JPH0737576A - Nonaqueous electrolyte secondary battery and manufacture of its positive pole active material - Google Patents

Nonaqueous electrolyte secondary battery and manufacture of its positive pole active material

Info

Publication number
JPH0737576A
JPH0737576A JP5202661A JP20266193A JPH0737576A JP H0737576 A JPH0737576 A JP H0737576A JP 5202661 A JP5202661 A JP 5202661A JP 20266193 A JP20266193 A JP 20266193A JP H0737576 A JPH0737576 A JP H0737576A
Authority
JP
Japan
Prior art keywords
lithium
aqueous electrolyte
particles
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5202661A
Other languages
Japanese (ja)
Other versions
JP3047693B2 (en
Inventor
Kaoru Inoue
薫 井上
Kazuhiro Okamura
一広 岡村
Junichi Yamaura
純一 山浦
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5202661A priority Critical patent/JP3047693B2/en
Publication of JPH0737576A publication Critical patent/JPH0737576A/en
Application granted granted Critical
Publication of JP3047693B2 publication Critical patent/JP3047693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a positive pole active material for a nonaqueous electrolyte secondary battery excellent in charge/discharge efficiency with high capacity by smoothly promoting intercalate/deintercalate reaction of lithium. CONSTITUTION:In a spherical and almost spherical or elliptical secondary particle 2, a plate-shaped monocrystal grain 1, having a stratified structure of regularly laminating a thin piece, is collected, and in almost or all the plate-shaped crystal grains for constituting a surface part of this secondary particle 2, a stratified structural surface of inercalating/deintercalating lithium is exposed toward the outside of this secondary particle 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池、
特にその正極の活物質材料であるリチウム複合酸化物の
改良に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, it relates to improvement of a lithium composite oxide which is an active material material for the positive electrode.

【0002】[0002]

【従来の技術】近年、AV機器あるいはパソコン等の電
子機器のホータブル化、コードレス化が急速に進んでお
り、これらの駆動用電源として小型、軽量で高エネルギ
ー密度を有する二次電池への要求が高い。このような点
で非水系二次電池、特にリチウム二次電池は、とりわけ
高電圧、高エネルギー密度を有する電池として期待が大
きい。
2. Description of the Related Art In recent years, AV equipment and electronic equipment such as personal computers are rapidly becoming portable and cordless, and there is a demand for a secondary battery having a small size, a light weight and a high energy density as a power source for driving them. high. From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, are particularly expected as batteries having high voltage and high energy density.

【0003】上記の要望を満たす正極活物質材料として
リチウムをインターカレート、デインターカレートする
ことのできる層状化合物、たとえば米国特許第4302
518号明細書に示されているLi(1-x)NiO2(ただ
し0≦x<1)や特開平4−267053号公報に示さ
れているLiMM′O2(ただしM:F e,Co,N
i、M′:Ti,V,Cr,Mn)などリチウムと遷移
金属を主体とする複合酸化物が提案されている。
A layered compound capable of intercalating and deintercalating lithium as a positive electrode active material satisfying the above demands, for example, US Pat. No. 4,302.
Li (1-x) NiO 2 (where 0 ≦ x <1) shown in Japanese Patent No. 518 or LiMM′O 2 (where M: F e, Co shown in Japanese Patent Laid-Open No. 267053/1992). , N
i, M ': Ti, V, Cr, Mn) and other complex oxides mainly composed of lithium and a transition metal have been proposed.

【0004】これらの正極活物質、たとえば一般式Li
NiO2で表わされるニッケル 酸リチウムは次のように
して作製されている。
These positive electrode active materials, such as the general formula Li
Lithium nickelate represented by NiO 2 is manufactured as follows.

【0005】原材料の水酸化ニッケル(Ni(OH)2
は所定の濃度の硫酸ニッケルと 水酸化ナトリウムとを
混合し、これらを撹拌することなく中和反応させてこの
ときに沈殿析出するNi(OH)2の塊状物を得る。この
塊状物を乾燥、固化し た後、粉砕してさまざまな粒子
形状を有する不定形のNi(OH)2粒子を得 る。つい
で、このNi(OH)2粒子と水酸化リチウム(LiO
H)とを所定 の混合比に混合し、これらを酸素雰囲気
中で500〜800℃で所定時間熱処理してLiNiO
2を得る。そして、このLiNiO2を所定の粒子径にな
るように粉砕して不定形のLiNiO2粒子を得てい
る。図4にその走査型 電子顕微鏡写真を示した。
Raw material nickel hydroxide (Ni (OH) 2 )
Is a mixture of nickel sulfate and sodium hydroxide having a predetermined concentration, and these are neutralized without stirring to obtain Ni (OH) 2 agglomerates which precipitate at this time. This lump is dried, solidified, and then pulverized to obtain amorphous Ni (OH) 2 particles having various particle shapes. Next, the Ni (OH) 2 particles and lithium hydroxide (LiO
H) is mixed with a predetermined mixing ratio, and these are heat-treated in an oxygen atmosphere at 500 to 800 ° C. for a predetermined time to obtain LiNiO 2.
Get 2 Then, this LiNiO 2 is pulverized so as to have a predetermined particle diameter to obtain amorphous LiNiO 2 particles. The scanning electron micrograph is shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ようにして得られるLiNiO2粒子では、次のよ うな
問題が生じていた。
However, the LiNiO 2 particles obtained as described above have the following problems.

【0007】すなわち、水酸化ニッケル(Ni(O
H)2)はニッケルイオンと水酸化物 イオンとが結合し
た層状の化合物であり、この層状構造の層間部分に熱で
溶融したリチウム化合物のリチウムが入り込む反応によ
りニッケル酸リチウム(LiNiO2)が生成される。
このニッケル酸リチウム(LiNiO2)の生成に用い
られていた水酸化ニッケル(Ni(OH)2)のこれまで
の代表的な粒 子構造を図5(A)(B)に示す。
That is, nickel hydroxide (Ni (O
H) 2 ) is a layered compound in which nickel ions and hydroxide ions are combined, and lithium nickelate (LiNiO 2 ) is produced by the reaction of lithium of the lithium compound melted by heat into the interlayer portion of this layered structure. To be done.
FIGS. 5A and 5B show typical particle structures of nickel hydroxide (Ni (OH) 2 ) used to produce the lithium nickel oxide (LiNiO 2 ) up to now.

【0008】図5(A)は、このNi(OH)2粒子の倍
率1000倍の走査型電子顕微 鏡写真(以下、SEM
写真)であり、(B)はその粒子表面の部分拡大写真で
ある。
FIG. 5 (A) is a scanning electron microscopic photograph (hereinafter referred to as SEM) of the Ni (OH) 2 particles at a magnification of 1000 times.
And (B) is a partially enlarged photograph of the particle surface.

【0009】図5(A)(B)に示したようにNi(O
H)2粒子は製造条件によって、 その単結晶粒が板状で
規則正しく積層した層状構造になるまで成長しないで、
非常に微細な層状構造をもった単結晶粒がさまざまな方
向に核成長することがある。そして、これらの微細な単
結晶粒の集合によって、さまざまな形を有する不定形の
二次粒子が生成されていた。
As shown in FIGS. 5A and 5B, Ni (O)
H) 2 grains do not grow until the single crystal grains have a plate-like and regularly laminated layered structure depending on the production conditions.
Single crystal grains with a very fine layered structure may nucleate in various directions. Then, due to the aggregation of these fine single crystal grains, amorphous secondary particles having various shapes were generated.

【0010】また、このNi(OH)2の二次粒子では、
単結晶粒がさまざまな方向に成 長するため、単結晶粒
の層状構造面が、前記二次粒子の外側に向かって露出す
ることは少なかった。
Further, in the Ni (OH) 2 secondary particles,
Since the single crystal grains grow in various directions, the layer structure surface of the single crystal grain was rarely exposed to the outside of the secondary particles.

【0011】したがって、このNi(OH)2粒子を出発
材料としたLiNiO2粒子では、リチウムがインター
カレート、デインターカレートする層状構造面が粒子の
外側に向かって露出していないので、電池の充放電時
に、正極活物質でリチウムがインターカレート、デイン
ターカレートする反応が効率良く行われなかった。
Therefore, in the LiNiO 2 particles using the Ni (OH) 2 particles as a starting material, the layer structure surface on which lithium intercalates and deintercalates is not exposed to the outside of the particles, so During the charging and discharging, the reaction of lithium intercalating and deintercalating with the positive electrode active material was not efficiently performed.

【0012】したがって、前記のLiNiO2やリチウ
ム複合酸化物であるLiNiM nO2などを正極活物質
に用いた場合には、活物質の層間にインターカレー ト
されるリチウムの量が少なく、容量が低いという問題が
生じていた。
Therefore, when LiNiO 2 or LiNiM nO 2 which is a lithium composite oxide is used as the positive electrode active material, the amount of lithium intercalated between the layers of the active material is small and the capacity is low. There was a problem.

【0013】本発明は、このような課題を解決するもの
であり、複合酸化物におけるリチウムのインターカレー
ト、デインターカレート反応が円滑に進み、高容量で充
放電効率にも優れた非水電解液二次電池およびそのため
の正極活物質を提供するものである。
The present invention is intended to solve such a problem, in which the intercalation and deintercalation reactions of lithium in the complex oxide proceed smoothly, the capacity is high, and the charge / discharge efficiency is excellent. An electrolyte secondary battery and a positive electrode active material therefor are provided.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非水電解液二次電池は、正極活物質を一
般式LiNiO2で表わされるニッケル酸リチウムまた
はLiNi(1-x)Mnx2(ただし、0<x<0.3)
で表わされるニッケルマンガン酸リチウムとし、その単
結晶粒は、薄片が規則正しく積層した層状構造を有する
板状結晶であって、前記板状の結晶粒が多数集合した二
次粒子の形状は、球状、ほぼ球状あるいは楕円体状であ
るとともに、前記二次粒子の表面部分を構成するほとん
どあるいはすべての板状結晶粒は、その層状構造面を外
側に向けているものである。
In order to solve the above problems, in the non-aqueous electrolyte secondary battery of the present invention, the positive electrode active material is lithium nickel oxide represented by the general formula LiNiO 2 or LiNi (1-x). ) Mn x O 2 (where 0 <x <0.3)
With lithium nickel manganate represented by, the single crystal grains are plate-like crystals having a layered structure in which flakes are regularly stacked, and the shape of the secondary particles in which the plate-like crystal grains are aggregated is spherical, Most or all of the plate-like crystal grains, which are substantially spherical or ellipsoidal and constitute the surface portion of the secondary particles, have their layered structure faces facing outward.

【0015】[0015]

【作用】本発明の非水電解液二次電池では、正極活物質
であるLiNiO2または LiNi(1-x)Mnx2(た
だし、0<x<0.3)の単結晶粒は 、規則正しく配
向して積層した板状結晶となっている。
In the non-aqueous electrolyte secondary battery of the present invention, the single crystal grains of LiNiO 2 or LiNi (1-x) Mn x O 2 (where 0 <x <0.3) as the positive electrode active material are It is a plate-like crystal that is regularly oriented and laminated.

【0016】この板状結晶粒は、これらが集合して二次
粒子を形成した際、その二次粒子の形状が、球状、ほぼ
球状あるいは楕円体状になるように、また前記板状結晶
の層状構造部分が前記二次粒子の外側すなわち表面に向
かって露出するように集合している。
The plate-like crystal grains have such a shape that when they are aggregated to form secondary particles, the shape of the secondary particles is spherical, almost spherical or ellipsoidal. The layered structure portions are assembled so as to be exposed toward the outside, that is, the surface of the secondary particles.

【0017】このように本発明は正極活物質粒子は、リ
チウムがインターカレート、デインターカレートする単
結晶粒子の層状構造部分が規則正しく配向して積層した
板状構造をなしているとともに、前記層状構造部分は単
結晶粒が集合した二次粒子の表面に露出して存在してい
る。このような粒子構造は、活物質にリチウムをインタ
ーカレート、デインターカレートさせる反応を進める上
で極めて有効である。このため、この正極活物質を用い
た電池では、電池の充放電時に正極においてリチウムが
インターカレート、デインターカレートする反応が円滑
に進み、活物質の充放電効率が高まり、電池容量を増大
させることができる。
As described above, according to the present invention, the positive electrode active material particles have a plate-like structure in which the layered structure portions of the single crystal particles in which lithium is intercalated and deintercalated are regularly oriented and laminated. The layered structure portion is exposed and exists on the surface of the secondary particles in which single crystal grains are aggregated. Such a particle structure is extremely effective in promoting the reaction of intercalating and deintercalating lithium in the active material. Therefore, in a battery using this positive electrode active material, the reaction in which lithium intercalates and deintercalates smoothly at the positive electrode during charge / discharge of the battery, the charge / discharge efficiency of the active material increases, and the battery capacity increases. Can be made.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】(実施例1)正極活物質として一般式Li
NiO2で表わされるニッケル酸リチウムを 用いた場合
について説明する。
(Example 1) The general formula Li was used as the positive electrode active material.
The case of using lithium nickelate represented by NiO 2 will be described.

【0020】最初に、原材料となる水酸化ニッケル(N
i(OH)2)粒子を以下のよう にして作製した。撹拌槽
内に濃度約1Nの硫酸ニッケル水溶液と濃度約1Nの水
酸化ナトリウム水溶液を所定量投入し、これらを撹拌翼
を高速回転させることにより撹拌した。溶液は撹拌状態
でpHを約11に維持して温度を40℃に保った。
First, nickel hydroxide (N
i (OH) 2 ) particles were prepared as follows. A predetermined amount of an aqueous solution of nickel sulfate having a concentration of about 1N and an aqueous solution of sodium hydroxide having a concentration of about 1N were put into a stirring tank, and these were stirred by rotating a stirring blade at a high speed. The solution was maintained under stirring at a pH of about 11 and a temperature of 40 ° C.

【0021】この撹拌時に硫酸ニッケルと水酸化ナトリ
ウムとの中和反応で沈殿析出した水酸化ニッケル(Ni
(OH)2)の粒子構造を図1(A)(B)に示す。図1
(A)はNi(OH)2粒子の倍率1000倍のSEM写
真であり、(B)は その一部表面の拡大写真である。
During this stirring, nickel hydroxide (Ni hydroxide) precipitated by the neutralization reaction of nickel sulfate and sodium hydroxide (Ni
The particle structure of (OH) 2 ) is shown in FIGS. Figure 1
(A) is an SEM photograph of Ni (OH) 2 particles at a magnification of 1000 times, and (B) is an enlarged photograph of a part of the surface.

【0022】図1(A)(B)に示したように、このN
i(OH)2粒子は、薄片が多数 積層した板状結晶からな
る単結晶粒が集合して、球状、ほぼ球状あるいは楕円体
状の二次粒子を形成しており、前記二次粒子の表面部分
を構成するほとんどあるいはすべての板状結晶粒は、そ
の槽状構造が臨める面が二次粒子の外側に向かって露出
している。
As shown in FIGS. 1A and 1B, this N
The i (OH) 2 particles are composed of single crystal grains composed of plate-like crystals in which a large number of thin flakes are laminated to form spherical, nearly spherical or ellipsoidal secondary particles. In most or all of the plate-like crystal grains forming the part, the surface facing the tank-like structure is exposed to the outside of the secondary particles.

【0023】次に、硫酸ニッケルと水酸化ナトリウムと
の反応熟成時間を変化させることによって、Ni(OH)
2の粒子径を制御し、平均粒子径がそれぞれ1,2,5
,10,15,20,25μmのNi(OH)2粒子を作
製した。
Next, by changing the reaction aging time of nickel sulfate and sodium hydroxide, Ni (OH) 2
The particle size of 2 is controlled, and the average particle size is 1, 2, 5 respectively.
, 10, 15, 20, 25 μm Ni (OH) 2 particles were prepared.

【0024】得られた水酸化ニッケル粒子は水洗した
後、デカンテーションにより粒子に残留するアルカリイ
オンを除去した。
After washing the obtained nickel hydroxide particles with water, alkali ions remaining in the particles were removed by decantation.

【0025】そして、それぞれの平均粒子径の水酸化ニ
ッケル(Ni(OH)2)粒子と 、水酸化リチウム(Li
OH)とを所定の混合比に混合し、これらを酸素雰囲気
中で750℃で20時間熱処理して本発明のニッケル酸
リチウム(LiNiO2)粒子を得た。本発明のLiN
iO2粒子の構造を図2および図3に示す。図2はLi
NiO2粒子の表面状態の拡大モデル図であり、図3は
その倍率10000倍のSEM写真である。図2および
図3に示したように本発明のLiNiO2粒子は、原材
料であるNi(OH)2粒子の形状を生かした構造をも
ち、薄片が積層した板状結晶からなる単結晶粒1が、球
状、ほぼ球状あるいは楕円体状に集合した二次粒子2で
ある。
Then, nickel hydroxide (Ni (OH) 2 ) particles having respective average particle diameters and lithium hydroxide (Li
OH) was mixed in a predetermined mixing ratio, and these were heat-treated in an oxygen atmosphere at 750 ° C. for 20 hours to obtain lithium nickelate (LiNiO 2 ) particles of the present invention. LiN of the present invention
The structure of iO 2 particles is shown in FIGS. 2 and 3. Figure 2 shows Li
FIG. 3 is an enlarged model view of the surface state of NiO 2 particles, and FIG. 3 is a SEM photograph at a magnification of 10,000 times. As shown in FIG. 2 and FIG. 3, the LiNiO 2 particles of the present invention have a structure that takes advantage of the shape of the raw material Ni (OH) 2 particles, and the single crystal grains 1 composed of plate-like crystals in which flakes are laminated are The secondary particles 2 are spherical, nearly spherical or ellipsoidal aggregates.

【0026】また、この二次粒子2の表面部分を構成す
るほとんどあるいはすべての板状結晶粒1は、リチウム
がインターカレート、デインターカレートする反応面で
ある層状構造部分が二次粒子の外側に向いて露出してい
る。
In most or all of the plate-like crystal grains 1 constituting the surface portion of the secondary particle 2, the layered structure portion which is the reaction surface for intercalating and deintercalating lithium is the secondary particle. It is exposed to the outside.

【0027】ついで、このようにして得られた平均粒子
径1,2,5,10,15,20,25μmのLiNi
2を用いて試験極を作製し、LiNiO2の容量を測定
した。
Then, LiNi having an average particle diameter of 1, 2, 5, 10, 15, 20, 25 μm obtained in this way
A test electrode was prepared using O 2 and the capacity of LiNiO 2 was measured.

【0028】なお、試験極3は、ニッケル酸リチウム
(LiNiO2)とアセチレンブ ラック、グラファイト
およびフッ素樹脂系結着剤を重量比100:4:4:7
で混合し、これに所定の有機溶媒を加えてペースト状に
した後、このペーストをアルミニウム箔の両面に塗布し
て作製した。
The test electrode 3 contains lithium nickel oxide (LiNiO 2 ) and acetylene black, graphite and a fluororesin binder in a weight ratio of 100: 4: 4: 7.
Was mixed, and a predetermined organic solvent was added thereto to form a paste, and the paste was applied to both surfaces of the aluminum foil.

【0029】図6に示したようにこの試験極3をリチウ
ムからなる対極4および参照極5とともにガラス容器6
内に収納し、炭酸プロピレン、炭酸エチレンの等体積混
合溶媒に過塩素酸リチウムを1モル/lの割合で溶解し
た電解液を用いて簡易セルを構成した。
As shown in FIG. 6, the test electrode 3 is arranged in a glass container 6 together with a counter electrode 4 and a reference electrode 5 made of lithium.
A simple cell was constructed by using an electrolytic solution which was housed inside and in which lithium perchlorate was dissolved in an equal volume mixed solvent of propylene carbonate and ethylene carbonate at a ratio of 1 mol / l.

【0030】そして、この簡易セルを用いて充放電試験
を行った。充放電試験は、前記試験極に対する電流密度
を0.5mA/cm2として定電流で参照極に対し4.
3Vまで充電し、3.0Vまで放電して行った。
A charge / discharge test was conducted using this simple cell. In the charge / discharge test, the current density for the test electrode was set to 0.5 mA / cm 2 , and a constant current was applied to the reference electrode for 4.
It was charged to 3V and discharged to 3.0V.

【0031】また、水酸化ニッケル(Ni(OH)2)粒
子として硫酸ニッケルと水酸化 ナトリウムとを撹拌せ
ずに中和反応させ、このときに沈殿析出するNi(OH)
2の塊状物を乾燥、固化および粉砕して得た粉末を用
い、これを水酸化リチウ ム(LiOH)とともに本発
明と同様の条件で熱処理して図4に示したような不定形
のLiNiO2粒子を作製し、これを従来のLiNiO2
粒子とした。そして、このLiNiO2粒子を用いてそ
れ以外は本発明と同様の簡易 セルを構成し、上記と同
様の充放電試験を各50個につき行った。これらの結果
を図7に示す。
Further, as nickel hydroxide (Ni (OH) 2 ) particles, nickel sulfate and sodium hydroxide are neutralized without stirring, and Ni (OH) which precipitates at this time is precipitated.
The powder obtained by drying, solidifying, and crushing the agglomerates of No. 2 was heat-treated with lithium hydroxide (LiOH) under the same conditions as in the present invention, and the amorphous LiNiO 2 as shown in FIG. 4 was used. Particles were prepared and the particles were made into conventional LiNiO 2
It was made into particles. Then, using this LiNiO 2 particle, a simple cell similar to that of the present invention was constructed except for the above, and the same charge / discharge test as above was carried out for 50 cells. The results are shown in FIG.

【0032】図7に示したよう従来のLiNiO2粒子
に対して本発明のLiNiO2粒子では、リチウムがイ
ンターカレート、デインターカレートする結晶の層状構
造部分が、粒子の表面に露出しているため、リチウムの
インターカレート、デインターカレート反応が円滑に進
み、活物質の充放電容量が増大した。特に平均粒子径が
2〜20μmの本発明のLiNiO2粒子では平均15
0mAh/ g以上の高い容量値を示した。図7中、上
下幅は容量のバラツキを示す。
[0032] In LiNiO 2 particles of the present invention over conventional LiNiO 2 particles as shown in FIG. 7, lithium intercalated lamellar structure portion of the de-intercalating crystals exposed on the surface of the particles Therefore, the intercalation and deintercalation reactions of lithium proceeded smoothly, and the charge / discharge capacity of the active material increased. Particularly in the case of the LiNiO 2 particles of the present invention having an average particle diameter of 2 to 20 μm, the average is 15
It showed a high capacity value of 0 mAh / g or more. In FIG. 7, the upper and lower widths show variations in capacity.

【0033】(実施例2)正極活物質として一般式Li
Ni0.8Mn0.22で表わされるニ ッケルマンガン酸リ
チウムを用いた場合について説明する。
Example 2 As the positive electrode active material, the general formula Li was used.
The case of using lithium nickel manganate represented by Ni 0.8 Mn 0.2 O 2 will be described.

【0034】原材料となる水酸化ニッケル(Ni(OH)
2)は実施例1と同様にして作 製し、平均粒子径が1,
2,5,10,15,20,25μmの水酸化ニッケル
粒子を得た。そして、それぞれの平均粒子径の水酸化ニ
ッケル(Ni(OH)2 )粒子に、水酸化リチウム(Li
OH)と炭酸マンガン(MnCO3)と を所定の混合比
に混合し、これらを酸素雰囲気中で750℃で20時間
熱処理して本発明のニッケルマンガン酸リチウム(Li
Ni0.8Mn0.22 )粒子を得た。
Nickel hydroxide (Ni (OH)) as a raw material
2 ) was produced in the same manner as in Example 1 and had an average particle size of 1,
Nickel hydroxide particles of 2, 5, 10, 15, 20, 25 μm were obtained. Then, nickel hydroxide (Ni (OH) 2 ) particles having respective average particle diameters are added to lithium hydroxide (Li
OH) and manganese carbonate (MnCO 3 ) are mixed in a predetermined mixing ratio, and these are heat-treated in an oxygen atmosphere at 750 ° C. for 20 hours to obtain lithium nickel manganese oxide (Li) of the present invention.
Ni 0.8 Mn 0.2 O 2 ) particles were obtained.

【0035】また、水酸化ニッケル(Ni(OH)2)粒
子として、硫酸ニッケルと水酸 化ナトリウムとを撹拌
せずに中和反応させ、このときに沈殿析出するNi(O
H)2の塊状物を乾燥、固化した後、これを粋砕した粉末
を用い、これを水酸化 リチウム(LiOH)および炭
酸マンガン(MnCO3)とともに本発明と 同様の条件
で熱処理して不定形のLiNi0.8Mn0.22粒子を作
製し、これを従来のLiNi0.8Mn0.22粒子とし
た。
Further, as nickel hydroxide (Ni (OH) 2 ) particles, nickel sulfate and sodium hydroxide are neutralized without stirring, and Ni (O 2 ) precipitates at this time.
H) 2 agglomerates were dried and solidified, and then ground powder was used, which was heat treated with lithium hydroxide (LiOH) and manganese carbonate (MnCO 3 ) under the same conditions as in the present invention to give an amorphous form. Of LiNi 0.8 Mn 0.2 O 2 particles
Manufactured, and used as conventional LiNi 0.8 Mn 0.2 O 2 particles.

【0036】そして、本発明と従来のLiNi0.8Mn
0.22粒子を用いて実 施例1と同様の試験極および簡
易セルを各50個構成し、実施例1と同様の充放電試験
を行った。この結果を図8に示す。
Then, according to the present invention and the conventional LiNi 0.8 Mn
Using 0.2 O 2 particles, 50 test electrodes and 50 simple cells similar to those in Example 1 were configured, and the same charge and discharge test as in Example 1 was conducted. The result is shown in FIG.

【0037】図8に示したように従来のLiNi0.8
0.22粒子に対して 本発明のLiNi0.8Mn0.22
粒子では、リチウムがインターカ レート、デインター
カレートする結晶の層状構造部分が粒子表面に露出して
いるため、リチウムインターカレート、デインターカレ
ート反応が円滑に進み、活物質の充放電容量が大きくな
った。特に平均粒子径が2〜20μmの本発明のLiN
0.8Mn0.22粒子では高い容量値を示した。
As shown in FIG. 8, conventional LiNi 0.8 M
LiNi 0.8 Mn 0.2 O 2 of the present invention for n 0.2 O 2 particles
In the particles, since the layered structure part of the crystal in which lithium intercalates and deintercalates is exposed on the surface of the particles, the lithium intercalation and deintercalation reactions proceed smoothly, and the charge / discharge capacity of the active material is increased. It got bigger. Particularly, the LiN of the present invention having an average particle size of 2 to 20 μm
The i 0.8 Mn 0.2 O 2 particles showed a high capacity value.

【0038】ついで、一般式LiNi(1-x)Mnx2
表わされるニッケルマ ンガン酸リチウムのxの最適範
囲を、この正極活物質を用いた円筒形電池の充放電サイ
クル寿命特性を評価することによって検討した。
Next, the optimum range of x of lithium nickel manganate represented by the general formula LiNi (1-x) Mn x O 2 is evaluated for the charge-discharge cycle life characteristics of the cylindrical battery using this positive electrode active material. Examined by that.

【0039】平均粒子径10μmの本発明のLiNi
(1-x)Mnx2粒子(た だし、xは0,0.1,0.
2,0.3,0.4)とアセチレンブラック、グラファ
イトおよびフッ素樹脂系結着剤とを重量比100:4:
4:7で混合し、これに所定の有機溶媒を加えてペース
ト状にした後、この正極合剤をアルミニウム箔の両面に
塗布し、乾燥後圧延して正極板を作製した。
LiNi of the present invention having an average particle size of 10 μm
(1-x) Mn x O 2 particles (however, x is 0, 0.1, 0.
2, 0.3, 0.4) and acetylene black, graphite and a fluororesin binder in a weight ratio of 100: 4:
After mixing 4: 7 and adding a predetermined organic solvent to form a paste, the positive electrode mixture was applied to both sides of an aluminum foil, dried and rolled to produce a positive electrode plate.

【0040】負極板は、コークスを2700℃程度以上
の高温で焼成した炭素材と、フッ素樹脂系結着剤とを重
量比100:10で混合し、これをカルボキシメチルセ
ルロース水溶液に懸濁させてペースト状にし、このペー
ストを銅箔の両面に塗着し、乾燥後圧延して作製した。
For the negative electrode plate, a carbon material obtained by firing coke at a high temperature of about 2700 ° C. or higher and a fluororesin binder are mixed at a weight ratio of 100: 10, and the mixture is suspended in an aqueous carboxymethylcellulose solution to form a paste. The paste was applied to both sides of a copper foil, dried, and then rolled.

【0041】図9にこれらの正、負極板を用いて構成し
た円筒形電池の縦断面図を示す。電池の構成は帯状の
正、負極板それぞれにリードを取りつけ、ポリプロピレ
ン製のセパレータを介して全体を渦巻き状に巻回し、電
池ケース内に収納した。電解液にはプロピレンカーボネ
ートとエチレンカーボネートとの等容積混合溶媒に、過
塩素酸リチウムを1モル/lの割合で溶解したものを用
い、これを所定量注入し、封口したものを試験電池とし
た。
FIG. 9 is a vertical sectional view of a cylindrical battery constructed by using these positive and negative electrode plates. The battery was constructed by attaching a lead to each of the strip-shaped positive and negative electrode plates, spirally winding the whole through a polypropylene separator, and storing it in a battery case. As the electrolytic solution, a solution prepared by dissolving lithium perchlorate in an equal volume mixed solvent of propylene carbonate and ethylene carbonate at a ratio of 1 mol / l was injected into a predetermined amount, and the sealed one was used as a test battery. .

【0042】図9において、7は耐有機電解液性のステ
ンレス綱板を加工した電池ケース、8は安全弁を設けた
封口板、9は絶縁パッキングを示す。
In FIG. 9, 7 is a battery case formed by processing a stainless steel plate resistant to organic electrolyte, 8 is a sealing plate provided with a safety valve, and 9 is an insulating packing.

【0043】また、正極板10および負極板11はセパ
レータ12を介して渦巻き状に巻回されてケース7内に
収納されている。そして上記正極板10からは正極リー
ド13が引き出されて封口板8に接続され、負極板11
からは負極リード14が引き出されて電池ケース7の底
部に接続されている。
The positive electrode plate 10 and the negative electrode plate 11 are spirally wound via the separator 12 and housed in the case 7. The positive electrode lead 13 is pulled out from the positive electrode plate 10 and connected to the sealing plate 8, and the negative electrode plate 11
The negative electrode lead 14 is drawn out from the above and is connected to the bottom of the battery case 7.

【0044】これらの試験電池を用いて充放電電流10
0mA、充電終止電圧4.1V、充電終止電圧3.0V
の条件下での定電流放電試験を50サイクルまで常温で
行った。
Using these test batteries, a charge / discharge current of 10
0mA, charge end voltage 4.1V, charge end voltage 3.0V
The constant current discharge test under the above conditions was conducted up to 50 cycles at room temperature.

【0045】この結果を図10に示す。図10に示した
ように、LiNi(1-x)Mnx2におけるMnの 置換原
子数xが0.1〜0.3の範囲ではx=0のLiNiO
2に比べてサ イクル寿命を向上させることができる。し
かし、xが0.4になると活物質内でリチウムのインタ
ーカレート、デインターカレート反応に有効な合金相が
減少するため、結果的に活物質の容量が小さくなり、サ
イクル寿命特性が低下した。
The results are shown in FIG. As shown in FIG. 10, in the range of the substitution atom number x of Mn in LiNi (1-x) Mn x O 2 in the range of 0.1 to 0.3, LiNiO of x = 0.
Cycle life can be improved compared to 2 . However, when x becomes 0.4, the alloy phase effective for the intercalation / deintercalation reaction of lithium in the active material decreases, resulting in a decrease in the capacity of the active material and a decrease in cycle life characteristics. did.

【0046】したがって、本発明のLiNi(1-x)Mnx
2のxの範囲は、0 <x<0.3であることが好まし
い。
Therefore, the LiNi (1-x) Mn x of the present invention is
The range of x of O 2 is preferably 0 <x <0.3.

【0047】また、本発明の一般式LiNiO2および
LiNi(1-x)Mnx2(ただし0<x<0.3)で表
わされる正極活物質粒子では、図7および 図8に示し
たように、従来の正極活物質粒子に比べて上下幅で示し
た容量のバラツキが少なかった。
The positive electrode active material particles represented by the general formulas LiNiO 2 and LiNi (1-x) Mn x O 2 (where 0 <x <0.3) of the present invention are shown in FIGS. 7 and 8. As described above, the variation in capacity indicated by the vertical width was smaller than that of the conventional positive electrode active material particles.

【0048】これは、従来の正極活物質粒子では、単結
晶粒の層状構造の配向性が不均一であり、粒子形状も不
定形で粒子径の制御も難しいのに対して、本発明の正極
活物質粒子では単結晶粒の層状構造の配向性が均一で、
粒子形状や粒子径の制御が容易であることによると考え
られる。
This is because in the conventional positive electrode active material particles, the orientation of the layered structure of the single crystal grains is non-uniform, the particle shape is also indefinite, and it is difficult to control the particle diameter. In the active material particles, the orientation of the layered structure of single crystal grains is uniform,
It is considered that this is because it is easy to control the particle shape and particle diameter.

【0049】なお、本実施例では、リチウム化合物とし
て水酸化リチウムを用いたが、これ以外に硝酸リチウ
ム、炭酸リチウム、酸化リチウムのいずれかであれば同
様の効果が得られる。
In this embodiment, lithium hydroxide was used as the lithium compound, but the same effect can be obtained with any one of lithium nitrate, lithium carbonate and lithium oxide.

【0050】また、マンガン化合物としては炭酸マンガ
ン以外に硝酸マンガン、酸化マンガンのいずれかであれ
ば同様の効果が得られる。
The same effect can be obtained if the manganese compound is manganese nitrate or manganese oxide in addition to manganese carbonate.

【0051】[0051]

【発明の効果】以上のように、本発明の非水電解液二次
電池は、正極活物質を一般式LiNiO2で表わされる
ニッケル酸リチウムまたはLiNi(1-x)Mnx2(た
だし、0<x<0.3)で表わされるニッケルマンガン
酸リチウムと し、その単結晶粒は層状構造をもった板
状結晶であって、この板状結晶粒が多数集合した二次粒
子の形状は、球状、ほぼ球状あるいは楕円体状であると
ともに、二次粒子の表面部分を構成するほとんどあるい
はすべての板状結晶粒は、リチウムがインターカレー
ト、デインターカレートする層状構造面が二次粒子の外
側に向いている。
As described above, in the non-aqueous electrolyte secondary battery of the present invention, the positive electrode active material is lithium nickel oxide represented by the general formula LiNiO 2 or LiNi (1-x) Mn x O 2 (however, 0 <x <0.3) lithium nickel manganate, the single crystal grains of which are plate-like crystals having a layered structure, and the shape of secondary particles in which a large number of these plate-like crystal grains are aggregated is , Spherical, almost spherical or ellipsoidal shape, and most or all of the plate-like crystal grains constituting the surface portion of the secondary particles, the layered structure surface in which lithium intercalates and deintercalates is the secondary particle Facing out of.

【0052】このため、この正極活物質粒子ではリチウ
ムのインターカレート、デインターカレート反応が極め
て円滑に進み、正極活物質の充放電容量を増大させるこ
とができる。
Therefore, in the positive electrode active material particles, the intercalation and deintercalation reactions of lithium proceed extremely smoothly, and the charge / discharge capacity of the positive electrode active material can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)本発明で用いる水酸化ニッケルの粒子構
造を示す電子顕微鏡写真 (B)同部分拡大写真
FIG. 1A is an electron micrograph showing the particle structure of nickel hydroxide used in the present invention, and FIG.

【図2】本発明のニッケル酸リチウム粒子の代表的な表
面状態を示す拡大モデル図
FIG. 2 is an enlarged model diagram showing a typical surface state of lithium nickelate particles of the present invention.

【図3】同ニッケル酸リチウムの粒子構造を示す電子顕
微鏡写真
FIG. 3 is an electron micrograph showing the particle structure of the lithium nickelate.

【図4】従来のニッケル酸リチウムの粒子構造を示す電
子顕微鏡写真
FIG. 4 is an electron micrograph showing the particle structure of conventional lithium nickel oxide.

【図5】(A)従来の水酸化ニッケルの粒子構造を示す
電子顕微鏡写真 (B)同部分拡大写真
FIG. 5 (A) Electron micrograph showing the particle structure of conventional nickel hydroxide (B) Enlarged photograph of the same part

【図6】本発明で用いた簡易セルの断面図FIG. 6 is a sectional view of a simple cell used in the present invention.

【図7】本発明と従来のニッケル酸リチウム粒子の平均
粒子径と容量との関係を示す図
FIG. 7 is a graph showing the relationship between the average particle size and the capacity of the present invention and conventional lithium nickel oxide particles.

【図8】本発明と従来のニッケルマンガン酸リチウム粒
子の平均粒子径と容量との関係を示す図
FIG. 8 is a graph showing the relationship between the average particle size and capacity of the present invention and conventional lithium nickel manganese oxide particles.

【図9】本発明で用いた円筒形電池の断面図FIG. 9 is a sectional view of a cylindrical battery used in the present invention.

【図10】本発明のニッケルマンガン酸リチウムLiN
(1-x)Mnx2粒 子のマンガンの置換原子数xと充放
電サイクル寿命特性との関係を示す図
FIG. 10: LiN nickel manganate LiN of the present invention
i (1-x) Mn x O 2 Graph showing the relationship between the number x of atoms of substitution of manganese in the particles and the charge-discharge cycle life characteristics

【符号の説明】[Explanation of symbols]

1 単結晶粒 2 二次粒子 3 試験極 4 対極 5 参照極 6 ガラス容器 7 電池ケース 8 封口板 9 絶縁パッキング 10 正極板 11 負極板 12 セパレータ 13 正極リード 14 負極リード 1 Single Crystal Grain 2 Secondary Particle 3 Test Electrode 4 Counter Electrode 5 Reference Electrode 6 Glass Container 7 Battery Case 8 Sealing Plate 9 Insulating Packing 10 Positive Electrode Plate 11 Negative Electrode Plate 12 Separator 13 Positive Electrode Lead 14 Negative Lead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 茂雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Kobayashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 活物質が一般式LiNiO2で表わされ
るニッケル酸リチ ウムでありその微小な結晶粒が多数
集合して球状、ほぼ球状あるいは楕円体状の二次粒子を
形成している正極と、 リチウム、リチウム合金およびリチウムをインターカレ
ート、デインターカレートできる炭素材料のうちのいず
れかを用いた負極と、 非水電解液とからなる構成とした非水電解液二次電池。
1. A positive electrode in which the active material is lithium nickelate represented by the general formula LiNiO 2 , and a large number of fine crystal grains are aggregated to form spherical, almost spherical or ellipsoidal secondary particles. A non-aqueous electrolyte secondary battery comprising a negative electrode using any one of lithium, a lithium alloy, and a carbon material capable of intercalating and deintercalating lithium, and a non-aqueous electrolyte.
【請求項2】 二次粒子の平均粒子径は、2〜20μm
である請求項1記載の非水電解液二次電池。
2. The average particle diameter of the secondary particles is 2 to 20 μm.
The non-aqueous electrolyte secondary battery according to claim 1.
【請求項3】 正極と、 リチウム、リチウム合金およびリチウムをインターカレ
ート、デインターカレートできる炭素材料のいずれかを
用いた負極と、 非水電解液とからなり、 前記正極は、活物質が一般式LiNiO2で表わされる
ニッケル酸リチウ ムであり、 その単結晶粒は層状構造を有する板状であって、 前記板状の結晶粒が多数集合した二次粒子の形状は球
状、ほぼ球状あるいは楕円体状であるとともに、その少
なくとも表面部分を構成するほとんどの板状結晶粒はそ
の層状構造面を外側に向けている非水電解液二次電池。
3. A positive electrode, a negative electrode using any one of lithium, a lithium alloy, and a carbon material capable of intercalating and deintercalating lithium, and a non-aqueous electrolyte solution. The positive electrode contains an active material. Lithium nickel oxide represented by the general formula LiNiO 2 , wherein the single crystal grains are plate-like having a layered structure, and the shape of the secondary particles in which a large number of the plate-like crystal grains are aggregated is spherical, almost spherical or A non-aqueous electrolyte secondary battery having an ellipsoidal shape and most of the plate-like crystal grains constituting at least the surface portion thereof have the layered structure surface facing outward.
【請求項4】 二次粒子の平均粒子径は、2〜20μm
である請求項3記載の非水電解液二次電池。
4. The average particle size of the secondary particles is 2 to 20 μm.
The non-aqueous electrolyte secondary battery according to claim 3.
【請求項5】 活物質が一般式LiNi(1-x)Mnx2
(ただし 、0<x<0.3)で表わされるニッケルマ
ンガン酸リチウムであり、その微小な単結晶粒が多数集
合して球状、ほぼ球状あるいは楕円体状の二次粒子を形
成している正極と、 リチウム,リチウム合金およびリチウムをインターカレ
ート、デインターカレートできる炭素材料のうちのいず
れかを用いた負極と、 非水電解液とから構成した非水電解液二次電池。
5. The active material is of the general formula LiNi (1-x) Mn x O 2
(Provided that 0 <x <0.3), and a positive electrode in which a large number of fine single crystal grains thereof are aggregated to form spherical, nearly spherical or ellipsoidal secondary particles. A non-aqueous electrolyte secondary battery comprising a negative electrode using any one of lithium, a lithium alloy, and a carbon material capable of intercalating and deintercalating lithium, and a non-aqueous electrolyte.
【請求項6】 二次粒子の平均粒子径は、2〜20μm
である請求項5記載の非水電解液二次電池。
6. The average particle diameter of the secondary particles is 2 to 20 μm.
The non-aqueous electrolyte secondary battery according to claim 5.
【請求項7】 正極と、 リチウム、リチウム合金およびリチウムをインターカレ
ート、デインターカレートできる炭素材料のいずれかを
用いた負極と、 非水電解液とからなり、 前記正極は、活物質が一般式LiNi(1-x)Mnx
2(ただし、 0<x<0.3)で表わされるニッケルマ
ンガン酸リチウムであり、 その単結晶粒は層状構造を有する板状であって、 前記板状の結晶粒が多数集合した二次粒子の形状は球
状、ほぼ球状あるいは楕円体状であるとともに、 その少なくとも表面部分を構成するほとんどの板状結晶
粒はその層状構造面を外側に向けている非水電解液二次
電池。
7. A positive electrode, a negative electrode using any one of lithium, a lithium alloy, and a carbon material capable of intercalating and deintercalating lithium, and a non-aqueous electrolyte solution. The positive electrode contains an active material. General formula LiNi (1-x) Mn x O
2 (provided that 0 <x <0.3), and the single crystal grain is a plate-like having a layered structure, and the secondary particles are a collection of a large number of the plate-like crystal grains. The non-aqueous electrolyte secondary battery has a spherical shape, a substantially spherical shape, or an ellipsoidal shape, and most of the plate-like crystal grains forming at least the surface portion thereof have the layered structure surface facing outward.
【請求項8】 二次粒子の平均粒子径は、2〜20μm
である請求項7記載の非水電解液二次電池。
8. The average particle diameter of the secondary particles is 2 to 20 μm.
The non-aqueous electrolyte secondary battery according to claim 7.
【請求項9】 ニッケル塩水溶液とアルカリ水溶液との
中和反応により析出する水酸化ニッケルの板状単結晶粒
を、球状、ほぼ球状あるいは楕円体状に集合させて二次
粒子を形成する工程と、 前記水酸化ニッケルの二次粒子と、水酸化リチウム、硝
酸リチウム、炭酸リチウムおよび酸化リチウムよりなる
群から選ばれたいずれかのリチウム化合物とを酸素雰囲
気下で熱処理してニッケル酸リチウムを得る工程とから
なる非水電解液二次電池の正極活物質の製造法。
9. A step of forming secondary particles by aggregating plate-like single crystal particles of nickel hydroxide, which are precipitated by a neutralization reaction between a nickel salt aqueous solution and an alkaline aqueous solution, into a spherical shape, a substantially spherical shape or an ellipsoidal shape. A step of heat-treating the secondary particles of nickel hydroxide and any lithium compound selected from the group consisting of lithium hydroxide, lithium nitrate, lithium carbonate and lithium oxide in an oxygen atmosphere to obtain lithium nickelate And a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising:
【請求項10】 リチウム化合物は、水酸化リチウムで
ある請求項9記載の非水電解液二次電池の正極活物質の
製造法。
10. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 9, wherein the lithium compound is lithium hydroxide.
【請求項11】 ニッケル塩水溶液とアルカリ水溶液と
の中和反応により析出する水酸化ニッケルの板状単結晶
粒を、球状、ほぼ球状あるいは楕円体状に集合させて二
次粒子を形成する工程と、 前記水酸化ニッケルの二次粒子と、 炭酸マンガン、硝酸マンガン、酸化マンガンよりなる群
から選ばれたいずれかのマンガン化合物と、 水酸化リチウム、硝酸リチウム、炭酸リチウムおよび酸
化リチウムよりなる群から選ばれたいずれかのリチウム
化合物とを酸素雰囲気下で熱処理してニッケル酸リチウ
ムを得る工程とからなる非水電解液二次電池の正極活物
質の製造法。
11. A step of forming secondary particles by aggregating plate-like single crystal particles of nickel hydroxide, which are precipitated by a neutralization reaction of a nickel salt aqueous solution and an alkaline aqueous solution, into a spherical shape, a substantially spherical shape or an ellipsoidal shape. A secondary particle of nickel hydroxide, any one of manganese compounds selected from the group consisting of manganese carbonate, manganese nitrate and manganese oxide, selected from the group consisting of lithium hydroxide, lithium nitrate, lithium carbonate and lithium oxide To obtain lithium nickel oxide by heat-treating any of these lithium compounds in an oxygen atmosphere to produce a positive electrode active material for a non-aqueous electrolyte secondary battery.
【請求項12】 マンガン化合物は炭酸マンガンであ
り、 リチウム化合物は水酸化リチウムである請求項11記載
の非水電解液二次電池の正極活物質の製造法。
12. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 11, wherein the manganese compound is manganese carbonate and the lithium compound is lithium hydroxide.
JP5202661A 1993-07-22 1993-07-22 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof Expired - Lifetime JP3047693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5202661A JP3047693B2 (en) 1993-07-22 1993-07-22 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5202661A JP3047693B2 (en) 1993-07-22 1993-07-22 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Publications (2)

Publication Number Publication Date
JPH0737576A true JPH0737576A (en) 1995-02-07
JP3047693B2 JP3047693B2 (en) 2000-05-29

Family

ID=16461053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5202661A Expired - Lifetime JP3047693B2 (en) 1993-07-22 1993-07-22 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Country Status (1)

Country Link
JP (1) JP3047693B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241959B1 (en) 1997-10-30 2001-06-05 Samsung Display Devices Co., Ltd. Method of manufacturing lithium composite oxide as positive active material for lithium secondary batteries
JP2001167762A (en) * 1999-12-08 2001-06-22 Tohoku Techno Arch Co Ltd Lithium ion battery
JP2002279985A (en) * 2001-03-15 2002-09-27 Hitachi Metals Ltd Positive electrode active material for non-aqueous lithium secondary battery and the non-aqueous lithium secondary battery using the active material
US6660432B2 (en) 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
KR100616475B1 (en) * 2005-05-07 2006-08-29 한국과학기술연구원 Precursor for cathode active materials for lithium secondary battery, cathode active materials and lithium secondary battery using the same, and preparation method thereof
US7510805B2 (en) * 2003-03-04 2009-03-31 Canon Kabushiki Kaisha Lithium metal composite oxide particles having particles with columnar or planar shape
US7513402B2 (en) 2005-10-19 2009-04-07 Makita Corporation Power tool
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
EP2237347A2 (en) 2003-06-11 2010-10-06 Hitachi, Ltd. Positive electrode material, its manufacturing method and lithium batteries
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP2012003880A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Plate-like particle for positive electrode active material of lithium secondary battery and film of the same, as well as lithium secondary battery
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2012137391A1 (en) * 2011-04-07 2012-10-11 日本碍子株式会社 Cathode active material for lithium secondary battery and lithium secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2013065397A (en) * 2011-09-15 2013-04-11 Honda Motor Co Ltd Electrode active material, and method of manufacturing the same
JP2017073267A (en) * 2015-10-07 2017-04-13 セイコーエプソン株式会社 Battery electrode, manufacturing method of the same, and battery
CN115215384A (en) * 2021-04-20 2022-10-21 华友新能源科技(衢州)有限公司 High-nickel ternary precursor and preparation method thereof
WO2023068229A1 (en) 2021-10-22 2023-04-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
WO2023074427A1 (en) 2021-10-28 2023-05-04 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2023120493A1 (en) * 2021-12-21 2023-06-29 パナソニックエナジ-株式会社 Positive electrode for secondary batteries, and secondary battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773852B2 (en) 1997-10-30 2004-08-10 Samsung Sdi Co., Ltd. Lithium composition oxide as positive active material for lithium secondary batteries
US6241959B1 (en) 1997-10-30 2001-06-05 Samsung Display Devices Co., Ltd. Method of manufacturing lithium composite oxide as positive active material for lithium secondary batteries
JP2001167762A (en) * 1999-12-08 2001-06-22 Tohoku Techno Arch Co Ltd Lithium ion battery
US6660432B2 (en) 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
JP2002279985A (en) * 2001-03-15 2002-09-27 Hitachi Metals Ltd Positive electrode active material for non-aqueous lithium secondary battery and the non-aqueous lithium secondary battery using the active material
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7682595B2 (en) 2003-03-04 2010-03-23 Canon Kabushiki Kaisha Process of producing lithium metal composite oxide particles
US7510805B2 (en) * 2003-03-04 2009-03-31 Canon Kabushiki Kaisha Lithium metal composite oxide particles having particles with columnar or planar shape
US7927743B2 (en) 2003-03-04 2011-04-19 Canon Kabushiki Kaisha Lithium metal composite oxide particles, process of producing lithium metal composite oxide particles, electrode structure containing lithium metal composite oxide particles, process of producing electrode structure, and lithium secondary battery having electrode structure
EP2237347A2 (en) 2003-06-11 2010-10-06 Hitachi, Ltd. Positive electrode material, its manufacturing method and lithium batteries
KR100616475B1 (en) * 2005-05-07 2006-08-29 한국과학기술연구원 Precursor for cathode active materials for lithium secondary battery, cathode active materials and lithium secondary battery using the same, and preparation method thereof
US7513402B2 (en) 2005-10-19 2009-04-07 Makita Corporation Power tool
JP2012003880A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Plate-like particle for positive electrode active material of lithium secondary battery and film of the same, as well as lithium secondary battery
WO2012137391A1 (en) * 2011-04-07 2012-10-11 日本碍子株式会社 Cathode active material for lithium secondary battery and lithium secondary battery
JP2013065397A (en) * 2011-09-15 2013-04-11 Honda Motor Co Ltd Electrode active material, and method of manufacturing the same
JP2017073267A (en) * 2015-10-07 2017-04-13 セイコーエプソン株式会社 Battery electrode, manufacturing method of the same, and battery
CN115215384A (en) * 2021-04-20 2022-10-21 华友新能源科技(衢州)有限公司 High-nickel ternary precursor and preparation method thereof
WO2023068229A1 (en) 2021-10-22 2023-04-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
WO2023074427A1 (en) 2021-10-28 2023-05-04 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2023120493A1 (en) * 2021-12-21 2023-06-29 パナソニックエナジ-株式会社 Positive electrode for secondary batteries, and secondary battery

Also Published As

Publication number Publication date
JP3047693B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JP3047693B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP7228975B2 (en) Composite positive electrode active material, manufacturing method thereof, positive electrode containing same, and lithium battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2023523667A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
US6193946B1 (en) Process for the preparation of a lithium composite metal oxide
KR20170102293A (en) Multicomponent materials having a classification structure for lithium ion batteries, a method for manufacturing the same, an anode of a lithium ion battery and a lithium ion battery
JP2002117833A (en) Nonaqueous electrolyte secondary battery
JP4604347B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4250886B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US6071649A (en) Method for making a coated electrode material for an electrochemical cell
JP2002313337A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2002117843A (en) Nonaqueous electrolyte secondary battery
JPH10162828A (en) Nonaqueous electrolyte battery, and manufacture thereof
JP2023505185A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP2024516811A (en) Positive electrode active material, its manufacturing method, and lithium secondary battery including positive electrode containing the same
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4581157B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JPH06267539A (en) Lithium secondary battery
JP2855912B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 13