JP2006318928A - Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery - Google Patents
Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery Download PDFInfo
- Publication number
- JP2006318928A JP2006318928A JP2006199630A JP2006199630A JP2006318928A JP 2006318928 A JP2006318928 A JP 2006318928A JP 2006199630 A JP2006199630 A JP 2006199630A JP 2006199630 A JP2006199630 A JP 2006199630A JP 2006318928 A JP2006318928 A JP 2006318928A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- secondary battery
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、小型携帯情報端末、電力貯蔵電源あるいは電気自動車等に使用されるリチウム二次電池の正極活物質及びその製造方法に関し、内部抵抗が低くかつ繰り返し充放電させても内部抵抗が増加するのを抑え、高出力を低温から高温領域にわたり提供できる正極活物質の製造方法、正極活物質およびそれを搭載したリチウム二次電池に関するものである。 The present invention relates to a positive electrode active material for a lithium secondary battery used in a small portable information terminal, a power storage power source, an electric vehicle, or the like, and a method for manufacturing the same, and has low internal resistance and increases internal resistance even when repeatedly charged and discharged. The present invention relates to a method for producing a positive electrode active material capable of suppressing the above and providing a high output from a low temperature to a high temperature region, a positive electrode active material, and a lithium secondary battery equipped with the positive electrode active material.
近年、リチウム二次電池は、その高出力、軽量さから携帯端末用のみならずハイブリッド型自動車や電気自動車等の車載用として注目されている。
一般に、リチウム二次電池は正極、負極およびセパレ−タを容器内に配置し、有機溶媒による非水電解液を満たして構成される。正極材はアルミニウム箔等の集電体に正極活物質を塗布したものである。この正極活物質としては、層状岩塩構造を有するコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、スピネル構造を有するマンガン酸リチウム(LiMn2O4)等に代表されるようにリチウムと遷移金属の酸化物からなる粉体が主として用いられ、例えば特許文献1によればその製法が詳しく開示されている。これら正極材活物質の合成は、一般にリチウム塩粉末(LiOH、Li2CO3等)と遷移金属酸化物(MnO2、Co3O4、NiO等)粉末を混合し、焼成する方法が広く採用されている。
この正極活物質の電気伝導性は10−1〜10−6S/cm2と一般の導体と比べて低い値であるため、アルミニウム等の集電体と正極活物質間もしくは活物質相互間の電気伝導性を高めるように、正極活物質より電気伝導性の良い炭素粉等の導電助材が使用される(例えば特許文献2参照)。実際には、正極材に重量比で数〜数十%程度の炭素粉を混ぜ、さらにPVdF(ホ゜リフッ化ヒ゛ニリテ゛ン)、PTFE(ホ゜リテトラフルオロエチレン)等の結着材と混練した後、ペ−スト状に練り上げて集電体箔に厚み100μm程度で塗布し、乾燥、プレス工程を経て正電極が製造される。
In recent years, lithium secondary batteries have attracted attention not only for portable terminals but also for in-vehicle use such as hybrid vehicles and electric vehicles because of their high output and light weight.
Generally, a lithium secondary battery is configured by arranging a positive electrode, a negative electrode, and a separator in a container and filling a non-aqueous electrolyte solution with an organic solvent. The positive electrode material is obtained by applying a positive electrode active material to a current collector such as an aluminum foil. Examples of the positive electrode active material include lithium cobaltate (LiCoO 2 ) having a layered rock salt structure, lithium nickelate (LiNiO 2 ), lithium manganate having a spinel structure (LiMn 2 O 4 ), and the like. A powder made of an oxide of a transition metal is mainly used. For example, Patent Document 1 discloses the production method in detail. In general, these positive electrode active materials are synthesized by mixing and firing lithium salt powders (LiOH, Li 2 CO 3 etc.) and transition metal oxides (MnO 2 , Co 3 O 4 , NiO etc.) powders. Has been.
Since the electrical conductivity of the positive electrode active material is 10 −1 to 10 −6 S / cm 2 , which is a low value compared to a general conductor, the current collector between aluminum and the positive electrode active material or between the active materials In order to enhance the electrical conductivity, a conductive additive such as carbon powder having better electrical conductivity than the positive electrode active material is used (see, for example, Patent Document 2). Actually, carbon powder of several to several tens of percent by weight is mixed with the positive electrode material, and further kneaded with a binder such as PVdF (polyvinylidene fluoride) or PTFE (polytetrafluoroethylene). The positive electrode is manufactured through a drying and pressing process after being kneaded into a shape and applied to a current collector foil with a thickness of about 100 μm.
さて一般に、単位体積当りの電池容量は、正極活物質の重量あたりの容量(mAh/g)と電極密度(g/cm3)の積で見積もることが出来る。即ち、電池容量を決めるのは、一つは活物質自身の単位重量あたりの高容量化であり、これは原材料の組成と高純度化に拠るところが大きい。もう一方は電極の高密度化であり、これは粒子の形状や粒径サイズ、粒度分布等に関わる正極活物質の充填性に拠るところが大きい。 In general, the battery capacity per unit volume can be estimated by the product of the capacity per weight (mAh / g) of the positive electrode active material and the electrode density (g / cm 3 ). That is, one of the factors that determine the battery capacity is to increase the capacity per unit weight of the active material itself, which largely depends on the composition and purity of the raw materials. The other is to increase the density of the electrode, which largely depends on the filling property of the positive electrode active material related to the shape, particle size, particle size distribution and the like of the particles.
従来より、高容量化についての提案は種々行われている。例えば充填性を向上させるために、特許文献3では、Liと、Co、Ni、Mn及びFeからなる群より選択される少なくとも一種の遷移元素とを含む複合酸化物粒子からなり、この複合酸化物粒子が、最長径をD1、最短径をD2とした際のD1/D2が1.0〜2.0の範囲にある球状及び/又は楕円球状の粒子を90%以上含む正極活物質が記載されている。
また、粒径サイズ等を制御することによって容量改善を行うことについても多くの提案がある。例えば、特許文献4には一次粒子のメジアン粒径が0.01μm以上、0.2μm以下であり、二次粒子のメジアン粒径が0.2μm以上、100μm以下である極微粒子のスピネル型のリチウムマンガン複合酸化物が開示されている。さらに、特許文献5には平均粒子径が5〜20μm、BET比表面積が1.0m2・g−1以下であり、且つHall法から求めた平均結晶子径が1000Å以上であるスピネル型のリチウムマンガン複合酸化物が開示されている。
Conventionally, various proposals for increasing the capacity have been made. For example, in order to improve the filling property, Patent Document 3 includes composite oxide particles including Li and at least one transition element selected from the group consisting of Co, Ni, Mn, and Fe. There is described a positive electrode active material containing 90% or more of spherical and / or elliptical particles in which D1 / D2 is in the range of 1.0 to 2.0 when the longest diameter is D1 and the shortest diameter is D2.
There are also many proposals for improving the capacity by controlling the particle size and the like. For example, Patent Document 4 discloses spinel-type lithium manganese composite oxidation of ultrafine particles in which the median particle size of primary particles is 0.01 μm or more and 0.2 μm or less, and the median particle size of secondary particles is 0.2 μm or more and 100 μm or less. Things are disclosed. Further, Patent Document 5 discloses a spinel-type lithium manganese having an average particle diameter of 5 to 20 μm, a BET specific surface area of 1.0 m 2 · g −1 or less, and an average crystallite diameter determined from the Hall method of 1000 mm or more. Composite oxides are disclosed.
一方、正極活物質の組成については、スピネル型リチウムマンガン複合酸化物がコスト的にも有利であるが、容量が低く、高温時の耐久性にも問題があることが知られている。特許文献6等でその改良が進んでいるとはいえ実用化には程遠いレベルでしかない。また、層状岩塩構造を有するリチウムコバルト複合酸化物(LiCoO2)やリチウムニッケル複合酸化物(LiNiO2)は、容量、高温時の耐久性はスピネル型に比べ良好ではあるがコスト、安全性等に課題があり、電気自動車用としてはやはり実用化し難い状況にある。この点で特許文献7に開示されたLi-Mn-Ni-Co複合系酸化物においては容量、コスト的にバランスが取れており注目に値する。 On the other hand, regarding the composition of the positive electrode active material, spinel lithium manganese composite oxide is advantageous in terms of cost, but it is known that the capacity is low and there is a problem in durability at high temperatures. Although the improvement is progressing in Patent Document 6 and the like, it is far from practical use. In addition, lithium cobalt composite oxide (LiCoO2) and lithium nickel composite oxide (LiNiO2) having a layered rock salt structure have better capacity and durability at high temperatures than spinel type, but there are problems with cost, safety, etc. Yes, it is still difficult to put into practical use for electric vehicles. In this respect, the Li-Mn-Ni-Co composite oxide disclosed in Patent Document 7 is well-balanced in terms of capacity and cost, and is notable.
リチウム二次電池は繰り返し充放電を行うと劣化する。この劣化には容量劣化と出力劣化がある。容量劣化とは、一定の充放電電流密度で充放電を繰り返した場合、電池から取り出せる電気量(Ah)が減少するものである。この劣化については、原材料の組成を検討する等の改良が試みられている。一方、出力劣化とは、電池を繰り返し充放電させると、電池の内部抵抗が上昇してゆき、大きな電流密度で電池を放電させた時に、電池電圧(V)が降下し、電圧(V)と電流(A)の積で表せる出力(W)が小さくなっていく現象である。特にエンジンと電気モ−タ−を併用するハイブリッド自動車では、急速充放電が低温から高温の環境で繰り返し行われる。この厳しい環境下で、この出力劣化の度合いが電池の寿命を決める。このようなことから、この出力劣化に対する対策が切望されている。 Lithium secondary batteries deteriorate when repeatedly charged and discharged. This deterioration includes capacity deterioration and output deterioration. The capacity deterioration means that the amount of electricity (Ah) that can be taken out from the battery decreases when charging / discharging is repeated at a constant charge / discharge current density. For this deterioration, attempts have been made to improve the raw material composition. On the other hand, output deterioration means that when a battery is repeatedly charged and discharged, the internal resistance of the battery increases, and when the battery is discharged at a large current density, the battery voltage (V) drops and the voltage (V) This is a phenomenon in which the output (W) that can be expressed by the product of current (A) decreases. Particularly in a hybrid vehicle using both an engine and an electric motor, rapid charge / discharge is repeatedly performed in a low to high temperature environment. In this severe environment, the degree of output deterioration determines the battery life. For this reason, countermeasures against this output deterioration are eagerly desired.
そこで、本発明は、内部抵抗を低減させることにより高出力化を図るもので、内部抵抗を小さく抑えてかつ出力劣化が少ない正極活物質及びその製造方法、並びにこの正極活物質を用いた出力特性の優れたリチウム二次電池を提供することを目的とする。 Therefore, the present invention aims to increase the output by reducing the internal resistance, the positive electrode active material that suppresses the internal resistance and reduces the output deterioration, the manufacturing method thereof, and the output characteristics using the positive electrode active material An object of the present invention is to provide an excellent lithium secondary battery.
正極活物質においては、Hall法によって求めた結晶子の大きさが所定の範囲にあるとき、高出力かつ繰り返し充放電させても、内部抵抗値の上昇を抑え、出力劣化が少なくて済むことを知見した。即ち、本発明の正極活物質は、X線回折パタ−ンから得られる各回折ピ−クの積分幅からHall法によって測定した結晶子の大きさが600Åより大きく、800Å未満であることを特徴としている。
Hall法により求めた結晶子の大きさが600Å以下になると、内部抵抗値が高くなる傾向にあり、また800Å以上となる場合でも内部抵抗値が高くなる傾向にあることが分かった。Hall法により求めた結晶子の大きさが600Å以下の場合、結晶構造がまだしっかりと形成されていないため、充放電時における結晶内のLiイオンの拡散速度が低下するものと推察される。また、結晶子が800Å以上の値が計測された場合、粒成長、すなわち焼結も進行しており、電解液を含む素性が悪くなると考えられる。従って、内部抵抗値の上昇を抑えることができる結晶子の範囲がここにある。このときに内部抵抗を小さくできて高出力が得られ特に車両用等に適している。この点で特許文献5に開示された正極活物質は微粒子ではあるが、結晶子サイズに着目したものではない。また特許文献6ではHall法により求めた結晶子の大きさを規定しているが1000Å以上であり上記範囲から逸脱している。もっとも特許文献5、6ともスピネル型構造の正極材料であり、このものは上記でもしたように高温時の耐久性に問題があり、かつ内部抵抗低減等についての配慮はない。
In the positive electrode active material, when the crystallite size obtained by the Hall method is within a predetermined range, even if high output and repeated charge / discharge are performed, an increase in internal resistance value is suppressed and output deterioration is small. I found out. That is, the positive electrode active material of the present invention is characterized in that the crystallite size measured by the Hall method from the integral width of each diffraction peak obtained from the X-ray diffraction pattern is greater than 600 mm and less than 800 mm. It is said.
It has been found that when the crystallite size obtained by the Hall method is 600 mm or less, the internal resistance value tends to increase, and even when the crystallite size is 800 mm or more, the internal resistance value tends to increase. When the size of the crystallite obtained by the Hall method is 600 mm or less, it is presumed that the diffusion rate of Li ions in the crystal at the time of charge / discharge decreases because the crystal structure has not yet been firmly formed. Further, when a crystallite value of 800 mm or more is measured, grain growth, that is, sintering is also progressing, and it is considered that the characteristics including the electrolytic solution are deteriorated. Therefore, here is a range of crystallites that can suppress an increase in internal resistance. At this time, the internal resistance can be reduced to obtain a high output, which is particularly suitable for vehicles. In this regard, the positive electrode active material disclosed in Patent Document 5 is a fine particle, but does not focus on the crystallite size. Further, in Patent Document 6, the size of the crystallite obtained by the Hall method is defined, but it is 1000 mm or more and deviates from the above range. However, both Patent Documents 5 and 6 are positive electrode materials having a spinel structure, and as described above, this has a problem in durability at high temperatures, and there is no consideration for reducing internal resistance.
また、上述したように、一般に正極活物質はその充填性が高いほど、単位体積あたりの容量が得られ、且つ活物質間の電気的接触状態が良好となり高出力が得られると考えられている。それゆえ、充填性の向上を目的とした検討が種々行われており、特許文献3等もその一例である。しかしながら、特に内部抵抗が小さく出力劣化の少ない正極活物質を得ようとする場合には、正極活物質が電池内部に充填された時に電気的接触を保ちつつ、電解液をある程度含むことが可能な素性が必要であると考えられる。本願発明者はこのような観点から正極活物質の充填性において、高出力かつ繰り返し充放電させても、その出力劣化が少ない充填性の条件があることを見出した。
即ち、前記正極活物質において、(タップ密度/真密度)×100[%]で表される充填性が55%未満であることが好ましい。ここで、あまり充填性を小さくすると、正極活物質を正電極上へ塗布する際に凝集しやすくなり、バインダ−の量も多く必要とする為、充填率(%)=(タップ密度/真密度)の望ましい範囲は25%〜50%であり、さらに望ましくは30%〜45%である。因みに、特許文献3の正極活物質は、タップ密度が2.9g/cm3以上とあり、これら正極活物質の真密度は4〜5g/cm3程度に分布しており、真密度を5と見積もると、本発明の指標である充填性(%)=(タップ密度/真密度)×100の値は58%以上となる。このように従来の正極活物質の充填性は55%以上となすことが常識的であり、専ら充填性を上げることに注意が払われてきた。このように本発明の正極活物質の充填性は、従来の常識的な数値の範囲外にある。
Further, as described above, it is generally considered that the higher the filling property of the positive electrode active material, the higher the capacity per unit volume, the better the electrical contact state between the active materials, and the higher output. . Therefore, various studies for improving the filling property have been performed, and Patent Document 3 is an example. However, in particular, when trying to obtain a positive electrode active material with low internal resistance and low output deterioration, it is possible to contain electrolyte to some extent while maintaining electrical contact when the positive electrode active material is filled inside the battery. It is thought that the feature is necessary. From this point of view, the inventor of the present application has found that the filling property of the positive electrode active material has a filling property with little output deterioration even when the power is repeatedly output and charged repeatedly.
That is, in the positive electrode active material, the filling property represented by (tap density / true density) × 100 [%] is preferably less than 55%. Here, if the filling property is too small, the positive electrode active material tends to aggregate when applied on the positive electrode, and a large amount of binder is required, so the filling rate (%) = (tap density / true density). ) Is preferably 25% to 50%, more preferably 30% to 45%. Incidentally, the positive electrode active material of Patent Document 3 has a tap density of 2.9 g / cm 3 or more, and the true density of these positive electrode active materials is distributed to about 4 to 5 g / cm 3, and the true density is estimated to be 5. Then, the value of filling property (%) = (tap density / true density) × 100, which is an index of the present invention, is 58% or more. As described above, it is common sense that the filling property of the conventional positive electrode active material is 55% or more, and attention has been paid exclusively to raising the filling property. Thus, the filling property of the positive electrode active material of the present invention is outside the range of conventional common sense numerical values.
次に、本発明の正極活物質の組成は、組成式LiaMnxNiyXzO2(X=Co、Alのうち少なくとも一種)で表され、1≦a≦1.2、0≦x≦0.65、0.35≦y≦1、0≦z≦0.65の範囲でかつx+y+z=1の層状岩塩構造を有する複合酸化物である。この組成は、MnやNi、Coの配合比と焼成雰囲気、焼成温度によってスピネル構造や層状構造を形成するものである。本発明の正極活物質として、上記のような層状岩塩構造を有する多元系複合酸化物の組成が効果的であることが確認された。そして、本願発明者らはさらに以下のような検討を加えた。この組成においてMn量を多くすると、コスト的には有利になるが、スピネル相が生じてしまう傾向にあり容量、高温耐久性に問題が生じる。また、Ni量を多くすると安全性(過充電やクギ刺し、圧壊時に破裂、発火等)の問題がある。Coについては含有量が多いとコスト的に不利である。また、低コストであるためには大気中で合成できる組成が望ましい。容量、安全性およびコストとの兼ね合いで、Coの一部をAlで置換できる場合もある。ただし、Alを多く置換すると安全性が増し、コスト的にも有利になるが容量が減少する傾向にある。以上のことより、本発明では大気中で焼成しても層状岩塩構造のみとなり、かつ容量、安全性、コスト的にもバランスが取れた次の組成がより望ましい。即ち、組成式LiaMnxNiyXzO2(X:CoもしくはAlの少なくとも1種)で表され、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.8、0≦z≦0.45の範囲でかつx+y+z=1の層状岩塩構造を有する複合酸化物である。更に望ましくは、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.7、0.1≦z≦0.45の範囲でかつx+y+z=1の層状岩塩構造を有する複合酸化物である。 Next, the composition of the positive electrode active material of the present invention is represented by the composition formula Li a Mn x Ni y X z O 2 (X = Co, at least one of Al), and 1 ≦ a ≦ 1.2, 0 ≦ x ≦ The composite oxide has a layered rock salt structure in the range of 0.65, 0.35 ≦ y ≦ 1, 0 ≦ z ≦ 0.65 and x + y + z = 1. This composition forms a spinel structure or a layered structure depending on the mixing ratio of Mn, Ni, and Co, the firing atmosphere, and the firing temperature. As the positive electrode active material of the present invention, it was confirmed that the composition of the multi-component composite oxide having the layered rock salt structure as described above was effective. Then, the inventors of the present application further studied as follows. Increasing the amount of Mn in this composition is advantageous in terms of cost, but a spinel phase tends to occur, causing a problem in capacity and durability at high temperatures. Further, when the amount of Ni is increased, there is a problem of safety (overcharge, nail penetration, bursting at the time of collapse, ignition, etc.). As for Co, a large content is disadvantageous in terms of cost. In addition, a composition that can be synthesized in the atmosphere is desirable for low cost. In some cases, a part of Co can be replaced with Al in consideration of capacity, safety, and cost. However, if a large amount of Al is substituted, the safety increases and the cost is advantageous, but the capacity tends to decrease. In view of the above, in the present invention, the following composition is more desirable because only the layered rock salt structure is obtained even when fired in the air, and the capacity, safety and cost are balanced. That is, it is represented by the composition formula Li a Mn x Ni y X z O 2 (X: at least one of Co or Al), 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ 0.5, 0.35 ≦ y ≦ 0.8, 0 ≦ z It is a complex oxide with a layered rock salt structure in the range of ≦ 0.45 and x + y + z = 1. More desirably, the composite oxide has a layered rock salt structure in the range of 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ 0.5, 0.35 ≦ y ≦ 0.7, 0.1 ≦ z ≦ 0.45 and x + y + z = 1.
次に、本発明の正極活物質及びその製造方法において、原料であるリチウム塩粉末(LiOH、Li2CO3等)、遷移金属酸化物(MnO2、Co3O4、NiO等)粉末、水酸化アルミニウムまたは酸化アルミニウムを混合し、焼成して前記正極活物質を合成するスラリー原料及びこの混合工程が重要である。本発明で用いる多元系の組成の場合、混合状態における組成を均一にする必要がある。さもないと、場所によって組成が異なり、スピネル相の生成や容量が低下する部分が生じてしまい、全体として正極活物質の性能が低下する。
即ち、本発明の前記正極活物質は、少なくともリチウム塩と遷移金属酸化物、酸化コバルト及び/又は水酸化アルミニウム、酸化アルミニウム等を溶媒中へ分散させ、メジアン粒径D50が1μm以下となるよう粉砕混合したスラリ−を原料とすることを特徴とする。本発明者らの検討の結果、D50が1μmより大きくなると、特性に悪影響を及ぼす傾向が出始めることが分かった。
Next, in the positive electrode active material and the method for producing the same of the present invention, the raw material is a lithium salt powder (LiOH, Li 2 CO 3, etc.), a transition metal oxide (MnO 2 , Co 3 O 4 , NiO etc.) powder, water The slurry raw material in which aluminum oxide or aluminum oxide is mixed and fired to synthesize the positive electrode active material and the mixing step are important. In the case of a multi-component composition used in the present invention, it is necessary to make the composition in a mixed state uniform. Otherwise, the composition varies depending on the location, and a portion where the spinel phase is generated and the capacity is reduced is generated, and the performance of the positive electrode active material as a whole is deteriorated.
In other words, the positive electrode active material of the present invention is pulverized so that at least a lithium salt and a transition metal oxide, cobalt oxide and / or aluminum hydroxide, aluminum oxide, etc. are dispersed in a solvent, and the median particle diameter D50 is 1 μm or less. The mixed slurry is used as a raw material. As a result of the study by the present inventors, it has been found that when D50 is larger than 1 μm, a tendency to adversely affect the characteristics starts to appear.
次に、本発明の非水系リチウム二次電池用正極活物質の製造方法は、少なくともリチウム塩と遷移金属酸化物、酸化コバルト及び/又は水酸化アルミニウム、酸化アルミニウム等を溶媒中へ分散させ、メジアン粒径D50が1μm以下となるよう粉砕混合し、この原料スラリーを乾燥させ、造粒し顆粒状にした後、大気中、窒素雰囲気中あるいは酸素雰囲気中にて800℃〜1100℃の温度で焼成を行い、解砕し、その後大気中、窒素雰囲気中あるいは酸素雰囲気中にて400℃〜900℃の温度で熱処理を行うことを特徴としている。 Next, in the method for producing a positive electrode active material for a non-aqueous lithium secondary battery of the present invention, at least a lithium salt and a transition metal oxide, cobalt oxide and / or aluminum hydroxide, aluminum oxide, etc. are dispersed in a solvent, and a median is obtained. After grinding and mixing so that the particle size D50 is 1 μm or less, this raw material slurry is dried, granulated and granulated, and then fired at a temperature of 800 ° C. to 1100 ° C. in air, nitrogen atmosphere or oxygen atmosphere And then pulverizing, followed by heat treatment at a temperature of 400 ° C. to 900 ° C. in air, nitrogen atmosphere or oxygen atmosphere.
上記原料スラリ−を乾燥して焼成する場合、通常、スラリ−をろ布等に入れプレスして脱水、乾燥して焼成する方法、スラリ−ドライヤ−を使って乾燥焼成する方法等があるが、これらの方法で乾燥した混合原料を焼成すると、充分反応が終了するまでに焼結もかなり進行してしまい、後工程で解砕するのに時間を必要とし、粒度分布の制御も困難となる。また、焼結の進行を避けようとして焼成温度を下げたりすると、未反応部分が残る懸念もある。このため、本発明では原料スラリ−をスプレ−ドライヤ−等を用いて、乾燥しながら顆粒状に造粒し、焼成する過程を有している。この過程があることにより、焼結を進ませず短時間で焼成させることができ、後工程の解砕も短時間で済む。尚かつ粒度分布も制御しやすい。実施例で検討した結果、焼成温度は800℃〜1100℃が望ましい。また、解砕の後、熱処理を施すのが望ましい。熱処理を施すと、電池特性が安定する。これは解砕時に正極活物質に生じる歪を取り除く効果があると考えられる。熱処理温度は400℃〜900℃が望ましい。 When the raw material slurry is dried and fired, there are usually a method in which the slurry is put into a filter cloth and pressed, dehydrated, dried and fired, a method of drying and firing using a slurry dryer, etc. When the mixed raw material dried by these methods is fired, sintering proceeds considerably before the reaction is sufficiently completed, and it takes time to disintegrate in a subsequent process, and it becomes difficult to control the particle size distribution. Further, if the firing temperature is lowered to avoid the progress of sintering, there is a concern that an unreacted portion remains. For this reason, in this invention, it has the process of granulating a raw material slurry into a granular form, using a spray dryer etc., and baking. Due to this process, sintering can be performed in a short time without progressing the sintering, and crushing in the subsequent process can be completed in a short time. Moreover, it is easy to control the particle size distribution. As a result of examination in Examples, the firing temperature is desirably 800 ° C to 1100 ° C. Moreover, it is desirable to heat-treat after crushing. When heat treatment is performed, battery characteristics are stabilized. This is considered to have an effect of removing strain generated in the positive electrode active material during crushing. The heat treatment temperature is preferably 400 ° C to 900 ° C.
また、前記解砕工程であるが、強い粉砕力で行うことは好ましくない。正極活物質の結晶構造自体に強いダメ−ジを与えるばかりでなく、解砕中の粒径の経時変化が急峻で解砕しすぎる可能性もあり、工程上管理が大変である。そのため、粉砕に使うボ−ルの表面を樹脂等の有機材料でコ−トしたボ−ルを使うことが望ましい。即ち、本発明では前記解砕を、樹脂等の有機材料でコ−トしたボ−ルをメディアとして用いて行うことを特徴とする。コ−トする材料はナイロン等が望ましい。この方法を用いると、解砕が進行しすぎず、また正極活物質の結晶構造に与えるダメ−ジを最小限にとどめることが出来る。また、次工程の熱処理で歪を短時間で取り除け、解砕時にボ−ルから入るコンタミも有機物なので熱処理工程で焼き飛ばすことができる点でも好ましい。 Moreover, although it is the said crushing process, it is not preferable to carry out with a strong crushing force. In addition to giving a strong damage to the crystal structure itself of the positive electrode active material, there is a possibility that the change over time in the particle size during the pulverization is steep and pulverization is excessive, which makes management difficult in the process. Therefore, it is desirable to use a ball in which the surface of the ball used for grinding is coated with an organic material such as a resin. That is, the present invention is characterized in that the crushing is performed using a ball coated with an organic material such as a resin as a medium. The material to be coated is preferably nylon or the like. When this method is used, crushing does not proceed excessively, and damage to the crystal structure of the positive electrode active material can be minimized. Further, it is also preferable in that the strain can be removed in a short time by the heat treatment in the next step, and the contamination entering from the ball at the time of crushing can be burned off in the heat treatment step because it is an organic substance.
以上のことより、本発明のリチウム二次電池用正極活物質及びその製造方法においては、少なくともリチウム塩と遷移金属酸化物、酸化コバルト及び/又は水酸化アルミニウム、酸化アルミニウム等を溶媒中へ分散させ、メジアン粒径D50が1μm以下となるよう粉砕混合し、この原料スラリーを乾燥させ、造粒し顆粒状にした後、大気中、窒素雰囲気中あるいは酸素雰囲気中にて800℃〜1100℃の温度で焼成を行い、解砕し、その後大気中、窒素雰囲気中あるいは酸素雰囲気中にて400℃〜900℃の温度で熱処理を行い、分級して正極活物資とする。このプロセスで作製した正極活物質の充填性と結晶子の大きさを本発明の範囲に入るよう製造パラメ−タ−(組成、混合原料スラリ−の粒径、焼成温度、解砕条件、熱処理温度等)を調整するものである。 From the above, in the positive electrode active material for a lithium secondary battery and the method for producing the same of the present invention, at least a lithium salt and a transition metal oxide, cobalt oxide and / or aluminum hydroxide, aluminum oxide, etc. are dispersed in a solvent. The mixture is pulverized and mixed so that the median particle diameter D50 is 1 μm or less, and the raw slurry is dried, granulated and granulated, and then at a temperature of 800 ° C. to 1100 ° C. in air, nitrogen atmosphere or oxygen atmosphere Calcination and pulverization, followed by heat treatment at a temperature of 400 ° C. to 900 ° C. in air, nitrogen atmosphere or oxygen atmosphere, and classification to obtain a positive electrode active material. Production parameters (composition, particle size of mixed raw material slurry, firing temperature, crushing condition, heat treatment temperature) so that the filling property and crystallite size of the positive electrode active material produced by this process fall within the scope of the present invention. Etc.).
本発明によれば、内部抵抗低減による高出力および出力劣化が小さい正極活物質の製造方法および正極活物質と、この正極活物質を用いた出力特性の優れた、特に車両に適したリチウム二次電池を提供することが出来る。 According to the present invention, a positive electrode active material manufacturing method and a positive electrode active material with high output and low output deterioration due to internal resistance reduction, and a lithium secondary material excellent in output characteristics using this positive electrode active material, particularly suitable for vehicles. A battery can be provided.
以下、本発明の実施の形態を実施例に基づいて説明する。まず、本発明におけるパラメータの測定方法や手段について以下に説明する。
先ず、正極活物質の充填性の測定方法を示す。120℃にて8時間程度真空乾燥した正極活物質約200gを円柱状の試料ホルダ−に自由落下で充填させ、1秒に1回の割合で180回タッピングさせた。タッピング後の正極活物質の見かけ容積と重量からタップ密度(重量/見かけ容積)を算出した。本発明における測定にはホソカワミクロン(株)製パウダーテスター(タイプ:PT−D)を使用した。また、正極活物質の真密度は、X線回折から求まる格子定数と秤量組成から算出した。算出が困難な場合は、市販のピクノメ−タ−法による粒子密度測定器を用いて実測しても良い。以上から得られたタップ密度と真密度から充填性=(タップ密度/真密度)×100を計算で求めた。
Hereinafter, embodiments of the present invention will be described based on examples. First, the parameter measuring method and means in the present invention will be described below.
First, a method for measuring the filling property of the positive electrode active material will be described. About 200 g of the positive electrode active material vacuum-dried at 120 ° C. for about 8 hours was filled into a cylindrical sample holder by free fall, and tapped 180 times at a rate of once per second. The tap density (weight / apparent volume) was calculated from the apparent volume and weight of the positive electrode active material after tapping. For the measurement in the present invention, a powder tester (type: PT-D) manufactured by Hosokawa Micron Corporation was used. The true density of the positive electrode active material was calculated from the lattice constant obtained from X-ray diffraction and the weighed composition. When calculation is difficult, you may measure using the particle density measuring device by a commercially available pycnometer method. From the tap density and the true density obtained from the above, filling property = (tap density / true density) × 100 was obtained by calculation.
結晶子の大きさを測定するための評価方法を示す。本発明ではリガク製X線回折装置(RINT2500)を使用した。正極活物質を試料セルに充填し、波長1.5406Åの単色化したCuKα線を線源とし、反射式デイフラクトメーター法によってX線回折を測定した。測定範囲は2θで10度から70度の範囲とした。測定の際の角度ステップを0.006deg、また走査速度を1deg/分とした。得られたX線回折曲線からKα2線による回折強度を差し引き、各回折ピ−クの積分幅βMを求めた。βMには、正極活物質由来の成分βと測定装置に由来する成分βsが含まれている。測定装置に由来する積分幅βsはあらかじめ求めておく。βsの算出にはX線標準用高純度シリコン粉末から得られる回折ピ−クの積分幅を用いた。次に、以下の式を使って正極活物質由来の積分幅βを求めた。
次に、正極材の電池特性評価方法を示す。正極材、導電助材(炭素粉)、結着剤(8wt%PVdF/NMP)を重量比85:10:5の割合でメノウ鉢にて混練し、スラリ−状の合材とした。得られた合材をステンレス製のヘラで厚さ20μmの集電体(Al箔)上に約200μmの厚さに塗布した。塗布した合材は80℃で2時間の予備乾燥後、所定の寸法(巾10mm、長さはおよそ50mm)に切断し金型を用いて1.5t/cm2の圧力で2min間プレスした。最終的に120℃、2時間の真空乾燥を行って試験用正極とした。このとき、塗布した正極材の厚さは100μm程度になる。また塗布部分の大きさは10mm×10mmである。
Next, the battery characteristic evaluation method of a positive electrode material is shown. A positive electrode material, a conductive additive (carbon powder), and a binder (8 wt% PVdF / NMP) were kneaded in an agate bowl at a weight ratio of 85: 10: 5 to obtain a slurry-like composite material. The obtained mixture was applied to a thickness of about 200 μm on a current collector (Al foil) having a thickness of 20 μm with a stainless steel spatula. The applied composite material was pre-dried at 80 ° C. for 2 hours, then cut into predetermined dimensions (
簡易電池は以下の手順で作成した。正極を露点−60℃以下の湿度に保たれたAr雰囲気のグローブボックス中に移し、電解液(EC:DMC=1:2、電解質1M-LiPF6)に浸潤した後、セパレータ(25μm厚多孔質ポリエチレンフィルム)、酸化被膜を十分落とした1mm厚の金属リチウム対極、参照極とともに積み重ね、コイン型のステンレス製板に挟み込み、端子つきのガラス瓶に封入して簡易電池とした。セルが電気化学的に平衡になるように数時間程度放置してから、それぞれの端子(試験極、対極、参照極)を充放電測定装置(東洋システム製TOSCAT-3100)に接続し測定を行った。充電時の電極面積に対する電流密度は0.5mA/cm2とした。正極の電位が4.3V対Li参照極になった時点を充電終了とし、放電時の電流密度は0.5、3.0、6.0mA/cm2と変えたときの初期電圧を測定した。横軸に放電電流密度、縦軸に電池電圧をとり、その傾きから電池の内部抵抗を算出した。高温放置後における内部抵抗の上昇率測定では、まず室温で測定が終了した電池に再び充電を行った後、グロ−ブボックス中で電池を解体し正極を取り出す。次に、密閉容器に7gの電解液を量りとってこれを浸漬する。密閉容器を50℃に保持した湯浴中に放置する。10日放置後にグロ−ブボックス中で正極を取り出し、簡易電池に組み込み、前記と同様な内部抵抗の測定を行った。放置前と放置後の抵抗変化を放置前の抵抗で割った値に100を掛けた値を内部抵抗上昇率(%)とした。 A simple battery was prepared by the following procedure. The positive electrode was transferred into an Ar atmosphere glove box kept at a dew point of −60 ° C. or lower, infiltrated with an electrolyte (EC: DMC = 1: 2, electrolyte 1M-LiPF 6 ), and then a separator (25 μm thick porous) Polyethylene film), a 1 mm-thick metallic lithium counter electrode with a sufficiently thin oxide film, and a reference electrode, stacked together, sandwiched between coin-shaped stainless steel plates, and sealed in a glass bottle with a terminal to obtain a simple battery. Allow the cell to remain electrochemically balanced for several hours, and then connect each terminal (test electrode, counter electrode, reference electrode) to a charge / discharge measuring device (TOSCAT-3100 manufactured by Toyo System) to perform measurement. It was. The current density with respect to the electrode area at the time of charge was 0.5 mA / cm 2 . When the potential of the positive electrode became 4.3 V vs. Li reference electrode, the charging was completed, and the initial voltage was measured when the current density during discharging was changed to 0.5, 3.0, 6.0 mA / cm 2 . The discharge current density was taken on the horizontal axis and the battery voltage was taken on the vertical axis, and the internal resistance of the battery was calculated from the slope. In the measurement of the rate of increase in internal resistance after leaving at high temperature, the battery that has been measured at room temperature is first charged again, and then the battery is disassembled in a glove box and the positive electrode is taken out. Next, 7 g of the electrolytic solution is weighed and sealed in a sealed container. The sealed container is left in a hot water bath maintained at 50 ° C. After leaving it for 10 days, the positive electrode was taken out in the globe box and incorporated in a simple battery, and the internal resistance was measured in the same manner as described above. The value obtained by dividing the resistance change before and after leaving by the resistance before leaving and multiplying by 100 was taken as the rate of increase in internal resistance (%).
以下、実施例について説明する。
(実施例1、2)
図1に示す製造工程に沿って本発明の正極活物質を製造した。先ず、原料として炭酸リチウム(Li2CO3)、二酸化マンガン(MnO2)、酸化コバルト(Co3O4)、酸化ニッケル(NiO)の各粉末を、正極活物質の組成がLi1.08Mn0.33Ni0.36Co0.31O2になるように秤量した。その後の粉砕混合については、ジルコニア(ZrO2)を主成分とするメディアを使用した。ボ−ルミルのポットに、原料粉、純水、メディアを投入し湿式で混合した。原料粉のメジアン粒径D50は初期10μm程度であり、原料粉のメジアン粒径D50を10〜0.5μm(10,5,1,0.5μmの4段階)の範囲で変えた原料スラリ−を用意した。ここで、実施例1の原料スラリーは1μm、実施例2の原料スラリーは0.5μmのメジアン粒径である。尚、原料粉のメジアン粒径D50が0.5μmになる時間は24hr程度であった。混合後、PVA(ポリビニルアルコ−ル)を溶かした水溶液を適量加え、更に1時間混合する。次に、スラリ−をポットから取り出し、貯蔵タンクへ移し変える。スプレードライヤにより造粒し乾燥させて径10〜100μmの顆粒を作成する。次に顆粒を大気中1000℃で4時間焼成する。焼成後、樹脂コ−ト等を施したメディアを使い最大粒径が20μm以下の粒度分布が得られるまでボ−ルミルによる解砕を行う。次に、大気中600℃で4時間熱処理を行い、目開き63μmの振動フルイにて分級し、正極活物質とした。この正極活物質を用いて前記充填性と簡易電池による内部抵抗及び内部抵抗上昇率を測定した。
Examples will be described below.
(Examples 1 and 2)
The positive electrode active material of the present invention was manufactured along the manufacturing process shown in FIG. First, lithium carbonate (Li 2 CO 3 ), manganese dioxide (MnO 2 ), cobalt oxide (Co 3 O 4 ), and nickel oxide (NiO) powders were used as raw materials, and the composition of the positive electrode active material was Li 1.08 Mn 0.33 Ni Weighed to 0.36 Co 0.31 O 2 . For the subsequent pulverization and mixing, media mainly composed of zirconia (ZrO 2 ) were used. Raw material powder, pure water, and media were put into a ball mill pot and mixed in a wet manner. The median particle size D50 of the raw material powder is about 10 μm at the initial stage, and a raw material slurry was prepared in which the median particle size D50 of the raw material powder was changed in the range of 10 to 0.5 μm (4 steps of 10, 5, 1, 0.5 μm). . Here, the raw material slurry of Example 1 has a median particle size of 1 μm, and the raw material slurry of Example 2 has a median particle size of 0.5 μm. The time required for the median particle size D50 of the raw material powder to be 0.5 μm was about 24 hours. After mixing, an appropriate amount of an aqueous solution in which PVA (polyvinyl alcohol) is dissolved is added and further mixed for 1 hour. The slurry is then removed from the pot and transferred to a storage tank. Granulate with a spray dryer and dry to produce granules with a diameter of 10-100 μm. The granules are then fired in the atmosphere at 1000 ° C. for 4 hours. After firing, pulverization with a ball mill is performed until a particle size distribution with a maximum particle size of 20 μm or less is obtained using media coated with a resin coat or the like. Next, heat treatment was performed in the atmosphere at 600 ° C. for 4 hours, and classification was performed with a vibration sieve having an aperture of 63 μm to obtain a positive electrode active material. Using this positive electrode active material, the filling property and the internal resistance and the rate of increase in internal resistance due to a simple battery were measured.
(比較例1)
上記実施例1、2と同じ製造方法による正極活物質であるが、上記原料スラリーの段階で原料粉のメジアン粒径D50が10μmの原料スラリーを用いたものである。
(Comparative Example 1)
A positive electrode active material produced by the same manufacturing method as in Examples 1 and 2 above, but using a raw material slurry having a median particle diameter D50 of 10 μm in the raw material powder at the stage of the raw material slurry.
(比較例2)
上記実施例1、2と同じ製造方法による正極活物質であるが、上記原料スラリーの段階で原料粉のメジアン粒径D50が5μmの原料スラリーを用いたものである。
(Comparative Example 2)
A positive electrode active material produced by the same production method as in Examples 1 and 2 above, but using a raw material slurry having a median particle diameter D50 of 5 μm of the raw material powder at the stage of the raw material slurry.
(比較例3〜6)
実施例1、2と同じ組成になるように原料を所定量秤量し、原料粉のメジアン粒径D50を10〜0.5μm(10,5,1,0.5μmの4段階)の範囲で変えた原料スラリ−を用意し、これを比較例3〜6とした。次にこれらスラリ−をスラリ−ドライヤ−で乾燥した。この後、大気中1000℃で4時間焼成する。本比較例では上記実施例のように、焼成前で顆粒状に造粒していないので、混合原料は焼成後、クッキ−状の焼結体となる。次に焼成後の解砕をするのだが、焼結が進行して硬いため、本発明の樹脂コ−ト等を施したメディアでは解砕が出来ない。従って、より解砕能力が高いジルコニアボ−ルを使ったボ−ルミル粉砕を行った。次に、大気中600℃で4時間熱処理を行い、目開き63μmの振動フルイにて分級し、正極活物質とした。この正極活物質を用いて充填性と内部抵抗及び内部抵抗上昇率を測定した。
(Comparative Examples 3-6)
A raw material was weighed in a predetermined amount so as to have the same composition as in Examples 1 and 2, and the raw material powder median particle diameter D50 was changed in the range of 10 to 0.5 μm (4 steps of 10, 5, 1, 0.5 μm). The slurry was prepared and this was made into Comparative Examples 3-6. Next, these slurries were dried with a slurry drier. Then, it is fired at 1000 ° C. for 4 hours in the atmosphere. In this comparative example, as in the above example, since it is not granulated before firing, the mixed raw material becomes a cookie-like sintered body after firing. Next, crushing after firing is performed. However, since the sintering progresses and is hard, the media coated with the resin coat of the present invention cannot be crushed. Therefore, ball milling using a zirconia ball having higher crushing ability was performed. Next, heat treatment was performed in the atmosphere at 600 ° C. for 4 hours, and classification was performed with a vibration sieve having an aperture of 63 μm to obtain a positive electrode active material. Using this positive electrode active material, fillability, internal resistance, and internal resistance increase rate were measured.
(比較例7)
実施例1、2と同じ組成になるように原料を所定量秤量し、原料粉のメジアン粒径D50を0.5μmとした原料スラリ−を用意した。次にスラリ−をスプレードライヤにより造粒し乾燥させて径10〜100μmの顆粒を作成した。この後、大気中1000℃で4時間焼成する。次に、ジルコニアボ−ルを使ったボ−ルミル粉砕を行った。その後、大気中600℃で4時間熱処理を行い、目開き63μmの振動フルイにて分級し、正極活物質とした。この正極活物質を用いて充填性と内部抵抗及び内部抵抗上昇率を測定した。
以下、得られた評価結果を表1に示す。
(Comparative Example 7)
A raw material slurry was prepared in which a predetermined amount of raw materials were weighed so as to have the same composition as in Examples 1 and 2, and the median particle diameter D50 of the raw material powder was 0.5 μm. Next, the slurry was granulated with a spray dryer and dried to prepare granules having a diameter of 10 to 100 μm. Then, it is fired at 1000 ° C. for 4 hours in the atmosphere. Next, ball milling using zirconia balls was performed. Thereafter, heat treatment was performed in the atmosphere at 600 ° C. for 4 hours, and classification was performed with a vibration sieve having an aperture of 63 μm to obtain a positive electrode active material. Using this positive electrode active material, fillability, internal resistance, and internal resistance increase rate were measured.
The obtained evaluation results are shown in Table 1.
以上の結果より、原料スラリ−の粒度を1μm以下とすると、内部抵抗が小さくなる傾向が見られる。これは組成均一性が増しているためと考えられる。また、本発明の製造プロセスで作成したものでも充填性が55%以上の比較例1〜2では電池にした場合の内部抵抗および内部抵抗上昇率も比較的大きなものとなり本発明を満足することが出来ない。また、比較例3〜6で作製した試料の充填性が高い理由は、焼成前に造粒を行っていないため、焼成後、正極活物質がクッキ−状の固い焼結体となってしまう。つまり、解砕しにくく、解砕後においても、焼結が進んだ租粒が混じり粒度分布が幅を持つためと考えられる。しかし、逆に造粒を行って焼成し、粉砕能力の強いジルコニアボ−ルで解砕した比較例7の場合、充填性が25%となり、電極上への塗布が困難となった。図3に充填性と内部抵抗上昇率の関係を示す。充填性の制御は、本発明の樹脂コ−トボ−ルを使った解砕工程の解砕時間を調整することで可能であり、更に充填性を下げ電解液を含む素性を良くし、内部抵抗上昇率を下げることが可能と思われる。そしてハイブリッドカ−等の高出力が必要とされる用途では、前記簡易セル評価において、内部抵抗は35Ω以下が望ましく、また内部抵抗上昇率は20%以下が望ましい。このことから本発明の正極活物質は車両用のリチウム二次電池として適している。 From the above results, when the particle size of the raw material slurry is 1 μm or less, there is a tendency for the internal resistance to decrease. This is thought to be due to an increase in composition uniformity. In addition, even in the case of Comparative Examples 1 and 2 having a filling property of 55% or more even when the product is manufactured by the manufacturing process of the present invention, the internal resistance and the rate of increase in internal resistance are relatively large, which satisfies the present invention. I can't. In addition, the reason why the samples prepared in Comparative Examples 3 to 6 have high filling property is that granulation is not performed before firing, so that the positive electrode active material becomes a cookie-like hard sintered body after firing. That is, it is considered that it is difficult to crush, and even after crushing, the sintered grains are mixed and the particle size distribution is wide. However, in the case of Comparative Example 7, which was granulated and fired and crushed with a zirconia ball having a strong crushing ability, the filling property was 25%, which made it difficult to apply on the electrode. FIG. 3 shows the relationship between the fillability and the rate of increase in internal resistance. The filling property can be controlled by adjusting the crushing time of the crushing process using the resin coat ball of the present invention, further reducing the filling property and improving the characteristics including the electrolyte, and improving the internal resistance. It seems possible to reduce the rate of increase. In applications that require high output, such as hybrid cars, the internal resistance is desirably 35Ω or less and the rate of increase in internal resistance is desirably 20% or less in the simple cell evaluation. From this, the positive electrode active material of this invention is suitable as a lithium secondary battery for vehicles.
次に正極活物質の組成について検討を行った。以下実施例と比較例を示す。
(実施例3〜7)
原料として炭酸リチウム(Li2CO3)、二酸化マンガン(MnO2)、酸化コバルト(Co3O4)、酸化ニッケル(NiO)、水酸化アルミニウム(Al(OH)3)の各粉末を下記に示す本発明の正極活物質の組成範囲内になるように秤量した。その後の製造方法、工程は実施例1、2と同様とした。但し、原料スラリ−のメジアン粒径D50は0.5μmとした。
Next, the composition of the positive electrode active material was examined. Examples and comparative examples are shown below.
(Examples 3 to 7)
The following powders are lithium carbonate (Li 2 CO 3 ), manganese dioxide (MnO 2 ), cobalt oxide (Co 3 O 4 ), nickel oxide (NiO), and aluminum hydroxide (Al (OH) 3 ) It measured so that it might become in the composition range of the positive electrode active material of this invention. Subsequent manufacturing methods and steps were the same as in Examples 1 and 2. However, the median particle diameter D50 of the raw material slurry was 0.5 μm.
(比較例8〜11)
原料として炭酸リチウム(Li2CO3)、二酸化マンガン(MnO2)、酸化コバルト(Co3O4)、酸化ニッケル(NiO)の各粉末を下記に示す本発明の正極活物質の組成範囲外になるように秤量した。その後の製造方法、工程は実施例1、2と同様とした。但し、原料スラリ−のメジアン粒径D50は0.5μmとした。
以上の実施例と比較例の正極活物質を用いて初期容量を評価した。実施例3〜7および比較例8〜11で作製した組成を図4に示す。図4はMn−Ni−(Co,Al)3元状態図を示し、図中、二重線の内側は本発明の組成範囲で、網かけ部分はさらに望ましい組成範囲である。また●は実施例、▲は比較例を示す。これらの評価結果を表2に示す。尚、結晶構造はX線回折のパタ−ンから決定した。
(Comparative Examples 8-11)
As raw materials, lithium carbonate (Li 2 CO 3 ), manganese dioxide (MnO 2 ), cobalt oxide (Co 3 O 4 ), and nickel oxide (NiO) powders are outside the composition range of the positive electrode active material of the present invention shown below. Weighed so that Subsequent manufacturing methods and steps were the same as in Examples 1 and 2. However, the median particle diameter D50 of the raw material slurry was 0.5 μm.
The initial capacity was evaluated using the positive electrode active materials of the above Examples and Comparative Examples. The composition produced in Examples 3-7 and Comparative Examples 8-11 is shown in FIG. FIG. 4 shows a Mn—Ni— (Co, Al) ternary phase diagram, in which the inside of the double line is the composition range of the present invention and the shaded portion is a more desirable composition range. Also, ● represents an example, and ▲ represents a comparative example. These evaluation results are shown in Table 2. The crystal structure was determined from the X-ray diffraction pattern.
以上の結果より、実施例3〜7の本発明の組成領域では、安定して層状岩塩構造のみが得られている。実施例5、6ではCoの一部をAlで置換したが、容量は若干下がるものの安定した層状岩塩構造が得られる。Alは前記のように高価なCoの使用量を減らせるのでコストメリットが出せる置換種である。いずれも容量が130mAh/g以上、内部抵抗35Ω以下、抵抗上昇率も20%以下が得られている。また、比較例8〜11の本組成領域以外では層状岩塩構造とともにスピネル構造が生成している。Mnの含有量を増やしていくと、コストメリットは大きくなるが、比較例10、11のように原料の未反応分と思われる不明なX線回折パタ−ンも観測され始め、容量も極端に低下している。スピネル相の生成は、容量が低下するばかりでなく、内部抵抗、抵抗上昇率とも実施例と比べて悪い。また前記の高温耐久性も懸念される。本評価では、電気自動車用の場合、容量は130mAh/g以上が望ましい。
本発明以外の組成領域でCo量が多い領域でも安定した層状構造が得られ、容量、内部抵抗、抵抗上昇率、高温耐久性も満足しうる性能が得られる可能性があるが、コスト的に実用化が出来ない領域である。
From the above results, only the layered rock salt structure is stably obtained in the composition regions of the present invention in Examples 3 to 7. In Examples 5 and 6, a part of Co was replaced with Al, but a stable layered rock salt structure was obtained although the capacity was slightly reduced. As described above, Al is a substituted species that can reduce the amount of expensive Co used and thus can provide cost merit. In each case, the capacity is 130 mAh / g or more, the internal resistance is 35Ω or less, and the resistance increase rate is 20% or less. Moreover, the spinel structure is produced | generated with the layered rock salt structure except this composition area | region of Comparative Examples 8-11. Increasing the content of Mn increases the cost merit, but as in Comparative Examples 10 and 11, an unknown X-ray diffraction pattern that seems to be an unreacted material starts to be observed, and the capacity is extremely large. It is falling. The generation of the spinel phase not only lowers the capacity, but also has poor internal resistance and rate of resistance increase compared to the examples. There is also concern about the high temperature durability. In this evaluation, the capacity is preferably 130 mAh / g or more for an electric vehicle.
A stable layered structure can be obtained even in a region where the amount of Co is large in a composition region other than the present invention, and there may be obtained performance that satisfies the capacity, internal resistance, resistance increase rate, and high-temperature durability. This is an area that cannot be put to practical use.
次に熱処理の効果について検討結果を示す。
(実施例8、9及び比較例12〜14)
実施例1、2と同様の原料、組成及び製造方法、工程で正極活物質を製造した。但し、原料スラリ−のメジアン粒径D50は0.5μmとした。そして、熱処理工程での温度を変化させた。この実施例と比較例での内部抵抗と内部抵抗上昇率を測定した。
その結果を表3に示す。
Next, the results of study on the effect of heat treatment are shown.
(Examples 8 and 9 and Comparative Examples 12 to 14)
A positive electrode active material was produced by the same raw materials, composition, production method and steps as in Examples 1 and 2. However, the median particle diameter D50 of the raw material slurry was 0.5 μm. And the temperature in the heat treatment process was changed. The internal resistance and the rate of increase in internal resistance in this example and the comparative example were measured.
The results are shown in Table 3.
以上の結果より、熱処理を行うことにより、内部抵抗および内部抵抗上昇率が低く抑えられることが分かる。これは前記のように、解砕工程で受けた正極活物質の結晶内歪を緩和できているものと推察される。熱処理温度が1000℃では、焼結が進行し始め、粒形態が変化してしまったためと推察される。また、300℃での熱処理では、結晶内歪がうまく緩和できなかったために、内部抵抗、及び内部抵抗上昇率が悪くなったと推察される。前記したがハイブリッドカ−等の高出力が必要とされる用途では、前記簡易セル評価において、内部抵抗は35Ω以下が望ましく、また内部抵抗上昇率は20%以下が望ましい。従い熱処理温度は400〜900℃が望ましいことが分かった。 From the above results, it can be seen that the internal resistance and the rate of increase in internal resistance can be kept low by performing heat treatment. As described above, it is presumed that the intracrystalline strain of the positive electrode active material received in the crushing process can be relaxed. It is inferred that when the heat treatment temperature was 1000 ° C., the sintering started to progress and the grain shape changed. In addition, it is surmised that the internal resistance and the rate of increase in internal resistance deteriorated because the intracrystalline strain could not be relaxed well by the heat treatment at 300 ° C. As described above, in applications that require high output such as hybrid cars, the internal resistance is desirably 35Ω or less and the rate of increase in internal resistance is desirably 20% or less in the simple cell evaluation. Accordingly, it was found that the heat treatment temperature is preferably 400 to 900 ° C.
次に結晶子についての検討結果を示す。
(実施例10〜13及び比較例15、16)
実施例1、2と同様の原料、組成及び製造方法、工程で正極活物質を製造した。但し、原料スラリ−のメジアン粒径D50は0.5μmとした。そして、焼成温度を変化させた。この実施例と比較例での結晶子サイズと内部抵抗及び内部抵抗上昇率を測定した。
その結果を表4に示す。
Next, the examination result about a crystallite is shown.
(Examples 10 to 13 and Comparative Examples 15 and 16)
A positive electrode active material was produced by the same raw materials, composition, production method and steps as in Examples 1 and 2. However, the median particle diameter D50 of the raw material slurry was 0.5 μm. And the calcination temperature was changed. The crystallite size, internal resistance, and internal resistance increase rate in this example and comparative example were measured.
The results are shown in Table 4.
以上の結果より、焼成温度により結晶子サイズを制御出来ることが分かる。焼成温度が高くなるほど原子の拡散性が高まり結晶子サイズは成長するが、焼結も同様に進行し、解砕後に租粒が混じる可能性が高くなる。このため、正極活物質の充填性も上昇すると考えられ、電解液を含む素性が悪くなり、内部抵抗、及び内部抵抗上昇率が高い値になっていると考えられる。また、700℃で焼成した場合、結晶子サイズが400Å以下の値が計測されている。言い換えると、結晶構造がまだしっかり形成されていない可能性が高く、充放電時のLiイオンの拡散速度に悪影響を与えていると推察される。図5に結晶子サイズと内部抵抗上昇率の関係を示す。本評価では内部抵抗上昇率は20%以下が望ましい。従い結晶子のサイズは400Å〜850Åの範囲が望ましいことが分かった。 From the above results, it can be seen that the crystallite size can be controlled by the firing temperature. As the firing temperature increases, the diffusibility of atoms increases and the crystallite size grows, but the sintering proceeds in the same manner, and there is a high possibility that grains will be mixed after crushing. For this reason, it is thought that the filling property of the positive electrode active material is also increased, the characteristics including the electrolytic solution are deteriorated, and the internal resistance and the internal resistance increase rate are considered to be high values. Further, when fired at 700 ° C., a crystallite size of 400 mm or less is measured. In other words, there is a high possibility that the crystal structure has not yet been firmly formed, and it is presumed that it adversely affects the diffusion rate of Li ions during charge and discharge. FIG. 5 shows the relationship between the crystallite size and the rate of increase in internal resistance. In this evaluation, the rate of increase in internal resistance is preferably 20% or less. Accordingly, it was found that the size of the crystallite is preferably in the range of 400 to 850 mm.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006199630A JP2006318928A (en) | 2003-03-25 | 2006-07-21 | Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003082820 | 2003-03-25 | ||
JP2006199630A JP2006318928A (en) | 2003-03-25 | 2006-07-21 | Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004086963A Division JP4172024B2 (en) | 2003-03-25 | 2004-03-24 | Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006318928A true JP2006318928A (en) | 2006-11-24 |
JP2006318928A5 JP2006318928A5 (en) | 2008-03-27 |
Family
ID=37539360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006199630A Pending JP2006318928A (en) | 2003-03-25 | 2006-07-21 | Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006318928A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008091028A1 (en) * | 2007-01-26 | 2008-07-31 | Mitsui Mining & Smelting Co., Ltd. | Lithium transition metal oxide having layered structure |
JP2016184528A (en) * | 2015-03-26 | 2016-10-20 | 日産自動車株式会社 | Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same |
US10084186B2 (en) | 2014-10-27 | 2018-09-25 | Semiconductor Energy Laboratory Co., Ltd. | Particle, electrode, power storage device, electronic device, and method for manufacturing electrode |
US10741828B2 (en) | 2016-07-05 | 2020-08-11 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide |
CN112151773A (en) * | 2019-06-26 | 2020-12-29 | 中国科学院物理研究所 | Positive active material, preparation method thereof and lithium battery |
US11094927B2 (en) | 2016-10-12 | 2021-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle and manufacturing method of positive electrode active material particle |
US11444274B2 (en) | 2017-05-12 | 2022-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
US11670770B2 (en) | 2017-06-26 | 2023-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing positive electrode active material, and secondary battery |
US11799080B2 (en) | 2017-05-19 | 2023-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001357850A (en) * | 2000-06-15 | 2001-12-26 | Toyota Central Res & Dev Lab Inc | Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using it |
JP2003034538A (en) * | 2001-05-17 | 2003-02-07 | Mitsubishi Chemicals Corp | Method for producing lithium nickel manganese complex oxide |
JP2003051308A (en) * | 2001-08-03 | 2003-02-21 | Yuasa Corp | Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery |
JP2003089526A (en) * | 2001-09-12 | 2003-03-28 | Mitsubishi Chemicals Corp | Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell |
JP2004311427A (en) * | 2003-03-25 | 2004-11-04 | Hitachi Metals Ltd | Positive electrode active material for lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery |
-
2006
- 2006-07-21 JP JP2006199630A patent/JP2006318928A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001357850A (en) * | 2000-06-15 | 2001-12-26 | Toyota Central Res & Dev Lab Inc | Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using it |
JP2003034538A (en) * | 2001-05-17 | 2003-02-07 | Mitsubishi Chemicals Corp | Method for producing lithium nickel manganese complex oxide |
JP2003051308A (en) * | 2001-08-03 | 2003-02-21 | Yuasa Corp | Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery |
JP2003089526A (en) * | 2001-09-12 | 2003-03-28 | Mitsubishi Chemicals Corp | Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell |
JP2004311427A (en) * | 2003-03-25 | 2004-11-04 | Hitachi Metals Ltd | Positive electrode active material for lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008091028A1 (en) * | 2007-01-26 | 2008-07-31 | Mitsui Mining & Smelting Co., Ltd. | Lithium transition metal oxide having layered structure |
US7927741B2 (en) | 2007-01-26 | 2011-04-19 | Mitsui Mining & Smelting Co., Ltd. | Lithium transition metal oxide having layered structure |
US11394025B2 (en) | 2014-10-27 | 2022-07-19 | Semiconductor Energy Laboratory Co., Ltd. | Particle, electrode, power storage device, electronic device, and method for manufacturing electrode |
US10084186B2 (en) | 2014-10-27 | 2018-09-25 | Semiconductor Energy Laboratory Co., Ltd. | Particle, electrode, power storage device, electronic device, and method for manufacturing electrode |
US10749174B2 (en) | 2014-10-27 | 2020-08-18 | Semiconductor Energy Laboratory Co., Ltd. | Particle, electrode, power storage device, electronic device, and method for manufacturing electrode |
US11710823B2 (en) | 2014-10-27 | 2023-07-25 | Semiconductor Energy Laboratory Co., Ltd. | Particle, electrode, power storage device, electronic device, and method for manufacturing electrode |
JP2016184528A (en) * | 2015-03-26 | 2016-10-20 | 日産自動車株式会社 | Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same |
US10741828B2 (en) | 2016-07-05 | 2020-08-11 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide |
US11043660B2 (en) | 2016-07-05 | 2021-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide |
US11094927B2 (en) | 2016-10-12 | 2021-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle and manufacturing method of positive electrode active material particle |
US11444274B2 (en) | 2017-05-12 | 2022-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
US11489151B2 (en) | 2017-05-12 | 2022-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
US11799080B2 (en) | 2017-05-19 | 2023-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
US11670770B2 (en) | 2017-06-26 | 2023-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing positive electrode active material, and secondary battery |
CN112151773A (en) * | 2019-06-26 | 2020-12-29 | 中国科学院物理研究所 | Positive active material, preparation method thereof and lithium battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4919147B2 (en) | Method for producing positive electrode active material for non-aqueous lithium secondary battery | |
KR101613862B1 (en) | Method for manufacturing over-lithiated layered lithium metal composite oxide | |
JP4740409B2 (en) | Lithium secondary battery for electric vehicle or hybrid vehicle | |
JP4644895B2 (en) | Lithium secondary battery | |
JP4254267B2 (en) | Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof | |
US9640794B2 (en) | Lithium transition metal oxide having layered structure | |
EP3425705B1 (en) | Spinel-type lithium-manganese-containing complex oxide | |
US9437873B2 (en) | Spinel-type lithium manganese-based composite oxide | |
JP3033899B1 (en) | Positive electrode active material for lithium secondary battery, method for producing the same and use thereof | |
JP6586220B2 (en) | Lithium metal composite oxide with layer structure | |
WO2011155523A1 (en) | Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery | |
JP6251843B2 (en) | Method for producing lithium metal composite oxide having layer structure | |
JP4172024B2 (en) | Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery | |
JP2006318928A (en) | Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery | |
JP5606654B2 (en) | Lithium metal composite oxide | |
JPH1116573A (en) | Lithium cobalt double oxide for lithium ion secondary battery and its manufacture | |
JP4740415B2 (en) | Lithium secondary battery for electric or hybrid vehicles | |
JP2016081716A (en) | Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery | |
JP4543474B2 (en) | Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same | |
JP2002167220A (en) | Lithium manganese compound oxide, cathode material for lithium secondary battery, cathode for lithium secondary battery, lithium secondary battery and manufacturing method for lithium manganese compound oxide | |
KR102563295B1 (en) | Positive electrode active material by solid phase synthesis and method for manufacturing the same | |
JP2005093192A (en) | Lithium secondary battery and its manufacturing method | |
JP2024517266A (en) | Method for making cathode active material composition for lithium ion batteries | |
JP2000243399A (en) | Nonaqueous electrolyte secondary battery | |
JP2010157519A (en) | Method of manufacturing positive electrode active material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100618 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120305 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120511 |