JP3257350B2 - Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material - Google Patents

Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material

Info

Publication number
JP3257350B2
JP3257350B2 JP16807795A JP16807795A JP3257350B2 JP 3257350 B2 JP3257350 B2 JP 3257350B2 JP 16807795 A JP16807795 A JP 16807795A JP 16807795 A JP16807795 A JP 16807795A JP 3257350 B2 JP3257350 B2 JP 3257350B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
hydroxide
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16807795A
Other languages
Japanese (ja)
Other versions
JPH08339806A (en
Inventor
義幸 尾崎
純一 山浦
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP16807795A priority Critical patent/JP3257350B2/en
Publication of JPH08339806A publication Critical patent/JPH08339806A/en
Application granted granted Critical
Publication of JP3257350B2 publication Critical patent/JP3257350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池、特
にその正極の活物質の製造法の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a method for producing a positive electrode active material.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小型、軽量で高エネルギー密度を有する二次電池への要
望が高い。このような観点で非水系二次電池、とりわけ
リチウム二次電池は高電圧、高エネルギーの密度を有す
る電池としてその期待は大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly advanced, and there is a strong demand for a small, lightweight, and high energy density secondary battery as a power supply for driving such electronic devices. From such a viewpoint, non-aqueous secondary batteries, particularly lithium secondary batteries, are highly expected as batteries having high voltage and high energy density.

【0003】このような中でLiCoO2を正極に、リ
チウムをインターカレート/デインターカレートし得る
炭素材料を負極に用いたリチウムイオン二次電池が既に
開発、商品化されている。LiCoO2の作動電位はL
iに対して約4Vと高いために電池電圧が高くなると共
に、負極に炭素材料を用いてLiのインターカレーショ
ン反応を利用しているために、金属リチウムを負極に用
いた場合の課題であったデンドライト状リチウムの生成
による充放電効率の低下や安全性上の問題を大幅に解決
することが可能となった。
Under such circumstances, a lithium ion secondary battery using LiCoO 2 as a positive electrode and a carbon material capable of intercalating / deintercalating lithium as a negative electrode has already been developed and commercialized. The working potential of LiCoO 2 is L
This is a problem when lithium metal is used for the negative electrode because the battery voltage is high because it is as high as about 4 V with respect to i, and the intercalation reaction of Li is used using a carbon material for the negative electrode. It has become possible to largely solve the problems of safety and reduction of charge / discharge efficiency due to generation of dendritic lithium.

【0004】しかしながら、Coの資源やコストの面か
ら、更にはより高エネルギー密度のリチウムイオン二次
電池の開発という観点から、LiCoO2に替わるリチ
ウム含有金属酸化物正極の開発が進んでおり、LiNi
2を中心とする正極活物質が注目を集めている。Li
NiO2ならびにLiCoO2を始めとするこの種のリチ
ウム含有金属酸化物はいずれも4V近い電位を示し、か
つインターカレーション反応が利用できる六方晶系の結
晶構造を持つ層状化合物である。このような観点から、
例えばLixNiO2(米国特許第4302518号)、
LiyNi2-y2(特開平2−40861号公報)など
のLiNiO2に係わるもの、あるいはLiyNixCo
1-x2(特開昭63−299056号公報)やLiy
1-xx2(但し、MはTi,V,Mn,Feのいず
れか)などのLiNiO2のNiの一部を他の遷移金属
で置換したリチウム含有金属酸化物が提案されている。
その他、Axyz2(但し、Aはアルカリ金属、Mは
遷移金属、NはAl、In,Snの一種)(特開昭62
−90863号公報)やLixyz2(但し、MはF
e,Co,Niの中から選ばれた少なくとも一種で、N
はTi,V,Cr,Mnの中から選ばれた少なくとも一
種)(特開平4−267053号公報)などの多種の金
属元素を同時に含むものまで提案されている。そしてこ
れらの活物資材料を用いて4V級の放電電位を持った高
エネルギー密度の二次電池の開発が進められている。
However, from the viewpoint of Co resources and cost, and further from the viewpoint of developing a lithium ion secondary battery having a higher energy density, the development of a lithium-containing metal oxide cathode in place of LiCoO 2 has been progressing.
Positive electrode active materials centering on O 2 have been attracting attention. Li
Such lithium-containing metal oxides such as NiO 2 and LiCoO 2 are both layered compounds having a potential close to 4 V and having a hexagonal crystal structure capable of utilizing an intercalation reaction. From this perspective,
For example, Li x NiO 2 (US Pat. No. 4,302,518),
LiYO 2 , such as Li y Ni 2 -y O 2 (Japanese Patent Application Laid-Open No. 2-40861), or Li y Ni x Co
1-x O 2 (JP-A-63-299056) and Li y N
There has been proposed a lithium-containing metal oxide in which a part of Ni of LiNiO 2 such as i 1-x M x O 2 (where M is any of Ti, V, Mn, and Fe) is substituted with another transition metal. I have.
Other, A x M y N z O 2 ( where, A is an alkali metal, M is a transition metal, N represents Al, In, one Sn) (JP 62
-90863 JP) and Li x M y N z O 2 ( where, M is F
e, at least one selected from Co, Ni, and N
(At least one selected from Ti, V, Cr, and Mn) (Japanese Patent Application Laid-Open No. 4-267053). Development of a high energy density secondary battery having a discharge potential of 4 V class using these active material materials has been promoted.

【0005】また、正極活物質の粒子形状についても報
告されており、単晶での球状、ほぼ球状あるいは楕円体
状の一次粒子の集合体を用いることが既に知られている
が、充分な正極特性が得られるには至っていない。
[0005] Further, the particle shape of the positive electrode active material has also been reported, and it is already known to use a single crystal aggregate of spherical, substantially spherical or ellipsoidal primary particles. Characteristics have not yet been obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明はLiNiO2
のNiの一部を他の金属に置換したリチウム含有金属酸
化物正極活物質に係わるものである。LiNiO2はL
iに対し、4V近い作動電位を示し、正極活物質として
用いると高エネルギー密度を有する二次電池が実現可能
である。しかしながら、その放電特性はサイクル初期で
は160mAh/g以上の比容量が得られるが、サイク
ル数の増加に伴う特性劣化が著しく50サイクル目では
初期容量の65%程度まで低下し、良好なサイクル特性
が得られないという課題があった。このような課題に対
し、上記に示すようなNiの一部を他の金属に置換した
リチウム含有金属酸化物や多種の金属元素を同時に含む
ものなどが提案されてきた。特に、その結晶構造が単一
相からなるNiの一部を他の金属に確実に置換したリチ
ウム含有金属酸化物であればあるほど良好なサイクル特
性を示した。
SUMMARY OF THE INVENTION The present invention relates to LiNiO 2
The present invention relates to a lithium-containing metal oxide positive electrode active material in which a part of Ni is replaced by another metal. LiNiO 2 is L
A secondary battery having an operating potential close to 4 V with respect to i and having a high energy density can be realized when used as a positive electrode active material. However, in the discharge characteristics, a specific capacity of 160 mAh / g or more can be obtained at the beginning of the cycle. There was a problem that it could not be obtained. In order to solve such a problem, there have been proposed lithium-containing metal oxides in which a part of Ni is replaced with another metal as described above, and those containing simultaneously various kinds of metal elements. In particular, the better the cycle characteristics were, the more lithium-containing metal oxides whose crystal structure was composed of a single phase Ni in which a part of Ni was surely replaced by another metal were shown.

【0007】しかしながら、LiNiO2のNiの一部
を他の金属に置換したものの多くはサイクル特性が向上
する一方、放電容量が小さくなる傾向にあり、かつ放電
電圧も低くなり、高電圧、高エネルギー密度という特長
を減ずる結果となる。これらの置換金属の中でNiの一
部をCoまたはAlに置換したものが、サイクル特性、
放電容量、放電電圧のいずれにおいても他のリチウム含
有金属酸化物に比べ良好であった。ここで、例えばLi
Ni(1-X)CoX2の合成方法であるが、水酸化リチウ
ムなどのLi化合物と水酸化ニッケルなどのNi化合物
に所定量の水酸化コバルトなどのCo化合物を加えて熱
処理を行う方法が一般的であった。しかしながら、この
ような方法ではCoが完全に固溶しNiの一部を置換し
た単一相の複合酸化物を得ることが困難であり、一部の
未反応相が残ってしまう。また、反応過程において、ニ
ッケルイオンとコバルトイオンと水酸化物イオンとが結
合した層状構造の層間部分に熱で溶融したリチウム化合
物のリチウムイオンが挿入する反応によりLiNi
(1-X)CoX2が生成する。このようにして得られたリ
チウム含有金属酸化物はその単結晶粒が規則正しく積層
した層状構造になるまで成長しないで、非常に微細な層
状構造をもった単結晶粒が様々な方向に核成長する。そ
して、これらの微細な単結晶粒の集合によって、様々な
形を有する不定形の二次粒子が生成する。従って、この
ような正極活物質粒子ではリチウムがインターカレート
/デインターカレートする層面が粒子の外側に向かって
露出していないので、特に高率充放電時の容量特性およ
び放電電圧特性が不十分である。
However, most of LiNiO 2 in which a part of Ni is replaced by another metal has improved cycle characteristics, but has a tendency to reduce discharge capacity, and also has a reduced discharge voltage, resulting in high voltage and high energy. The result is a reduction in the density feature. Among these substitution metals, those in which part of Ni is substituted by Co or Al have cycle characteristics,
Both the discharge capacity and the discharge voltage were better than other lithium-containing metal oxides. Here, for example, Li
This is a method for synthesizing Ni (1-X) Co X O 2 , in which a predetermined amount of a Co compound such as cobalt hydroxide is added to a Li compound such as lithium hydroxide and a Ni compound such as nickel hydroxide to perform a heat treatment. Was common. However, in such a method, it is difficult to obtain a single-phase composite oxide in which Co is completely dissolved and a part of Ni is substituted, and some unreacted phases remain. In addition, in the reaction process, the lithium ion of the lithium compound melted by heat is inserted into the interlayer portion of the layered structure in which the nickel ion, the cobalt ion, and the hydroxide ion are bonded, so that LiNi is inserted.
(1-X) Co X O 2 is generated. The thus obtained lithium-containing metal oxide does not grow until the single crystal grains have a layered structure in which the single crystal grains are regularly stacked, and single crystal grains having an extremely fine layered structure grow in various directions. . Then, by the aggregation of these fine single crystal grains, irregular secondary particles having various shapes are generated. Therefore, in such a positive electrode active material particle, the layer surface where lithium is intercalated / deintercalated is not exposed toward the outside of the particle, so that the capacity characteristics and the discharge voltage characteristics particularly at the time of high-rate charge / discharge are poor. It is enough.

【0008】本発明は、このような課題を解決するもの
であり、Niの一部を他の金属で完全に置換し単一相の
リチウム含有金属酸化物を与え、かつリチウムのインタ
ーカレート/デインターカレート反応が円滑に進み、高
容量で高率充放電特性にも優れた非水電解液二次電池お
よびその正極活物質の製造法を提供するものである。
The present invention has been made to solve such a problem, and completely replaces a part of Ni with another metal to provide a single-phase lithium-containing metal oxide, and has a lithium intercalating / intercalating method. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a deintercalating reaction that proceeds smoothly, having a high capacity and excellent high-rate charge / discharge characteristics, and a method for producing a positive electrode active material thereof.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに本発明は、活物質が一般式LiNi(1-X)X
2(M=CoまたはAl)で表されるリチウム含有金属
酸化物であり、その微小な結晶粒が多数集合して球状、
ほぼ球状あるいは楕円体状の二次粒子を形成している正
極を用いるものであり、その活物質の製造法としてNi
塩とCo塩またはAl塩との混合水溶液にアルカリ溶液
を加えてNiとCoまたはAlの水酸化物を共沈させる
ことによって得た複合水酸化物にリチウム化合物を混合
し、この混合物を熱処理することによって得られるもの
である。
In order to solve the above problems, the present invention provides an active material having a general formula LiNi (1-X) M X O
2 (M = Co or Al) is a lithium-containing metal oxide, and a large number of fine crystal
A positive electrode having substantially spherical or ellipsoidal secondary particles is used, and Ni is used as a method for producing the active material.
A lithium compound is mixed with a composite hydroxide obtained by adding an alkali solution to a mixed aqueous solution of a salt and a Co salt or an Al salt to co-precipitate a hydroxide of Ni and Co or Al, and then heat treating the mixture. It is obtained by doing.

【0010】詳しくは、正極活物質の二次粒子の平均粒
径は2〜20μmであり、上記一般式のxの値は0.0
5〜0.30の範囲である。また、上記混合物の熱処理
温度を600℃〜800℃とするものである。
More specifically, the average particle size of the secondary particles of the positive electrode active material is 2 to 20 μm, and the value of x in the above general formula is 0.0
The range is 5 to 0.30. In addition, the heat treatment temperature of the mixture is set to 600 ° C to 800 ° C.

【0011】[0011]

【作用】本発明による正極活物質の製造法では、Ni塩
とCo塩またはAl塩との混合溶液にアルカリ溶液を加
えてNiとCoまたはNiとAlの水酸化物を共沈させ
ることによりNi/CoまたはNi/Alの複合水酸化
物を得ている。この段階で結晶構造がNiの一部をCo
またはAlが確実に置換した固溶体となっており、粉末
X線回折においても単一相であることを確認できる。そ
して、この複合水酸化物にLi化合物を加えて熱処理を
行うことにより、Liが固溶した3元系の複合金属酸化
物が生成可能である。また、本発明による製造法におい
ては生成したリチウム含有複合金属酸化物の単結晶粒が
規則正しく積層した層状構造を成しており、これらが多
数集合することにより二次粒子の形状が球状、ほぼ球状
あるいは楕円体状になる。このことにより、各結晶のリ
チウムがインターカレート/デインターカレートする層
状構造部分が二次粒子の外側に向かって露出する形とな
り、特に高率の充放電特性が向上する。
In the method for producing a cathode active material according to the present invention, an alkaline solution is added to a mixed solution of a Ni salt and a Co salt or an Al salt to coprecipitate a hydroxide of Ni and Co or a hydroxide of Ni and Al. / Co or Ni / Al composite hydroxide is obtained. At this stage, the crystal structure changes part of Ni to Co.
Alternatively, it is a solid solution in which Al is surely substituted, and it can be confirmed by powder X-ray diffraction that it is a single phase. Then, by adding a Li compound to the composite hydroxide and performing a heat treatment, a ternary composite metal oxide containing Li as a solid solution can be generated. Further, in the production method according to the present invention, a single crystal grain of the generated lithium-containing composite metal oxide has a layered structure in which the single crystal grains are regularly stacked. Or it becomes ellipsoidal. As a result, the layered structure portion of each crystal in which lithium is intercalated / deintercalated is exposed toward the outside of the secondary particles, and particularly, high-rate charge / discharge characteristics are improved.

【0012】本発明における正極活物質は一般式LiN
(1-X)X2においてxの値は0.05〜0.30で
あることが重要であり、0.05未満の置換量では効果
が得られず特にサイクル特性の低下が著しい。逆に0.
30を越えた場合、結晶構造に歪みを生じ活物質として
の容量低下を招く。また、Ni/CoあるいはNi/A
lの複合水酸化物とリチウム化合物の熱処理温度は60
0℃〜800℃であることが好ましく、更に好ましくは
700℃〜750℃である。600℃未満では反応の終
結が不十分であり完全な単一相のリチウム含有金属酸化
物を得ることができず効果が得られない。一方、800
℃を越えた場合、結晶構造の歪みを生じ容量低下を招
く。
In the present invention, the positive electrode active material has a general formula LiN
The value of x in i (1-X) M X O 2 , it is important that it is 0.05 to 0.30, significant reduction in particular cycle characteristics without effect can be obtained in the substitution of less than 0.05 . Conversely, 0.
If it exceeds 30, the crystal structure is distorted and the capacity as an active material is reduced. In addition, Ni / Co or Ni / A
The heat treatment temperature of the composite hydroxide and the lithium compound is 60
The temperature is preferably from 0 ° C to 800 ° C, more preferably from 700 ° C to 750 ° C. When the temperature is lower than 600 ° C., the termination of the reaction is insufficient, so that a complete single-phase lithium-containing metal oxide cannot be obtained, and no effect can be obtained. On the other hand, 800
If the temperature exceeds ℃, the crystal structure will be distorted and the capacity will be reduced.

【0013】[0013]

【実施例】【Example】

(実施例1)以下、実施例により本発明を詳しく述べ
る。図1に本発明の円筒形電池の縦断面図を示す。図に
おいて、1は耐有機電解液性のステンレス鋼板を加工し
た電池ケース、2は安全弁を設けた封口板、3は絶縁パ
ッキングを示す。4は極板群であり、正極および負極が
セパレータを介して複数回渦巻状に巻回されてケース1
内に収納されている。そして上記正極からは正極リード
5が引き出されて封口板2に接続され、負極からは負極
リード6が引き出されて電池ケース1の底部に接続され
ている。7は絶縁リングで極板群4の上下部にそれぞれ
設けられている。以下正極活物質の製造法および正、負
極板等について詳しく説明する。
(Example 1) Hereinafter, the present invention will be described in detail with reference to examples. FIG. 1 shows a longitudinal sectional view of the cylindrical battery of the present invention. In the figure, reference numeral 1 denotes a battery case formed by processing a stainless steel plate having resistance to organic electrolyte, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. Reference numeral 4 denotes an electrode plate group, in which a positive electrode and a negative electrode are spirally wound a plurality of times through a separator, and a case 1 is provided.
Is housed inside. A positive electrode lead 5 is drawn from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn from the negative electrode and connected to the bottom of the battery case 1. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively. Hereinafter, the method for producing the positive electrode active material and the positive and negative electrode plates will be described in detail.

【0014】まず、本発明によるNi/Co複合水酸化
物の共沈による製造法を説明する。市販の硫酸ニッケル
を水に加え、飽和状態の硫酸ニッケル水溶液を調製し、
これに所定量(目的のNi/Co比になるように)の硫
酸コバルトを加え、更に水を加えて硫酸ニッケルおよび
硫酸コバルトを含む飽和水溶液を作製した。次いで撹拌
しながらこの水溶液に水酸化ナトリウムを溶解したアル
カリ溶液をゆっくりと加えていくと、NiとCoの水酸
化物の沈殿(共沈)が同時に始まった。十分にアルカリ
溶液を加えて沈殿が終了した後、濾過して沈殿物を回収
し水洗した。pHを確認しながら水洗を繰り返し、残存
アルカリがほぼ消失した後、100℃の熱風空気中で乾
燥させた。
First, a method for producing a Ni / Co composite hydroxide by coprecipitation according to the present invention will be described. A commercially available nickel sulfate aqueous solution was prepared by adding commercially available nickel sulfate to water,
A predetermined amount of cobalt sulfate (to obtain a target Ni / Co ratio) was added thereto, and water was further added to prepare a saturated aqueous solution containing nickel sulfate and cobalt sulfate. Then, when an alkaline solution in which sodium hydroxide was dissolved was slowly added to the aqueous solution with stirring, precipitation (coprecipitation) of hydroxides of Ni and Co started simultaneously. After the precipitation was completed by sufficiently adding an alkaline solution, the precipitate was collected by filtration and washed with water. Washing was repeated while checking the pH, and after the remaining alkali was almost completely eliminated, the resultant was dried in hot air at 100 ° C.

【0015】このようにして得られたNi/Co複合水
酸化物は粉末X線回折の結果、極めて単一相に近いもの
であり、元素分析の結果、ほぼ目的の比率でNiとCo
を含んでいることを確認した。なお、本実施例1では共
沈の原材料にNi源として硫酸ニッケルをCo源として
硫酸コバルトを用いたが、Ni源として硝酸ニッケル、
Co源として硝酸コバルトなど、水溶液を作製し得る塩
であればいずれの塩も使用可能である。また、アルカリ
源として水酸化ナトリウムを用いたが、水酸化カリウ
ム、水酸化リチウムなど他のアルカリ溶液であってもよ
い。
The Ni / Co composite hydroxide thus obtained was found to be very close to a single phase as a result of powder X-ray diffraction.
Was confirmed to contain. In the first embodiment, nickel sulfate was used as a Ni source and cobalt sulfate was used as a Co source as a raw material for coprecipitation.
Any salt that can produce an aqueous solution such as cobalt nitrate as a Co source can be used. Although sodium hydroxide was used as the alkali source, other alkali solutions such as potassium hydroxide and lithium hydroxide may be used.

【0016】次いで、Li化合物との混合、熱処理の工
程について説明する。Li化合物としては水酸化リチウ
ムを用い、Ni/Co複合水酸化物のNiとCoの原子
数の和とLiの原子数が等量になるようにボールミルに
投入し十分混合した。この混合物をアルミナ製のるつぼ
に入れ空気中において700℃で10時間熱処理を行っ
た。そして自然冷却後、粉砕、分級を行い平均粒径10
μmの正極活物質粉末とした。なお、一次粒子に相当す
る微小な結晶粒の大きさは0.2μm〜1.5μmであ
った。
Next, the steps of mixing with a Li compound and heat treatment will be described. Lithium hydroxide was used as the Li compound, and the mixture was charged into a ball mill and mixed well so that the sum of the number of Ni and Co atoms of the Ni / Co composite hydroxide was equal to the number of Li atoms. This mixture was placed in a crucible made of alumina and heat-treated at 700 ° C. for 10 hours in air. Then, after natural cooling, pulverization and classification are performed to obtain an average particle size of 10
A positive electrode active material powder of μm was obtained. The size of the fine crystal grains corresponding to the primary particles was 0.2 μm to 1.5 μm.

【0017】このようにしてNi/Co比の異なる複合
水酸化物を調製し正極活物質の合成を行い、LiNi
(1-X)Cox2のx値が0〜0.50までのリチウム含
有金属酸化物の粉末(それぞれ電池A〜電池Hに相当)
を得た。粉末X線回折の結果、いずれの場合においても
複合水酸化物、リウチム含有金属酸化物共に単一相の生
成物が得られた。なお、x=0とはCo源の塩を使用せ
ずに合成を行ったものである。
In this way, composite hydroxides having different Ni / Co ratios are prepared, and a positive electrode active material is synthesized.
(1-X) Lithium-containing metal oxide powder having an x value of Co x O 2 from 0 to 0.50 (corresponding to batteries A to H, respectively)
I got As a result of powder X-ray diffraction, in each case, a single-phase product was obtained for both the composite hydroxide and the lithium-containing metal oxide. Note that x = 0 means that the synthesis was performed without using a salt of a Co source.

【0018】つづいて正極板の作製方法について説明す
る。得られた正極活物質100重量部に対してアセチレ
ンブラック4重量部を加え、この混合物にN−メチルピ
ロリジノン(NMP)の溶媒に結着剤としてのポリフッ
化ビニリデン(PVDF)を溶解した溶液を加え混練し
てペースト状にした。なお、加えたPVDFの量は正極
活物質100重量部に対して4重量部となるように調製
した。次いでこのペーストをアルミニウム箔の両面に塗
工し、乾燥後、圧延して厚さ0.14mm、幅37m
m、長さ250mmの正極板とした。
Next, a method for manufacturing the positive electrode plate will be described. 4 parts by weight of acetylene black is added to 100 parts by weight of the obtained positive electrode active material, and a solution obtained by dissolving polyvinylidene fluoride (PVDF) as a binder in a solvent of N-methylpyrrolidinone (NMP) is added to the mixture. It was kneaded to make a paste. The amount of the added PVDF was adjusted to be 4 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, this paste was applied to both sides of an aluminum foil, dried, and then rolled to a thickness of 0.14 mm and a width of 37 m.
m and a length of 250 mm.

【0019】負極はメソフェーズ小球体を黒鉛化したも
の(以下メソフェーズ黒鉛と称す)を使用した。このメ
ソフェーズ黒鉛100重量部に結着剤としてのスチレン
/ブタジエンゴム3重量部を混合し、カルボキシメチル
セルロース水溶液を加えて混練し、ペースト状にした。
そしてのこのペーストを銅箔の両面に塗工し、乾燥後、
圧延して厚み0.21mm、幅39mm、長さ280m
mの負極板とした。
As the negative electrode, a mesophase small sphere graphitized (hereinafter referred to as mesophase graphite) was used. 100 parts by weight of this mesophase graphite was mixed with 3 parts by weight of styrene / butadiene rubber as a binder, and an aqueous carboxymethyl cellulose solution was added and kneaded to form a paste.
And apply this paste on both sides of the copper foil, after drying,
Rolled to 0.21mm thick, 39mm wide, 280m long
m negative electrode plate.

【0020】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリードをそれぞれ取り付け、厚さ
0.025mm、幅45mm、長さ740mmのポリエ
チレン製のセパレータを介して渦巻状に巻回し、直径1
4.0mm、高さ50mmの電池ケースに納入した。電
解液にはエチレンカーボネート(EC)とエチルメチル
カーボネート(EMC)とを20:80の体積比で混合
した溶媒に電解質として1モル/lのLiPF6を溶解し
たものを注液した。そして電池を封口し完成電池とし
た。
A lead made of aluminum is attached to the positive electrode plate, and a nickel lead is attached to the negative electrode plate. The leads are spirally wound through a polyethylene separator having a thickness of 0.025 mm, a width of 45 mm, and a length of 740 mm. Diameter 1
It was delivered to a 4.0 mm, 50 mm high battery case. The electrolyte was prepared by dissolving 1 mol / l of LiPF 6 as an electrolyte in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 20:80. Then, the battery was sealed to obtain a completed battery.

【0021】(比較例1)共沈法ではなく、以下に示す
従来の合成法を用いてNiの一部をCoで置換したLi
Ni0.8Co0.202の組成を有する正極活物質を合成し
た。まず、水酸化ニッケルと水酸化コバルトと水酸化リ
チウムとをNi:Co:Liの原子比が0.8:0.
2:1.0となるように秤量し、ボールミルで充分に混
合した。そしてこの混合物をアルミナ製のるつぼに入れ
空気中において700℃、10時間の熱処理を行った。
そして自然冷却後、粉砕、分級を行い平均粒径約10μ
mの正極活物質粉末とした。この活物質の粉末X線回折
の結果、一部未反応相と思われるピークの存在が確認さ
れた。この活物質についても(実施例1)と同様に正極
板を作製し、他の条件はすべて(実施例1)と同様に電
池を構成し電池Iとした。
Comparative Example 1 Instead of the coprecipitation method, Li in which a part of Ni was replaced with Co using the conventional synthesis method shown below.
A positive electrode active material having a composition of Ni 0.8 Co 0.20 O 2 was synthesized. First, nickel hydroxide, cobalt hydroxide and lithium hydroxide are mixed at an atomic ratio of Ni: Co: Li of 0.8: 0.
The weight was weighed so as to be 2: 1.0 and sufficiently mixed by a ball mill. This mixture was put into an alumina crucible and heat-treated at 700 ° C. for 10 hours in air.
After natural cooling, pulverization and classification are performed, and the average particle size is about 10 μm.
m of the positive electrode active material powder. As a result of powder X-ray diffraction of the active material, the presence of a peak which was considered to be partially an unreacted phase was confirmed. With respect to this active material, a positive electrode plate was prepared in the same manner as in (Example 1), and a battery was formed in the same manner as in (Example 1) except for all the other conditions.

【0022】これら電池A〜電池Iについて以下の条件
で充放電サイクル試験を行った。充電は4.2Vで2時
間の定電圧充電を行い、電池電圧が4.2Vに達するま
では420mAの定電流充電となるように設定した。そ
して放電は610mAの定電流放電を行い、放電終止電
圧を3.0Vとした。このような充放電を20℃の環境
下でサイクル試験を行い、5サイクル目の放電容量を初
期容量とし、放電容量が300mAhに劣化した時点を
サイクル寿命末期としてそのサイクル数の値をそれぞれ
(表1)に示した。
The batteries A to I were subjected to a charge / discharge cycle test under the following conditions. Charging was performed at a constant voltage of 4.2 V for 2 hours, and a constant current charge of 420 mA was set until the battery voltage reached 4.2 V. The discharge was performed at a constant current of 610 mA, and the discharge end voltage was set to 3.0 V. A cycle test of such charge / discharge was performed in an environment of 20 ° C., and the discharge capacity at the 5th cycle was set as the initial capacity, and the point at which the discharge capacity deteriorated to 300 mAh was set as the end of cycle life, and the value of the number of cycles was defined as (Table) This is shown in 1).

【0023】[0023]

【表1】 (表1)よりx値が小さい、つまりCoによる置換量が
少ない程、初期容量が大きい傾向にあり、Coが全く存
在しない電池Aでは650mAhと高容量の電池を得る
ことができた。しかしながら、サイクル特性が極めて悪
く70サイクルで初期容量の半分以下の容量にまで劣化
している。共沈法によってCo置換量を徐々に増やして
いくことによって初期容量は若干低下するが、サイクル
特性の向上が著しくx値が0.05〜0.30の範囲に
おいて500サイクル以上のサイクル寿命を与えること
がわかる。中でもx=0.20において最もサイクル特
性が良好であった。一方、共沈法を用いずに従来の合成
法において正極活物質を合成した電池Iは初期容量が5
20mAhと小さい上にサイクル特性も良好ではない。
これは合成した正極活物質が完全な単一相ではなく未反
応相との混合物であることに起因するものと考えられる
が、それ以外に活物質粒子の形状にも寄与するものと思
われる。図2(A)(B)に電池Eと電池Iでそれぞれ
用いた正極活物質粉末の走査型電子顕微鏡(SEM)写
真による粒子構造図を示した。共沈法を用いて合成した
電池Eの正極活物質はほぼ球状の形態を有しているが、
従来合成法によって合成した電池Iの正極活物質は不定
形である。つまり、電池Eにおいては球状形態であるこ
とが、リチウムがインターカレート/デインターカレー
トし得る層状構造部分が二次粒子の外側に向かって露出
している形となり、610mAという高率放電において
は容量特性が良好である。なお、このような球状形態の
二次粒子はNiとCoとの複合水酸化物を得た時点で形
成されており、その後Li化合物を加え熱処理を行った
後もその粒子形状はほぼ維持されている。一方、電池I
のような不定形の二次粒子では層状構造部分が二次粒子
の外側に向かって露出する割合が少なくなり高率放電に
よる容量特性が低下するものと考えられる。
[Table 1] As shown in Table 1, the smaller the x value, that is, the smaller the amount of substitution by Co, the larger the initial capacity tends to be. In the case of the battery A containing no Co, a battery with a high capacity of 650 mAh could be obtained. However, the cycle characteristics are extremely poor, and the capacity is reduced to less than half of the initial capacity in 70 cycles. Although the initial capacity is slightly reduced by gradually increasing the amount of Co substitution by the coprecipitation method, the cycle characteristics are remarkably improved, and a cycle life of 500 cycles or more is provided when the x value is in the range of 0.05 to 0.30. You can see that. Among them, when x = 0.20, the cycle characteristics were the best. On the other hand, the battery I in which the cathode active material was synthesized by the conventional synthesis method without using the coprecipitation method had an initial capacity of 5
It is as small as 20 mAh and the cycle characteristics are not good.
This is considered to be due to the fact that the synthesized positive electrode active material is not a complete single phase but a mixture with an unreacted phase. However, it is considered that this also contributes to the shape of the active material particles. FIGS. 2A and 2B show the particle structure diagrams of the positive electrode active material powders used in Battery E and Battery I, respectively, as taken by a scanning electron microscope (SEM). Although the positive electrode active material of the battery E synthesized using the coprecipitation method has a substantially spherical shape,
The positive electrode active material of Battery I synthesized by a conventional synthesis method is amorphous. That is, in the battery E, the spherical shape means that the layered structure portion where lithium can be intercalated / deintercalated is exposed toward the outside of the secondary particles, and the battery E has a high discharge rate of 610 mA. Has good capacity characteristics. Note that such spherical secondary particles are formed at the time when the composite hydroxide of Ni and Co is obtained, and the particle shape is substantially maintained even after the Li compound is added and heat treatment is performed. I have. On the other hand, battery I
It is considered that the ratio of the layered structure portion exposed to the outside of the secondary particles decreases in the irregular secondary particles as described above, and the capacity characteristics due to high-rate discharge decrease.

【0024】以上のことから本発明による共沈法により
合成した正極活物質LiNi(1-X)CoX2においてx
の値が0.05〜0.30の範囲のものが電池容量およ
びサイクル特性の双方において好ましいと言える。 (実施例2)本発明による共沈法によって一般式LiN
(1-X)CoX2(x=0.20)のものについてその
熱処理温度の検討を行った。熱処理温度をそれぞれ55
0℃、600℃、700℃、750℃、800℃、85
0℃、900℃と変化させ、それぞれ正極活物質を合成
し、これらの活物質を用いて(実施例1)と同様に正極
板および電池を構成し、電池J〜電池Pとした。そして
これらの電池を(実施例1)と同様に充放電サイクル試
験を行った。
From the above, it is assumed that x in the positive electrode active material LiNi (1-X) Co X O 2 synthesized by the coprecipitation method according to the present invention.
Is in the range of 0.05 to 0.30 in both battery capacity and cycle characteristics. Example 2 The general formula LiN was obtained by the coprecipitation method according to the present invention.
i for (1-X) Co X O 2 (x = 0.20) of those were examined for the heat treatment temperature. Heat treatment temperature is 55
0 ° C, 600 ° C, 700 ° C, 750 ° C, 800 ° C, 85
The positive electrode active material was synthesized by changing the temperature to 0 ° C. and 900 ° C., respectively, and a positive electrode plate and a battery were formed using these active materials in the same manner as in (Example 1). These batteries were subjected to a charge / discharge cycle test in the same manner as in (Example 1).

【0025】(表2)にそれぞれの電池の初期容量およ
び寿命末期のサイクル数の値を示した。
Table 2 shows the initial capacity and the number of cycles at the end of life of each battery.

【0026】[0026]

【表2】 熱処理温度が600℃〜800℃のものが初期容量なら
びにサイクル特性共に良好であり、特に700℃〜75
0℃のものがサイクル特性において最適であることがわ
かる。550℃の熱処理温度とした電池Jは初期容量、
サイクル特性共に不十分であり、これは550℃では結
晶構造の完成度が低く完全な単一相の活物質を得ること
ができず、充分にリチウムのインターカレート/デイン
ターカレートができないことによるものと考えられる。
一方、850℃以上の熱処理温度とした電池Oおよび電
池Pにおいても初期容量およびサイクル特性共に低下す
る傾向にある。これは熱処理温度が高すぎることによっ
て生成物の結晶構造に歪みが生じたことによる容量低下
ならびにサイクル特性の低下であると思われる。
[Table 2] Those having a heat treatment temperature of 600 ° C. to 800 ° C. have good initial capacity and cycle characteristics, and particularly 700 ° C. to 75 ° C.
It can be seen that the one at 0 ° C. is optimal in cycle characteristics. Battery J with a heat treatment temperature of 550 ° C. has an initial capacity,
Both of the cycle characteristics are inadequate. This is because at 550 ° C., the completeness of the crystal structure is low and a complete single-phase active material cannot be obtained, and lithium intercalation / deintercalation cannot be sufficiently performed. It is thought to be due to.
On the other hand, in the batteries O and P having the heat treatment temperature of 850 ° C. or more, both the initial capacity and the cycle characteristics tend to decrease. This is considered to be due to a decrease in capacity and a decrease in cycle characteristics due to distortion of the crystal structure of the product due to the heat treatment temperature being too high.

【0027】以上のことから、正極活物質を合成する際
の熱処理温度は600℃〜800℃であることが要求さ
れ、更に好ましくは700℃〜750℃であることが明
らかである。 (実施例3) (実施例1)において合成されたLiNi0.8Co0.2
2において、活物質の二次粒子の平均粒径について検討
を行った。粉砕後の分級によって二次粒子の平均粒径を
1μm、2μm、5μm、10μm、20μm、25μ
m、30μmとした活物質粉末を調製し、それぞれ実施
例1と同様に正極板および電池を構成し、電池Q〜電池
Wとした。そして実施例1と同様に充放電サイクル試験
を行った。但し、電池Wについては粒径が大きすぎるた
めに正極板の作製が不可能となり、電池の構成を行うこ
とができなかった。
From the above, it is apparent that the heat treatment temperature for synthesizing the positive electrode active material is required to be 600 ° C. to 800 ° C., more preferably 700 ° C. to 750 ° C. (Example 3) LiNi 0.8 Co 0.2 O synthesized in (Example 1)
In 2 , the average particle size of the secondary particles of the active material was examined. The average particle size of the secondary particles is 1 μm, 2 μm, 5 μm, 10 μm, 20 μm, and 25 μm by classification after pulverization.
Active material powders of m and 30 μm were prepared, and a positive electrode plate and a battery were respectively formed in the same manner as in Example 1 to obtain batteries Q to W. Then, a charge / discharge cycle test was performed in the same manner as in Example 1. However, for the battery W, the particle size was too large, so that it was impossible to produce a positive electrode plate, and the battery could not be configured.

【0028】(表3)にこれらの電池の初期容量および
寿命末期のサイクル数の値を示した。
Table 3 shows the initial capacity and the number of cycles at the end of life of these batteries.

【0029】[0029]

【表3】 平均粒径が2μm〜20μmの範囲にある電池R、電池
S、電池T、電池Uが初期容量およびサイクル特性共に
良好であることがわかる。特に5μm〜10μmのもの
が高容量であり好ましい。平均粒径を1μmとした電池
Qではサイクル特性は良好であるが、初期容量の低下が
大きい。一方、25μmとした電池Vは初期容量は比較
的大きいもののサイクル特性の低下が著しい。従って、
正極活物質粉末の二次粒子の平均粒径は2μm〜20μ
mであることが必要であり、好ましくは5μm〜10μ
mであることがわかる。
[Table 3] It can be seen that the batteries R, S, T, and U having an average particle size in the range of 2 μm to 20 μm have good initial capacity and cycle characteristics. Particularly, those having a thickness of 5 μm to 10 μm are preferable because of high capacity. Battery Q having an average particle size of 1 μm has good cycle characteristics, but has a large decrease in initial capacity. On the other hand, the battery V having a thickness of 25 μm has a relatively large initial capacity but has a remarkable decrease in cycle characteristics. Therefore,
The average particle size of the secondary particles of the positive electrode active material powder is 2 μm to 20 μm.
m, preferably 5 μm to 10 μm
m.

【0030】なお、本実施例および比較例では正極活物
質の一般式LiNi(1-X)X2においてM=Coとし
たが、M=Alとした場合もほぼ同様な効果が得られ
た。また、本実施例および比較例において負極にメソフ
ェーズ黒鉛を用いたが、もちろん他の黒鉛材料やコーク
ス類、炭素線維などリチウムをインターカレート/デイ
ンターカレートし得る炭素材料であればいずれも使用可
能である。更に電解液の溶媒としてECとEMCの混合
溶媒を使用したが、他の溶媒としてプロピレンカーボネ
ート、ジエチルカーボネートなどのカーボネート類、
1、2−ジメトキシエタン、2−メチルテトラヒドロフ
ランなどのエーテル類、プロピオン酸メチル、酢酸エチ
ルなどの脂肪族カルボン酸エステルなど従来より公知の
溶媒がいずれも単独あるいは混合溶媒として使用でき
る。同様に電解質についてもLIBF4、LiClO4
LiCF3SO3など従来より公知のものがいずれも使用
可能である。
In the present embodiment and the comparative example, M = Co in the general formula LiNi (1-X) M X O 2 of the positive electrode active material, but almost the same effect can be obtained when M = Al. Was. In this example and the comparative example, the mesophase graphite was used for the negative electrode. Of course, any other graphite material, such as cokes and carbon fibers, can be used as long as they can intercalate / deintercalate lithium. It is possible. Further, a mixed solvent of EC and EMC was used as a solvent for the electrolytic solution, but carbonates such as propylene carbonate and diethyl carbonate as other solvents,
Conventionally known solvents such as ethers such as 1,2-dimethoxyethane and 2-methyltetrahydrofuran, and aliphatic carboxylic acid esters such as methyl propionate and ethyl acetate can be used alone or as a mixed solvent. Similarly, for the electrolyte, LIBF 4 , LiClO 4 ,
Any conventionally known materials such as LiCF 3 SO 3 can be used.

【0031】[0031]

【発明の効果】以上のように本発明による非水電解液二
次電池用正極活物質の製造法により、CoあるいはAl
がNiの一部を置換し完全に固溶した単一相のLiNi
(1-X)X2を合成することが可能であり、これを正極
に用いることにより高容量、高エネルギー密度を有し、
サイクル特性に優れた非水電解液二次電池を提供するこ
とができる。
As described above, according to the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, Co or Al
Is a single-phase LiNi that completely dissolves a part of Ni
It is possible to synthesize (1-X) M X O 2 , which has a high capacity and a high energy density by using this as a positive electrode,
A non-aqueous electrolyte secondary battery having excellent cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery of the present invention.

【図2】(A)本発明の電池Eに用いた正極活物質粉末
の粒子構造を示す図 (B)比較の電池Iに用いた正極活物質粉末の粒子構造
を示す図
2A is a diagram showing a particle structure of a positive electrode active material powder used in a battery E of the present invention. FIG. 2B is a diagram showing a particle structure of a positive electrode active material powder used in a comparative battery I.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−294364(JP,A) 特開 平8−222220(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 C01G 53/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-294364 (JP, A) JP-A 8-222220 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40 C01G 53/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式LiNi(1-x)x2(M=Co
またはAlであり、xの値は0.05〜0.30の範
囲)で表わされる非水電解液二次電池用正極活物質の製
造法であり、 コバルトとアルミニウムのうちのいずれかの塩とニッケ
ル塩との混合水溶液にアルカリ溶液を加え、コバルトと
アルミニウムのうちのいずれかの水酸化物とニッケルの
水酸化物を共沈させて複合水酸化物を得る工程と、 前記複合水酸化物にリチウム化合物を加えて混合しこの
混合物を熱処理する工程とからなる非水電解液二次電池
用正極活物質の製造法。
1. The general formula LiNi (1-x) M x O 2 (M = Co
Or the value of x is in the range of 0.05 to 0.30). The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, the method comprising: the alkaline solution was added to a mixed aqueous solution of nickel salt, a higher yield Ru engineering composite hydroxide co-precipitated hydroxide of any of the hydroxide and nickel of cobalt and aluminum, the composite hydroxide Adding a lithium compound to the product and mixing the mixture, followed by heat treatment of the mixture. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
【請求項2】前記正極活物質は二次粒子を形成してお
り、前記二次粒子の平均粒子径2〜20μmの範囲に
ある請求項1記載の非水電解液二次電池用正極活物質の
製造法。
2. The positive electrode active material forms secondary particles.
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 , wherein the secondary particles have an average particle diameter in a range of 2 to 20 µm.
【請求項3】 複合水酸化物中においてコバルトとアル
ミニウムのいずれかとニッケルとのモル比は0.30:
0.70〜0.05〜0.95の範囲にある請求項1記
載の非水電解液二次電池用正極活物質の製造法。
3. The composite hydroxide has a molar ratio of either cobalt or aluminum to nickel of 0.30:
The method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is in the range of 0.70 to 0.05 to 0.95.
【請求項4】 熱処理の温度は600℃〜800℃であ
る請求項1記載の非水電解液二次電池用正極活物質の製
造法。
4. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the temperature of the heat treatment is from 600 ° C. to 800 ° C.
【請求項5】 一般式LiNi(1-X)X2(M=Co
またはAlであり、xの値は0.05〜0.30の範
囲)で表わされ、その単結晶粒はコバルトとアルミニウ
ムのいずれかの水酸化物とニッケルの水酸化物とを共沈
させて得た複合水酸化物にリチウム化合物を加えこの混
合物を熱処理して得たものであり、前記単結晶粒が多数
集合して球状、ほぼ球状あるいは楕円体状の二次粒子を
形成しているリチウム含有複合酸化物を活物質に用いた
正極と、 リチウムをインターカレート、デインターカレートする
ことができる炭素材料を用いた負極と、 非水電解液とを備えた非水電解液二次電池。
5. A compound of the general formula LiNi (1-X) M X O 2 (M = Co
Or the value of x is in the range of 0.05 to 0.30), and the single crystal grains coprecipitate a hydroxide of either cobalt or aluminum with a hydroxide of nickel. A lithium compound is added to the obtained composite hydroxide, and this mixture is heat-treated. The single crystal grains are aggregated to form spherical, nearly spherical or ellipsoidal secondary particles. Non-aqueous electrolyte secondary including a positive electrode using a lithium-containing composite oxide as an active material, a negative electrode using a carbon material capable of intercalating and de-intercalating lithium, and a non-aqueous electrolyte battery.
JP16807795A 1995-06-09 1995-06-09 Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material Expired - Fee Related JP3257350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16807795A JP3257350B2 (en) 1995-06-09 1995-06-09 Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16807795A JP3257350B2 (en) 1995-06-09 1995-06-09 Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material

Publications (2)

Publication Number Publication Date
JPH08339806A JPH08339806A (en) 1996-12-24
JP3257350B2 true JP3257350B2 (en) 2002-02-18

Family

ID=15861424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16807795A Expired - Fee Related JP3257350B2 (en) 1995-06-09 1995-06-09 Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material

Country Status (1)

Country Link
JP (1) JP3257350B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173966A (en) * 1997-07-01 1999-03-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
KR100261509B1 (en) * 1997-10-30 2000-07-15 김순택 Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode
KR100261508B1 (en) * 1997-10-30 2000-07-15 김순택 Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode
DE19849343A1 (en) 1997-10-30 1999-06-02 Samsung Display Devices Co Ltd Composite lithium-nickel-cobalt oxide used as positive active material in a secondary lithium ion cell
JP5153027B2 (en) * 1999-01-28 2013-02-27 日立金属株式会社 Method for producing positive electrode material of lithium secondary battery
JP2001167762A (en) * 1999-12-08 2001-06-22 Tohoku Techno Arch Co Ltd Lithium ion battery
JP4697504B2 (en) * 2001-01-10 2011-06-08 株式会社豊田中央研究所 Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP4986098B2 (en) * 2001-03-15 2012-07-25 日立金属株式会社 Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP4766840B2 (en) * 2004-04-12 2011-09-07 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5464348B2 (en) * 2010-02-26 2014-04-09 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
WO2011136036A1 (en) * 2010-04-27 2011-11-03 住友化学株式会社 Method for producing transition metal hydroxide
CN112279307B (en) * 2020-10-30 2023-05-23 合肥融捷能源材料有限公司 High-magnification lithium cobaltate and preparation method and application thereof

Also Published As

Publication number Publication date
JPH08339806A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
JP7460250B2 (en) Positive electrode active material for lithium secondary battery and manufacturing method thereof
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US8343663B2 (en) Method of preparing positive active material with low carbon content for rechargeable lithium battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
US20220411284A1 (en) Cathode active material, method for manufacturing same, and lithium secondary battery comprising cathode containing same
JP3008793B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
US7504180B2 (en) Positive electrode material for lithium secondary battery and process for producing the same
JP3653409B2 (en) Positive electrode active material for lithium secondary battery and manufacturing method thereof, positive electrode for lithium secondary battery using the positive electrode active material and manufacturing method thereof, lithium secondary battery using the positive electrode and manufacturing method thereof
JP2020504416A (en) Positive active material for lithium secondary battery, method for producing the same, electrode including the same, and lithium secondary battery including the electrode
EP0929111B1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP2002117833A (en) Nonaqueous electrolyte secondary battery
JP3047693B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2023523668A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JP3200572B2 (en) Lithium secondary battery
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP7230227B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP5019548B2 (en) Lithium manganese composite oxide, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
KR100820057B1 (en) Positive active material for a lithium secondary battery, method of preparing the same, and lithium secondary battery coprising the same
KR101298719B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2002231246A (en) Positive electrode active maerail for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2004002066A (en) Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
JP3185635B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees