JP2002279985A - Positive electrode active material for non-aqueous lithium secondary battery and the non-aqueous lithium secondary battery using the active material - Google Patents

Positive electrode active material for non-aqueous lithium secondary battery and the non-aqueous lithium secondary battery using the active material

Info

Publication number
JP2002279985A
JP2002279985A JP2001073799A JP2001073799A JP2002279985A JP 2002279985 A JP2002279985 A JP 2002279985A JP 2001073799 A JP2001073799 A JP 2001073799A JP 2001073799 A JP2001073799 A JP 2001073799A JP 2002279985 A JP2002279985 A JP 2002279985A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001073799A
Other languages
Japanese (ja)
Other versions
JP2002279985A5 (en
JP4986098B2 (en
Inventor
Motoe Nakajima
源衛 中嶋
Teruo Uchikawa
晃夫 内川
Fumi Inada
ふみ 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001073799A priority Critical patent/JP4986098B2/en
Publication of JP2002279985A publication Critical patent/JP2002279985A/en
Publication of JP2002279985A5 publication Critical patent/JP2002279985A5/en
Application granted granted Critical
Publication of JP4986098B2 publication Critical patent/JP4986098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase capacity when a large current is discharged by reducing an internal resistance in a non-aqueous lithium secondary battery, in which a composite oxide of Li and a transient metal is used for a positive electrode. SOLUTION: After at least one of transient metal compounds of Co and Mn and a lithium compound are mixed to form a composite oxide of lithium transition metal in α-NaFeO2 structure, primary particles are coagulated to form in spherical shape. As a result of this, the peak intensity ratio of X-ray diffraction (110)/(003), when the composite oxide is applied/pressed on the electrode, is set to 0.1 or larger.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系リチウム二
次電池の正極活物質に関し、正極活物質を電極上に塗布
−プレスしたときの結晶方位を制御することにより、正
極活物質の抵抗を低減し、ひいては電池の内部抵抗を低
減し、非水系リチウム二次電池として大電流放電を可能
にすることに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a non-aqueous lithium secondary battery. The present invention relates to a positive electrode active material. The present invention relates to reducing the internal resistance of the battery, and thereby enabling large current discharge as a non-aqueous lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池はニッケルカドミウム
電池、ニッケル水素電池に比べて、エネルギ−密度が高
く、携帯端末等の分野で急速に普及している。またEV
や電力貯蔵の分野でも期待されている。リチウム二次電
池は正極、負極およびセパレータを容器内に配置し、有
機溶媒による非水電解液を充たして構成されている。正
極はアルミニウム箔等の集電体に正極活物質を塗布し加
圧成形したものである。正極活物質としてはα−NaFeO2
構造を有するコバルト酸リチウム(LiCoO2)、ニッケル酸
リチウム(LiNiO2)、スピネル型構造を有するマンガン酸
リチウム(LiMn2O4)などに代表されるようなリチウムと
遷移金属の複合酸化物(以下、リチウム遷移金属酸化物
と言う。)の粉体が主として用いられ、例えば特開平8
−17471号公報にはその製法が詳しく開示されてい
る。特にα−NaFeO2構造を有するコバルト酸リチウム(L
iCoO2)やニッケル酸リチウム(LiNiO2)はスピネル型構造
を有するマンガン酸リチウム(LiMn2O4)に比べて放電容
量が大きく携帯端末用のLiイオン電池の正極活物質とし
て実用化されている。これら正極活物質の合成は一般に
リチウム化合物(LiOH、 Li2CO3等)粉末と遷移金属化合
物(CoO、 NiO等)粉末を混合し、焼成、粉砕してリチウ
ム遷移金属酸化物とする方法が広く採用されている。正
極活物質を集電体に塗布する際には、正極活物質に重量
比で数%〜数十%程度の炭素粉を混ぜ、さらにPVDF
(ポリフッ化ビリニデン)、PTFE(ポリテトラフル
オロエチレン)等の結着材と混練してペースト状にして
集電体箔上に厚み20μm〜100μmに塗布、乾燥、プレ
ス工程を経て正電極が作られている。
2. Description of the Related Art A lithium secondary battery has a higher energy density than a nickel cadmium battery or a nickel hydride battery, and has rapidly spread in the field of portable terminals and the like. Also EV
And in the field of power storage. A lithium secondary battery has a structure in which a positive electrode, a negative electrode, and a separator are arranged in a container, and is filled with a nonaqueous electrolyte using an organic solvent. The positive electrode is obtained by applying a positive electrode active material to a current collector such as an aluminum foil and press-molding the same. Α-NaFeO 2 as the positive electrode active material
Complex oxides of lithium and transition metals (typically lithium manganate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ) having a spinel structure) , A lithium transition metal oxide) is mainly used.
Japanese Patent No. 17471 discloses the production method in detail. In particular, lithium cobaltate having an α-NaFeO 2 structure (L
iCoO 2 ) and lithium nickelate (LiNiO 2 ) have a large discharge capacity compared to lithium manganate (LiMn 2 O 4 ) having a spinel structure and have been put to practical use as positive electrode active materials for Li-ion batteries for mobile terminals . Synthesis is generally lithium compounds of these positive electrode active material (LiOH, Li 2 CO 3, etc.) powder and the transition metal compound (CoO, NiO, etc.) were mixed powder, sintering, wide method of the ground to the lithium transition metal oxide Has been adopted. When applying the positive electrode active material to the current collector, carbon powder is mixed with the positive electrode active material in a weight ratio of several percent to several tens percent, and further, PVDF is added.
(Polyvinylidene fluoride), PTFE (polytetrafluoroethylene), etc., kneaded with a binder, and made into a paste, applied on a current collector foil to a thickness of 20 to 100 μm, dried, and pressed to form a positive electrode. ing.

【0003】これら正極活物質は、電気伝導率が10-1
10-6S/cm2で一般の導体と比べ低く、そのまま電極に塗
布すると、内部抵抗の高い電池となり、大電流放電を要
求される状況では出力が取れない。そこで、アルミニウ
ム集電体と正極活物質間もしくは活物質相互間の電気伝
導性を更に高めるように、正極活物質よりも電気伝導率
の高い炭素粉等の導電助材を添加して正極が構成され
る。また、電解液との接触面積を増やすために粉砕して
粒径を細かくし比表面積を大きくした正極活物質を電極
表面に塗布するなどの試みがなされている。
[0003] These positive electrode active materials have an electric conductivity of 10 -1 to 10 -1 .
At 10 -6 S / cm 2 , which is lower than that of general conductors, when applied to electrodes as it is, a battery with high internal resistance is obtained, and no output can be obtained in situations where large current discharge is required. In order to further increase the electrical conductivity between the aluminum current collector and the positive electrode active material or between the active materials, a positive electrode is formed by adding a conductive auxiliary material such as carbon powder having a higher electrical conductivity than the positive electrode active material. Is done. In addition, attempts have been made to apply a positive electrode active material having a small particle size and a large specific surface area to the electrode surface by pulverization to increase the contact area with an electrolytic solution.

【0004】[0004]

【発明が解決しようとする課題】以上述べた従来技術に
おいて、正極活物質よりも電気伝導率の高い炭素粉等の
導電助材を添加したり、電解液との接触面積を増やすた
めに正極活物質を粉砕して粒径を細かする方法で大電流
放電時の出力はある程度改善されているものの、まだま
だ要求には不十分なレベルである。このような大電流を
安定して放電するためには、正極活物質内のLiイオン
の拡散速度を向上させる必要がある。一般に正極活物質
として良く用いられているLiCoO2やLiNiO2はα-NaFeO2
に代表される層状岩塩構造を有している。この構造は、
例えばリチウムイオン二次電池(日刊工業新聞社)に記
載されているようにリチウムと遷移金属がそれぞれ(1
11)酸素層間に並んだ単独層を形成し、これが交互に
積層することによって六方晶の超格子を構成している
(六方晶層状岩塩構造)。この場合のLiイオンの拡散パ
スは図1に示すように六方晶層状岩塩構造の(003)
面と平行な方向となる。つまり、(003)面に垂直な
方向からはLiイオンは正極活物質内に出入りすることは
出来ない。一般に用いられている合成方法において、す
なわちリチウム化合物(LiOH、 Li2CO3等)粉末と遷移金
属化合物(MnO2、 CoO、 NiO等)粉末を混合し、これを焼
成−粉砕してα-NaFeO2構造のLiCoO2やLiNiO2等の正極
活物質を得る場合、図2に示すように焼成後の粉砕時に
(003)面と平行にへき開しやすいため扁平状の粒子
が得られる。これをAl箔等の集電体に塗布、プレスして
得られた正極では、図3に示すように正極粒子の(00
3)面が電極面と平行に配向しやすくなる。充放電にお
けるLiイオンは電極面と垂直方向に移動するので、正
極活物質へ出入りするためには、(003)面に平行な
方向から回りこむ必要がある。このため、上記のような
(003)面が電極面と平行に配向した場合、急速な充
放電時にはLiイオンは正極粒子内へ出入りできにくくな
り、正極活物質表面のLiイオン濃度が上昇してしまう。
電極電位は正極活物質内のLiイオン濃度に影響されるた
め電極電位が低下してしまい、結果として電池としての
出力が取れなくなっている。
In the prior art described above, a conductive auxiliary such as carbon powder having a higher electric conductivity than the positive electrode active material is added, or the positive electrode active material is used to increase the contact area with the electrolyte. Although the output at the time of large current discharge is improved to some extent by the method of pulverizing the substance to reduce the particle diameter, it is still insufficient to meet the demand. In order to stably discharge such a large current, it is necessary to increase the diffusion rate of Li ions in the positive electrode active material. LiCoO 2 and LiNiO 2 commonly used as a positive electrode active material are generally α-NaFeO 2
Has a layered rock salt structure represented by This structure
For example, as described in a lithium ion secondary battery (Nikkan Kogyo Shimbun), lithium and a transition metal are each (1)
11) A single layer arranged between oxygen layers is formed and alternately laminated to form a hexagonal superlattice (hexagonal layered rock salt structure). In this case, the diffusion path of the Li ion is (003) of the hexagonal layered rock salt structure as shown in FIG.
The direction is parallel to the plane. That is, Li ions cannot enter and exit the positive electrode active material from a direction perpendicular to the (003) plane. In the synthesis methods commonly used in, i.e. lithium compound (LiOH, Li 2 CO 3, etc.) powder and the transition metal compound (MnO 2, CoO, NiO, etc.) powder were mixed, firing the - was triturated alpha-NaFeO When a positive electrode active material such as LiCoO 2 or LiNiO 2 having two structures is obtained, as shown in FIG. 2, flat particles are obtained because they are easily cleaved parallel to the (003) plane during pulverization after firing. This was applied to a current collector such as an Al foil and pressed to obtain a positive electrode, as shown in FIG.
3) The surface is easily oriented in parallel with the electrode surface. Since Li ions in charge and discharge move in a direction perpendicular to the electrode surface, it is necessary to move in a direction parallel to the (003) plane in order to enter and exit the positive electrode active material. For this reason, when the (003) plane is oriented parallel to the electrode surface as described above, it is difficult for Li ions to enter and exit the positive electrode particles during rapid charge and discharge, and the Li ion concentration on the positive electrode active material surface increases. I will.
Since the electrode potential is affected by the Li ion concentration in the positive electrode active material, the electrode potential decreases, and as a result, the output as a battery cannot be obtained.

【0005】この配向を制御する方法も検討されてい
る。例えば、特開2001−23639号公報には、焼
成前の原料であるCo3O4の粒径と焼成温度を制御し、得
られたLiCoO2のX線回折の強度比をI(003)/(1
10)≦5.6かつI(105)/(113)≧0.9
及びI(110)/(113)≦1.35とすることで
充電高温下でも安全で高いエネルギー密度を有する非水
電解液二次電池を提供できるとしている。しかし、焼成
時にLiCoO2の配向を制御しても、電極へ塗布する場合に
は平均粒子径を10〜20μm程度にまで粉砕する必要
があり、この時に前記の様に(003)面と平行にへき
開しやすいため扁平状の粒子となりやすい。これをAl
箔等の集電体に塗布、プレスして得られた正極では、や
はり正極粒子の(003)面が電極面と平行に配向しや
すくなる。このため特開2001−23639号公報に
記載の手法でも大電流放電時には電池の出力が取れなく
なる。
[0005] Methods for controlling this orientation are also being studied. For example, Japanese Patent Application Laid-Open No. 2001-23639 discloses that the particle size and the sintering temperature of Co 3 O 4 as a raw material before sintering are controlled, and the intensity ratio of X-ray diffraction of the obtained LiCoO 2 is I (003) / (1
10) ≦ 5.6 and I (105) / (113) ≧ 0.9
And I (110) / (113) ≦ 1.35, it is possible to provide a non-aqueous electrolyte secondary battery which is safe and has a high energy density even at a high charging temperature. However, even when the orientation of LiCoO 2 is controlled during firing, it is necessary to pulverize the particles to an average particle diameter of about 10 to 20 μm when applying to the electrode. At this time, as described above, the particles are parallel to the (003) plane. The particles are easily cleaved and tend to be flat particles. This is Al
In a positive electrode obtained by applying and pressing a current collector such as a foil, the (003) plane of the positive electrode particles is also likely to be oriented in parallel with the electrode surface. For this reason, even in the method described in JP-A-2001-23639, the output of the battery cannot be obtained at the time of large current discharge.

【0006】本発明の目的は、正極活物質が電極上に塗
布−プレスされたときの、正極活物質の結晶方位を制御
することで、放電時における正極活物質内のLiイオン
の拡散速度を上げ、電池の内部抵抗を低減し、大電流放
電した場合でも電圧降下の少ない出力特性を優れた正極
活物質および電池を提供することである。
An object of the present invention is to control the crystal orientation of the positive electrode active material when the positive electrode active material is applied and pressed on the electrode, so as to reduce the diffusion rate of Li ions in the positive electrode active material during discharge. It is an object of the present invention to provide a positive electrode active material and a battery which are capable of reducing the internal resistance of the battery and having excellent output characteristics with a small voltage drop even when discharging a large current.

【0007】[0007]

【課題を解決するための手段】先ず、本発明の正極活物
質は、図4に示すようなα−NaFeO2構造をもつ一次粒子
を球状に凝集させた二次粒子であることは重要な特徴の
一つである。その上で本発明では、それを電極上に塗布
−プレス(1.5ton/cm2程度の圧力でプレス)した平面か
ら得られる正極活物質からのX線回折の(110)/
(003)のピ−ク強度比が0.1以上としたことを特徴
としている。
First, it is important that the positive electrode active material of the present invention is a secondary particle obtained by agglomerating primary particles having an α-NaFeO 2 structure as shown in FIG. one of. Then, in the present invention, the (110) / X-ray diffraction of the positive electrode active material obtained from the plane coated and pressed (pressed at a pressure of about 1.5 ton / cm 2 ) on the electrode is obtained.
The peak intensity ratio of (003) is 0.1 or more.

【0008】即ち、本発明は、α-NaFeO2構造を有する
リチウムと遷移金属の複合酸化物粉末において、その一
次粒子を球状に凝集させた二次粒子とすることにより、
それを電極上に塗布−プレスした時のX線回折の(11
0)/(003)のピ−ク強度比が0.1以上となるこ
とを特徴とする非水系リチウム二次電池用正極活物質で
ある。
That is, the present invention provides a composite oxide powder of lithium and a transition metal having an α-NaFeO 2 structure, in which the primary particles are formed into spherical secondary particles to form secondary particles.
It was applied on an electrode and pressed.
(0) / (003) is a positive electrode active material for a non-aqueous lithium secondary battery, wherein the peak intensity ratio is 0.1 or more.

【0009】また、本発明は、α-NaFeO2構造を有するL
iCoO2粉末において、その一次粒子を球状に凝集させた
二次粒子とすることにより、それを電極上に塗布−プレ
スした時のX線回折の(110)/(003)のピ−ク
強度比が0.1以上となることを特徴とする非水系リチ
ウム二次電池用正極活物質である。
Further, the present invention relates to an L-form having an α-NaFeO 2 structure.
In the iCoO 2 powder, the primary particles are made into secondary particles obtained by agglomerating into spherical particles, and the peak intensity ratio of (110) / (003) in X-ray diffraction when the particles are applied and pressed on an electrode. Is not less than 0.1, which is a positive electrode active material for a non-aqueous lithium secondary battery.

【0010】これら本発明により合成された正極材は、
α−NaFeO2構造をもつ一次粒子を球状に凝集させた二次
粒子であるため、図5に示したようにプレスしたときの
粒子の(003)面が電極表面と平行になりにくく、充
放電時における正極活物質内のLiイオンの拡散速度が
向上しており、ひいては大電流放電に適した正極活物質
及びそれを用いた非水系リチウム二次電池を提供でき
る。
The positive electrode material synthesized according to the present invention comprises:
Since the primary particles having an α-NaFeO 2 structure are secondary particles obtained by aggregating the particles in a spherical shape, the (003) plane of the particles when pressed as shown in FIG. The diffusion rate of Li ions in the positive electrode active material at the time is improved, and thus a positive electrode active material suitable for large-current discharge and a nonaqueous lithium secondary battery using the same can be provided.

【0011】[0011]

【発明の実施の形態】本発明におけるα−NaFeO2構造を
有するリチウム遷移金属酸化物は非水系リチウム二次電
池用正極活物質として有用なもので、それを正極として
使用した二次電池の充放電特性が特に大きくなる。本発
明によって非水系リチウム二次電池用正極活物質は図6
のフローチャートに従って製造される。まず工程1で原
料として、焼成によって酸化物となる遷移金属、例えば
コバルト、ニッケル、マンガン、の化合物(例えばCo3O
4, CoO, Mn 3O4, MnCO3)と、焼成によって酸化物となる
リチウム化合物(例えばLi2CO3, LiOH)とを所定の割合
で混合する。これらの粉末を工程2で水を加えてボール
ミル等で例えば50時間程度、粉砕混合しスラリ−とす
る。工程3でスラリ−をスラリードライヤ等で乾燥させ
る。焼成は工程4であり、この焼成によって用いた原料
が酸化物となって、α−NaFeO2構造を有するリチウム遷
移金属酸化物となる。焼成は大気中や酸素中800℃〜105
0℃で数時間から10時間行う。次に、焼成してα−NaF
eO2構造を有するリチウム遷移金属酸化物となった粉末
に、工程5で純水等を所定量加えて再びボ−ルミル等で
平均粒径が1μm以下程度まで粉砕し、スラリ−とす
る。工程6でこのスラリ−にPVA溶液を固形分に換算
して1wt%前後添加後、スプレイドライヤ−等で粒子
径が1〜30μm程度となるように球状化を行う。次に工
程7で焼成を大気中や酸素中800℃〜1050℃で数時間か
ら10時間行う。焼成後、工程8で振動ミル等で解砕
し、篩い分けを行う。
DETAILED DESCRIPTION OF THE INVENTION α-NaFeO in the present inventionTwoStructure
Has a non-aqueous lithium secondary metal oxide
It is useful as a positive electrode active material for ponds, and it is used as a positive electrode
The charge / discharge characteristics of the used secondary battery become particularly large. Departure
According to Ming, the positive electrode active material for non-aqueous lithium secondary batteries is shown in FIG.
It is manufactured according to the flowchart of FIG. First, in step 1
As a material, a transition metal which becomes an oxide upon firing, for example,
Compounds of cobalt, nickel, manganese (eg CoThreeO
Four, CoO, Mn ThreeOFour, MnCOThree) And baking to form an oxide
Lithium compounds (eg LiTwoCOThree, LiOH) and a predetermined ratio
Mix with. Add water to these powders in step 2
Pulverize and mix in a mill or the like for about 50 hours to form a slurry.
You. In step 3, the slurry is dried using a slurry dryer or the like.
You. Firing is step 4, and the raw materials used in this firing are
Becomes an oxide, α-NaFeOTwoLithium with structure
It becomes a transfer metal oxide. Firing in air or oxygen 800 ℃ ~ 105
Perform at 0 ° C. for several hours to 10 hours. Next, calcinate α-NaF
eOTwoPowder having a structure of lithium transition metal oxide
Then, in step 5, a predetermined amount of pure water or the like is added, and the ball mill is used again.
Pulverize to an average particle size of about 1 μm or less to form a slurry.
You. In step 6, the PVA solution is converted to a solid content in this slurry.
And add about 1 wt%, and then spray the particles with a spray dryer.
Spheroidization is performed so that the diameter is about 1 to 30 μm. Next
Calcination in air or oxygen at 800 ℃ ~ 1050 ℃ for several hours
Perform for 10 hours. After firing, pulverize with a vibration mill etc. in step 8
And sieved.

【0012】本発明による正極活物質の特性評価は以下
の手順で行った。まず、正極材、導電助材(炭素粉)、
結着剤(8wt%PVdF/NMP)を重量比で85:10:5の割合で
メノウ鉢にて混練しスラリ−状の合材とした。得られた
合材を厚さ20μmの集電体(Al箔)上に約200μm厚
に塗布した。塗布した合材は乾燥後、所定の寸法(巾10
mm、長さはおよそ50mm)に切断し金型を用いて1.5t
on/cm2の圧力でプレスした。得られた正極は十分に電解
液(エチレンカ−ボネ−ト:ジメチルカ−ボネ−ト=
1:2、電解質1M-LiPF)に浸潤した後、セパレータ(2
5mm厚ポリエチレン)、金属リチウム対極、試験用電
池とした。セルが電気化学的に平衡になるように数時間
程度放置してから、充放電測定装置に接続し電池容量の
測定を行った。X線回折の測定は図7に示すような形で
行った。Cu−Kα線を用いて、広角ゴニオメーターで
調べた。走査方法は連続スキャンを用い、スキャン速度
2度/分、サンプリング間隔0.006度とした。走査
範囲は、2θ値で15〜100度とした。
The evaluation of the characteristics of the positive electrode active material according to the present invention was performed according to the following procedure. First, the positive electrode material, conductive auxiliary material (carbon powder),
A binder (8 wt% PVdF / NMP) was kneaded at a weight ratio of 85: 10: 5 in an agate bowl to form a slurry-like mixture. The obtained mixture was applied to a thickness of about 200 μm on a current collector (Al foil) having a thickness of 20 μm. After the applied mixture has dried,
mm, length is about 50mm) and cut using a mold to 1.5t
Pressing was performed at a pressure of on / cm 2 . The obtained positive electrode was sufficiently filled with an electrolytic solution (ethylene carbonate: dimethyl carbonate =
1: 2, electrolyte 1M-LiPF 6 )
5 mm thick polyethylene), a metal lithium counter electrode, and a test battery. After the cell was left for several hours so as to be electrochemically equilibrated, it was connected to a charge / discharge measurement device to measure the battery capacity. The measurement of X-ray diffraction was performed in the form as shown in FIG. Using a Cu-Kα ray, a wide-angle goniometer was used. The scanning method used was continuous scanning, with a scan speed of 2 degrees / minute and a sampling interval of 0.006 degrees. The scanning range was 15 to 100 degrees in 2θ value.

【0013】以下、本発明の効果を示す実施例について
説明する。 (比較例1)Li:Co=1:1となるように炭酸リチウムと酸
化コバルトを秤量し、純水を添加後、ボ−ルミルで24
時間混合しスラリ−とした。次に、スラリ−をスラリ−
ドライヤ−(120℃)で乾燥後、アルミナルツボに充填
し、電気炉中で950℃−10時間大気中にて焼成し
た。焼成した粉末を、ライカイ機にて粉砕し、45μm
のフルイに通し粒径10μm程度の粉末を得た。
Hereinafter, embodiments showing the effects of the present invention will be described. (Comparative Example 1) Lithium carbonate and cobalt oxide were weighed so that Li: Co = 1: 1, pure water was added, and the mixture was subjected to ball milling.
The mixture was mixed for a time to form a slurry. Next, the slurry is
After drying in a dryer (120 ° C.), the mixture was filled in an alumina crucible and fired in an electric furnace at 950 ° C. for 10 hours in the atmosphere. The fired powder is pulverized with a raikai machine and
To obtain a powder having a particle size of about 10 μm.

【0014】(実施例1)Li:Co=1:1となるように炭酸
リチウムと酸化コバルトを秤量し、純水を添加後、ボ−
ルミルで24時間混合しスラリ−とした。次に、スラリ
−をスラリ−ドライヤ−(120℃)で乾燥後、アルミナ
ルツボに充填し、電気炉中で950℃−10時間大気中
にて焼成した。焼成した粉末を、ライカイ機にて粉砕
し、45μmのフルイに通し粒径10μm程度の粉末を
得た。次に、再び焼成した粉末に純水添加後、ボ−ルミ
ル等で粒子径が1μm程度まで粉砕しスラリ−とした。
次にスラリ−にPVA溶液を固形分に換算して1wt%
前後添加後、スプレイドライヤ−等で粒子径が1〜30
μm程度となるように球状化を行う。次に焼成を大気中
800℃で10時間行った。焼成後、振動ミル等で解砕
し、45μmのメッシュにて篩い分けを行った。
Example 1 Lithium carbonate and cobalt oxide were weighed so that Li: Co = 1: 1, and pure water was added.
The mixture was mixed with a mill for 24 hours to form a slurry. Next, the slurry was dried with a slurry drier (120 ° C.), filled in an alumina crucible, and fired in an electric furnace at 950 ° C. for 10 hours in the atmosphere. The fired powder was pulverized by a raikai machine and passed through a 45 μm sieve to obtain a powder having a particle size of about 10 μm. Next, pure water was added to the fired powder again, and the powder was pulverized to a particle diameter of about 1 μm using a ball mill or the like to obtain a slurry.
Next, the PVA solution was added to the slurry at a solid content of 1 wt%.
After the addition before and after, the particle diameter is 1 to 30 with a spray dryer or the like.
Perform spheroidization so as to have a thickness of about μm. Next, baking was performed at 800 ° C. for 10 hours in the air. After firing, the mixture was crushed with a vibration mill or the like, and sieved with a 45 μm mesh.

【0015】(実施例2)実施例1と同様な操作を行
い、スプレイドライヤ−等で、粒子径が1〜30μm程
度の球状凝集体を作成した後、焼成を大気中900℃で
10時間行った。焼成後、振動ミル等で解砕し、45μ
mのメッシュにて篩い分けを行った。 (実施例3)実施例1と同様な操作を行い、スプレイド
ライヤ−等で、粒子径が1〜30μm程度の球状凝集体
を作成した後、焼成を大気中1000℃で10時間行っ
た。焼成後、振動ミル等で解砕し、45μmのメッシュ
にて篩い分けを行った。 (実施例4)実施例1と同様な操作を行い、スプレイド
ライヤ−等で、粒子径が1〜30μm程度の球状凝集体
を作成した後、焼成を大気中1050℃で10時間行っ
た。焼成後、振動ミル等で解砕し、45μmのメッシュ
にて篩い分けを行った。以上の評価結果を表1に示す。
Example 2 The same operation as in Example 1 was carried out to form a spherical agglomerate having a particle diameter of about 1 to 30 μm using a spray dryer or the like, and then firing was performed at 900 ° C. in the air for 10 hours. Was. After firing, pulverize with a vibration mill
The mesh was sieved with a mesh of m. Example 3 The same operation as in Example 1 was performed to form a spherical aggregate having a particle diameter of about 1 to 30 μm using a spray dryer or the like, and then firing was performed at 1,000 ° C. in the air for 10 hours. After firing, the mixture was crushed with a vibration mill or the like, and sieved with a 45 μm mesh. Example 4 The same operation as in Example 1 was performed to form a spherical aggregate having a particle diameter of about 1 to 30 μm using a spray dryer or the like, and then firing was performed at 1050 ° C. in the air for 10 hours. After firing, the mixture was crushed with a vibration mill or the like, and sieved with a 45 μm mesh. Table 1 shows the evaluation results.

【0016】[0016]

【表1】 [Table 1]

【0017】比較例1は通常の方法で合成したLiCoO2
ある。図8(a)にこのときの粒形態のSEM写真を示
す。偏平状の粒子が見られる。放電電流密度I=0.5mA/cm
2での重量あたりの容量は155mAh/gと実用的な値である
が、放電電流密度I=6.0mA/cm 2で得られる重量あたりの
容量は130mAh/gとI=0.5mA/cm2のときの値に比べて84%
程度である。このときの正極材が塗布−プレスされた電
極面のX線回折を測定した結果を図9(a)に示す。こ
れから(110)/(003)面の強度比をみると0.05程度であ
る。このことにより、上記で説明したように、電極表面
と平行に正極粒子の(003)面が配向していることが推
測される。そのため、(003)の回折強度がそれと垂直
な面である(110)面の回折に比べて大きく、結果として
(110)/(003)の強度比が小さくなっている。
In Comparative Example 1, LiCoO synthesized by a usual method was used.Twoso
is there. FIG. 8A shows an SEM photograph of the grain morphology at this time.
You. Flat particles are seen. Discharge current density I = 0.5mA / cm
TwoCapacity per weight at 155mAh / g is a practical value
But discharge current density I = 6.0mA / cm TwoPer weight obtained in
Capacity is 130mAh / g and I = 0.5mA / cmTwo84% of the value at
It is about. At this time, the positive electrode material is applied and pressed.
FIG. 9A shows the result of measuring the X-ray diffraction of the pole face. This
From this, the intensity ratio of the (110) / (003) plane is about 0.05.
You. This allows, as explained above, the electrode surface
The (003) plane of the positive electrode particles is
Measured. Therefore, the diffraction intensity of (003) is perpendicular to it.
Larger than the diffraction of the (110) plane
The intensity ratio of (110) / (003) is small.

【0018】一方、実施例で示す本発明の正極材は焼成
−粉砕して得られた一次粒子を球状化して凝集体として
再度焼成してあるため、電極に塗布してプレスしたあと
も(003)が配向しにくく、(110)/(003)のピ−
ク強度が比較例に比べて強くなっている。このことは、
球状化後の焼成温度を高くするとより顕著に表れてく
る。これは、凝集が焼成温度の高いほど強く球形状がく
ずれにくくなっているためと考えられる。図8(b)、
図9(b)に本発明材として実施例4の粒形態のSEM
写真とX線回折パタ−ンを示す。これらの粒形態及び回
折強度比の結果は本発明の効果を支持するものである。
そして、本実施例において(110)/(003)比が0.10以上でI
=6.0mA/cm2での容量が142mAh/g以上と実用レベルの値を
得られた。なお、1100℃以上での焼成は正極材の融
点に近いため結晶構造が変化する危険があるので好まし
くない。
On the other hand, the positive electrode material of the present invention shown in the examples is obtained by baking and crushing primary particles obtained by baking and pulverizing, and baking them again as aggregates. ) Is difficult to orient, and the peak of (110) / (003)
The crack strength is higher than that of the comparative example. This means
When the firing temperature after the spheroidization is increased, it appears more remarkably. This is probably because the higher the sintering temperature, the stronger the agglomeration becomes less likely to collapse. FIG. 8B,
FIG. 9B shows the SEM of the grain morphology of Example 4 as the material of the present invention.
A photograph and an X-ray diffraction pattern are shown. The results of these grain morphologies and diffraction intensity ratios support the effects of the present invention.
Then, in this example, when the (110) / (003) ratio is 0.10 or more, I
The capacity at 6.0 mA / cm 2 was 142 mAh / g or more, which was a practical level. It is to be noted that firing at 1100 ° C. or more is not preferable because it is close to the melting point of the positive electrode material and may change the crystal structure.

【0019】[0019]

【発明の効果】以上のように、本発明によれば、充放電
時における正極活物質内のLiイオンの拡散速度が向上
し、ひいては大電流放電に適した正極活物質とそれを用
いた非水系リチウム二次電池を提供することが出来る。
As described above, according to the present invention, the diffusion rate of Li ions in the positive electrode active material at the time of charging and discharging is improved, and the positive electrode active material suitable for large current discharge and the non- An aqueous lithium secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】α−NaFeO2構造の単位格子とLiイオンの拡散パ
スを示す模式図。
FIG. 1 is a schematic diagram showing a unit cell having an α-NaFeO 2 structure and a diffusion path of Li ions.

【図2】α−NaFeO2構造のへき開を示す説明図。FIG. 2 is an explanatory view showing cleavage of an α-NaFeO 2 structure.

【図3】LiCoO2活物質の電極上での配向の状況を示す概
略図。
FIG. 3 is a schematic diagram showing a state of orientation of a LiCoO 2 active material on an electrode.

【図4】本発明の正極活物質に関し一次粒子を球状に凝
集させた二次粒子を示す概略図。
FIG. 4 is a schematic diagram showing secondary particles obtained by aggregating primary particles into a spherical shape in the positive electrode active material of the present invention.

【図5】図4に示す本発明の正極活物質を電極上に塗布
した場合を示す概略図。
5 is a schematic view showing a case where the positive electrode active material of the present invention shown in FIG. 4 is applied on an electrode.

【図6】本発明に従って正極活物質を作成するためのフ
ロ−チャ−トを示す。
FIG. 6 shows a flowchart for preparing a positive electrode active material according to the present invention.

【図7】X線回折の測定方法を示す図。FIG. 7 is a view showing a measuring method of X-ray diffraction.

【図8】(a)比較例1と(b)実施例4の走査型電子
顕微鏡写真(倍率共に1000倍)を示す。
FIGS. 8A and 8B show scanning electron micrographs (1000 × magnification) of (a) Comparative Example 1 and (b) Example 4.

【図9】(a)比較例1と(b)実施例4のX線回折の
回折パタ−ンを示す。
9 (a) shows diffraction patterns of X-ray diffraction of Comparative Example 1 and (b) of Example 4. FIG.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB05 AC06 AD04 AD06 AE05 5H029 AJ06 AK03 CJ03 CJ22 DJ16 DJ17 HJ13 5H050 AA12 BA17 CA07 CA08 CA09 FA17 FA19 GA03 GA22 HA13 ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4G048 AA04 AB05 AC06 AD04 AD06 AE05 5H029 AJ06 AK03 CJ03 CJ22 DJ16 DJ17 HJ13 5H050 AA12 BA17 CA07 CA08 CA09 FA17 FA19 GA03 GA22 HA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 α-NaFeO2構造を有するリチウムと遷移
金属の複合酸化物粉末において、その一次粒子を球状に
凝集させた二次粒子とすることにより、それを電極上に
塗布−プレスした時のX線回折の(110)/(00
3)のピ−ク強度比が0.1以上となることを特徴とす
る非水系リチウム二次電池用正極活物質。
1. In a composite oxide powder of lithium and a transition metal having an α-NaFeO 2 structure, the primary particles are formed into secondary particles obtained by agglomerating into spherical particles, so that the particles are applied and pressed on an electrode. X-ray diffraction (110) / (00)
3) The positive electrode active material for a non-aqueous lithium secondary battery, wherein the peak intensity ratio is 0.1 or more.
【請求項2】 α-NaFeO2構造を有するLiCoO2粉末にお
いて、その一次粒子を球状に凝集させた二次粒子とする
ことにより、それを電極上に塗布−プレスした時のX線
回折の(110)/(003)のピ−ク強度比が0.1
以上となることを特徴とする非水系リチウム二次電池用
正極活物質。
2. In LiCoO 2 powder having an α-NaFeO 2 structure, by forming primary particles into secondary particles that are aggregated into a sphere, X-ray diffraction at the time of applying and pressing it on an electrode is described. 110) / (003) peak intensity ratio of 0.1
A positive electrode active material for a non-aqueous lithium secondary battery, characterized in that:
【請求項3】 請求項1又は2記載の正極活物質を用い
たことを特徴とする非水系リチウム二次電池。
3. A non-aqueous lithium secondary battery using the positive electrode active material according to claim 1 or 2.
JP2001073799A 2001-03-15 2001-03-15 Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same Expired - Fee Related JP4986098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073799A JP4986098B2 (en) 2001-03-15 2001-03-15 Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073799A JP4986098B2 (en) 2001-03-15 2001-03-15 Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same

Publications (3)

Publication Number Publication Date
JP2002279985A true JP2002279985A (en) 2002-09-27
JP2002279985A5 JP2002279985A5 (en) 2008-11-13
JP4986098B2 JP4986098B2 (en) 2012-07-25

Family

ID=18931172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073799A Expired - Fee Related JP4986098B2 (en) 2001-03-15 2001-03-15 Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4986098B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265758A (en) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd Nonaqueous secondary battery and its usage
US7563540B2 (en) 2003-07-24 2009-07-21 Samsung Sdi Co., Ltd. Cathode active material and lithium secondary battery using the same
WO2010074313A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074304A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
WO2010074299A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, and lithium secondary batteries
WO2010074298A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material, as well as lithium secondary batteries
WO2010074303A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074302A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074314A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
JP2011071103A (en) * 2009-08-25 2011-04-07 Toshiba Corp Positive electrode, nonaqueous electrolyte battery, and battery pack
JP2011165404A (en) * 2010-02-05 2011-08-25 Toyota Motor Corp Method of manufacturing electrode for battery, electrode obtained by this method, and battery with this electrode
JP2012003879A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Platy particle for positive electrode active material of lithium secondary battery and film of the positive electrode active material, and lithium secondary battery
US8097363B2 (en) 2003-06-11 2012-01-17 Hitachi, Ltd. Positive electrode material, its manufacturing method and lithium secondary battery
JP2012099405A (en) * 2010-11-04 2012-05-24 Toyota Motor Corp Sintered body, oriented electrode containing the sintered body, and battery comprising the oriented electrode
WO2012137391A1 (en) * 2011-04-07 2012-10-11 日本碍子株式会社 Cathode active material for lithium secondary battery and lithium secondary battery
JP2015005426A (en) * 2013-06-21 2015-01-08 株式会社東芝 Nonaqueous electrolyte battery
JP2015026433A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Method for forming electrode layer for secondary battery
JP2017533568A (en) * 2014-08-07 2017-11-09 株式会社エコプロ ビーエム Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2017536686A (en) * 2014-10-02 2017-12-07 エコプロ ビーエム コーポレイテッドEcopro Bm Co., Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2017536685A (en) * 2014-09-11 2017-12-07 エコプロ ビーエム コーポレイテッドEcopro Bm Co., Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
CN108808072A (en) * 2018-06-29 2018-11-13 宁德时代新能源科技股份有限公司 Lithium ion battery
JP2019182702A (en) * 2018-04-09 2019-10-24 国立研究開発法人産業技術総合研究所 Crystal film and production method of crystal film
WO2020055210A1 (en) 2018-09-12 2020-03-19 주식회사 포스코 Cathode active material, method for preparing same, and lithium secondary battery comprising same
CN111293305A (en) * 2020-02-20 2020-06-16 中南大学 Hexagonal flaky nickel cobalt lithium manganate precursor and preparation method thereof
JPWO2020208918A1 (en) * 2019-04-10 2020-10-15
CN113644255A (en) * 2020-08-13 2021-11-12 Sk新技术株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery comprising same
CN114464795A (en) * 2020-11-09 2022-05-10 Sk新技术株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery comprising same
JP2022091797A (en) * 2014-05-09 2022-06-21 株式会社半導体エネルギー研究所 Manufacture method of active material
JP7561973B2 (en) 2020-12-24 2024-10-04 東莞新能源科技有限公司 Positive Electrode and Electrochemical Device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737576A (en) * 1993-07-22 1995-02-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its positive pole active material
JPH08339806A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH1072219A (en) * 1996-08-30 1998-03-17 Nippon Chem Ind Co Ltd Multiple oxide of lithium, its production and active material of positive electrode for lithium secondary battery
JPH11219706A (en) * 1998-01-30 1999-08-10 Dowa Mining Co Ltd Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JPH11288716A (en) * 1998-03-31 1999-10-19 Hitachi Maxell Ltd Lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737576A (en) * 1993-07-22 1995-02-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its positive pole active material
JPH08339806A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH1072219A (en) * 1996-08-30 1998-03-17 Nippon Chem Ind Co Ltd Multiple oxide of lithium, its production and active material of positive electrode for lithium secondary battery
JPH11219706A (en) * 1998-01-30 1999-08-10 Dowa Mining Co Ltd Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JPH11288716A (en) * 1998-03-31 1999-10-19 Hitachi Maxell Ltd Lithium ion secondary battery

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097363B2 (en) 2003-06-11 2012-01-17 Hitachi, Ltd. Positive electrode material, its manufacturing method and lithium secondary battery
US7563540B2 (en) 2003-07-24 2009-07-21 Samsung Sdi Co., Ltd. Cathode active material and lithium secondary battery using the same
JP2007265758A (en) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd Nonaqueous secondary battery and its usage
US8916293B2 (en) 2008-12-24 2014-12-23 Ngk Insulators, Ltd. Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery
JP4755727B2 (en) * 2008-12-24 2011-08-24 日本碍子株式会社 Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
WO2010074298A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material, as well as lithium secondary batteries
WO2010074303A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074302A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074314A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
EP2369666B1 (en) * 2008-12-24 2018-09-12 NGK Insulators, Ltd. Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
WO2010074313A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074299A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, and lithium secondary batteries
WO2010074304A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
US9843044B2 (en) 2009-08-25 2017-12-12 Kabushiki Kaisha Toshiba Positive electrode
JP2011071103A (en) * 2009-08-25 2011-04-07 Toshiba Corp Positive electrode, nonaqueous electrolyte battery, and battery pack
US9634328B2 (en) 2009-08-25 2017-04-25 Kabushiki Kaisha Toshiba Positive electrode
US8518584B2 (en) 2010-02-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha Production method for electrode for battery, electrode produced by production method, and battery including electrode
JP2011165404A (en) * 2010-02-05 2011-08-25 Toyota Motor Corp Method of manufacturing electrode for battery, electrode obtained by this method, and battery with this electrode
JP2012003879A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Platy particle for positive electrode active material of lithium secondary battery and film of the positive electrode active material, and lithium secondary battery
JP2012099405A (en) * 2010-11-04 2012-05-24 Toyota Motor Corp Sintered body, oriented electrode containing the sintered body, and battery comprising the oriented electrode
WO2012137391A1 (en) * 2011-04-07 2012-10-11 日本碍子株式会社 Cathode active material for lithium secondary battery and lithium secondary battery
JP2015005426A (en) * 2013-06-21 2015-01-08 株式会社東芝 Nonaqueous electrolyte battery
JP2015026433A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Method for forming electrode layer for secondary battery
JP7437434B2 (en) 2014-05-09 2024-02-22 株式会社半導体エネルギー研究所 Method for producing active material
JP2022091797A (en) * 2014-05-09 2022-06-21 株式会社半導体エネルギー研究所 Manufacture method of active material
JP2017533568A (en) * 2014-08-07 2017-11-09 株式会社エコプロ ビーエム Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2017536685A (en) * 2014-09-11 2017-12-07 エコプロ ビーエム コーポレイテッドEcopro Bm Co., Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2020109771A (en) * 2014-09-11 2020-07-16 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. Positive-electrode active material for lithium secondary battery and lithium secondary battery having the same
JP7121771B2 (en) 2014-09-11 2022-08-18 エコプロ ビーエム カンパニー リミテッド Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP7412258B2 (en) 2014-10-02 2024-01-12 エコプロ ビーエム カンパニー リミテッド Positive electrode active material for lithium secondary batteries and lithium secondary batteries containing the same
JP2017536686A (en) * 2014-10-02 2017-12-07 エコプロ ビーエム コーポレイテッドEcopro Bm Co., Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2020109772A (en) * 2014-10-02 2020-07-16 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. Positive-electrode active material for lithium secondary battery and lithium secondary battery having the same
JP2019182702A (en) * 2018-04-09 2019-10-24 国立研究開発法人産業技術総合研究所 Crystal film and production method of crystal film
JP7133197B2 (en) 2018-04-09 2022-09-08 国立研究開発法人産業技術総合研究所 Crystal film and method for producing crystal film
US11502328B2 (en) 2018-06-29 2022-11-15 Contemporary Amperex Technology Co., Limited Lithium-ion battery
CN108808072A (en) * 2018-06-29 2018-11-13 宁德时代新能源科技股份有限公司 Lithium ion battery
WO2020055210A1 (en) 2018-09-12 2020-03-19 주식회사 포스코 Cathode active material, method for preparing same, and lithium secondary battery comprising same
US12046743B2 (en) 2018-09-12 2024-07-23 Posco Holdings Inc. Cathode active material, method for preparing same, and lithium secondary battery comprising same
WO2020208918A1 (en) * 2019-04-10 2020-10-15 パナソニックIpマネジメント株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2020208918A1 (en) * 2019-04-10 2020-10-15
JP7466211B2 (en) 2019-04-10 2024-04-12 パナソニックIpマネジメント株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN111293305B (en) * 2020-02-20 2023-05-30 中南大学 Hexagonal flaky nickel cobalt lithium manganate precursor and preparation method thereof
CN111293305A (en) * 2020-02-20 2020-06-16 中南大学 Hexagonal flaky nickel cobalt lithium manganate precursor and preparation method thereof
CN113644255A (en) * 2020-08-13 2021-11-12 Sk新技术株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery comprising same
US11637282B2 (en) 2020-08-13 2023-04-25 Sk On Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same
CN114464795A (en) * 2020-11-09 2022-05-10 Sk新技术株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery comprising same
JP7561973B2 (en) 2020-12-24 2024-10-04 東莞新能源科技有限公司 Positive Electrode and Electrochemical Device

Also Published As

Publication number Publication date
JP4986098B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
JP4644895B2 (en) Lithium secondary battery
JP3110728B1 (en) Cathode active material and cathode for non-aqueous secondary batteries
US9437873B2 (en) Spinel-type lithium manganese-based composite oxide
US10263244B2 (en) Lithium metal composite oxide having layered structure
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
EP4030503A1 (en) Electrode mixture and electrode layer and solid-state battery employing same
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
WO2022025212A1 (en) Positive electrode active material for all-solid-state lithium ion secondary batteries, and method for producing same
JP2003203632A (en) Positive electrode active material for lithium secondary battery and its manufacturing method, lithium secondary battery using the same, and battery pack module
JP2014116296A (en) Lithium composite oxide and production method therefor, positive electrode active material for secondary battery containing lithium composite oxide, positive electrode for secondary battery containing the same, and lithium ion secondary battery using it as positive electrode
US9077034B2 (en) High manganese polycrystalline anode material, preparation method thereof and dynamic lithium ion battery
JP2004220897A (en) Positive electrode active substance powder for lithium secondary battery
JP4673287B2 (en) Spinel type lithium manganese oxide and method for producing the same
KR20160055138A (en) Positive electrode material for lithium-ion cell
JP3991359B2 (en) Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material
JPH0922693A (en) Nonaqueous electrolyte battery, positive active material thereof, and manufacture of positive plate
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
CN108511749A (en) Copper doped lithium nickelate positive electrode and preparation method thereof and lithium ion battery
JP4868271B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery, positive electrode using this active material, and non-aqueous lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080925

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120419

R150 Certificate of patent or registration of utility model

Ref document number: 4986098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees