JP3013209B2 - Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof - Google Patents

Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof

Info

Publication number
JP3013209B2
JP3013209B2 JP4102965A JP10296592A JP3013209B2 JP 3013209 B2 JP3013209 B2 JP 3013209B2 JP 4102965 A JP4102965 A JP 4102965A JP 10296592 A JP10296592 A JP 10296592A JP 3013209 B2 JP3013209 B2 JP 3013209B2
Authority
JP
Japan
Prior art keywords
lithium
active material
negative electrode
aqueous electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4102965A
Other languages
Japanese (ja)
Other versions
JPH05299089A (en
Inventor
謙介 田原
英樹 石川
秀夫 坂本
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP4102965A priority Critical patent/JP3013209B2/en
Publication of JPH05299089A publication Critical patent/JPH05299089A/en
Application granted granted Critical
Publication of JP3013209B2 publication Critical patent/JP3013209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを吸蔵放出可
能な物質を負極活物質とし、リチウムイオン導電性の非
水電解質を用いる非水電解質二次電池に関するものであ
り、特に、高電圧、高エネルギー密度で且つ充放電特性
が優れ、サイクル寿命の長い新規な二次電池を提供する
新規な負極活物質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte having lithium ion conductivity as a negative electrode active material using a material capable of inserting and extracting lithium. The present invention relates to a novel negative electrode active material that provides a new secondary battery having a high energy density, excellent charge / discharge characteristics, and a long cycle life.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギー密度で、かつ自己
放電が小さく長期信頼性に優れる等々の利点により、一
次電池としてはメモリーバックアップ用、カメラ用等の
電源として既に広く用いられている。しかしながら、近
年携帯型の電子機器、通信機器等の著しい発展に伴い、
電源としての電池に対し大電流出力を要求する機器が多
種多に出現し、経済性と機器の小型軽量化の観点か
ら、再充放電可能で、かつ高エネルギー密度の二次電池
が強く要望されている。このため、高エネルギー密度を
有する前記非水電解質電池の二次電池化を進める研究開
発が活発に行われ、一部実用化されているが、エネルギ
ー密度、充放電サイクル寿命、信頼性等々まだまだ不十
分である。
2. Description of the Related Art Nonaqueous electrolyte batteries using lithium as a negative electrode active material have advantages such as high voltage, high energy density, low self-discharge, and excellent long-term reliability. It is already widely used as a power source for applications. However, with the recent remarkable development of portable electronic devices and communication devices,
To a battery as a power source it appeared equipment that requires a large current output as a large multi, from the viewpoint of size and weight of the economy and equipment, recharge and discharge possible, and the secondary battery is strong demand for high energy density Have been. For this reason, research and development to promote the non-aqueous electrolyte battery having a high energy density into a secondary battery has been actively carried out, and some of them have been put to practical use. However, energy density, charge / discharge cycle life, reliability, etc. are still insufficient. It is enough.

【0003】従来、この種の二次電池の正極に用いる正
極活物質としては、充放電反応の形態により下記の3種
のタイプのものが見い出されている。第1のタイプは、
TiS2 、MoS2 、NbSe3 等の金属カルコゲン化
物や、MnO2 、MoO3 、V2 5 、LiX Co
2 、LiX NiO2 、LiX Mn2 4 等の金属酸化
物等々のように、結晶の層間や格子位置又は格子間隙間
にリチウムイオン(カチオン)のみがインターカレーシ
ョン、デインターカレーション反応等により出入りする
タイプ。第2のタイプは、ポリアニリン、ポリピロー
ル、ポリパラフェニレン等の導電性高分子のような、主
としてアニオンのみが安定にドープ、脱ドープ反応によ
り出入りするタイプ。第3のタイプは、グラファイト層
間化合物やポリアセン等の導電性高分子等々のような、
リチウムカチオンとアニオンが共に出入り可能なタイプ
(インターカレーション、デインターカレーション又は
ドープ、脱ドープ等)である。
Conventionally, the following three types have been found as positive electrode active materials for use in the positive electrode of this type of secondary battery, depending on the form of charge / discharge reaction. The first type is
Metal chalcogenides such as TiS 2 , MoS 2 , NbSe 3 , MnO 2 , MoO 3 , V 2 O 5 , Li x Co
As in the case of metal oxides such as O 2 , Li x NiO 2 , and Li x Mn 2 O 4, only lithium ions (cations) are intercalated or deintercalated between crystal layers or between lattice positions or lattice gaps. A type that comes in and out by reaction. The second type is a type such as a conductive polymer such as polyaniline, polypyrrole, polyparaphenylene, etc., in which only anions mainly enter and exit by stable doping and undoping reactions. The third type is such as a graphite intercalation compound, a conductive polymer such as polyacene, and the like.
It is a type (intercalation, deintercalation or doping, undoping, etc.) in which both lithium cation and anion can enter and exit.

【0004】一方、この種電池の負極に用いる負極活物
質としては、金属リチウムを単独で用いた場合が電極電
位が最も卑であるため、上記のような正極活物質を用い
た正極と組み合わせた電池としての出力電圧が最も高
く、エネルギー密度も高く好ましいが、充放電に伴い負
極上にデンドライトや不働体化合物が生成し、充放電に
よる劣化が大きく、サイクル寿命が短いという問題があ
った。この問題を解決するため、負極活物質として
(1)リチウムとAl、Zn、Sn、Pb、Bi、Cd
等の他金属との合金、(2)WO2 、MoO2 、Fe2
3 、TiS2 等の無機化合物やグラファイト、有機物
を焼成して得られる炭素質材料等々の骨格構造中にリチ
ウムイオンを吸蔵させた層間化合物あるいは挿入化合
物、(3)リチウムイオンをドープしたポリアセンやポ
リアセチレン等の導電性高分子等々のリチウムイオンを
吸蔵放出可能な物質を用いることが提案されている。
On the other hand, as the negative electrode active material used for the negative electrode of this type of battery, when metallic lithium is used alone, the electrode potential is the lowest, so that it is combined with the positive electrode using the above-mentioned positive electrode active material. Although the output voltage of the battery is the highest and the energy density is high, it is preferable. However, dendrites and passive compounds are generated on the negative electrode during charging and discharging, and there is a problem that the deterioration due to charging and discharging is large and the cycle life is short. To solve this problem, (1) lithium and Al, Zn, Sn, Pb, Bi, Cd
Alloys with other metals such as (2) WO 2 , MoO 2 , Fe 2
Inorganic compounds such as O 3 and TiS 2 , graphite, carbonaceous materials obtained by baking organic materials, etc., intercalation compounds or insertion compounds in which lithium ions are occluded in a skeleton structure, (3) lithium-doped polyacene, It has been proposed to use a substance capable of inserting and extracting lithium ions, such as a conductive polymer such as polyacetylene.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、一般
に、負極活物質として上記のような金属リチウム以外の
リチウムイオンを吸蔵放出可能な物質を用いた負極と、
前記のような正極活物質を用いた正極とを組合せて電池
を構成した場合には、これらの負極活物質の電極電位が
金属リチウムの電極電位より貴であるため、電池の作動
電圧が負極活物質として金属リチウムを単独で用いた場
合よりかなり低下するという欠点がある。例えば、リチ
ウムとAl、Zn、Pb、Sn、Bi、Cd等の合金を
用いる場合には0.2〜0.8V、炭素−リチウム層間
化合物では0〜1V、MoO2 やWO 2 等のリチウムイ
オン挿入化合物では0.5〜1.5V作動電圧が低下す
る。
However, in general,
In addition, as the negative electrode active material other than metallic lithium as described above
A negative electrode using a substance capable of inserting and extracting lithium ions,
Battery combining positive electrode using positive electrode active material as described above
When these are configured, the electrode potential of these negative electrode active materials becomes
Battery operation because it is more noble than the electrode potential of metallic lithium
When the voltage is used by using metallic lithium alone as the negative electrode active material,
There is a disadvantage that it is considerably lower than the case. For example, Lichi
And alloys of Al, Zn, Pb, Sn, Bi, Cd, etc.
0.2-0.8V if used, carbon-lithium interlayer
For compounds, 0-1 V, MoOTwoAnd WO TwoSuch as lithium ion
0.5-1.5 V operating voltage decreases with on-insertion compounds
You.

【0006】又、リチウム以外の元素も負極構成要素と
なるため、体積当り及び重量当りの容量及びエネルギー
密度が著しく低下する。更に、上記の(1)のリチウム
と他金属との合金を用いた場合には、充放電時のリチウ
ムの利用効率が低く、且つ充放電の繰り返しにより電極
にクラックが発生し割れを生じる等のためサイクル寿命
が短いという問題があり、(2)のリチウム層間化合物
又は挿入化合物の場合には、過充放電により結晶構造の
崩壊や不可逆物質の生成等の劣化があり、又電極電位が
高い(貴な)ものが多い為、これを用いた電池の出力電
圧が低いという欠点があり、(3)の導電性高分子の場
合には、充放電容量、特に体積当りの充放電容量が小さ
いという問題がある。
In addition, since elements other than lithium also serve as negative electrode components, the capacity and energy density per volume and weight are significantly reduced. Further, when the alloy of lithium and another metal of the above (1) is used, the efficiency of use of lithium during charge and discharge is low, and cracks occur in the electrodes due to repetition of charge and discharge, causing cracks and the like. Therefore, there is a problem that the cycle life is short, and in the case of the lithium intercalation compound or the insertion compound of (2), deterioration such as collapse of the crystal structure or generation of an irreversible substance due to overcharging and discharging occurs, and the electrode potential is high ( There is a drawback that the output voltage of a battery using this is low because there are many precious materials, and in the case of the conductive polymer of (3), the charge / discharge capacity, particularly, the charge / discharge capacity per volume is small. There's a problem.

【0007】上記の負極活物質の中で、ルチル型の結晶
構造を有する二酸化タングステンWO2 は、リチウムを
吸蔵放出可能な正極活物質に対して(1)式 WO2 +xLi+ +xe- ⇔ Lix WO2 (1) に示す電池反応をし、その電極電位は金属リチウムに対
し0.5〜1.0Vの比較的卑な電位を有し、且つ、充
放電によりWO2 の1等量当り1等量のリチウムイオン
(x=1に相当)がインターカレーション、デインター
カレーション可能であり、1500mAh/cm3 以上
の理論容量密度が期待され、この種の二次電池の負極活
物質として特に有望な物質である。
Among the above-mentioned negative electrode active materials, tungsten dioxide WO 2 having a rutile type crystal structure has the formula (1) WO 2 + xLi + + xe ⇔Li x with respect to a positive electrode active material capable of inserting and extracting lithium. the cell reaction shown in WO 2 (1), the electrode potential has a relatively lower potential of 0.5~1.0V to metallic lithium, and, 1 eq per WO 2 by charging and discharging 1 An equivalent amount of lithium ion (corresponding to x = 1) can be intercalated and deintercalated, and a theoretical capacity density of 1500 mAh / cm 3 or more is expected. Particularly, as a negative electrode active material of this type of secondary battery, It is a promising substance.

【0008】しかし乍、このリチウムイオン挿入化合物
WO2 の場合にも、WO2 の1等量あたり0.5等量以
上のリチウムイオンがインターカレーションすると相転
移して構造変化を生じるため、実用的な充放電電圧及び
電流密度において可逆的に充放電できる範囲、即ち有効
充放電容量が小さく、上記の理論容量の50%以下であ
り、且つ電流が大きい程小さくなるという問題がある。
又、理論容量の50%以上の過放電をすると充放電容量
の低下が著しいという問題がある。更に、放電時の分極
による作動電圧の変化が大きいため、これを用いた電池
の出力電圧の低下が大きいという問題がある。なお、こ
のWO2 を用いた電池については、J.J.Auborn and Y.
L.Barberio,J.Electrochem.Soc.,134,638('87);D.W.Mur
phy,F.J.Di Salvo,J.N.Carides,and J.V.Waszczak,Mate
r.Res.Bull.,13,1395('78) 等の先行文献に記載されて
いる。
However, even in the case of the lithium ion insertion compound WO 2 , a phase transition occurs due to a phase change when 0.5 or more equivalents of lithium ions are intercalated per equivalent of WO 2 . There is a problem that the rechargeable charge / discharge range is reversible at a typical charge / discharge voltage and current density, that is, the effective charge / discharge capacity is small, 50% or less of the above theoretical capacity, and the larger the current is, the smaller the capacity becomes.
In addition, there is a problem that when overdischarge is performed at 50% or more of the theoretical capacity, the charge / discharge capacity is significantly reduced. Further, there is a problem that since the change in the operating voltage due to the polarization at the time of discharge is large, the output voltage of a battery using the same greatly decreases. Note that cell using the WO 2 is, JJAuborn and Y.
L. Barberio, J. Electrochem. Soc., 134, 638 ('87); DWMur
phy, FJDi Salvo, JNCarides, and JVWaszczak, Mate
r. Res. Bull., 13, 1395 ('78).

【0009】このため、高電圧、高エネルギー密度で、
且つ充放電特性が優れ、サイクル寿命の長い二次電池を
得るためには、リチウムに対する電極電位が低く(卑
な)、充放電時のリチウムイオンの吸蔵放出による結晶
構造の崩壊や不可逆物質の生成等の劣化が無く、かつ可
逆的にリチウムイオンを吸蔵放出できる量即ち有効充放
電容量のより大きい負極活物質が必要である。
For this reason, at a high voltage and a high energy density,
In addition, in order to obtain a secondary battery having excellent charge / discharge characteristics and a long cycle life, the electrode potential with respect to lithium is low (low), and the collapse of the crystal structure and the generation of irreversible substances due to insertion and extraction of lithium ions during charge / discharge. It is necessary to use a negative electrode active material which does not deteriorate and has a large amount capable of reversibly inserting and extracting lithium ions, that is, a large effective charge / discharge capacity.

【0010】[0010]

【課題を解決するための手段】本発明は、上記のような
課題を解決するため、この種の電池の負極活物質とし
て、二酸化タングステンWO2 とリチウムの酸化物又は
加熱によりリチウムの酸化物を生成するリチウム化合物
又はリチウムとの混合物を非酸化性雰囲気中で熱処理し
て得られる生成物を用いることを提起するものである。
In order to solve the above-mentioned problems, the present invention provides a negative electrode active material for this type of battery.
Te, intended to raise the use of products obtained by heat-treating a mixture of a lithium compound or lithium to produce an oxide of lithium by oxides or heating of the tungsten dioxide WO 2 and lithium in a non-oxidizing atmosphere is there.

【0011】本発明電池の負極活物質は次のようにして
製造することができる。原料として用いられるリチウム
化合物としては、その化合物を単独で不活性雰囲気中、
減圧大気中または真空中等の非酸化性雰囲気中で加熱し
てリチウムの酸化物を生成するものであれば良い。例え
ば、酸化リチウムLi2 O、水酸化リチウムLiOHま
たはその水和物、炭酸リチウムLi2 CO3 や硝酸リチ
ウムLiNO3 等の塩、及びリチウムの有機化合物等々
が上げられる。
The negative electrode active material of the battery of the present invention can be produced as follows. As a lithium compound used as a raw material, the compound alone in an inert atmosphere,
Any material may be used as long as it generates lithium oxide by heating in a non-oxidizing atmosphere such as a reduced pressure atmosphere or a vacuum. For example, lithium oxide Li 2 O, lithium LiOH or a hydrate thereof hydroxide, salts such as lithium carbonate Li 2 CO 3 or lithium nitrate LiNO 3, and organic compounds like lithium like.

【0012】このようなリチウムの酸化物又は加熱によ
りリチウムの酸化物を生成するリチウム化合物又はリチ
ウムと二酸化タングステンWO2 とを混合し、アルゴ
ン、ネオン、ヘリウム、クリプトン、キセノンまたは窒
素等の不活性ガス雰囲気中、真空中、減圧大気中または
二酸化炭素CO2 や希薄水素含有ガス等の弱還元性ガス
雰囲気中等々のような、加熱により二酸化タングステン
WO2 を酸化して三酸化タングステンWO3 を生成しな
い非酸化性雰囲気中で熱処理する。熱処理温度は、出発
原料と熱処理雰囲気に依っても異なるが、200℃以上
の温度、好ましくは300℃以上、より好ましくは50
0〜800℃の温度が良い。200℃以下の温度では、
リチウム化合物中のリチウム及び酸素と二酸化タングス
テンWO2との固溶反応が不十分であり、800℃以上
の温度では、二酸化タングステンWO2 の昇華によるロ
スが有り、生成物の組成が変化する為、この範囲の温度
が好ましい。
Such a lithium oxide or a lithium compound which forms a lithium oxide by heating and a mixture of lithium and tungsten dioxide WO 2 are mixed with an inert gas such as argon, neon, helium, krypton, xenon or nitrogen. Tungsten dioxide WO 2 is not oxidized by heating to produce tungsten trioxide WO 3 , such as in an atmosphere, in a vacuum, in a reduced pressure atmosphere, or in an atmosphere of a weak reducing gas such as carbon dioxide CO 2 or a dilute hydrogen-containing gas. Heat treatment in a non-oxidizing atmosphere. The heat treatment temperature varies depending on the starting material and the heat treatment atmosphere, but is a temperature of 200 ° C. or higher, preferably 300 ° C. or higher, more preferably 50 ° C. or higher.
A temperature of 0 to 800 ° C is good. At temperatures below 200 ° C,
The solid solution reaction between lithium and oxygen in the lithium compound and tungsten dioxide WO 2 is insufficient, and at a temperature of 800 ° C. or more, there is a loss due to sublimation of tungsten dioxide WO 2 and the composition of the product changes, Temperatures in this range are preferred.

【0013】このようなリチウムの酸化物又はリチウム
化合物又はリチウムと二酸化タングステンWO2 との混
合物の熱処理によって得られる生成物は、後述の実施例
で示すように二酸化タングステンWO2 の結晶構造中に
リチウムと酸素が固溶したリチウムとタングステンの複
合酸化物Lix WO2+y を構成している。但し、リチウ
ム量xと酸素量yは出発原料とそれらの混合比及び熱処
理の雰囲気や温度等の選択に依って、0<xかつ0≦y
≦0.5x+0.5が可能である。即ち、yの値には化
学量論組成のものに対し酸素が25%程度まで過剰又は
不足した非化学量論組成のものが可能である。
[0013] Lithium Such oxides or lithium compound or lithium and products obtained by heat treatment of a mixture of tungsten dioxide WO 2 of lithium in the crystal structure of the tungsten dioxide WO 2 As shown in Examples described later And a composite oxide Li x WO 2 + y of lithium and tungsten in which oxygen and oxygen are dissolved. However, the amount of lithium x and the amount of oxygen y are 0 <x and 0 ≦ y depending on the selection of the starting materials, their mixing ratio, and the atmosphere and temperature of the heat treatment.
≦ 0.5x + 0.5 is possible. That is, the value of y can be a non-stoichiometric composition in which oxygen is excessive or insufficient up to about 25% of a stoichiometric composition.

【0014】このようにして得られた二酸化タングステ
ンWO2 とリチウムの酸化物又はリチウム化合物又はリ
チウムとの混合物の熱処理生成物は、これをそのままも
しくは必要により粉砕整粒や造粒等の加工を施した後に
負極活物質として用いることができるし、又、この熱処
理生成物とリチウムもしくはリチウムを含有する物質と
の電気化学的反応によりこの熱処理生成物に更にリチウ
ムイオンを吸蔵させるか、又は逆にこの熱処理生成物か
らリチウムイオンを放出させることにより、リチウム量
xを増加又は減少させたものを負極活物質として用いて
も良い。
The heat-treated product of the mixture of tungsten dioxide WO 2 and the oxide of lithium or the lithium compound or lithium obtained as described above is subjected to processing such as pulverization and sizing or granulation as needed. Can be used as a negative electrode active material, or the heat-treated product can further occlude lithium ions by an electrochemical reaction of the heat-treated product with lithium or a lithium-containing material, or vice versa. A material in which the amount x of lithium is increased or decreased by releasing lithium ions from the heat-treated product may be used as the negative electrode active material.

【0015】この熱処理生成物への電気化学的反応によ
るリチウムイオンの吸蔵及び放出は、電池組立後電池内
で、又は電池製造工程の途上において電池内もしくは電
池外で行うことができ、具体的には次のようにして行う
ことができる。 即ち、(1)該熱処理生成物又は該熱処理生成物と導電
剤及び結着剤等との混合合剤を所定形状に成形したもの
を一方の電極(作用極)とし、金属リチウム又はリチウ
ムを含有する物質をもう一方の電極(対極)としてリチ
ウムイオン導電性の非水電解質に接して両電極を対向さ
せて電解セルを構成し、作用極がカソード反応をする方
向に適当な電流及び電圧で通電し電気化学的にリチウム
イオンを該熱処理生成物に吸蔵させる。得られた該作用
極をそのまま負極として又は負極を構成する負極活物質
として用いて非水電解質二次電池を構成する。
Occlusion and release of lithium ions by electrochemical reaction to the heat-treated product can be performed in the battery after the battery is assembled or in or outside the battery during the battery manufacturing process. Can be performed as follows. That is, (1) the heat treatment product or a mixture of the heat treatment product and a conductive agent and a binder formed into a predetermined shape is used as one electrode (working electrode) and contains metallic lithium or lithium. The other electrode (counter electrode) is used as the other electrode (counter electrode) to make contact with the lithium-ion conductive non-aqueous electrolyte so that both electrodes face each other to form an electrolytic cell. Then, lithium ions are electrochemically occluded in the heat-treated product. A non-aqueous electrolyte secondary battery is formed by using the obtained working electrode as it is as a negative electrode or as a negative electrode active material constituting the negative electrode.

【0016】(2)該熱処理生成物又は該熱処理生成物
と導電剤及び結着剤等との混合合剤を所定形状に成形
し、これにリチウムもしくはリチウムの合金等を圧着し
てもしくは接触させて積層電極としたものを負極として
非水電解質二次電池に組み込む。電池内でこの積層電極
が電解質に触れることにより自己放電し電気化学的にリ
チウムが該熱処理生成物に吸蔵される方法。
(2) The heat-treated product or a mixture of the heat-treated product with a conductive agent and a binder is formed into a predetermined shape, and lithium or an alloy of lithium or the like is pressed or brought into contact therewith. The negative electrode is incorporated into a non-aqueous electrolyte secondary battery as a negative electrode. A method in which the laminated electrode self-discharges by touching the electrolyte in the battery and electrochemically occludes lithium in the heat-treated product.

【0017】(3)該熱処理生成物を負極活物質とし、
リチウムを含有しリチウムイオンを吸蔵放出可能な物質
を正極活物質として用いた非水電解質二次電池を構成す
る。電池として使用時に充電を行うことにより正極から
放出されたリチウムイオンが該熱処理生成物に吸蔵され
る方法。 なお、該熱処理生成物からリチウムを放出する場合に
は、これら(1)または(3)の方法において通電する
電流を逆向きに流せばよい。
(3) The heat-treated product is used as a negative electrode active material,
A nonaqueous electrolyte secondary battery using a material containing lithium and capable of inserting and extracting lithium ions as a positive electrode active material is provided. A method in which lithium ions released from a positive electrode by being charged when used as a battery are occluded in the heat-treated product. In the case where lithium is released from the heat-treated product, the current flowing in the method (1) or (3) may be applied in the opposite direction.

【0018】このようにして得られる二酸化タングステ
ンWO2 とリチウムの酸化物又は加熱によりリチウムの
酸化物を生成するリチウム化合物又はリチウムとの混合
物の熱処理生成物もしくは該熱処理生成物の電気化学的
反応によりリチウムを更に吸蔵または放出したものを負
極活物質として用いる。一方正極活物質としては、前述
のようにTiS2 、MoS2 、NbSe3 等の金属カル
コゲン化物や、MnO2 、MoO3 、V2 5 、Lix
CoO2 、Li x NiO2 、Lix Mn2 4 等の金属
酸化物、ポリアニリン、ポリピロール、ポリパラフェニ
レンポリアセン等の導電性高分子、及びグラファイト層
間化合物等々のリチウムイオン及び/又はアニオンを吸
蔵放出可能な各種の物質を用いることができる。特に、
本発明によるリチウムの酸化物又はリチウム化合物又は
リチウムと二酸化タングステンWO2 との混合物の熱処
理生成物を負極活物質とする負極は、金属リチウムに対
する電極電位が低く(卑)且つ2V以下の卑な領域の充
放電容量が著しく大きいという利点を有している為、前
述の金属酸化物等のような金属リチウムに対する電極電
位が3V以上、より好ましくはV2 5 、MnO2 、L
x CoO2 、Lix NiO2 やLix Mn2 4 等々
のような3.5Vもしくは4V以上の高電位を有する
(貴な)活物質を用いた正極と組み合わせることにより
高電圧高エネルギー密度でかつ充放電特性の優れた二次
電池が得られるので、特に好ましい。
The tungsten dioxide thus obtained is
WOTwoAnd lithium oxide or lithium
Mixing with lithium compound or lithium to form oxide
Heat-treated product or electrochemical treatment of the heat-treated product
If lithium is further absorbed or released by the reaction,
Used as a pole active material. On the other hand, as the positive electrode active material,
Like TiSTwo, MoSTwo, NbSeThreeEtc. metal cal
Cogenide, MnOTwo, MoOThree, VTwoOFive, Lix
CoOTwo, Li xNiOTwo, LixMnTwoOFourEtc. metal
Oxides, polyaniline, polypyrrole, polyparaphenylene
Conductive polymers such as lenpolyacene, and graphite layers
Absorbs lithium ions and / or anions
Various substances that can be stored and released can be used. In particular,
An oxide or lithium compound of lithium according to the present invention or
Lithium and tungsten dioxide WOTwoHeat treatment of the mixture with
A negative electrode using a treatment product as a negative electrode active material is compatible with metallic lithium.
Of low electrode potential (low) and low voltage of 2V or less
Because it has the advantage that the discharge capacity is extremely large,
Electrode voltage for metallic lithium such as the above-mentioned metal oxide
3 V or more, more preferably VTwoOFive, MnOTwo, L
ixCoOTwo, LixNiOTwoAnd LixMnTwoOFourAnd so on
Has a high potential of 3.5V or 4V or more like
By combining with a positive electrode using (noble) active material
Secondary with high voltage, high energy density and excellent charge / discharge characteristics
It is particularly preferable because a battery can be obtained.

【0019】又、電解質としては、γ−ブチロラクト
ン、プロピレンカーボネート、エチレンカーボネート、
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、メチルフォーメイト、1、2−ジメト
キシエタン、テトラヒドロフラン、ジオキソラン、ジメ
チルフォルムアミド等の有機溶媒の単独又は混合溶媒に
支持電解質としてLiClO4 、LiPF6 、LiBF
4 、LiCF3 SO3 等のリチウムイオン解離性塩を溶
解した有機電解液、ポリエチレンオキシドやポリフォス
ファゼン架橋体等の高分子に前記リチウム塩を固溶させ
た高分子固体電解質あるいはLi3 N、LiI等の無機
固体電解質等々のリチウムイオン導電性の非水電解質で
あれば良い。
As the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate,
LiClO 4 , LiPF 6 , LiBF as a supporting electrolyte in a single or mixed solvent of organic solvents such as butylene carbonate, dimethyl carbonate, diethyl carbonate, methylformate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolan, and dimethylformamide
4 , an organic electrolyte solution in which a lithium ion dissociable salt such as LiCF 3 SO 3 is dissolved, a polymer solid electrolyte in which the lithium salt is dissolved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene, or Li 3 N; Any non-aqueous electrolyte having lithium ion conductivity such as an inorganic solid electrolyte such as LiI may be used.

【0020】[0020]

【作用】本発明による二酸化タングステンWO2 とリチ
ウムの酸化物又は加熱によりリチウムの酸化物を生成す
るリチウム化合物又はリチウムとの混合物の熱処理生成
物を負極活物質とする負極は、非水電解質中においてリ
チウム基準極(金属リチウム)に対し少なくとも0〜3
Vの電極電位の範囲で安定に繰り返しリチウムイオンを
吸蔵放出することができ、このような電極反応により繰
り返し充放電可能な二次電池の負極として用いることが
できる。特にリチウム基準極(金属リチウム)に対し0
〜2Vの卑な電位領域において、安定にリチウムイオン
を吸蔵放出し繰り返し充放電できる高容量の充放電領域
を有する。又、従来この種の電池の負極活物質として用
いられてきた二酸化タングステンWO2 や二酸化モリブ
デンMO2 等と比べ可逆的にリチウムイオンを吸蔵放出
できる量即ち有効充放電容量が著しく大きく、かつ充放
電の分極が小さいため、大電流での充放電が可能であ
り、更に過充電過放電による不可逆物質の生成等の劣化
が殆ど見られず、極めて安定でサイクル寿命の長い二次
電池を得ることができる。
Negative electrode and the negative electrode active material to a heat treatment product of a mixture of lithium compound or lithium to produce an oxide of lithium by oxides or heating of the tungsten dioxide WO 2 and lithium according to the action of the present invention is to provide a non-aqueous electrolyte At least 0 to 3 with respect to the lithium reference electrode (metal lithium)
Lithium ions can be stably and repeatedly absorbed and released in the range of the electrode potential of V, and can be used as a negative electrode of a secondary battery that can be repeatedly charged and discharged by such an electrode reaction. In particular, 0 for the lithium reference electrode (metal lithium).
It has a high-capacity charge / discharge region that can stably store and release lithium ions and repeatedly charge and discharge in a base potential region of up to 2 V. In addition, compared with tungsten dioxide WO 2 or molybdenum dioxide MO 2 which has been conventionally used as a negative electrode active material of this type of battery, the amount capable of inserting and extracting lithium ions reversibly, that is, the effective charge / discharge capacity is extremely large, and the charge / discharge capacity is large. Because of the small polarization, it is possible to charge and discharge with a large current, and furthermore, almost no deterioration such as generation of irreversible substances due to overcharging and overdischarging is observed, and it is possible to obtain an extremely stable secondary battery with a long cycle life. it can.

【0021】このように優れた充放電特性が得られる理
由は必ずしも明らかではないが、次のように推定され
る。即ち、本発明による新規な負極活物質である二酸化
タングステンWO2 とリチウムの酸化物又は加熱により
リチウムの酸化物を生成するリチウム化合物又はリチウ
ムとの混合物の熱処理生成物は、二酸化タングステンW
2 の骨格構造中にリチウムと酸素が固溶し、予め結晶
構造中にリチウムイオンを含有するWO2 に類似の3次
元構造を形成しており、この構造中でのリチウムイオン
の移動度が高く、且つ、リチウムイオンを吸蔵できるサ
イトが非常に多いためリチウムイオンの吸蔵放出が容易
であり、相変化を生じにくいためと推定される。
The reason why such excellent charge / discharge characteristics are obtained is not necessarily clear, but is presumed as follows. That is, the heat treatment product of a mixture of lithium compound or lithium to produce an oxide of lithium by oxides or heating of the tungsten dioxide WO 2 and the lithium is a novel negative active material according to the present invention, tungsten dioxide W
Lithium and oxygen are dissolved in the skeleton structure of O 2 , and a three-dimensional structure similar to WO 2 containing lithium ions is formed in the crystal structure in advance, and the mobility of lithium ions in this structure is low. This is presumed to be due to the high number of sites that can store and store lithium ions, which facilitates the storage and release of lithium ions, and hardly causes a phase change.

【0022】以下、実施例により本発明を更に詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0023】[0023]

【実施例】【Example】

(実施例1)図1は、本発明による非水電解質二次電池
の負極活物質の性能評価に用いたテストセルの一例を示
すコイン型電池の断面図である。図において、1は対極
端子を兼ねる対極ケースであり、外側片面をNiメッキ
したステンレス鋼製の板を絞り加工したものである。2
はステンレス鋼製のネットから成る対極集電体であり対
極ケース1にスポット溶接されている。対極3は、所定
厚みのアルミニウム板を直径15mmに打ち抜き、対極
集電体2に固着し、その上に所定厚みのリチウムフォイ
ルを直径14mmに打ち抜いたものを圧着したものであ
る。7は外側片面をNiメッキしたステンレス鋼製の作
用極ケースであり、作用極端子を兼ねている。
(Example 1) FIG. 1 is a sectional view of a coin-type battery showing an example of a test cell used for evaluating the performance of a negative electrode active material of a nonaqueous electrolyte secondary battery according to the present invention. In the figure, reference numeral 1 denotes a counter electrode case also serving as a counter electrode terminal, which is formed by drawing a stainless steel plate having one outer surface Ni-plated. 2
Is a counter electrode current collector made of a stainless steel net, which is spot-welded to the counter electrode case 1. The counter electrode 3 is obtained by punching an aluminum plate having a predetermined thickness to a diameter of 15 mm, fixing the aluminum plate to the counter electrode current collector 2, and punching a lithium foil having a predetermined thickness to a diameter of 14 mm. Reference numeral 7 denotes a working electrode case made of stainless steel with one outer surface Ni-plated, and also serves as a working electrode terminal.

【0024】5は後述の本発明による負極活物質又は従
来法による比較活物質を用いて構成された作用極であ
り、ステンレス鋼製のネットからなる作用極集電体6と
一体に加圧成形されている。4はポリプロピレンの多孔
質フィルムからなるセパレータであり、電解液が含浸さ
れている。8はポリプロピレンを主体とするガスケット
であり、対極ケース1と作用極ケース7の間に介在し、
対極と作用極との間の電気的絶縁性を保つと同時に、作
用極ケース開口縁が内側に折り曲げられカシメられるこ
とに依って、電池内容物を密封、封止している。電解質
はプロピレンカーボネートと1、2−ジメトキシエタン
の体積比1:1混合溶媒に過塩素酸リチウムLiClO
4 を1モル/l溶解したものを用いた。電池の大きさ
は、外径20mm、厚さ1.6mmであった。
Reference numeral 5 denotes a working electrode formed by using a negative electrode active material according to the present invention to be described later or a comparative active material according to a conventional method. The working electrode 5 is press-formed integrally with a working electrode current collector 6 made of a stainless steel net. Have been. Reference numeral 4 denotes a separator made of a porous film of polypropylene, which is impregnated with an electrolytic solution. 8 is a gasket mainly composed of polypropylene, interposed between the counter electrode case 1 and the working electrode case 7,
While maintaining the electrical insulation between the counter electrode and the working electrode, the opening of the working electrode case is bent inward and caulked to seal and seal the battery contents. The electrolyte is a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1 and lithium perchlorate LiClO.
4 dissolved at 1 mol / l was used. The size of the battery was 20 mm in outer diameter and 1.6 mm in thickness.

【0025】作用極5は次のようにして作製した。水酸
化リチウムLiOH・H2 Oと市販の純度99.9%の
二酸化タングステンWO2 とをLi:W=1:1のモル
比で乳鉢を用いて十分混合した後、この混合物を窒素ガ
ス気流中700℃の温度で12時間熱処理し、冷却後、
粒径53μm以下に粉砕整粒した。このようにして得ら
れた生成物を本発明による活物質aとし、これに導電剤
としてグラファイトを、結着剤として架橋型アクリル酸
樹脂等を重量比30:65:5の割合で混合して作用極
合剤とし、次にこの作用極合剤をステンレス鋼製のネッ
トからなる作用極集電6と共に2ton/cm2 で直
径15mm厚さ0.5mmのペレットに加圧成形した
後、200℃で10時間減圧加熱乾燥したものを作用極
とした。
The working electrode 5 was manufactured as follows. Lithium hydroxide LiOH.H 2 O and commercially available tungsten dioxide WO 2 having a purity of 99.9% are sufficiently mixed in a molar ratio of Li: W = 1: 1 using a mortar, and the mixture is placed in a stream of nitrogen gas. Heat treated at a temperature of 700 ° C. for 12 hours, and after cooling,
It was pulverized and sized to a particle size of 53 μm or less. The product thus obtained is used as an active material a according to the present invention, and graphite is mixed with a conductive agent and a crosslinked acrylic resin as a binder in a weight ratio of 30: 65: 5. a working electrode mixture, then was pressed into pellets of the action electrode mixture diameter 15mm thickness 0.5mm at 2 ton / cm 2 with the working electrode collector 6 made of a net made of stainless steel, 200 What was dried by heating under reduced pressure at 10 ° C. for 10 hours was used as a working electrode.

【0026】又、比較のため、上記の本発明による活物
質aの代わりに、上記の市販の二酸化タングステンWO
2 をそのまま活物質dとして、また導電剤に用いたと同
じグラファイトを活物質eとしてそれぞれ作用極の活物
質として用いた他は、上記の本発明の作用極の場合と同
様にして、同様な電極(比較用作用極)を作成した。こ
のようにして作製された電池は、室温で1週間放置エー
ジングされた後、後述の充放電試験が行われた。このエ
ージングによって、対極のリチウム−アルミニウム積層
電極は電池内で非水電解液に触れることにより十分合金
化が進行し、リチウムフォイルは実質的に全てLi−A
l合金となるため、電池電圧は、対極として金属リチウ
ムを単独で用いた場合に比べて約0.4V低下した値と
なって安定した。
For comparison, the commercially available tungsten dioxide WO described above was used instead of the active material a according to the present invention.
The same electrode as in the working electrode of the present invention described above, except that 2 was used as the active material as it was, and the same graphite as that used for the conductive agent was used as the active material for the working electrode. (Comparative working electrode) was prepared. The battery manufactured in this manner was aged at room temperature for one week, and then subjected to a charge / discharge test described later. Due to this aging, the lithium-aluminum laminated electrode of the counter electrode is sufficiently alloyed by contacting the non-aqueous electrolyte in the battery, and substantially all of the lithium foil is made of Li-A
Since the alloy was an 1 alloy, the battery voltage was stabilized at a value reduced by about 0.4 V as compared with a case where metallic lithium was used alone as a counter electrode.

【0027】このようにして作製した電池を、以下、そ
れぞれの使用した作用極の活物質a、d及びeに対応
し、それぞれ電池A、D及びEと略記する。図2及び図
3にそれぞれ、従来法による比較活物質d及び上記のよ
うにして作製した本発明による活物質aのCuKα線を
用いたX線回折図を示す。図2から明かなように、比較
活物質dの回折パターンはJCPDSカードNo.50
431に記載されているルチル型構造を有する二酸化タ
ングステンWO2 と良く一致している。一方、本発明に
よる活物質aの回折パターンは、比較活物質dの回折パ
ターンと類似の回折ピークを有するが、多くの新たな回
折ピークが現れており、二酸化タングステンWO2 の結
晶構造中にリチウムと酸素が固溶し新規なリチウムとタ
ングステンの複合酸化物を形成している。
The batteries manufactured in this manner are hereinafter abbreviated as batteries A, D, and E, respectively, corresponding to the active materials a, d, and e of the working electrodes used. 2 and 3 show X-ray diffraction patterns of the comparative active material d according to the conventional method and the active material a according to the present invention prepared as described above, using CuKα radiation. As is clear from FIG. 2, the diffraction pattern of the comparative active material d is JCPDS card No. 50
In good agreement with tungsten dioxide WO 2 having a rutile structure described in 431. On the other hand, the diffraction pattern of the active material a according to the present invention has a diffraction peak similar to the diffraction pattern of the comparative active material d, but many new diffraction peaks appear, and lithium in the crystal structure of the tungsten dioxide WO 2 appears. And oxygen form a solid solution to form a new composite oxide of lithium and tungsten.

【0028】これらの電池A、D及びEを0.4mAの
定電流で、充電(電解質中から作用極にリチウムイオン
が吸蔵される電池反応をする電流方向)の終止電圧−
0.4V、放電(作用極から電解質中へリチウムイオン
が放出される電池反応をする電流方向)の終止電圧2.
5Vの条件で充放電サイクルを行ったときの3サイクル
目の放電特性を図5に、充電特性を図6に示した。な
お、充放電サイクルは充電からスタートした。図5及び
図6から明らかなように、本発明による電池Aは比較電
池D、Eに比べ、充放電容量が著しく大きく、充放電の
可逆領域が著しく拡大することが分かる。又、全充放電
領域に渡って充電と放電の作動電圧の差が著しく小さく
なっており、電池の分極(内部抵抗)が著しく小さく、
大電流充放電が容易なことが分かる。
These batteries A, D, and E were charged at a constant current of 0.4 mA (the direction of current in which the lithium ions were absorbed from the electrolyte to the working electrode in the direction of the battery reaction).
0.4 V, end voltage of discharge (current direction in which a battery reacts to release lithium ions from the working electrode into the electrolyte)
FIG. 5 shows the discharge characteristics in the third cycle when the charge / discharge cycle was performed under the condition of 5 V, and FIG. 6 shows the charge characteristics. The charge / discharge cycle started from charging. As is clear from FIGS. 5 and 6, the battery A according to the present invention has a remarkably large charge / discharge capacity and a reversible charge / discharge region significantly expanded as compared with the comparative batteries D and E. Also, the difference between the operating voltage of charging and discharging over the entire charge / discharge area is extremely small, and the polarization (internal resistance) of the battery is extremely small.
It can be seen that large current charging and discharging is easy.

【0029】更に、充放電の繰り返しによる放電容量の
低下(サイクル劣化)が著しく小さい。即ち、充電に依
って対極のLi−Al合金から電解質中にリチウムイオ
ンが放出され、このリチウムイオンが電解質中を移動し
て本発明のリチウムとタングステンの複合酸化物から成
る活物質aと電極反応し、活物質a中に電気化学的にリ
チウムイオンが吸蔵される。次に放電に際しては、この
複合酸化物からリチウムイオンが電解質中に放出され、
電解質中を移動して対極のLi−Al合金中に吸蔵され
ることにより安定に繰り返し充放電できる。 (実施例2)本実施例は、負極活物質の合成に際し原料
であるリチウム化合物と二酸化タングステンWO2 の混
合を種々の組成比で行い比較した場合である。作用極5
を構成する活物質以外は、全て実施例1と同様にして同
様な電池を作製した。
Further, the decrease in discharge capacity (cycle deterioration) due to repeated charging and discharging is extremely small. That is, lithium ions are released into the electrolyte from the counter electrode Li-Al alloy by charging, and the lithium ions move in the electrolyte to react with the active material a of the present invention composed of the composite oxide of lithium and tungsten according to the present invention. Then, lithium ions are electrochemically occluded in the active material a. Next, upon discharging, lithium ions are released from the composite oxide into the electrolyte,
By moving in the electrolyte and being occluded in the counter electrode Li-Al alloy, it can be stably repeatedly charged and discharged. (Example 2) This example is a case where the comparison performed mixing of the lithium compound and tungsten dioxide WO 2 as a raw material upon synthesis of the negative electrode active material at various composition ratios. Working electrode 5
Except for the active material, the same battery was produced in the same manner as in Example 1.

【0030】本実施例の作用極に用いた活物質を次のよ
うにして作製した。水酸化リチウムLiOH・ 2
市販の純度99.9%の二酸化タングステンWO2 とを
Li:Wが所定のモル比となるように秤量し、乳鉢を用
いて十分混合した後、この混合物を窒素ガス気流中70
0℃の温度で12時間熱処理し、冷却後、粒径53μm
以下に粉砕整粒した。但し、熱処理時の窒素ガス流量は
実施例1の3倍の流量とした。このようにして得られた
生成物を本発明による活物質として用いた。本実施例で
は、Li:Wのモル比が(b1)0.25:1、(b
2)0.5:1、(b3)1:1、(b4)2:1の4
種類のものを作製した。又、比較のため、予めリチウム
を含有していない従来法による活物質として実施例1で
用いたと同じ活物質d及び活物質eを用いた。
The active material used in the working electrode of this embodiment was manufactured as follows. Lithium hydroxide LiOH · H 2 O commercial purity 99.9% and a tungsten dioxide WO 2 Li: After W is weighed to make a predetermined molar ratio and thoroughly mixed in a mortar, and the mixture 70 in nitrogen gas stream
Heat treated at a temperature of 0 ° C. for 12 hours, and after cooling, a particle size of 53 μm
The powder was crushed and sized. However, the flow rate of the nitrogen gas during the heat treatment was set to be three times that of the first embodiment. The product thus obtained was used as the active material according to the invention. In this embodiment, the molar ratio of Li: W is (b1) 0.25: 1,
2) 0.5: 1, (b3) 1: 1, (b4) 2: 1 4
Various types were produced. For comparison, the same active material d and active material e as those used in Example 1 were used as active materials according to the conventional method not containing lithium in advance.

【0031】このようにして作製した電池を、以下各々
の作用極に使用した活物質b1、b2、b3、b4、d
及びeに対応し、電池B1、B2、B3、B4、D及び
Eと略記する。上記のようにして作製した本実施例の活
物質b3のCuKα線を用いたX線回折図を図4に示し
た。図から明かなように本実施例の活物質b3の回折パ
ターンは、実施例1の本発明による活物質aの回折パタ
ーン(図3)と極めて良く類似しており、各回折ピーク
の相対強度が異なる他は明確な差は見られない。即ち、
活物質b3は、活物質aと微細構造は異なるが、ほぼ同
一の基本構造を有するリチウムとタングステンの複合酸
化物であると推定される。
The batteries prepared in this manner were used as active materials b1, b2, b3, b4, d
And e, and are abbreviated as batteries B1, B2, B3, B4, D and E. FIG. 4 shows an X-ray diffraction diagram using CuKα radiation of the active material b3 of this example manufactured as described above. As is clear from the figure, the diffraction pattern of the active material b3 of this example is very similar to the diffraction pattern of the active material a according to the present invention of Example 1 (FIG. 3), and the relative intensity of each diffraction peak is high. There is no clear difference except for the differences. That is,
The active material b3 is presumed to be a composite oxide of lithium and tungsten that has a microstructure different from that of the active material a but has substantially the same basic structure.

【0032】このようにして得られた電池B1、B2、
B3、B4、D及びEについても実施例1と同様な充放
電サイクル試験を行った。この時の各サイクル毎の放電
容量(サイクル特性)を図7に示した。図7から明らか
なように、本発明による電池B1、B2、B3及びB4
は比較電池D及びEに比べ、放電容量が著しく大きく、
充放電の可逆領域が著しく拡大することが分かる。又、
充放電の繰り返しによる放電容量の低下(サイクル劣
化)が著しく小さい。更に、本実施例の電池B1〜B4
においても、実施例1の本発明による電池Aと同様に全
充放電領域に渡って充電と放電の作動電圧の差が著しく
小さくなっており、電池の分極(内部抵抗)が著しく小
さく、大電流充放電が容易な結果が得られた。
The batteries B1, B2,
For B3, B4, D and E, the same charge / discharge cycle test as in Example 1 was performed. FIG. 7 shows the discharge capacity (cycle characteristics) of each cycle at this time. As is clear from FIG. 7, the batteries B1, B2, B3 and B4 according to the invention
Has a significantly larger discharge capacity than the comparative batteries D and E,
It can be seen that the reversible region of charge and discharge is significantly expanded. or,
The decrease in discharge capacity (cycle deterioration) due to repeated charge and discharge is extremely small. Furthermore, the batteries B1 to B4 of this embodiment
In the same manner as in the battery A according to the present invention of Example 1, the difference between the operating voltages for charging and discharging over the entire charge / discharge region is extremely small, the polarization (internal resistance) of the battery is extremely small, and the large current Easy charging / discharging results were obtained.

【0033】このように優れた充放電特性を有する理由
は、必ずしも明らかではないが、次のように推定され
る。即ち、上述のように本発明による電池B1〜B4の
作用極の活物質である二酸化タングステンとリチウム化
合物との混合物の熱処理生成物においては、二酸化タン
グステンの結晶構造中に予めリチウムと酸素が固溶し、
リチウムとタングステンの複合酸化物を形成し、結晶構
造が変化しているため、この構造中でのリチウムイオン
の移動度が高く、且つ、リチウムイオンの吸蔵放出に伴
う構造変化が小さく安定なため、リチウムイオンの吸蔵
放出が容易である為と推定される。
The reason for having such excellent charge / discharge characteristics is not necessarily clear, but is presumed as follows. That is, as described above, in the heat-treated product of the mixture of the tungsten compound and the lithium compound which are the active materials of the working electrodes of the batteries B1 to B4 according to the present invention, lithium and oxygen are previously dissolved in the crystal structure of the tungsten dioxide. And
Since a composite oxide of lithium and tungsten is formed and the crystal structure is changed, the mobility of lithium ions in this structure is high, and the structural change due to insertion and extraction of lithium ions is small and stable. This is presumed to be due to the easy insertion and extraction of lithium ions.

【0034】なお、図7から明かなように、本発明の活
物質の熱処理による合成時のリチウム含有量x(タング
ステン1モルに対するリチウムの含有モル数)は、x>
0であれば上記のような効果を有するが、好ましくはx
≧0.25、より好ましくはx≧0.5において特に充
放電容量が大きいため、この範囲が特に好ましい。更
に、実施例においては、対極としてリチウム−アルミニ
ウム合金の場合のみを示したが、本発明は実施例に限定
されず、前述のように、TiS2 、MoS2、NbSe
3 等の金属カルコゲン化物、MnO2 、MoO3 、V2
5 、LixCoO2 、Lix NiO2 、Lix Mn2
4 等の金属酸化物、ポリアニリン、ポリピロール、ポ
リパラフェニレン、ポリアセン等の導電性高分子、グラ
ファイト層間化合物等々のようなリチウムカチオン及び
/またはアニオンを吸蔵放出可能な物質を活物質とする
正極を対極として、本発明による負極活物質を用いた負
極と組合わせて用いることができることは言うまでもな
い。
As is clear from FIG. 7, the lithium content x (the number of moles of lithium per mole of tungsten) at the time of synthesis by heat treatment of the active material of the present invention is x>
If it is 0, it has the effect as described above, but preferably x
This range is particularly preferable because the charge / discharge capacity is particularly large when ≧ 0.25, more preferably x ≧ 0.5. Furthermore, in the examples, only the case of a lithium-aluminum alloy was shown as a counter electrode, but the present invention is not limited to the examples, and as described above, TiS 2 , MoS 2 , NbSe
Metal chalcogenides such as 3 , MnO 2 , MoO 3 , V 2
O 5 , Li x CoO 2 , Li x NiO 2 , Li x Mn 2
A positive electrode having a material capable of storing and releasing lithium cations and / or anions, such as a metal oxide such as O 4 , a conductive polymer such as polyaniline, polypyrrole, polyparaphenylene, and polyacene, and a graphite intercalation compound, as an active material. It goes without saying that the counter electrode can be used in combination with the negative electrode using the negative electrode active material according to the present invention.

【0035】[0035]

【発明の効果】以上詳述したように、本発明は、非水電
解質二次電池の負極活物質として、二酸化タングステン
WO2 とリチウムの酸化物又は加熱によりリチウムの酸
化物を生成するリチウム化合物又はリチウムとの混合物
を非酸化性雰囲気中で熱処理して得られる生成物から成
る新規な活物質を用いたものであり、該負極活物質はリ
チウム基準極(金属リチウム)に対し0〜2Vの卑な電
位領域において、充放電により可逆的にリチウムイオン
を吸蔵放出できる量即ち充放電容量が著しく大きく、か
つ充放電の分極が小さいため、高電圧・高エネルギー密
度で且つ大電流での充放電特性が優れた二次電池を得る
ことができる。又、充電放電の繰り返しによる放電容量
の減少等の劣化が殆ど見られず、極めて安定でサイクル
寿命の長い二次電池を得ることができる等々優れた効果
を有する。
As described above in detail, the present invention is, as the negative electrode active material of a nonaqueous electrolyte secondary battery, a lithium compound to form oxides of lithium by oxides or heating of the tungsten dioxide WO 2 and lithium or A novel active material comprising a product obtained by heat-treating a mixture with lithium in a non-oxidizing atmosphere, wherein the negative electrode active material has a base voltage of 0 to 2 V with respect to a lithium reference electrode (metal lithium). Charge / discharge capacity is remarkably large, and the charge / discharge capacity is remarkably large, and the charge / discharge characteristics at high voltage / high energy density and large current in a wide potential region. , A secondary battery having excellent characteristics can be obtained. In addition, deterioration such as a decrease in discharge capacity due to repeated charge and discharge is hardly observed, and an extremely stable secondary battery having a long cycle life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において実施した電池の構造の一例を示
した説明図である。
FIG. 1 is an explanatory diagram showing an example of the structure of a battery implemented in the present invention.

【図2】従来法による比較活物質dの粉末X線回折図で
ある。
FIG. 2 is a powder X-ray diffraction diagram of a comparative active material d according to a conventional method.

【図3】本発明による活物質aの粉末X線回折図であ
る。
FIG. 3 is a powder X-ray diffraction diagram of an active material a according to the present invention.

【図4】本発明による活物質b3の粉末X線回折図であ
る。
FIG. 4 is an X-ray powder diffraction diagram of an active material b3 according to the present invention.

【図5】本発明による電池と従来電池の3サイクル目の
放電特性の比較を示した説明図である。
FIG. 5 is an explanatory diagram showing a comparison of discharge characteristics at the third cycle between a battery according to the present invention and a conventional battery.

【図6】本発明による電池と従来電池の3サイクル目の
充電特性の比較を示した説明図である。
FIG. 6 is an explanatory diagram showing a comparison of charging characteristics at the third cycle between a battery according to the present invention and a conventional battery.

【図7】本発明による電池と従来電池のサイクル特性の
比較を示した説明図である。
FIG. 7 is an explanatory diagram showing a comparison of cycle characteristics between a battery according to the present invention and a conventional battery.

【符号の説明】[Explanation of symbols]

1 対極ケース 2 対極集電体 3 対極 4 セパレータ 5 作用極 6 作用極集電体 7 作用極ケース 8 ガスケット DESCRIPTION OF SYMBOLS 1 Counter electrode case 2 Counter electrode current collector 3 Counter electrode 4 Separator 5 Working electrode 6 Working electrode current collector 7 Working electrode case 8 Gasket

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−264370(JP,A) 特開 昭55−37797(JP,A) 特開 昭50−16036(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-264370 (JP, A) JP-A-55-37797 (JP, A) JP-A-50-16036 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と、負極と、リチウムイオン導電性
の非水電解液からなる非水電解質二次電池において、 負極活物質が水酸化リチウムと二酸化タングステンを混
合し、 500℃から800℃の温度範囲で加熱し、粉砕した複
合酸化物であることを特徴とする非水電解質二次電池。
1. A positive electrode, a negative electrode, and lithium ion conductive material.
In a non-aqueous electrolyte secondary battery composed of a non-aqueous electrolyte, the negative electrode active material is a mixture of lithium hydroxide and tungsten dioxide.
The mixture was heated at a temperature in the range of 500 ° C to 800 ° C and ground.
A non-aqueous electrolyte secondary battery, which is a composite oxide.
【請求項2】 前記水酸化リチウムがLiOH・H2. The method according to claim 1, wherein the lithium hydroxide is LiOH.H 2Two O
である請求項1記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein
【請求項3】 前記複合酸化物がCuKα線で19.93. The method according to claim 1, wherein the composite oxide is a CuKα ray of 19.9.
°と21.1°と30.6°と33.0°にX線回折のX-ray diffraction at °, 21.1 °, 30.6 ° and 33.0 °
ピークを有する請求項1記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, which has a peak.
【請求項4】 前記水酸化リチウムの代わりに、酸化リ4. The method according to claim 1, wherein said lithium hydroxide is replaced with a lithium oxide.
チウムと酸化リチウムの水和物と硝酸リチウムから選ばSelected from hydrates of lithium and lithium oxide and lithium nitrate
れるリチウム化合物を混合する請求項1記載の非水電解The non-aqueous electrolysis according to claim 1, wherein a lithium compound is mixed.
質二次電池。Quality rechargeable battery.
【請求項5】 正極と、リチウムとタングステンの複合5. A composite of a positive electrode, lithium and tungsten
酸化物の負極活物質を有する負極と、リチウムイオン導A negative electrode having an oxide negative electrode active material;
電性の非水電解液からなる非水電解質二次電池においNon-aqueous electrolyte secondary battery composed of electrically conductive non-aqueous electrolyte
て、hand, 前記複合酸化物がCuKα線で19.9°と21.1°The composite oxide is 19.9 ° and 21.1 ° by CuKα radiation.
と30.6°と33.0°にX線回折のピークを有するAnd X-ray diffraction peaks at 30.6 ° and 33.0 °
非水電解質二次電池。Non-aqueous electrolyte secondary battery.
JP4102965A 1992-04-22 1992-04-22 Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof Expired - Fee Related JP3013209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4102965A JP3013209B2 (en) 1992-04-22 1992-04-22 Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4102965A JP3013209B2 (en) 1992-04-22 1992-04-22 Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof

Publications (2)

Publication Number Publication Date
JPH05299089A JPH05299089A (en) 1993-11-12
JP3013209B2 true JP3013209B2 (en) 2000-02-28

Family

ID=14341496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4102965A Expired - Fee Related JP3013209B2 (en) 1992-04-22 1992-04-22 Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof

Country Status (1)

Country Link
JP (1) JP3013209B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154924A (en) * 1993-11-26 1995-06-16 Nec Corp Battery usage system for portable electronic device
JP3670878B2 (en) 1999-03-25 2005-07-13 三洋電機株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JPH05299089A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3008228B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
US5620812A (en) Non-aqueous electrolyte secondary battery
JP3162437B2 (en) Non-aqueous electrolyte secondary battery
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US5759719A (en) Electrode material for lithium intercalation electrochemical cells
EP1494302A1 (en) Nonaqueous electrolyte secondary battery
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
JP2000251887A (en) Nonaqueous electrolyte battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP2000348722A (en) Nonaqueous electrolyte battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH10162828A (en) Nonaqueous electrolyte battery, and manufacture thereof
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2952367B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees