JP3003431B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3003431B2
JP3003431B2 JP4299517A JP29951792A JP3003431B2 JP 3003431 B2 JP3003431 B2 JP 3003431B2 JP 4299517 A JP4299517 A JP 4299517A JP 29951792 A JP29951792 A JP 29951792A JP 3003431 B2 JP3003431 B2 JP 3003431B2
Authority
JP
Japan
Prior art keywords
lithium
aqueous electrolyte
composite oxide
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4299517A
Other languages
Japanese (ja)
Other versions
JPH06150928A (en
Inventor
庄一郎 渡邊
豊次 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4299517A priority Critical patent/JP3003431B2/en
Publication of JPH06150928A publication Critical patent/JPH06150928A/en
Application granted granted Critical
Publication of JP3003431B2 publication Critical patent/JP3003431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、とくに正極に用いるリチウム複合酸化物の改良に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a lithium composite oxide used for a nonaqueous electrolyte secondary battery, particularly for a positive electrode.

【0002】[0002]

【従来の技術】近年、AV機器やパソコン等の電子機器
のポータブル化、コードレス化にともない、これらの駆
動用電源として高エネルギー密度の二次電池に対する強
い要望があり、とくにリチウムを用いた非水電解液二次
電池は、高電圧で高エネルギー密度の二次電池として期
待されている。この電池の正極に用いる活物質としてリ
チウムをインターカレート/デインターカレートするこ
とができる層状化合物、たとえばLiCoO2,LiN
iO2(米国特許第4302518号明細書)やLiC
xNi(1-x)2(x≦0.27)(特開昭62−26
4560号公報)などのリチウムの複合酸化物が提案さ
れている。
2. Description of the Related Art In recent years, as electronic devices such as AV devices and personal computers have become portable and cordless, there has been a strong demand for secondary batteries having a high energy density as power sources for driving these devices. Electrolyte secondary batteries are expected to be high voltage, high energy density secondary batteries. Layered compound capable of intercalating / deintercalating lithium as an active material used for the positive electrode of this battery, for example, LiCoO 2 , LiN
iO 2 (US Pat. No. 4,302,518) and LiC
o x Ni (1-x) O 2 (x ≦ 0.27) ( JP 62-26
No. 4560) has been proposed.

【0003】そして、これらのリチウムの複合酸化物を
正極活物質として用いることにより、4V級の出力電圧
をもった高エネルギー密度の非水電解液二次電池の開発
が進められている。
By using these lithium composite oxides as a positive electrode active material, development of a non-aqueous electrolyte secondary battery having a high energy density and an output voltage of 4 V class has been advanced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
非水電解液二次電池では、電解液に使用されているプロ
ピレンカーボネートやジメトキシエタンなどの有機溶媒
が高い電圧下で分解されるため、電池の充放電特性が低
下するという問題が生じていた。
However, in the above-mentioned non-aqueous electrolyte secondary battery, the organic solvent such as propylene carbonate and dimethoxyethane used in the electrolyte is decomposed under a high voltage. There has been a problem that the charge / discharge characteristics deteriorate.

【0005】この問題を解決するために、複合酸化物L
iCoO2のコバルトの一部を他の金属元素で置換する
という技術が提案されており、具体的にはコバルトの一
部をニッケルで置換する(特開昭63−299056号
公報)、鉄で置換する(特開昭63−211564号公
報)、あるいはアルミニウム、スズ、インジウムで置換
する(特開昭62−90863号公報)というものであ
る。
In order to solve this problem, a composite oxide L
A technique has been proposed in which part of cobalt of iCoO 2 is replaced with another metal element. Specifically, a part of cobalt is replaced with nickel (Japanese Patent Application Laid-Open No. 63-299056) and replaced with iron. (Japanese Unexamined Patent Publication No. Sho 63-211564), or substitution with aluminum, tin and indium (Japanese Unexamined Patent Publication No. Sho 62-90863).

【0006】しかし、このような金属元素によってコバ
ルトの一部を置換したリチウムの複合酸化物を正極活物
質に用いると、電池としての放電電圧が低くなるため、
高電圧、高エネルギー密度の二次電池の実現を困難にし
ていた。
However, when a lithium composite oxide in which a part of cobalt is substituted by such a metal element is used as a positive electrode active material, the discharge voltage as a battery is lowered,
It has made it difficult to realize a high voltage, high energy density secondary battery.

【0007】また、LiCoO2等のリチウムの複合酸
化物を正極活物質に用いた電池では、充電状態で高温に
保存した場合、著しく電池容量が低下するという問題が
あった。
Also, in a battery using a lithium composite oxide such as LiCoO 2 as a positive electrode active material, there is a problem that the battery capacity is significantly reduced when stored at a high temperature in a charged state.

【0008】これは、正極活物質上での電解液溶媒の分
解反応や、正極活物質の結晶破壊に起因していると考え
られる。
This is considered to be caused by the decomposition reaction of the electrolyte solution solvent on the positive electrode active material and the crystal destruction of the positive electrode active material.

【0009】本発明はこのような課題を解決するもので
あり、高電圧、高エネルギー密度を有し、かつ充放電サ
イクル寿命特性や保存特性に優れた非水電解液を実現す
るために、とくに高電圧下における正極活物質上での電
解液溶媒の分解反応や、充放電時の結晶崩壊を防止する
ことができる正極活物質を用いた非水電解液二次電池を
提供するものである。
The present invention has been made in order to solve such problems, and in order to realize a non-aqueous electrolyte having a high voltage, a high energy density, and excellent charge-discharge cycle life characteristics and storage characteristics, An object of the present invention is to provide a non-aqueous electrolyte secondary battery using a positive electrode active material capable of preventing a decomposition reaction of an electrolyte solvent on a positive electrode active material under a high voltage and a crystal collapse during charge and discharge.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非水電解液二次電池は、サマリウム酸化
物または複合酸化物で粒子の表面が覆われたリチウム複
合酸化物Li(1-x)CoO2(xは0≦x<1)、あるい
はLi(1-x)CoMO2(ただし、MはCo以外の遷移金
属、xは0≦x<1である)を活物質とした正極と、リ
チウム、リチウム合金あるいはリチウムをインターカレ
ート/デインターカレートすることができる炭素材料か
らなる負極と、非水電解液とより構成したものである。
In order to solve the above-mentioned problems, a nonaqueous electrolyte secondary battery of the present invention comprises a lithium composite oxide Li whose particles are covered with samarium oxide or composite oxide. (1-x) CoO 2 (x is 0 ≦ x <1) or Li (1-x) CoMO 2 (where M is a transition metal other than Co, and x is 0 ≦ x <1) as an active material , A negative electrode made of lithium, a lithium alloy or a carbon material capable of intercalating / deintercalating lithium, and a non-aqueous electrolyte.

【0011】[0011]

【作用】リチウムの複合酸化物の粒子表面上でのサマリ
ウムは、主に酸化サマリウム、あるいはリチウムとサマ
リウムの複合酸化物として存在し、LiCoO2やLi
CoMO2(ただし、MはCo以外の遷移金属)の表面
を被覆している。
The samarium on the surface of the lithium composite oxide particles is mainly present as samarium oxide or a composite oxide of lithium and samarium. LiCoO 2 or LiCoO 2
It covers the surface of CoMO 2 (where M is a transition metal other than Co).

【0012】この被覆により、正極活物質粒子表面と電
解液との直接的な反応を抑制し、正極活物質上での電解
液溶媒の分解反応を防止することができる。
By this coating, a direct reaction between the surface of the positive electrode active material particles and the electrolytic solution can be suppressed, and a decomposition reaction of the electrolytic solution solvent on the positive electrode active material can be prevented.

【0013】したがって、このようなリチウムの複合酸
化物を正極活物質に用いることにより、電解液溶媒の分
解反応を抑制することができ、充放電サイクル寿命特性
や保存特性を向上させることができる。
Therefore, by using such a lithium composite oxide as the positive electrode active material, the decomposition reaction of the electrolyte solvent can be suppressed, and the charge-discharge cycle life characteristics and storage characteristics can be improved.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】本発明の非水電解液二次電池の正極活物質
であるリチウムの複合酸化物を以下のようにして作製し
た。
A composite oxide of lithium as a positive electrode active material of the nonaqueous electrolyte secondary battery of the present invention was produced as follows.

【0016】炭酸リチウム(Li2CO3)と炭酸コバル
ト(CoCO3)を原子比で1:1になるように混合し
たものに、酸化サマリウム(Sm23)を炭酸コバルト
中のCoに対して(表1)に示すようなモル%の割合で
添加した。
Lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) are mixed at an atomic ratio of 1: 1 and samarium oxide (Sm 2 O 3 ) is mixed with Co in cobalt carbonate. (Table 1).

【0017】[0017]

【表1】 [Table 1]

【0018】ついで、これらの混合物を空気中におい
て、900℃で5時間焼成し、6種類の正極活物質A〜
Fを得た。
Next, these mixtures are fired in air at 900 ° C. for 5 hours to obtain six types of positive electrode active materials A to A.
F was obtained.

【0019】次に、このようにして得られた正極活物質
100重量部と、アセチレンブラック4重量部、フッ素
樹脂系結着剤7重量部を混合して正極合剤とし、これを
カルボキシルメチルセルロース水溶液に懸濁させてペー
スト状にした。
Next, 100 parts by weight of the thus obtained positive electrode active material, 4 parts by weight of acetylene black, and 7 parts by weight of a fluororesin binder were mixed to form a positive electrode mixture. Into a paste.

【0020】このペーストをアルミ箔の両面に塗着し、
乾燥後圧延して正極板A〜Fとした。
This paste is applied to both sides of the aluminum foil,
After drying, rolling was performed to obtain positive plates A to F.

【0021】また、負極板は次のようにして作製した。
コークスを焼成した炭素材100重量部に、フッ素樹脂
系結着剤10重量部を混合し、カルボキシルメチルセル
ロース水溶液に懸濁させてペースト状にした。
Further, the negative electrode plate was manufactured as follows.
10 parts by weight of a fluororesin binder was mixed with 100 parts by weight of the carbon material obtained by calcining the coke, and the mixture was suspended in an aqueous solution of carboxymethyl cellulose to form a paste.

【0022】このペーストを銅箔の両面に塗着し、乾燥
後圧延して負極板とした。これらの正極板と負極板とポ
リプロピレン製のセパレータおよび非水電解液を用い
て、図1に示すような密閉型非水電解液二次電池を構成
し、それぞれを電池A〜Fとした。
This paste was applied to both sides of a copper foil, dried and rolled to obtain a negative electrode plate. Using these positive electrode plate, negative electrode plate, polypropylene separator, and non-aqueous electrolyte, a sealed non-aqueous electrolyte secondary battery as shown in FIG.

【0023】ここで、前記非水電解液は炭酸プロピレン
と炭酸エチレンとの等容積混合溶媒に、過塩素酸リチウ
ム1モル/lの割合で溶解したものを用いた。
Here, the non-aqueous electrolyte used was a solution prepared by dissolving lithium perchlorate at a ratio of 1 mol / l in an equal volume mixed solvent of propylene carbonate and ethylene carbonate.

【0024】図1において、正極板と負極板はセパレー
タを介して渦巻状に巻回されて極板群1とされ、この正
極群1は耐有機電解液性のステンレス鋼板からなる電池
ケース2内に収納されている。
In FIG. 1, a positive electrode plate and a negative electrode plate are spirally wound with a separator interposed therebetween to form an electrode group 1, and this positive electrode group 1 is formed in a battery case 2 made of a stainless steel sheet having resistance to organic electrolytic solution. It is stored in.

【0025】この電池ケース2の上部は、安全弁を備え
た封口板3で封口されている。また、正極からは正極リ
ード4が引き出されて封口板3に電気的に接続されてお
り、負極からは負極リード5が引き出されて電池ケース
2と電気的に接続されている。
The upper part of the battery case 2 is sealed by a sealing plate 3 provided with a safety valve. A positive electrode lead 4 is drawn out from the positive electrode and is electrically connected to the sealing plate 3. A negative electrode lead 5 is drawn out from the negative electrode and is electrically connected to the battery case 2.

【0026】さらに、電池ケース2と封口板3との間に
は絶縁パッキング6が配され、極板群1の上下面には絶
縁リング7が配されている。
Further, an insulating packing 6 is disposed between the battery case 2 and the sealing plate 3, and an insulating ring 7 is disposed on the upper and lower surfaces of the electrode plate group 1.

【0027】次に、これらの電池を用いて、充放電サイ
クル寿命試験と高温での充電保存試験を行った。
Next, using these batteries, a charge / discharge cycle life test and a charge storage test at a high temperature were performed.

【0028】定電流充放電サイクル寿命試験は、充電を
電流100mAで電圧4.1Vまで行い、放電を電流1
00mAで終止電圧3.0Vまで行って1サイクルとし
た。
In the constant current charge / discharge cycle life test, charging was performed at a current of 100 mA to a voltage of 4.1 V, and discharging was performed at a current of 1
The operation was performed at 00 mA to a final voltage of 3.0 V to make one cycle.

【0029】高温での充電保存試験は、上記の充放電サ
イクルを10サイクル繰り返した後、電池を60℃にお
いて充電状態で20日間保存して行った。
The charge storage test at a high temperature was performed by repeating the above charge / discharge cycle for 10 cycles and then storing the battery at 60 ° C. in a charged state for 20 days.

【0030】電池A〜Fの充放電サイクル寿命試験にお
ける充放電サイクル数と放電容量との関係を図2に示
す。
FIG. 2 shows the relationship between the number of charge / discharge cycles and the discharge capacity in the charge / discharge cycle life test of the batteries A to F.

【0031】また、高温での充電保存試験後における電
池の容量保持率[(保存後の容量/保存前の容量)×1
00]を図3に示す。
Further, the capacity retention rate of the battery after the charge storage test at high temperature [(capacity after storage / capacity before storage) × 1]
00] is shown in FIG.

【0032】図3からわかるように、サマリウム(S
m)を一切含有していない電池Aでは、充放電にともな
う容量の低下が大きく、300サイクル経過後には、初
期の容量の半分になった。
As can be seen from FIG. 3, samarium (S
In the battery A containing no m), the capacity greatly decreased due to charge and discharge, and after 300 cycles, the capacity became half of the initial capacity.

【0033】これに対して、サマリウムを含有した電池
B〜Fでは、サマリウムの量が増加するにしたがい、い
くらか電池の初期容量は低下するが、充放電サイクルに
ともなう容量の低下は著しく抑制された。
On the other hand, in the batteries BF containing samarium, as the amount of samarium increased, the initial capacity of the battery decreased somewhat, but the decrease in capacity due to the charge / discharge cycle was significantly suppressed. .

【0034】そして、サマリウムをリチウム複合酸化物
中のコバルトに対して1〜5モル%含んだ電池C〜Fで
は、300サイクル経過後においても電池容量を初期容
量の80%以上と高く維持することができた。
In the batteries C to F containing 1 to 5 mol% of samarium with respect to cobalt in the lithium composite oxide, the battery capacity must be maintained at 80% or more of the initial capacity even after 300 cycles. Was completed.

【0035】しかし、サマリウムをコバルトに対し8モ
ル%含有した電池Fでは、サマリウムによるLiCoO
2の表面被覆率が大きくなり過ぎるため、活物質反応が
極度に抑えられるため電池の容量は初期からかなり低下
したものとなった。
However, in the battery F containing 8 mol% of samarium with respect to cobalt, LiCoO by samarium is used.
Since the surface coverage of No. 2 became too large, the reaction of the active material was extremely suppressed, so that the capacity of the battery was considerably reduced from the beginning.

【0036】また、図3からわかるように、サマリウム
を含有していない電池Aでは、高温保存後の電池の容量
保持率が52%であったのに対し、サマリウムをコバル
トに対して1モル%以上含有した電池C〜Fでは、容量
維持率が85%以上まで向上した。
Further, as can be seen from FIG. 3, in the battery A containing no samarium, the capacity retention of the battery after high-temperature storage was 52%, while the samarium was 1 mol% based on cobalt. In the batteries C to F containing above, the capacity retention rate was improved to 85% or more.

【0037】しかし、サマリウムをこれ以上添加しても
高温保存後の電池の容量維持率は、ほとんど変わらなか
った。
However, even if samarium was further added, the capacity retention rate of the battery after storage at high temperature was hardly changed.

【0038】これらの結果から、サマリウムの添加量は
コバルトに対して5モル%以下であることが好ましい。
From these results, the addition amount of samarium is preferably 5 mol% or less based on cobalt.

【0039】なお、本実施例では、正極活物質としてL
iCoO2を用いたが、この他にCoの一部を遷移金属
であるNi,Fe,Mnのうちのいずれかで置換したL
iの複合酸化物であっても、同様の効果が得られた。
In this embodiment, L is used as the positive electrode active material.
iCoO 2 was used, but in addition, L in which a part of Co was replaced with any of transition metals Ni, Fe, and Mn.
The same effect was obtained with the composite oxide of i.

【0040】また、本実施例では、正極活物質合成時の
出発材料として、リチウムおよびコバルトの炭酸塩であ
る炭酸リチウム(Li2CO3)と炭酸コバルト(CoC
3)を用いたが、この他に、リチウムおよびコバルト
の酸化物、またはこれらの水酸化物や酢酸塩であっても
良い。
In this embodiment, lithium carbonate (Li 2 CO 3 ), which is a carbonate of lithium and cobalt, and cobalt carbonate (CoC) were used as starting materials in the synthesis of the positive electrode active material.
O 3 ) was used, but other than these, oxides of lithium and cobalt, or hydroxides and acetates thereof may also be used.

【0041】また、本実施例では、負極構成材料として
活物質であるリチウムをインターカレート/デインター
カレートすることができる炭素材を用いたが、この他に
それ自体が活物質をなすリチウム金属やリチウム合金で
あっても良い。
In this embodiment, a carbon material capable of intercalating / deintercalating lithium as an active material is used as a negative electrode constituting material. It may be a metal or a lithium alloy.

【0042】さらに電解液も、炭酸プロピレンと炭酸エ
チレンの等容積混合溶媒に、過塩素酸リチウムを溶解し
たものを用いたが、他の有機溶媒にリチウム塩を溶質と
して溶解したものでも良い。
Further, as the electrolytic solution, a solution in which lithium perchlorate is dissolved in an equal volume mixed solvent of propylene carbonate and ethylene carbonate is used, but a solution in which a lithium salt is dissolved as a solute in another organic solvent may be used.

【0043】[0043]

【発明の効果】以上のように、本発明の非水電解液で
は、サマリウム(Sm)の酸化物あるいは複合酸化物で
表面が覆われたLi(1-x)CoO2(xは0≦x<1)、
あるいはLi(1-x)CoMO2(ただし、MはCo以外の
遷移金属、xは0≦x<1)からなるリチウム複合酸化
物を正極に用いているので、高電圧下における正極活物
質上での電解液の分解反応や正極活物質の結晶崩壊を防
止することができ、電池として充放電サイクル寿命特性
および保存特性を向上させることができる。
As described above, in the non-aqueous electrolyte of the present invention, Li (1-x) CoO 2 (x is 0 ≦ x ) whose surface is covered with an oxide or a composite oxide of samarium (Sm). <1),
Alternatively, since a lithium composite oxide composed of Li (1-x) CoMO 2 (where M is a transition metal other than Co, and x is 0 ≦ x <1) is used for the positive electrode, the lithium composite oxide is formed on the positive electrode active material under a high voltage. In this case, the decomposition reaction of the electrolyte solution and the collapse of the crystal of the positive electrode active material can be prevented, and the charge / discharge cycle life characteristics and the storage characteristics of the battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液二次電池を示す図FIG. 1 is a diagram showing a non-aqueous electrolyte secondary battery of the present invention.

【図2】充放電サイクル数と放電容量との関係を示す図FIG. 2 is a diagram showing the relationship between the number of charge / discharge cycles and discharge capacity.

【図3】高温保存試験後のサマリウム添加量と電池容量
保持率との関係を示す図
FIG. 3 is a graph showing the relationship between the amount of samarium added after a high-temperature storage test and the battery capacity retention.

【符号の説明】 1 極板群 2 電池ケース 3 封口板 4 正極リード 5 負極リード 6 絶縁パッキング 7 絶縁リング[Description of Signs] 1 Electrode group 2 Battery case 3 Sealing plate 4 Positive electrode lead 5 Negative electrode lead 6 Insulation packing 7 Insulation ring

フロントページの続き (56)参考文献 特開 平4−319259(JP,A) 特開 平4−274164(JP,A) 塚本他、「正極活物質にリチウム・コ バルト複合酸化物を用いたリチウム二次 電池」、第31回電池討論会講演要旨集、 第125−126頁、平成2年11月発行 (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/52 - 4/58 H01M 10/40 Continuation of the front page (56) References JP-A-4-319259 (JP, A) JP-A-4-274164 (JP, A) Tsukamoto et al., “Lithium using lithium-cobalt composite oxide as positive electrode active material” Rechargeable Batteries, "Proceedings of the 31st Battery Symposium, pp. 125-126, November 1990 (58) Fields surveyed (Int. Cl. 7 , DB name) H01M 4/02-4 / 04 H01M 4/52-4/58 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】サマリウムの酸化物または複合酸化物で粒
子の表面が覆われたリチウム複合酸化物Li(1-x)Co
2(xは0≦x<1)からなる正極と、 リチウム、リチウム合金あるいはリチウムをインターカ
レート/デインターカレートすることができる炭素材料
からなる負極と、非水電解液とより構成した非水電解液
二次電池。
1. A lithium composite oxide Li (1-x) Co whose particles are covered with a samarium oxide or composite oxide
A positive electrode composed of O 2 (x is 0 ≦ x <1), a negative electrode composed of lithium, a lithium alloy or a carbon material capable of intercalating / deintercalating lithium, and a non-aqueous electrolyte Non-aqueous electrolyte secondary battery.
【請求項2】 サマリウム(Sm)の添加量は、リチウ
ム複合酸化物中のCoに対しモル比で5%以下である請
求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of samarium (Sm) added is 5% or less in molar ratio with respect to Co in the lithium composite oxide.
【請求項3】サマリウムの酸化物または複合酸化物で粒
子の表面が覆われたリチウム複合酸化物Li(1-x)Co
MO2(ただし、MはCo以外の遷移金属、xは0≦x
<1)からなる正極と、リチウム、リチウム合金あるい
はリチウムをインターカレート/デインターカレートす
ることができる炭素材料からなる負極と、非水電解液と
より構成した非水電解液二次電池。
3. A lithium composite oxide Li.sub. (1-x) Co whose particles are covered with a samarium oxide or a composite oxide.
MO 2 (where M is a transition metal other than Co, x is 0 ≦ x
A non-aqueous electrolyte secondary battery comprising: a positive electrode made of <1); a negative electrode made of lithium, a lithium alloy or a carbon material capable of intercalating / deintercalating lithium; and a non-aqueous electrolyte.
【請求項4】Co以外の遷移金属が、Ni,Mn,Fe
からなる群のうちのいずれかである請求項3記載の非水
電解液二次電池。
4. A transition metal other than Co is Ni, Mn, Fe.
4. The non-aqueous electrolyte secondary battery according to claim 3, which is any one of the group consisting of:
【請求項5】 サマリウム(Sm)の添加量は、リチウ
ム複合酸化物中のCoに対しモル比で5%以下である請
求項3記載の非水電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 3, wherein the amount of samarium (Sm) added is 5% or less in molar ratio with respect to Co in the lithium composite oxide.
JP4299517A 1992-11-10 1992-11-10 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3003431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4299517A JP3003431B2 (en) 1992-11-10 1992-11-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4299517A JP3003431B2 (en) 1992-11-10 1992-11-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06150928A JPH06150928A (en) 1994-05-31
JP3003431B2 true JP3003431B2 (en) 2000-01-31

Family

ID=17873618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4299517A Expired - Fee Related JP3003431B2 (en) 1992-11-10 1992-11-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3003431B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2787153B2 (en) * 1994-09-30 1998-08-13 株式会社日立製作所 Secondary battery and method of manufacturing the same
JPH09139232A (en) * 1995-09-14 1997-05-27 Toshiba Corp Lithium battery
JP3244227B2 (en) 1999-04-26 2002-01-07 日本電気株式会社 Non-aqueous electrolyte secondary battery
JP3617447B2 (en) 1999-12-01 2005-02-02 松下電器産業株式会社 Lithium secondary battery
JP4965019B2 (en) * 2000-08-29 2012-07-04 株式会社三徳 Cathode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5196621B2 (en) * 2005-06-27 2013-05-15 一般財団法人電力中央研究所 Lithium ion secondary battery using room temperature molten salt and method for producing the same
JP5042611B2 (en) * 2006-12-20 2012-10-03 三星エスディアイ株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
JP4656097B2 (en) * 2007-06-25 2011-03-23 ソニー株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5619412B2 (en) * 2009-09-04 2014-11-05 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
CN103270627B (en) * 2010-12-20 2016-02-17 三洋电机株式会社 Positive electrode for nonaqueous electrolyte secondary battery and use the rechargeable nonaqueous electrolytic battery of this positive pole
WO2013002369A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Non-aqueous electrolyte secondary cell, and method for producing same
JP6481907B2 (en) * 2015-02-20 2019-03-13 日本電気株式会社 Lithium iron manganese based composite oxide, positive electrode active material for lithium ion secondary battery using the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
塚本他、「正極活物質にリチウム・コバルト複合酸化物を用いたリチウム二次電池」、第31回電池討論会講演要旨集、第125−126頁、平成2年11月発行

Also Published As

Publication number Publication date
JPH06150928A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
JP2855877B2 (en) Non-aqueous electrolyte secondary battery
JP4055241B2 (en) Nonaqueous electrolyte secondary battery
JPH0737576A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive pole active material
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
JPH07296853A (en) Method for charging
JP2751624B2 (en) Non-aqueous electrolyte secondary battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH0547383A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JP3049973B2 (en) Non-aqueous electrolyte secondary battery
JPH056779A (en) Nonaqueous electrolytic secondary battery
JPH0487268A (en) Nonaqueous electrolyte secondary battery
US6451482B1 (en) Non-aqueous electrolyte secondary batteries
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JP3136679B2 (en) Non-aqueous electrolyte secondary battery
JPH056780A (en) Nonaqueous electrolytic secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP3008627B2 (en) Non-aqueous electrolyte secondary battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JPH04319259A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees