し、対極と作用極との間の電気的絶縁性を保つと同時に、作用極ケース開口縁が内側に折り曲げられカシメられることに依って、電池内容物を密封、封止している。 8 is a gasket mainly made of polypropylene, is interposed between the counter electrode case 1 and the working electrode case 7, and at the same time maintain electrical insulation between the counter electrode and the working electrode, the working electrode case opening edge to the inside depending to be bent caulked, sealed battery contents, are sealed. 電解質はプロピレンカーボネートと1,2−ジメトキシエタンの体積比1:1混合溶媒に過塩素酸リチウムLiClO 4を1モル/l溶解したものを用いた。 The electrolyte volume ratio 1 propylene carbonate and 1,2-dimethoxyethane: was used as the lithium perchlorate LiClO 4 dissolved 1 mol / l to 1 mixed solvent. 電池の大きさは、外径20mm、厚さ1.6 The size of the battery has an outer diameter of 20 mm, a thickness of 1.6
mmであった。 It was mm.

【0020】作用極5は次のようにして作製した。 [0020] The working electrode 5 was prepared in the following manner. 水酸化リチウムLiOH・H 2 Oと三酸化二ホウ素B 23 Lithium hydroxide LiOH · H 2 O and boron oxide B 2 O 3
とをLi:B=1:1のモル比で乳鉢を用いて十分混合した後、この混合物を大気中850゜Cの温度で24時間加熱処理し、冷却後、粒径53μm以下に粉砕整粒した。 The door Li: B = 1: After thoroughly mixed using a mortar in a molar ratio, ground and graded the mixture for 24 hours of heat treatment at a temperature of 850 ° C in air, after cooling, the less the particle size 53μm did. このようにして得られた生成物を本発明に依る活物質aとし、これに導電剤としてグラファイトを、結着剤として架橋型アクリル酸樹脂等を重量比30:65:5 Thus the active material a according to the present invention the resulting product, to which graphite as a conductive agent, the weight ratio of 30 cross-linked acrylic acid resin as a binder: 65: 5
の割合で混合して作用極合剤とし、次にこの作用極合剤をステンレス鋼製のネットからなる作用極集電対6と共に2ton/cm 2で直径15mm厚さ0.5mmのペレットに加圧成形した後、200℃で10時間減圧加熱乾燥したものを作用極とした。 They were mixed in a ratio of a working electrode mixture, then pressing the pellets of this effect electrode mixture of 2 ton / cm 2 in diameter 15mm thickness 0.5mm with the working electrode collector pair 6 consisting of a stainless steel net after pressure molding, and the working electrode which was 10 hours under reduced pressure heat drying at 200 ° C..

【0021】また、比較のため、上記の本発明に依る活物質aの代わりに、上記の導電剤に用いたと同じグラファイトを活物質(活物質cと略記)として用いた他は、 Further, for comparison, instead of the active material a according to the above present invention, except for using the same graphite as that used in the above conductive agent as an active material (abbreviated as active material c) is
上記の本発明の作用極の場合と同様にして、同様な電極(比較用作用極)を作成した。 As in the case of the working electrode of the invention described above, creating the same electrode (comparative working electrode). このようにして作製された電池は、室温で1週間放置エージングされた後、後述の充放電試験が行われた。 Battery fabricated in this way, after being left for aging at room temperature for one week, was carried out the charge-discharge test described below. このエージングによって、 By this aging,
対極のリチウム−アルミニウム積層電極は電池内で非水電解液に触れることにより十分合金化が進行し、リチウムフォイルは実質的に全てLi−Al合金となるため、 Since the aluminum laminated electrode is sufficiently alloying proceeds by touching the non-aqueous electrolyte in the battery, the lithium foil is substantially all Li-Al alloy, - Lithium counter electrode
電池電圧は、対極として金属リチウムを単独で用いた場合に比べて約0.4V低下した値となって安定した。 Battery voltage, stable is about 0.4V reduced value as compared with the case of using metallic lithium alone as the counter electrode.

【0022】このようにして作製した電池を、以下、それぞれの使用した作用極の活物質a,cに対応し、電池A,Cと略記する。 [0022] The battery fabricated in this manner, the following active material a each use the working electrode corresponds to c, abbreviated battery A, and C. これらの電池A及びCを0.4mA 0.4mA These batteries A and C
の定電流で、充電(電解質中から作用極にリチウムイオンが吸蔵される電池反応をする電流方向)の終止電圧− At constant current, final voltage of charge (current direction of lithium ions to the working electrode from the electrolyte to the cell reaction is occluded) -
0.4V、放電(作用極から電解質中へリチウムイオンが放出される電池反応をする電流方向)の終止電圧2. 0.4V, final voltage of discharge (current direction of the battery reaction which lithium ions are released from the working electrode to the electrolyte) 2.
5Vの条件で充放電サイクルを行ったときの3サイクル目の充電特性を図2に、放電特性を図3に示した。 The charge characteristic of the third cycle when the charge-discharge cycle was performed under the conditions of 5V in Figure 2, showing a discharge characteristic in FIG. また、サイクル特性を図4に示した。 Also showed cycle characteristics in FIG. 尚、充放電サイクルは充電からスタートした。 In addition, the charge-discharge cycle was started from charging. 図2〜4から明らかなように、本発明による電池Aは比較電池Cに比べ、充放電容量が著しく大きく、充放電の可逆領域が著しく拡大することが分かる。 As is apparent from FIGS. 2-4, the battery A according to the invention compared with the comparative battery C, the charge-discharge capacity is significantly large, it can be seen that the reversible region of charge and discharge is considerably expanded. また、全充放電領域に渡って充電と放電の作動電圧の差が著しく小さくなっており、電池の分極(内部抵抗)が著しく小さく、大電流充放電が容易なことが分かる。 In addition, a remarkably small difference between operating voltages of charge and discharge over a ZenTakashi discharge region, the polarization of the battery (internal resistance) is remarkably small, to facilitate larger current charge and discharge. 更に、充放電の繰り返しによる放電容量の低下(サイクル劣化)が著しく小さい。 Further, decrease in discharge capacity due to repeated charging and discharging (cycle deterioration) is much smaller. これは、上述のように本発明に依る電池Aの作用極の活物質であるリチウムとホウ素の複合酸化物に於いては、ホウ素原子を中心に酸素原子が3個もしくは4個結合した三角形もしくは四面体が連なった骨格構造を有する鎖状構造又は平面層構造又は3次元網目構造を形成しており、この構造中でのリチウムイオンの移動度が高く、且つ、リチウムイオンを吸蔵できるサイトが非常に多いためリチウムイオンの吸蔵放出が容易である為と推定される。 This is at the composite oxide of lithium and boron as an active material of the working electrode of the battery A according to the present invention as described above, the oxygen atoms around the boron atom is three or four linked triangles or It forms a chain structure or a planar layer structure or three-dimensional network structure having a continuous skeletal structure tetrahedron, high mobility of lithium ions in the structure, and, very site capable of occluding lithium ions storage and release of lithium ions is estimated to be because it is easy for many to.

【0023】(実施例2) 実施例1の活物質aの代わりに、市販の試薬特級グレイドの三酸化二ホウ素B 23径53μm以下に粉砕整粒したものを作用極の活物質(活物質bと略記)として用いた。 [0023] (Example 2) in place of the active material a first embodiment, the active material of the working electrode obtained by pulverizing granulated diboron trioxide B 2 O 3 commercial special grade chemical grade below a particle size 53μm was used as the (active material b hereinafter). この活物質bと、導電剤として実施例1で用いたのと同じグラファイトを、結着剤として実施例1で用いたのと同じ架橋型アクリル酸樹脂等を重量比10: And the active material b, and the same graphite as used in Example 1 as a conductive agent, by weight of the same crosslinked acrylic acid resin as used in Example 1 as a binder ratio of 10:
85:5の割合で混合して作用極合剤とし、次にこの作用極合剤をステンレス鋼製のネットからなる作用極集電対6と共に2ton/C m 2で直径15mm厚さ0. 5 85 were mixed at a ratio of 5 to the working electrode mixture, then the action electrode mixture of 2 ton / C m 2 in diameter 15mm thickness with the working electrode collector pair 6 consisting of a net made of stainless steel 0.5
mmのペレットに加圧成形した後、200℃で10時間減圧加熱乾燥したものを作用極とした。 After pressed into mm pellet, it was working electrode obtained by 10 hours under reduced pressure heat drying at 200 ° C.. このようにして作製した作用極を用いた以外は、すべて実施例1と同様にして同様な電池Bを作製した。 Except for using the working electrode fabricated in this manner was prepared the same battery B in the same manner as in Example 1.

【0024】このようにして得られた電池Bについても実施例1と同様な充放電サイクル試験を行った。 [0024] By proceeding in a similar charge-discharge cycle test as in Example 1 also cell B obtained in this way. この時の結果を実施例1と同様に、図2〜4に併記して示した。 Like the results of this Example 1, shown in an also shown in FIGS. 2-4. 図から明かなように、本実施例の電池Bは、実施例1の本発明に依る電池Aと同様に優れた充放電特性を有することが判る。 As apparent from the figure, the battery B of this embodiment is seen to have a charge-discharge characteristics good as the battery A according to the present invention of Example 1. 即ち、充電に依って対極のLi−Al That is, the counter electrode depending on the charging Li-Al
合金から電解質中にリチウムイオンが放出され、このリチウムイオンが電解質中を移動して活物質bと電極反応し、活物質bに電気化学的にリチウムイオンが吸蔵されリチウムとホウ素の複合酸化物が生成する。 Lithium ions are released from the alloy into the electrolyte, reacts the active material b and the electrode of the lithium ions move through the electrolyte, a composite oxide of electrochemically lithium and boron lithium ions are occluded in the active material b is generated. 次に放電に際しては、この複合酸化物からリチウムイオンが電解質中に放出され、電解質中を移動して対極のLi−Al合金中に吸蔵されることに依り安定に繰り返し充放電できる。 In the next discharge, the lithium ions from the composite oxide are released into the electrolyte, it can be stably repeatedly charged and discharged depending to be occluded by moving through the electrolyte in the Li-Al alloy of the counter electrode. ここで、活物質bは1回目の充電によりリチウムとホウ素の複合酸化物が生成した後は、その後の放電ー充電のサイクルに於て、完全放電時以外にはリチウムを含有しリチウムとホウ素の複合酸化物を形成している。 Here, the active material b is after the composite oxide of lithium and boron was generated by first charge, then At a discharge over the charge cycle, except during full discharge of the lithium and boron containing lithium to form a composite oxide.

【0025】また、本発明に依る電池A及びBの活物質a及びbは対極のLi−Al合金電極に対して−0.4 Further, the active material a and b of the battery A and B according to the present invention for Li-Al alloy electrode of the counter electrode -0.4
〜+0.6V(金属リチウムに対して約0〜1Vに対応する)の卑な電位領域の充放電容量が著しく大きいことから、非水電解質二次電池の負極活物質として優れていることが判る。 ~ From + 0.6V (corresponding to approximately 0~1V against metallic lithium) is considerably larger charge and discharge capacity of the lower potential region of the seen to be excellent as the negative electrode active material for a nonaqueous electrolyte secondary battery . 特に、リチウム化合物とホウ素化合物の混合物を加熱処理して合成された実施例1の活物質aは卑な電位領域での充放電容量がより大きく、かつより卑な電位を有しており、負極活物質として特に優れている。 In particular, the active material a of Example 1 the mixture was heated to synthesize lithium compound and the boron compound is larger charge and discharge capacity at lower potential region, and has a baser potential, negative It is particularly excellent as an active material.

【0026】尚、実施例においては、対極としてリチウム−アルミニウム合金の場合のみを示したが、本発明は実施例に限定されず、前述のように、TiS 2 ,MoS [0026] In the embodiments, lithium as a counter electrode - shows the case of the aluminum alloy only, the present invention is not limited to the embodiments, as described above, TiS 2, MoS
2 ,NbSe 3等の金属カルコゲン化物、MnO 2 ,M 2, NbSe 3, etc. of metal chalcogenides, MnO 2, M
oO 3 ,V 25 ,Li x CoO 2 ,Li x NiO 2 oO 3, V 2 O 5, Li x CoO 2, Li x NiO 2,
Li x Mn 24等の金属酸化物、ポリアニリン、ポリピロール、ポリパラフェニレン、ポリアセン等の導電性高分子、グラファイト層間化合物等々のようなリチウムカチオン又はアニオンを吸蔵放出可能な物質を活物質とする正極を対極として、本発明に依る負極活物質を用いた負極と組合わせて用いることが出来ることは言うまでもない。 Li x Mn 2 O metal oxide such as 4, for polyaniline, polypyrrole, polyparaphenylene, conductive polymers such as polyacene, an absorbing and releasing material capable of lithium cations or anions such as like graphite intercalation compound as an active material the positive electrode as a counter electrode, it is needless to say that combined with the negative electrode can be used using a negative electrode active material according to the present invention.

【0027】 [0027]

【発明の効果】以上詳述したように、本発明は、非水電解質二次電池の負極活物質として、リチウムとホウ素の複合酸化物もしくはホウ素の酸化物から成る新規な活物質を用いたものであり、該負極活物質はリチウム基準極(金属リチウム)に対し0〜1Vの卑な電位領域に於て、充放電により可逆的にリチウムイオンを吸蔵放出出来る量即ち充放電容量が著しく大きく、かつ充放電の分極が小さいため、高電圧・高エネルギー密度で且つ大電流での充放電特性が優れた二次電池を得ることが出来る。 As described in detail above, those invention, which as a negative electrode active material of a nonaqueous electrolyte secondary battery, using the novel active material comprising an oxide of a composite oxide or boron lithium and boron , and the negative electrode active material to the lithium reference electrode (lithium metal) at a lower potential region of 0 to 1 V, charging and discharging by reversibly significantly greater amount or charge-discharge capacity of the lithium ion can be occluded release, and for the polarization of the charge and discharge is small, it can be obtained a rechargeable battery charging and discharging characteristics and excellent in high voltage and high energy density and a large current. また、過充電過放電による不可逆物質の生成等の劣化が殆ど見られず、極めて安定でサイクル寿命の長い二次電池を得ることが出来る等々優れた効果を有する。 Also, deterioration such as generation of irreversible substances due to overcharging overdischarge hardly observed, having so excellent effects can be obtained a long battery extremely stable cycle life.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明において実施した電池の構造の一例を示した説明図である。 It is an explanatory view showing an example of the structure of the battery was carried out in the present invention; FIG.

【図2】本発明による電池と従来電池の3サイクル目の充電特性の比較を示した説明図である。 It is an explanatory view showing a comparison of the charging characteristics of the third cycle of the battery and a conventional battery according to the invention, FIG.

【図3】本発明による電池と従来電池の3サイクル目の放電特性の比較を示した説明図である。 3 is an explanatory diagram showing a comparison of the discharge characteristics of the third cycle of the battery and a conventional battery according to the present invention.

【図4】本発明による電池と従来電池のサイクル特性の比較を示した説明図である。 It is an explanatory view showing a comparison of cycle characteristics of the battery and a conventional battery according to the present invention; FIG.

【符号の説明】 1 対極ケース 2 対極集電体 3 対極 4 セパレータ 5 作用極 6 作用極集電体 7 作用極ケース 8 ガスケット [Reference Numerals] 1 counter Case 2 counter current collector 3 counter electrode 4 separator 5 the working electrode 6 working electrode collector 7 working electrode case 8 gasket

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl. 7 ,DB名) H01M 4/02 H01M 4/04 H01M 4/48 - 4/58 H01M 10/40 ────────────────────────────────────────────────── ─── of the front page continued (58) investigated the field (Int.Cl. 7, DB name) H01M 4/02 H01M 4/04 H01M 4/48 - 4/58 H01M 10/40

Claims (5)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 負極と正極とリチウムイオン導電性の非水電解質とから少なくとも成る非水電解質二次電池において、負極活物質として、組成式LixByO 3 (但し、x≧0、y>0)で示されるリチウムとホウ素の複合酸化物もしくはホウ素の酸化物を用いたことを特徴とする非水電解質二次電池。 1. A least comprising a non-aqueous electrolyte secondary battery and a negative electrode and the positive electrode and a lithium ion conductive non-aqueous electrolyte, a negative electrode active material, a composition formula LixByO 3 (where, x ≧ 0, y> 0 ) non-aqueous electrolyte secondary battery, characterized by using a composite oxide or an oxide of boron in the lithium and boron represented.
  2. 【請求項2】 リチウムとホウ素の該複合酸化物が、更 Wherein the composite oxide of lithium and boron, more
    にリチウム以外のアルカリ金属、アルカリ土類金属、遷 Alkali metals other than lithium, alkaline earth metal, Qian
    移金属及びその他の金属から選ばれた少なくとも一種以 At least one or more selected from shifting metals and other metals
    上の金属をも含有することを特徴とする請求項1に記載 According to claim 1, characterized in that it contains also a metal of the upper
    の非水電解質二次電池。 The non-aqueous electrolyte secondary battery of.
  3. 【請求項3】 負極がリチウムとホウ素の該複合酸化物 3. A negative electrode The composite oxide of lithium and boron
    と炭素質材料と樹脂結着剤とから少なくとも成ることを That at least consisting of a carbonaceous material and a resin binder
    特徴とする請求項1又は2に記載の非水電解質二次電 The non-aqueous electrolyte secondary battery according to claim 1 or 2, characterized
    池。 pond.
  4. 【請求項4】 リチウムとホウ素の各々の単体又はその 4. A single respective lithium and boron or a
    化合物を混合し、空気中又は酸素を有する雰囲気中で加 The compounds were mixed and pressurized in an atmosphere having air or oxygen
    熱してリチウムとホウ素の複合酸化物を得ることを特徴 Characterized in that to obtain a composite oxide of lithium and boron by heating
    とする請求項1記載の非水電解質二次電池用負極活物質 Negative active material for a nonaqueous electrolyte secondary battery according to claim 1,
    の製造方法。 The method of production.
  5. 【請求項5】 電池組立後電池内で、又は電池製造工程 In 5. After assembly of the battery in the battery or cell manufacturing process
    の途上において電池内もしくは電池外で、ホウ素の酸化 The battery or within cells outside the developing oxide of boron
    物とリチウムもしくはリチウムを含有する物質との電気 Electrical and material containing objects with lithium or lithium
    化学的反応に依りホウ素の酸化物にリチウムイオンを吸 Intake lithium ions into the oxide of boron depending on the chemical reaction
    蔵させリチウムとホウ素の複合酸化物を得ることを特徴 Characterized in that to obtain a composite oxide of lithium and boron was built
    とする請求項1記載の非水電解質二次電池用負極活物質 Negative active material for a nonaqueous electrolyte secondary battery according to claim 1,
    の製造方法。 The method of production.
JP3335326A 1991-12-18 1991-12-18 A nonaqueous electrolyte secondary battery and a manufacturing method of the anode active material Expired - Fee Related JP3008228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3335326A JP3008228B2 (en) 1991-12-18 1991-12-18 A nonaqueous electrolyte secondary battery and a manufacturing method of the anode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3335326A JP3008228B2 (en) 1991-12-18 1991-12-18 A nonaqueous electrolyte secondary battery and a manufacturing method of the anode active material

Publications (2)

Publication Number Publication Date
JPH05174818A JPH05174818A (en) 1993-07-13
JP3008228B2 true JP3008228B2 (en) 2000-02-14

Family

ID=18287273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3335326A Expired - Fee Related JP3008228B2 (en) 1991-12-18 1991-12-18 A nonaqueous electrolyte secondary battery and a manufacturing method of the anode active material

Country Status (1)

Country Link
JP (1) JP3008228B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin -Etsu Chemical Co. Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
KR20110128246A (en) 2010-05-21 2011-11-29 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon oxide for nonaqueous electrolytic secondary battery negative electrode material, process for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
KR20120115116A (en) 2011-04-08 2012-10-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing cathode active material for nonaqueous electrolyte secondary battery, cathode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2013054476A1 (en) 2011-10-14 2013-04-18 信越化学工業株式会社 Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
EP2724982A2 (en) 2012-10-23 2014-04-30 Shin-Etsu Chemical Co., Ltd. Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor.
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite
US9281129B2 (en) 2012-05-16 2016-03-08 Shin-Etsu Chemical Co., Ltd. Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor
US9484159B2 (en) 2012-12-10 2016-11-01 Shin-Etsu Chemical Co., Ltd. Silicon oxide material, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558953A (en) * 1993-10-21 1996-09-24 Matsushita Electric Industrial Co., Ltd. Electrocrystallized lithuim metal, method for producing the same, and lithium secondary battery
AU3754195A (en) * 1994-10-27 1996-05-23 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
JP3990808B2 (en) 1998-03-26 2007-10-17 Tdk株式会社 Method for producing electrode for non-aqueous electrolyte battery
JP4702510B2 (en) 2001-09-05 2011-06-15 信越化学工業株式会社 Lithium-containing silicon oxide powder and method for producing the same
TWI278429B (en) 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP4025995B2 (en) 2002-11-26 2007-12-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode material, method for producing the same, and lithium ion secondary battery
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP4450192B2 (en) 2004-07-01 2010-04-14 信越化学工業株式会社 Silicon composite, method for producing the same, and negative electrode material for non-aqueous electrolyte secondary battery
US7658863B2 (en) 2004-07-30 2010-02-09 Shin-Etsu Chemical Co., Ltd. Si-C-O composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP5196149B2 (en) 2008-02-07 2013-05-15 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP4634515B2 (en) 2009-06-19 2011-02-23 株式会社大阪チタニウムテクノロジーズ Negative electrode material for silicon oxide and lithium ion secondary battery
JP5672676B2 (en) * 2009-08-20 2015-02-18 日産自動車株式会社 Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP6030995B2 (en) 2013-05-15 2016-11-24 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
KR20190047138A (en) 2013-05-23 2019-05-07 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
JP6100610B2 (en) 2013-05-27 2017-03-22 信越化学工業株式会社 Negative electrode active material, non-aqueous electrolyte secondary battery, and production method thereof
JP6466635B2 (en) 2013-06-14 2019-02-06 信越化学工業株式会社 Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP2015072809A (en) 2013-10-03 2015-04-16 信越化学工業株式会社 Silicon-containing material, and negative electrode for nonaqueous electrolytic secondary batteries and nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP6301142B2 (en) 2014-01-31 2018-03-28 信越化学工業株式会社 Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6281306B2 (en) 2014-02-06 2018-02-21 信越化学工業株式会社 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, negative electrode and lithium ion secondary battery
JP6193798B2 (en) 2014-04-14 2017-09-06 信越化学工業株式会社 Method for producing negative electrode material for lithium ion secondary battery
JP6312212B2 (en) 2014-11-18 2018-04-18 信越化学工業株式会社 Rotating cylindrical furnace and method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin -Etsu Chemical Co. Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite
KR20110128246A (en) 2010-05-21 2011-11-29 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon oxide for nonaqueous electrolytic secondary battery negative electrode material, process for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
KR20120115116A (en) 2011-04-08 2012-10-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing cathode active material for nonaqueous electrolyte secondary battery, cathode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2013054476A1 (en) 2011-10-14 2013-04-18 信越化学工業株式会社 Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
US9553309B2 (en) 2012-05-16 2017-01-24 Shin-Etsu Chemical Co., Ltd. Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor
US9281129B2 (en) 2012-05-16 2016-03-08 Shin-Etsu Chemical Co., Ltd. Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor
EP2724982A2 (en) 2012-10-23 2014-04-30 Shin-Etsu Chemical Co., Ltd. Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor.
US9293763B2 (en) 2012-10-23 2016-03-22 Shin-Etsu Chemical Co., Ltd. Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor
US9484159B2 (en) 2012-12-10 2016-11-01 Shin-Etsu Chemical Co., Ltd. Silicon oxide material, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US10050272B2 (en) 2013-12-25 2018-08-14 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electolyte secondary battery and method of producing the same

Also Published As

Publication number Publication date
JPH05174818A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
Tarascon et al. Issues and challenges facing rechargeable lithium batteries
JP4106644B2 (en) Battery and manufacturing method thereof
JP3195175B2 (en) A non-aqueous solvent secondary battery
JP3713900B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
US6203947B1 (en) Long cycle-life alkali metal battery
KR100413816B1 (en) Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same
JP2797390B2 (en) Non-aqueous electrolyte secondary battery
KR100777932B1 (en) Method for the preparation of cathode active material and method for the preparation of non-aqueous electrolyte cell
US6007945A (en) Negative electrode for a rechargeable lithium battery comprising a solid solution of titanium dioxide and tin dioxide
US8187752B2 (en) High energy lithium ion secondary batteries
EP0582173B1 (en) Non-aqueous electrolyte secondary battery and its production method
CA1122649A (en) Rechargeable dichalcogenide cell
JP5225615B2 (en) Lithium ion storage battery containing TiO2-B as negative electrode active material
US5620812A (en) Non-aqueous electrolyte secondary battery
DE69835681T2 (en) Non-aqueous electrolyte battery and load method therefor
JP4445447B2 (en) Nonaqueous electrolyte battery and battery pack
US20030157409A1 (en) Polymer lithium battery with ionic electrolyte
US5316875A (en) Secondary battery with nonaqueous electrolyte and method of manufacturing same
US5556721A (en) Non-aqueous electrolyte secondary battery and production method of the same
JP3427570B2 (en) Non-aqueous electrolyte secondary battery
JP5315591B2 (en) Positive electrode active material and battery
EP1137092A1 (en) Secondary cell
US7718314B2 (en) Cathode material and battery
JP4022889B2 (en) Electrolyte and battery
JP3736045B2 (en) All solid lithium battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees