JPH0487268A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0487268A
JPH0487268A JP2199960A JP19996090A JPH0487268A JP H0487268 A JPH0487268 A JP H0487268A JP 2199960 A JP2199960 A JP 2199960A JP 19996090 A JP19996090 A JP 19996090A JP H0487268 A JPH0487268 A JP H0487268A
Authority
JP
Japan
Prior art keywords
lithium
spinel
positive electrode
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2199960A
Other languages
Japanese (ja)
Inventor
Kensuke Tawara
謙介 田原
Hideki Ishikawa
英樹 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP2199960A priority Critical patent/JPH0487268A/en
Publication of JPH0487268A publication Critical patent/JPH0487268A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the operating voltage of the discharging time to improve the charging-discharging characteristics with a large current flow by using a specific spinel structure or a spinel analogous structure manganese-iron-lithium composite oxide as a positive electrode active material. CONSTITUTION:The battery is constituted of a negative electrode can 1, a negative electrode current collector 2, a negative electrode 3, a separator 4, a positive electrode 5, a positive current collector 6, a positive electrode can 7 and a gasket 8. The negative electrode 3 uses lithium or a material which can occlude and discharge lithium as an active material, and the positive electrode 5 uses a spinel-structure or a spinel-analogous-structure manganese-iron- lithium composite oxide shown in Formula I as an active material, and nonaqueous electrolyte is lithium ion conductive. The range wherein Li ion can be reversibly doped and dedoped by thus using the spinel structure or the spinel analogous structure manganese-iron-lithium composite oxide as a positive electrode active material, that is, an effective charging-discharging capacity can be improved. It is thereby possible to prevent lowering of an operating voltage at the discharging time and improve the charging-discharging characteristic with a large current flow.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウムもしくはリチウムを吸蔵放出可能な
物質を負極活物質とし、リチウムイオン導電性の非水電
解質を用いる井水電解質二次電池に関するものであり、
特に王権の改良に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a well water electrolyte secondary battery using lithium or a substance capable of intercalating and deintercalating lithium as a negative electrode active material and a lithium ion conductive non-aqueous electrolyte. It is a thing,
In particular, it concerns the improvement of royal power.

〔従来の技術〕[Conventional technology]

負極活物質としてリチウムを用いる非水電解質電池は、
高電圧、高エネルギー密度で、かつ自己放電が小さく長
期信顛性に優れる等々の利点により、−次電池としては
メモリーバックアップ用、カメラ用等の電源として既に
広く用いられている。
Nonaqueous electrolyte batteries that use lithium as the negative electrode active material are
Due to its advantages of high voltage, high energy density, low self-discharge, and excellent long-term reliability, secondary batteries are already widely used as power sources for memory backups, cameras, etc.

しかしながら、近年携帯型の電子機器、通信機器等の著
しい発展6二伴い、電源としての電池に対し大電流出力
を要求する機器が多種多様に出現し、経済性と機器の小
型軽量化の観点から、再充電可能で、かつ高エネルギー
密度の二次電池が強く要望されている。このため、高エ
ネルギー密度を有する前記非水電解質電池の二次電池化
を進める研究開発が活発に行われ、一部実用化されてい
るが、エネルギー密度、充放電サイクル寿命、信顛性等
々まだまだ不十分である。
However, in recent years, with the remarkable development of portable electronic devices, communication devices, etc.62, a wide variety of devices have appeared that require large current output from batteries as power sources. There is a strong need for rechargeable, high energy density secondary batteries. For this reason, research and development is actively being carried out to develop the non-aqueous electrolyte battery with high energy density into a secondary battery, and some of it has been put into practical use, but there are still issues with energy density, charge/discharge cycle life, reliability, etc. Not enough.

従来、この種二次電池の正極活物質としては、TiS2
.Mo5z 、NbSe、、等の金属カルコゲン化物や
、Mn0z 、MoO3,V20SL i CaO2,
L ix Mnz 04等の金属酸化物等々多種多様の
ものが提案されている。
Conventionally, TiS2 has been used as a positive electrode active material for this type of secondary battery.
.. Metal chalcogenides such as Mo5z, NbSe, etc., Mn0z, MoO3, V20SL i CaO2,
A wide variety of metal oxides such as L ix Mnz 04 have been proposed.

一般に、負極活物質として金属リチウムを用いる電池に
おいて、正極活物質として金属カルコゲン化物を用いた
ものは、その作動電圧が3V以下であり、その多くが2
V以下である。これに対し、正極活物質として金属酸化
物を用いたものでは3V以上の高電圧、高エネルギー密
度のものが多く、5v以上の電#電圧を必要とする前述
の機器の多くの用途においては電池を直列に接続する数
が少なくて済み機器の小型、軽量化のために特に有利で
ある。
Generally, in batteries that use metallic lithium as the negative electrode active material, those that use metal chalcogenide as the positive electrode active material have an operating voltage of 3 V or less, and most of them
V or less. On the other hand, many of the cathode active materials that use metal oxides have high voltages of 3V or more and high energy densities. This is particularly advantageous for reducing the size and weight of equipment because it requires fewer units to be connected in series.

これらの正極活物質の中で、スピネル型構造もしくはス
ピネル類似構造を有するLiMn2004はリチウム負
極に対しで(2)弐 Lix  Mnz  Oa  −z  L +’  −
ze=   L  ! X−2〜jnz  O4(2)
(但し、O<X≦2.−X<2≦2−x)に示す電池反
応をし、その作動電圧は 0<x−i−z<1  では約4v 1≦X+2<2  では約3V の様な高電圧を示し、充放電サイクルに依る劣化が比較
的小さく、かつ安価な材料であるという利点を有する。
Among these positive electrode active materials, LiMn2004, which has a spinel-type structure or a spinel-like structure, has the following properties for lithium negative electrodes: (2) Lix Mnz Oa -z L +' -
ze=L! X-2~jnz O4 (2)
(However, the battery reacts as shown in O<X≦2.-X<2≦2-x), and its operating voltage is about 4V when 0<x-i-z<1 and about 3V when 1≦X+2<2. It has the advantage that it exhibits a similar high voltage, has relatively little deterioration due to charge/discharge cycles, and is an inexpensive material.

スピネル型構造のL I Mn20h !よ、例えば特
開昭55−100224、特開昭58−220362及
び特開昭63−274059号公報に記載されている様
に、−Cに酸化マンガン(M n z O3、Mn30
.2Mn0.等)とリチウム塩(L12CO3,LiN
O3,LiOH等)をMn:Li=2 : 1のモル比
で混合し、800〜900° Cの温度で焼成すること
に依って合成される。
L I Mn20h with spinel structure! For example, as described in JP-A-55-100224, JP-A-58-220362 and JP-A-63-274059, manganese oxide (M n z O 3 , Mn 30
.. 2Mn0. etc.) and lithium salts (L12CO3, LiN
(O3, LiOH, etc.) in a molar ratio of Mn:Li=2:1, and is synthesized by baking at a temperature of 800 to 900°C.

又、L +x Mnz Oa  (0< x < 1)
は、上記のLiMn20.を塩酸や硫酸等の酸に浸漬し
L iを溶解除去することに依って得られ、さら二こ、
くxく2のものは上記L IM n z Osをn−ブ
チル−リチウム溶液と反応させること等に依って得られ
る。これらのLjXMnzO4(x#1)の結晶構造は
、スピネルLiMnzOnに対しLiが不足または過剰
に入った状態であり、格子定数乙こ若干の変化があるが
、Mnと0両原子の基本的な配置構造は維持されており
、スピネル類似構造をしている。
Also, L +x Mnz Oa (0< x < 1)
is the above LiMn20. is obtained by immersing it in an acid such as hydrochloric acid or sulfuric acid to dissolve and remove Li;
The second compound can be obtained by reacting the above L IM n z Os with an n-butyl-lithium solution. The crystal structure of these Lj The structure is maintained and has a spinel-like structure.

従来、この種電池の負極活物質として金属リチウムを用
いた場合には、充放電に伴い負極上にデンドライトや不
働体化合物が生成し、充放電による劣化が大きく、サイ
クル寿命が短いという問題があった。この問題を解決す
るため、負極としてリチウムと他金属との合金、Liイ
オンを結晶中に含有する層間化合物あるいは挿入化合物
、Liイオンをドープした導電性高分子等を用いること
が提案されている。しかし乍、一般に、負極活物質とし
てこの様な金属リチウム以外のL】イオンを吸蔵放出可
能な物質を用いた場合には、これらの物質の一極電位か
金属リチウムの電極電位より責であるため、電池の作動
電〒が負極活物質とLで金属リチウムを用いた場合より
かなり低下するという欠点がある。例えば、LiとA1
.ZnPb、Sn等の合金を用いる場合にはQ、2〜0
8v、炭素−リチウム層間化合物では平均約IV、Mo
O2やWO2等のLiイオン挿入化合物では0.5〜1
,5■作動電圧が低下する。
Conventionally, when metallic lithium was used as the negative electrode active material in this type of battery, there was a problem that dendrites and passive compounds were formed on the negative electrode during charging and discharging, resulting in large deterioration due to charging and discharging and short cycle life. Ta. To solve this problem, it has been proposed to use an alloy of lithium and other metals, an intercalation compound or insertion compound containing Li ions in the crystal, a conductive polymer doped with Li ions, etc. as a negative electrode. However, in general, when a material other than metallic lithium that can intercalate and release L] ions is used as a negative electrode active material, the potential of one electrode of these materials is higher than the electrode potential of metallic lithium. However, there is a drawback that the operating voltage of the battery is considerably lower than when metallic lithium is used as the negative electrode active material and L. For example, Li and A1
.. When using alloys such as ZnPb and Sn, Q is 2 to 0.
8v, average about IV for carbon-lithium intercalation compounds, Mo
0.5 to 1 for Li ion insertion compounds such as O2 and WO2
, 5■ Operating voltage decreases.

このため、負極活物質としてこれらのLiイオンを吸蔵
放出可能な物質を用い、サイクル特性が優れ、かつ高電
圧、高エネルギー密度の二次電池を得るためには、Li
に対する電極電位がより商い正極活物質が必要である。
Therefore, in order to obtain a secondary battery with excellent cycle characteristics, high voltage, and high energy density by using a material that can absorb and release Li ions as a negative electrode active material, Li
A positive electrode active material is required because the electrode potential is higher than that of the active material.

この点に於て、LX Mn20aは、O<X+2<1の
頭載において約4Vの高電圧を存し、有望な物質である
In this regard, LX Mn20a is a promising material as it has a high voltage of about 4 V at the head of O<X+2<1.

〔発明が解決しようとする課題] 上記のような従来のL ix Mnz CLを正極活物
質とし、リチウムもしくはリチウムを吸蔵放出可能な物
質を負極活物質とする電池の正極の充放電反応は、上記
(2)弐に示す様に、放電においては負極から生成する
Liイオンが電解質中を通って正極活物質1−ixMl
−1xの結晶構造中にトープし、逆に、充電においては
正極活物5 L iX、Z M n 20 mの結晶構
造中からLiイオンが脱L−プすることに依って進行す
る。
[Problems to be Solved by the Invention] The charging and discharging reaction of the positive electrode of a battery in which the conventional Li x Mnz CL as described above is used as a positive electrode active material and lithium or a substance capable of intercalating and releasing lithium is used as a negative electrode active material is as follows. (2) As shown in Figure 2, during discharge, Li ions generated from the negative electrode pass through the electrolyte and absorb the positive electrode active material 1-ixMl.
-1x crystal structure, and conversely, during charging, Li ions are removed from the crystal structure of the positive electrode active material 5 LiX, Z M n 20 m.

理想的には、この充放電に際してLiイオンが可逆的に
トープ、脱トープ出来る範囲、即ち充放電容量は出来る
だけ大きい方が好ましく、0≦X−2≦2であるが、上
記の様な従来の方法で作製されたLixMnz ○、を
用いた電池においては、充放電に依って可逆的SこLi
イオンがトープ、脱トープ出来る範囲は、実用的な電流
密度では、O55<x+z<1.7程度であり、有効充
放電容量が小さく、かつ電流が大きいほど小さくなると
いう問題があった。特にX+2<1の高電圧領域(Li
負極に対して約4■の作動電圧)での有効充放電容量が
理論容量の僅か35%程度と極めて小さいと言う問題が
あった。
Ideally, the range in which Li ions can reversibly tope and detope during charging and discharging, that is, the charging and discharging capacity, is preferably as large as possible, and 0≦X-2≦2. In a battery using LixMnz ○, produced by the method described above, reversible S and Li
The range in which ions can be toped and detaped is approximately O55<x+z<1.7 at a practical current density, which poses the problem that the effective charge/discharge capacity is small and becomes smaller as the current increases. Especially in the high voltage region of X+2<1 (Li
There was a problem in that the effective charge/discharge capacity at an operating voltage of about 4 cm (with respect to the negative electrode) was extremely small, only about 35% of the theoretical capacity.

又、L ix Mn204結晶構造中でのLiイオンの
拡散速度か遅いため、これを正極活物質として用いた電
池の内部抵抗が大きくなり、放電時の作動電圧の低下が
大きく、充電電流を大きくできないという問題があった
In addition, because the diffusion rate of Li ions in the Li x Mn204 crystal structure is slow, the internal resistance of batteries using this as a positive electrode active material increases, the operating voltage decreases greatly during discharging, and the charging current cannot be increased. There was a problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の様な問題点を解決するため、この種の
電池の正極活物質として、式(1)%式%(1) で示されるスピネル型構造またはスピネル型構造のマン
ガン鉄リチウム複合酸化物を用いること、を提起するも
のである。
In order to solve the above-mentioned problems, the present invention uses a spinel-type structure or a manganese-iron-lithium composite with a spinel-type structure as a positive electrode active material for this type of battery. This proposal proposes the use of oxides.

本発明電池の正極活物質として用いられるマンガン鉄リ
チウム複合酸化物は次のようにして作製される。即ち、
Mn、Fe及びLiの各金属または各々の酸化物、水酸
化物あるいは炭酸塩、硝酸塩などの塩を所定比で混合し
、空気中または酸素を有する雰囲気中450℃以上の温
度、好ましくは600〜1000° Cの温度で加熱焼
成することに依って得られる。加熱焼成する雰囲気は使
用するMn、Fe、Li材料と焼成温度の選択によって
:よ不活性カス中・b真空中でも可能である。
The manganese iron lithium composite oxide used as the positive electrode active material of the battery of the present invention is produced as follows. That is,
Mn, Fe, and Li metals or their respective oxides, hydroxides, carbonates, nitrates, and other salts are mixed in a predetermined ratio and heated in air or in an oxygen-containing atmosphere at a temperature of 450°C or higher, preferably 600°C or higher. It is obtained by heating and firing at a temperature of 1000°C. The atmosphere for heating and firing depends on the Mn, Fe, and Li materials used and the firing temperature: it is possible to use an inert gas or a vacuum.

カロハ時間は、1ffl帛4〜50特間で十分であり、
マー¥に800° C以上の温度では12時間以下で十
分である。又、鉄の含有量としてはO<y<2が可能で
あるが、o、l<y−=1の場合か効果が顕著であり特
に好ましい6 〔作用〕 正極活物質としてスピネル型またはスピネル類似構造の
マンガン鉄リチウム複合酸化物を用いた場合には、従来
のL j X M n z 04を用いた場合に比べ、
可逆的にLiイオンがトープ、脱トープ出来る範囲、即
ち、有効な充放電容量が著しく改善される。特に、x+
”z<lの高電位SJi域での充放電容量が著しく改善
され、理論容量(0≦X+2≦1.0)の60%以上が
可能となる。
Karoha time is sufficient for 4 to 50 special hours per ffl,
At temperatures above 800° C., 12 hours or less is sufficient. In addition, as for the iron content, it is possible that O<y<2, but the effect is remarkable when o, l<y-=1, which is particularly preferable. When using a manganese iron lithium composite oxide with the structure, compared to using the conventional L j X M n z 04,
The range in which Li ions can be reversibly toped and detopped, that is, the effective charge and discharge capacity is significantly improved. In particular, x+
``The charge/discharge capacity in the high potential SJi region of z<l is significantly improved, and 60% or more of the theoretical capacity (0≦X+2≦1.0) becomes possible.

又、これを用いた電池の内部抵抗が低減するため、放電
時の作動電圧の低下が著しく改善され、かつより大電流
での充電が可能となる。
Furthermore, since the internal resistance of a battery using this is reduced, the drop in operating voltage during discharging is significantly improved, and charging with a larger current becomes possible.

この様に充放電特性が改善される原因は、必ずしも明ら
かではないが、スピ名ル型構造LiXMn204中のM
nの一部がFeと置換されることにより、またはFeが
結晶構造の隙間に含有されることにより、結晶構造中に
Feイオンか存在し、このFeイオンによる内部状態の
変化及び結晶粒子表面積の増加等によりLiイオンの拡
散が容品になるためと推定される。
The reason why the charge-discharge characteristics are improved in this way is not necessarily clear, but the M
When a part of n is replaced with Fe or when Fe is contained in the gaps in the crystal structure, Fe ions are present in the crystal structure, and this Fe ion causes a change in the internal state and a change in the surface area of the crystal grain. It is presumed that this is due to the diffusion of Li ions into the container.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

第1図は、本発明の一例を示すコイン型電池の断面図で
ある。図において、1は負極端子を兼ねる負極缶であり
、外側片面をNiメツキしたステンレス鋼製の板を絞り
加工したものである。2はステンレス鋼製のネットから
成る負極集電体であり負極缶1にスポット溶接されてい
る。負極3は、所定厚みのアルミニウム板を直径15m
mに打ち抜き、負極集電体2に固着し、その上に所定厚
みのリチウムフォイルを直径14mmに打ち抜いたもの
を圧着したものである。7は外側片面をNiメツキした
ステンレス鋼製の正極缶であり、正極端子を兼ねている
。5は後述の本発明に係わる正極であり、ステンレス鋼
製のネットからなる正極集電体6と一体に加圧成形され
ている。4はポリプロピレンの多孔質フィルムからなる
セバレタであり、電解液が含浸されている。8はポリプ
ロピレンを主体とするガスケットであり、負極缶1と正
極缶7の間に介在し、正極と負極との間の電気的絶縁性
を保つと同時に、正極缶開口縁が内側に折り曲げられカ
シメられることに依って、電池内容物を密封、封止して
いる。電解質はプロピレンカーボネートとエチレンカル
ボネート及びテトラヒドロフランの体積比1:1:2混
合溶媒に六フッ化リン酸リチウムLiPFaを1モル/
l溶解したものを用いた。電池の大きさは、外径20m
m、厚さl、  6mmであった。
FIG. 1 is a sectional view of a coin-type battery showing an example of the present invention. In the figure, 1 is a negative electrode can that also serves as a negative electrode terminal, and is made by drawing a stainless steel plate with Ni plating on one outer side. A negative electrode current collector 2 is made of a stainless steel net and is spot welded to the negative electrode can 1. The negative electrode 3 is made of an aluminum plate with a predetermined thickness and a diameter of 15 m.
A lithium foil having a predetermined thickness was punched out to a diameter of 14 mm and then crimped onto the negative electrode current collector 2. 7 is a stainless steel positive electrode can with Ni plating on one outer side, which also serves as a positive electrode terminal. Reference numeral 5 denotes a positive electrode according to the present invention, which will be described later, and is integrally press-molded with a positive electrode current collector 6 made of a stainless steel net. 4 is a sebaleta made of a porous film of polypropylene, and is impregnated with an electrolytic solution. 8 is a gasket mainly made of polypropylene, which is interposed between the negative electrode can 1 and the positive electrode can 7, and maintains electrical insulation between the positive electrode and the negative electrode, and at the same time, the opening edge of the positive electrode can is bent inward and caulked. The contents of the battery are sealed and sealed by being sealed. The electrolyte is a mixed solvent of propylene carbonate, ethylene carbonate, and tetrahydrofuran in a volume ratio of 1:1:2 and 1 mole of lithium hexafluorophosphate LiPFa/
A dissolved solution was used. The size of the battery is 20m in outer diameter.
m, thickness l, and 6 mm.

正極5は次の様にして作製した。水酸化リチウムL10
Hと電解二酸化マンガンMnOx と三二酸化鉄FeZ
O3とをLi :Mn:Fe=1 : 1゜6:0.4
のモル比で乳鉢を用いて十分混合した後、この混合物を
大気中375〜850° Cの温度でそれぞれ24時間
加熱焼成し、冷却後、粒径53μm以下に粉砕整粒した
。得られた生成物を焼成温度の違いにより、以下、Kl
  (375℃焼成)、K2(480° C) 、K3
  (600゜C)、に4 (850° C)と略記す
る。
The positive electrode 5 was produced as follows. Lithium hydroxide L10
H and electrolytic manganese dioxide MnOx and iron sesquioxide FeZ
O3 and Li:Mn:Fe=1:1゜6:0.4
The mixtures were thoroughly mixed in a mortar at a molar ratio of 1,000 to 1,000 ml, and then heated and calcined in the air at a temperature of 375 to 850° C. for 24 hours. After cooling, the mixtures were pulverized and sized to a particle size of 53 μm or less. Due to the difference in calcination temperature, the obtained product is
(375°C firing), K2 (480°C), K3
(600°C) and 4 (850°C).

又、比較のため、Feを含まない従来法によるスピネル
型構造のLiMntO4を次の様にして作製した。即ち
、水酸化リチウム[、ioHと電解二酸化マンガンMn
○2とをLi:Mn=1:2のモル比で混合し、この混
合物を大気中850゜Cの温度で24時間焼成し、冷却
後、粒径53μm以下に粉砕整粒した。この生成物を、
以下、K5と略記する。
For comparison, LiMntO4 having a spinel structure not containing Fe was fabricated in the following manner using a conventional method. That is, lithium hydroxide [, ioH and electrolytic manganese dioxide Mn
○2 was mixed at a molar ratio of Li:Mn=1:2, this mixture was calcined in the air at a temperature of 850°C for 24 hours, and after cooling, it was pulverized and sized to a particle size of 53 μm or less. This product is
Hereinafter, it will be abbreviated as K5.

これらの生成物を正極活物質とし、これに導電側として
グラファイトを、結着剤として)っ素樹脂を重量比60
:35:5の割合で混合して正極合剤とし、次にこの正
極合剤をステンレス調製のネットからなる正極集電対6
と共に2ton/cm2で直径15mm厚さ0.5mm
のペレットに加圧成形した後、100”Cで10時間減
圧加熱乾燥したものを正極とした。
These products were used as the positive electrode active material, graphite was added as the conductive material, and fluororesin was added as the binder at a weight ratio of 60.
:35:5 to form a positive electrode mixture, and then this positive electrode mixture was passed through a positive electrode current collector pair 6 made of a stainless steel net.
2ton/cm2, diameter 15mm, thickness 0.5mm
The positive electrode was formed by pressure molding into pellets and then drying under reduced pressure at 100''C for 10 hours.

この様にして作製された電池は、室温で1週間放置エー
ジングされた後、後述の充放電試験が行われた。このエ
ージングによって、負極のりチウム−アルミニウム積層
電極は電池内で非水電解液に触れることにより十分合金
化が進行し、リチウムフォイルは実質的に全てLi−A
l合金となるため、電池電圧は、負極として金属リチウ
ムを単独で用いた場合に比べて約0.4V低下した値と
なって安定した。
The battery thus produced was left to age for one week at room temperature, and then subjected to a charge/discharge test as described below. Through this aging, the negative electrode lithium-aluminum laminated electrode is sufficiently alloyed by contact with the non-aqueous electrolyte in the battery, and the lithium foil is substantially entirely made of Li-A.
1 alloy, the battery voltage was stabilized at a value that was about 0.4 V lower than when metallic lithium was used alone as the negative electrode.

この様にして作製した電池を、以下、それぞれの使用し
た正極活物質に1〜に5に対応し、電池B1〜B5と略
記する。
The batteries produced in this way are hereinafter abbreviated as batteries B1 to B5, with numbers 1 to 5 corresponding to the respective positive electrode active materials used.

第2図に、上記のようにして作製した正極活物質に1〜
に5のFeKα線を用いたX線回折図を示す。図から明
らかなように、焼成温度850゜Cのに4及びに5の回
折パターンはASTMカドNo、18−736のスピネ
ル型構造L i M n204のデータとほぼ一致して
おり、スピネル型構造を有していることが分かる。即ち
、K4はLi Mn+、a F eo、a Oa 、 
K 5はL r M n z Oaのスピネル型構造を
している。一方、焼成温度が375〜600℃のに1〜
に3ではスピぶル結晶からのピークと共に、FezO,
からと推定されるピーク(例えば2θ#42.45,2
.69゜7″)及び、その他の物質からのピークも現れ
ており、スピネル型又はスピネルR4Q構造のLiXM
 n t−y F e y Os とFezO,及びそ
の他のLi、Mn、Fe酸化物等が共存している状態と
考えられる。又、焼成温度が高くなる程スピネル構造か
らの回折ピークに対する他の共存物からの回折ピークが
相対的に小さくなっており、スピネル構造の結晶化が進
むと同時にL ig Mnz−y F e、0.中のF
eの量yが大きくなっていると考えられる。
Figure 2 shows that the positive electrode active material prepared as described above has 1 to
shows the X-ray diffraction diagram of 5 using FeKα rays. As is clear from the figure, the diffraction patterns of Ni 4 and Ni 5 at a firing temperature of 850°C almost match the data of the spinel structure LiM n204 of ASTM Cad No. 18-736, indicating that the spinel structure is It can be seen that it has. That is, K4 is Li Mn+, a F eo, a Oa ,
K5 has a spinel structure of L r M n z Oa. On the other hand, when the firing temperature is 375-600℃,
In 3, along with the peak from the spibble crystal, FezO,
peak estimated from (e.g. 2θ#42.45,2
.. 69°7″) and other substances also appeared, and LiXM with spinel type or spinel R4Q structure
It is considered that nty Fe y Os, FezO, and other Li, Mn, Fe oxides, etc. coexist. Furthermore, as the firing temperature increases, the diffraction peaks from other coexisting substances become smaller relative to the diffraction peaks from the spinel structure, and as the crystallization of the spinel structure progresses, L ig Mnz-y Fe,0 .. middle F
It is considered that the amount y of e is increasing.

これらの電池B1〜B5を1mAの定を流で、充電終止
電圧4.0V、放電終止電圧2.OVの条件で充放電サ
イクルを行ったときの2サイクル目の放電特性を第3図
に、充電特性を第4図に示した。尚、充放電サイクルは
充電からスタートした。 第3図から明らかな様に、本
発明電池82B3.84は従来電池B5に対し、放電容
量が大きい。特に、作動電圧3v以上の高電圧領域での
放電容量が大きく、充放電の可逆頭載が著しく改善され
ることが分かる。更に、全数twi域に渡って放電の作
動電圧も著しく高くなっており、電池の内部抵抗が著し
く改善され、大電流放電が容易なことが分かる。又、こ
の効果は焼成温度が高くFeがより多くスピネル構造に
含まれる程大きく、焼成温度600℃以上で特に効果が
顕著であることが分かる。
These batteries B1 to B5 are operated with a constant current of 1 mA, with a charging end voltage of 4.0 V and a discharging end voltage of 2.0 V. FIG. 3 shows the discharge characteristics of the second cycle when charging and discharging cycles were performed under OV conditions, and FIG. 4 shows the charging characteristics. Note that the charge/discharge cycle started from charging. As is clear from FIG. 3, the battery 82B3.84 of the present invention has a larger discharge capacity than the conventional battery B5. In particular, it can be seen that the discharge capacity is large in the high voltage region of the operating voltage of 3 V or more, and the reversible head loading of charging and discharging is significantly improved. Furthermore, the operating voltage for discharging is significantly higher over the entire twi range, indicating that the internal resistance of the battery is significantly improved and large current discharge is facilitated. Further, it can be seen that this effect is greater as the firing temperature is higher and more Fe is included in the spinel structure, and the effect is particularly remarkable at firing temperatures of 600° C. or higher.

一方、375℃で焼成した活物質を用いた電池B1は、
スピネル構造への転移が不十分であり、かつFeの固溶
量yが小さいためと推定されるが、作動電圧3V以上の
高電圧領域の放電容量が逆に小さくなっている。
On the other hand, battery B1 using an active material fired at 375°C is
This is presumed to be because the transition to the spinel structure is insufficient and the amount of solid solution y of Fe is small, but the discharge capacity in the high voltage region of the operating voltage of 3 V or more is conversely small.

又、第4図から、本発明電池82〜B4は従来電池B5
に比べ、充電時の過電圧、従って内部抵抗が小さくかつ
充電容量が著しく大きいことが分かる。
Furthermore, from FIG. 4, it can be seen that the batteries 82 to B4 of the present invention are the conventional battery B5.
It can be seen that the overvoltage during charging and therefore the internal resistance are small and the charging capacity is significantly large compared to the above.

尚、本実施例においては、負極としてリチうムアルミニ
ウム合金の場合のみを示したが、本発明は実施例に限定
されず、金属リチウム、リチウムとZn、Sn、Pb、
Bi等の他金属との合金、炭素やM 001 、 W 
Oを等のリチウム挿入化合物等々のリチウムを吸蔵放出
可能な物質にも同様に適用できることは言うまでもない
In this example, only the case where a lithium aluminum alloy is used as the negative electrode is shown, but the present invention is not limited to the example, and metallic lithium, lithium and Zn, Sn, Pb,
Alloys with other metals such as Bi, carbon, M 001, W
It goes without saying that the present invention can be similarly applied to substances capable of intercalating and deintercalating lithium, such as lithium insertion compounds such as O.

又、電解質についても、実施例に限定されず、T−ブチ
ロラクトン、プロピレンカーボネート、エチレンカーボ
ネート、ブチレンカーボネート、1.2−ジメトキシエ
タン、テトラヒドロフラン、ジオキソラン、ジメチルフ
ォルムアミド等の華独又は混合溶媒に支持電解質として
L i Cl 04LiPFi 、LiBFa 、Li
CF35O*等のLiイオン解離性塩を溶解した有機電
解液、ポリエチレンオキシドやポリフォスフアゼン架橋
体等の高分子に前記Li塩を固溶させた高分子固体電解
質あるいはLizN、Li+等の無機固体電解質等々の
Liイオン導電性の非水電解質であれば良い。
Further, the electrolyte is not limited to the examples, and a supporting electrolyte may be a Chinese or mixed solvent such as T-butyrolactone, propylene carbonate, ethylene carbonate, butylene carbonate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolane, dimethylformamide, etc. as Li Cl 04LiPFi , LiBFa , Li
An organic electrolyte in which a Li ion dissociable salt such as CF35O* is dissolved, a polymer solid electrolyte in which the Li salt is dissolved in a polymer such as polyethylene oxide or cross-linked polyphosphazene, or an inorganic solid electrolyte such as LizN or Li+. Any non-aqueous electrolyte having Li ion conductivity such as the like may be used.

〔発明の効果〕〔Effect of the invention〕

以上詳述した様に、本発明は、正極活物質としてL i
 xM n 2−y F e y O4で示されるスピ
ネル型又はスピネル類似構造のマンガン鉄リチウム複合
酸化物を用いることにより、非水電解質電池の充放電容
量、特にLi電掻に対し約4■の高電位領域での充放電
可能容量を著しく高め、かつ、正極活物質中へのLiイ
オンのドープ脱ドープ速度に起因する電池内部)仄抗を
著しく低減し、その結果放電時の作動電圧を高め、大電
流での充放電特性を著しく改善する等々優れた効果を有
する。
As described in detail above, the present invention uses Li as a positive electrode active material.
By using a manganese iron lithium composite oxide with a spinel type or spinel-like structure represented by It significantly increases the chargeable and dischargeable capacity in the potential region, and significantly reduces the internal resistance (inside the battery) caused by the rate of doping and dedoping of Li ions into the positive electrode active material, thereby increasing the operating voltage during discharging. It has excellent effects such as significantly improving charge/discharge characteristics at large currents.

5・・・正極 6・・・正極集電体 7 ・・正極缶 8 ・ ・ ガスケット 以  」二 出願人 セイコー電子部品株式会社 代理人 弁理士 林  敬 之 助5...Positive electrode 6... Positive electrode current collector 7...Positive electrode can 8・・・ gasket 2. Applicant: Seiko Electronic Components Co., Ltd. Agent: Patent Attorney Takayoshi Hayashi

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明において実施した電池の一例を示す断面
図、第2図は各種正極活物質のX線回折図、第3図及び
第4図は、それぞれ、本発明電池と従来電池の放電特性
の比較図及び充電特性の比較図である。 1・・・負極缶     2・・・負極集電体3・・ 
負極     4・ ・セバレータ第 図 5゜ 刀 頭 2゜ 加 刀 父 帥
Figure 1 is a cross-sectional view showing an example of a battery implemented in the present invention, Figure 2 is an X-ray diffraction diagram of various positive electrode active materials, and Figures 3 and 4 are discharge diagrams of a battery of the present invention and a conventional battery, respectively. They are a comparison diagram of characteristics and a comparison diagram of charging characteristics. 1... Negative electrode can 2... Negative electrode current collector 3...
Negative electrode 4. Sebalator figure 5゜Toto head 2゜Kato master

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムもしくはリチウムを吸蔵放出可能な物質
を活物質とする負極と、式(1) Li_xMn_2_−_yFe_yO_4(1)(但し
、0<x、0<y<2) で示されるスピネル型構造またはスピネル類似構造のマ
ンガン鉄リチウム複合酸化物を活物質とする正極と、リ
チウムイオン導電性の非水電解質とから少なくとも成る
ことを特徴とする非水電解質二次電池。
(1) A negative electrode whose active material is lithium or a substance capable of intercalating and deintercalating lithium, and a spinel structure represented by the formula (1) Li_xMn_2_−_yFe_yO_4 (1) (where 0<x, 0<y<2) or A non-aqueous electrolyte secondary battery comprising at least a positive electrode using a manganese-iron-lithium composite oxide having a spinel-like structure as an active material, and a lithium ion conductive non-aqueous electrolyte.
(2)二酸化マンガンと鉄の酸化物もしくは塩とリチウ
ム塩とを混合し、酸素を有する雰囲気中で450℃以上
の温度で熱処理して、式(1)で示されるスピネル型ま
たはスピネル類似構造のマンガン鉄リチウム複合酸化物
を得る事を特徴とする非水電解質二次電池用正極活物質
の製造法。
(2) Manganese dioxide, iron oxide or salt, and lithium salt are mixed and heat-treated at a temperature of 450°C or higher in an oxygen-containing atmosphere to form a spinel-type or spinel-like structure represented by formula (1). A method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery, characterized by obtaining a manganese iron lithium composite oxide.
JP2199960A 1990-07-27 1990-07-27 Nonaqueous electrolyte secondary battery Pending JPH0487268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199960A JPH0487268A (en) 1990-07-27 1990-07-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199960A JPH0487268A (en) 1990-07-27 1990-07-27 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0487268A true JPH0487268A (en) 1992-03-19

Family

ID=16416470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199960A Pending JPH0487268A (en) 1990-07-27 1990-07-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0487268A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233169A (en) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
JPH04233161A (en) * 1990-08-09 1992-08-21 Varta Batterie Ag Electrochemical secondary cell
US5738957A (en) * 1995-04-26 1998-04-14 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium battery
US6183910B1 (en) * 1995-04-28 2001-02-06 Varta Batterie Aktiengesellschaft Electrochemical lithium secondary element
JP2002134110A (en) * 2000-10-23 2002-05-10 Sony Corp Method of producing positive electrode active material and method of producing nonaqueous electrolyte battery
US6420069B2 (en) * 1996-07-22 2002-07-16 Japan Storage Bottery Co., Ltd Positive electrode for lithium battery
US7452630B2 (en) * 1993-09-02 2008-11-18 Technology Finance Corporation (Proprietary) Limited Electrochemical cell
WO2017119411A1 (en) * 2016-01-05 2017-07-13 国立研究開発法人産業技術総合研究所 Lithium-iron-manganese-based composite oxide

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233161A (en) * 1990-08-09 1992-08-21 Varta Batterie Ag Electrochemical secondary cell
JPH04233169A (en) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
US7824804B2 (en) 1993-09-02 2010-11-02 Technology Finance Corporation (Proprietary) Limited Electrochemical cell
US7452630B2 (en) * 1993-09-02 2008-11-18 Technology Finance Corporation (Proprietary) Limited Electrochemical cell
US7556890B2 (en) 1993-09-02 2009-07-07 Technology Finance Corporation (Proprietary) Limited Electrochemical cell
US7722990B2 (en) 1993-09-02 2010-05-25 Technology Finance Corporation (Proprietary) Limited Electrochemical cell
US7838149B2 (en) 1993-09-02 2010-11-23 Technology Finance Corporation (Proprietary) Limited Electrochemical cell
US7855016B2 (en) 1993-09-02 2010-12-21 Technology Finance Corporation (Proprietary) Limited Electrochemical cell
US7964310B2 (en) 1993-09-02 2011-06-21 Technology Finance Corporation (Proprietary) Limited Electrochemical cell
US5738957A (en) * 1995-04-26 1998-04-14 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium battery
US6183910B1 (en) * 1995-04-28 2001-02-06 Varta Batterie Aktiengesellschaft Electrochemical lithium secondary element
US6420069B2 (en) * 1996-07-22 2002-07-16 Japan Storage Bottery Co., Ltd Positive electrode for lithium battery
JP2002134110A (en) * 2000-10-23 2002-05-10 Sony Corp Method of producing positive electrode active material and method of producing nonaqueous electrolyte battery
WO2017119411A1 (en) * 2016-01-05 2017-07-13 国立研究開発法人産業技術総合研究所 Lithium-iron-manganese-based composite oxide
JPWO2017119411A1 (en) * 2016-01-05 2018-10-25 国立研究開発法人産業技術総合研究所 Lithium iron manganese complex oxide

Similar Documents

Publication Publication Date Title
EP0615296B1 (en) Non-aqueous electrolyte secondary battery and method of producing the same
EP0696075B1 (en) Non-aqueous electrolyte secondary battery
JP3162437B2 (en) Non-aqueous electrolyte secondary battery
EP1009055B1 (en) Nonaqueous electrolyte battery and charging method therefor
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP3436600B2 (en) Rechargeable battery
US6291100B1 (en) Electrode composition comprising doped tungsten oxides and electrochemical cell comprising same
US6071649A (en) Method for making a coated electrode material for an electrochemical cell
EP0825661B1 (en) Lithium Battery
Ramasamy et al. Synthesis, characterization and cycling performance of novel chromium oxide cathode materials for lithium batteries
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
EP1032061A1 (en) Non-aqueous electrolyte battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JP2008071623A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and its manufacturing method
JPH10162828A (en) Nonaqueous electrolyte battery, and manufacture thereof
JP2008071622A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and its manufacturing method
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JPH07235295A (en) Nonaqueous secondary battery
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06215770A (en) Non-aquaous electrolytic secondary battery and preparation of negative pole active material therefor
JPH1064542A (en) Nonaqueous electrolyte secondary battery
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP3130531B2 (en) Non-aqueous solvent secondary battery