JP4254267B2 - Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof - Google Patents

Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof Download PDF

Info

Publication number
JP4254267B2
JP4254267B2 JP2003043243A JP2003043243A JP4254267B2 JP 4254267 B2 JP4254267 B2 JP 4254267B2 JP 2003043243 A JP2003043243 A JP 2003043243A JP 2003043243 A JP2003043243 A JP 2003043243A JP 4254267 B2 JP4254267 B2 JP 4254267B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
manganese composite
manganese
secondary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003043243A
Other languages
Japanese (ja)
Other versions
JP2004083388A (en
Inventor
孝次 津久間
実 国吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003043243A priority Critical patent/JP4254267B2/en
Publication of JP2004083388A publication Critical patent/JP2004083388A/en
Application granted granted Critical
Publication of JP4254267B2 publication Critical patent/JP4254267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
リチウムマンガン複合酸化物粉末及びその製造方法並びにその用途である非水電解質二次電池に関する。
【0002】
【従来の技術】
リチウムマンガン複合酸化物を非水電解質二次電池の正極活物質として使用する際、結晶一次粒子が燒結した適当な大きさの顆粒二次粒子からなる粉末が用いられている。顆粒二次粒子の製造方法としては、従来からいくつかの方法が適用されてきた。例えば、特開2000−169151号公報には電解二酸化マンガンと炭酸リチウムの反応からリチウムマンガン複合酸化物を得る際、出発物質である電解二酸化マンガンの大きさを粉砕調整することにより、反応後もその大きさを保った顆粒二次粒子とする方法が、特開平10−172567号公報には、電解二酸化マンガン粉末を水溶性リチウム化合物の水溶液に分散させたスラリーを噴霧乾燥し、造粒して顆粒二次粒子とする方法が、また、特開平10−228515号公報及び特開平10−297924号公報には微粉末をローラコンパクター等を用い圧密・塊成化して顆粒二次粒子とする方法が開示されている。
【0003】
これらの開示資料からも知られるように、従来は電池の体積当たりの放電容量を高める観点から、顆粒二次粒子をできるだけ緻密にし、粉末の充填密度を高くすることに重点がおかれてきた。従って、これまで顆粒二次粒子の組織、特に内在する気孔について特徴付けた例は少ない。
【0004】
顆粒二次粒子に内在する気孔について特徴付けたものとしては、例えば、特開2002−75365号公報がある。これは正極活物質の粒子内部に空孔を形成させることによりハイレート充放電特性およびサイクル特性に優れる正極活物質を提供しようとするものである。しかしこの空孔は閉孔であり、空孔が粒子外部環境と通じていないので、電解液へのリチウムイオンの拡散が十分におこなわれておらず、ハイレート特性およびサイクル特性の改善が不十分なものであった。即ち、上記公報第5頁の表2に、ハイレート充放電特性として2.0クーロン通電した時の容量と0.2クーロン通電した時の容量の比で評価しているが、その容量比は90%以下となり、ハイレート充放電特性としては不十分である。
【0005】
【発明が解決しようとする課題】
本発明はリチウムマンガン複合酸化物の顆粒二次粒子の組織制御を課題とし、特に顆粒内の開気孔形態に着目してなされた。高出力特性を示す非水電解質二次電池の構成材料として適するリチウムマンガン複合酸化物正極活物質、並びにその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明はリチウムマンガン複合酸化物の顆粒二次粒子に存在する開気孔の大きさと量が、この酸化物を正極活物質とする非水電解質二次電池の放電レート特性(特開2002−75365号公報でのハイレート充放電特性と対応する特性)を支配する因子であることを見出すことによって成し遂げられた。すなわち、本発明のリチウムマンガン複合酸化物顆粒二次粒子は、組成式Li Mn 3−X−Y 4−Z (式中、X=1.0〜1.2、Y=0〜0.3、Z=0〜0.3、M:Al,Co,Ni,Cr,Feから選ばれる1種以上の元素)で表示され、なおかつ不純物として含まれるホウ酸化合物の含有量がリチウムマンガン系複合酸化物中のマンガンとホウ素との原子比(B/Mn)で0<B/Mn<0.0005、平均径が0.5〜4.0μmのリチウムマンガン複合酸化物の結晶一次粒子が集合してなる、マイクロメーターサイズの開気孔が網目状に多数存在し、その孔の大きさが平均径として0.5〜3μmの範囲にあり、且つその量が顆粒体積に対して平均3〜20vol.%の範囲にあり、比表面積が0.2〜1.0m /g、平均径が5〜30μmであることを特徴とする。
【0007】
最大の特徴は、顆粒二次粒子(以下、単に「顆粒」と略称することもある)内にマイクロメーターサイズの開気孔を網目状に多数存在させることにある。この結果として、電池の放電レート特性の向上が図れる。
【0008】
マイクロメーターサイズの開気孔は大きさと量で規定され、大きさは平均径として0.5〜3μm、量は顆粒体積に対して平均3〜20vol.%である。気孔の平均径が0.5μm未満では電池の放電レート特性が低下する。また、3μmを超える開気孔になると顆粒の強度を保つことが困難となる。最も好ましい平均径は1.0〜2.5μmの範囲である。
【0009】
開気孔の割合は、3vol.%未満では電池の放電レート特性が低下し、また20vol.%を超えると電極材料として要求される高い粉末充填密度を確保することが困難となる。最も好ましい開気孔の割合は5〜15vol.%である。
【0010】
なお、開気孔の平均径及び量は開気孔を球形近似して求められる値であり、測定方法として顆粒の切断面の走査型電子顕微鏡写真を撮り、画像解析処理する方法によって知ることができ、ここでは気孔数500個以上の平均から求めた個数平均値とする。
【0011】
本発明の顆粒二次粒子は開気孔を多数有する以外に、比表面積0.2〜1.0m2/g、顆粒二次粒子の平均径5〜30μm、顆粒を構成する結晶一次粒子の平均径が0.5〜4.0μmであることにより特徴付けられる。これらの値は正極活物質として二次電池性能を最大限引き出すために特定される。例えば比表面積1.0m2/gを超えたり、或いは結晶一次粒子径0.5μm未満では、50℃以上の温度において、充放電容量のサイクル劣化が顕著となるので好ましくなく、比表面積0.2m2/g未満、或いは結晶一次粒子径4.0μmを超えると放電レート特性の低下をきたすので好ましくない。顆粒二次粒子の平均径は5〜30μmの範囲外になると、シート電極を構成する上で不都合となり適切でない。
【0012】
本発明のリチウムマンガン複合酸化物成式LiMn3−X−Y4−Z(式中、X=1.0〜1.2、Y=0〜0.3、Z=0〜0.3、M:Al,Co,Ni,Cr,Feから選ばれる1種以上の元素)で表示される。充放電容量と充放電繰り返し安定性を決定する上でLi含量Xと添加元素Mの含量Yは重要で、特に好ましい範囲としては、X=1.05〜1.15、Y=0.05〜0.25、X+Y=1.15〜1.30が選ばれる。
【0013】
ホウ酸化合物が一定量以上顆粒表面及び開気孔内部に存在すると電池性能に悪影響を及ぼす。ホウ酸化合物が電池性能に影響しない範囲はマンガンに対するモル比で0<B/Mn<0.0005であり、0<B/Mn<0.0003であることが好ましい。
【0014】
本発明の粉末の製造方法はマンガン酸化物の微粉末と炭酸リチウムの微粉末を分散したスラリーを噴霧乾燥により顆粒化した後、700〜900℃の温度で焼成すること、又はマンガン酸化物の微粉末とリチウム原料および開気孔形成剤を分散したスラリーを、噴霧乾燥により顆粒化した後、700〜900℃の温度で焼成することを特徴とする。
【0015】
マンガン酸化物の粉末としては、電解二酸化マンガン、化学合成二酸化マンガン、Mn34、Mn23等が挙げられる。
【0016】
リチウム源としては、水に不溶性の炭酸リチウムが挙げられる。水に不溶性の炭酸リチウムをリチウム源として用いる場合は、この炭酸リチウムが開気孔形成剤としても働く為、炭酸リチウム及びマンガン酸化物の粒子サイズが気孔の大きさを支配する因子として重要となる。その粒子サイズはサブミクロンオーダーが適当であり、炭酸リチウムとマンガン酸化物混合粉末の平均粒子径として1μm以下が好ましく、0.3〜0.7μmの範囲がさらに好ましい。このような粒子サイズはマンガン酸化物の粉末と炭酸リチウムの粉末を水に入れ、粉砕混合することで容易に達成される。粉砕混合装置としては、ボールミル、振動ミル、湿式媒体攪拌式ミル等が使用できる。
【0017】
尚、開気孔の全体積を大きくしたい場合には、炭酸リチウム以外の開気孔系製剤を添加してもよい。
【0020】
開気孔形成剤としては、カーボンブラック,カーボンナノチューブ,グラファイト等に例示されるような、加熱により消失する物質を用いる。
【0021】
開気孔形成剤の量および炭酸リチウムの量により気孔量が制御できる。気孔量は顆粒体積に対して平均3〜20vol.%が好ましく、5〜15vol.%が最も好ましい。
【0022】
湿式粉砕混合されたスラリーは噴霧乾燥により顆粒化される。噴霧乾燥はスラリーを回転ディスク、或いは流体ノズルで噴霧し、液滴を熱風で乾燥する通常のスプレードライヤーで行うことができる。顆粒化の方法として、噴霧乾燥以外の方法例えば液中造粒法、転動造粒法等が適用できるが、噴霧乾燥が最も工業的に有利である。
【0023】
本願発明のリチウムマンガン複合酸化物の二次正極材料としての性能を高める目的で、マンガン、リチウム以外の元素の化合物、例えばアルミニウム、クロム等の化合物を添加元素として加えることがしばしば行われているが、添加元素Mを加える場合はその元素の酸化物、またはその前駆物質(水酸化物等)の形で加えるのがよく、その添加方法は粉砕混合の前にマンガン酸化物と炭酸リチウムからなるスラリーに添加することが適切である。
【0024】
請求項11に記載のホウ素化合物の添加はリチウムマンガン複合酸化物の結晶一次粒子の形状を制御する目的により行われる。これにより、開気孔の均一な網目状化が達成される。ホウ素化合物としては、H3BO3、23及びLi2O・nB23(n=1〜5)等を用いることができ、添加は焼成前でなければならず、噴霧乾燥前のスラリーに入れるのが適当である。添加量は、マンガンに対するモル比で0.0005〜0.05の範囲であり、0.01〜0.001の範囲が更に好ましい。ホウ素化合物は焼成後、ホウ酸化合物として複合酸化物顆粒表面及び開気孔内部に残存する。残存したホウ酸化合物は電池性能に悪影響を及ぼすため、水洗によりホウ素のマンガンに対するモル比で0.0005未満になるまで除去することが好ましい。
【0025】
ホウ酸化合物が電池性能に影響しない範囲はマンガンに対するモル比で0<B/Mn<0.0005であり、0<B/Mn<0.0003であることが好ましい。
【0026】
本発明のリチウムマンガン複合酸化物を正極活物質として用いた非水電解質二次電池は優れた放電レート特性を示す。この優れた放電レート特性は、本発明のリチウムマンガン複合酸化物の顆粒二次粒子内に存在する均一な網目状の多数の開気孔からもたらされたものと推定される。すなわち、放電レートはリチウムイオンの正極活物質内での輸送のされ易さに応じて良くなるが、正極活物質が多数の開気孔により網目状組織と化した結果、リチウムイオンの物質内〜外部電解液間の輸送距離が短くなり、輸送が容易になったものと推定される。
【0027】
【実施例】
以下本発明を実施例により具体的に説明するが、本発明は下記の実施例に限定されるものではない。
【0028】
実施例1
炭酸リチウム粉末(平均粒子径7μm)と電解二酸化マンガン粉末(平均粒子径3μm)及びホウ酸を組成Li1.1Mn1.90.014になるように秤量し、水を適量加えた後、湿式媒体攪拌式ミルで1時間粉砕した。固形分濃度が15wt%のスラリーとなるように水を加えて調整し、噴霧乾燥装置により水を蒸発させ、球状の顆粒乾燥粒子を得た。噴霧乾燥は熱風入口温度250℃で行った。この乾燥粉末を850℃で5時間焼成してリチウムマンガン複合酸化物とした。さらに95℃温水浴中で1時間洗浄し、濾過後乾燥して試料を得た。
【0029】
実施例2〜4
実施例1で用いた炭酸リチウム、電解二酸化マンガン、ホウ酸の各粉末以外に添加剤(M)として、水酸化アルミニウム、酸化クロム、水酸化ニッケルの各粉末を追加して、組成Li1.10.1Mn1.80.014 (M=Al、Cr又はNi)となるように秤量した以外は実施例1とまったく同様な方法によって試料を得た。
【0030】
実施例5
実施例1で用いた炭酸リチウム、電解二酸化マンガン、ホウ酸の各粉末以外に添加剤として弗化リチウムと水酸化アルミニウムの各粉末を追加して、組成Li1.03Al0.16Mn1.810.0053.80.2 となるように秤量した以外は実施例1とまったく同様な方法によって試料を得た。
【0031】
実施例6
実施例1で用いた炭酸リチウム、電解二酸化マンガン、ホウ酸の各粉末以外に添加剤として、水酸化アルミニウム各粉末を追加して、組成Li1.08Al0.15Mn1.780.014となるように秤量した以外は実施例1とまったく同様な方法によって試料を得た。
【0032】
実施例7
実施例1で用いた炭酸リチウム、電解二酸化マンガン、ホウ酸の各粉末以外に添加剤として、水酸化アルミニウム各粉末を追加して、組成Li1.01Al0.33Mn1.670.014となるように秤量した以外は実施例1とまったく同様な方法によって試料を得た。
【0033】
実施例8
実施例1で用いた炭酸リチウム、電解二酸化マンガン、ホウ酸の各粉末以外に添加剤として、水酸化アルミニウム各粉末を追加して、組成Li1.12Al0.01Mn1.880.014となるように秤量した以外は実施例1とまったく同様な方法によって試料を得た。
【0034】
実施例9
実施例1で用いた炭酸リチウム、電解二酸化マンガン、ホウ酸の各粉末以外に添加剤として、水酸化アルミニウム各粉末を追加して、組成Li1.2Al0.1Mn1.80.104となるように秤量した以外は実施例1とまったく同様な方法によって試料を得た。
【0035】
実施例10
実施例1で用いた炭酸リチウム、電解二酸化マンガン、ホウ酸の各粉末以外に添加剤として、水酸化アルミニウム各粉末を追加して、組成Li1.1Al0.1Mn1.80.0054となるように秤量した以外は実施例1とまったく同様な方法によって試料を得た。
【0036】
実施例11
炭酸リチウム粉末(平均粒子径7μm)と電解二酸化マンガン粉末(平均粒子径3μm)とホウ酸を組成Li1.1Mn1.90.014になるように秤量し、ジルコニア製ボールを入れたナイロン製ポットに移し、水を適量加えた後、ボールミルで48時間粉砕した。こうして得たスラリーにさらに水を加えて、固形分濃度15wt%になるように調整した。スラリーは2時間放置後でも固液分離を示さず、良好な分散状態を示した。噴霧乾燥装置によりスラリーから水を蒸発させ、球状の乾燥粒子を得た。噴霧乾燥は熱風入口温度250℃、出口温度140℃で行った。得られた粉末を850℃で10時間焼成し、試料を得た。この試料を塩酸に溶かし、その溶液をICPを用いて測定し組成分析を行った。ホウ酸化合物を含めた試料の組成はLi1.1Mn1.90.014であり、リチウムマンガン系複合酸化物中のマンガンとホウ酸化合物中ホウ素との原子比B/Mnは0.0053であった。
【0037】
実施例12
実施例11で用いた炭酸リチウム粉末、電解二酸化マンガン、ホウ酸の各粉末に水酸化アルミニウムを追加して組成Li1.1Al0.1Mn1.80.014になるように秤量し添加した以外は、実施例11と全く同様な操作を行った。得られた試料のホウ酸化合物を含めた組成はLi1.1Mn1.8Al0.10.014であり、リチウムマンガン系複合酸化物中のマンガンとホウ酸化合物中ホウ素との原子比B/Mnは0.0056であった。
【0038】
実施例13
実施例11で用いた炭酸リチウム粉末、電解二酸化マンガン、ホウ酸の各粉末に酸化クロムCr23を追加して組成Li1.1Cr0.1Mn1.80.014になるように秤量し添加した以外は、実施例11と全く同様な操作を行った。得られた試料のホウ酸化合物を含めた組成はLi1.1Mn1.8Cr0.10.014であり、リチウムマンガン系複合酸化物中のマンガンとホウ酸化合物中ホウ素との原子比B/Mnは0.0056であった。
【0039】
実施例14
実施例11で用いた炭酸リチウム粉末、電解二酸化マンガン、ホウ酸の各粉末に水酸化アルミニウムと弗化リチウムを追加して組成Li1.1Al0.1Mn1.80.013.90.1になるように秤量し添加した以外は、実施例11と全く同様な操作を行った。得られた試料のホウ酸化合物を含めた組成はLi1.1Al0.1Mn1.80.013.90.1であり、リチウムマンガン系複合酸化物中のマンガンとホウ酸化合物中ホウ素との原子比B/Mnは0.0056であった。
【0040】
実施例15
実施例12で得られたスピネル型マンガン酸リチウム粉末について、スラリー濃度20wt%で水中に懸濁させ、95℃で6Hr攪拌した。その後、固形物を濾過・乾燥して試料を得た。得られた試料を塩酸に溶かし、その溶液をICPを用いて測定し組成分析を行った。ホウ酸化合物を含めた試料の組成はLi1.1Mn1.8Al0.10.0004であり、リチウムマンガン系複合酸化物中のマンガンとホウ酸化合物中ホウ素との原子比B/Mnは0.00022であった。
【0041】
比較例1
炭酸リチウム粉末を水酸化リチウム一水和物(LiOH・H2O)粉末に代えた以外は実施例1とまったく同様の方法によって試料を得た。なお、水酸化リチウム一水和物は噴霧乾燥前のスラリー中では水に完全に溶解した状態であった。
【0042】
比較例2〜4
炭酸リチウム粉末を水酸化リチウム一水和物(LiOH・H2O)粉末に代えた以外は実施例2〜4とまったく同様の方法によって試料を得た。なお、水酸化リチウム一水和物は噴霧乾燥前のスラリー中では水に完全に溶解した状態であった。
【0043】
比較例5
炭酸リチウム粉末を水酸化リチウム一水和物(LiOH・H2O)粉末に代えた以外は実施例5とまったく同様の方法によって試料を得た。なお、水酸化リチウム一水和物は噴霧乾燥前のスラリー中では水に完全に溶解した状態であった。
【0044】
比較例6
電解二酸化マンガン(平均粒子径15μm)と炭酸リチウム(平均粒子径3μm)の各粉末を組成Li1.12Mn1.884になるように秤量し、乾式混合した後、900℃で12時間焼成しリチウムマンガン複合酸化物となった試料を得た。
【0045】
実施例16
実施例1で噴霧乾燥に用いたスラリーに含まれる二酸化マンガンと炭酸リチウム混合粉末の粒度をレーザー回折散乱粒度計で測定した結果、平均体積粒子径は0.65μmであり、粒度分布の広さを示す標準偏差は0.07であった。
【0046】
実施例17
実施例1〜10、比較例1〜5及び比較例6の試料について、組成を化学分析により、比表面積をBET測定装置により、顆粒二次粒子の平均径をレーザー回折散乱粒度計により、顆粒を構成する結晶一次粒子の平均径を走査型電子顕微鏡観察により求め、表1の結果を得た。
【0047】
【表1】

Figure 0004254267
実施例18
実施例1〜10、比較例1〜5及び比較例6の試料について、顆粒二次粒子の断面写真を走査型電子顕微鏡により撮影した。この際、粉末を硬化性樹脂に埋め込み、表面研磨によって顆粒の切断面を露出させたものを撮影試料とした。電顕写真の画像解析処理を行い、顆粒二次粒子内に存在する開気孔の平均径と量を求め、表2の結果を得た。顆粒切断面の電顕写真(実施例2、比較例2及び比較例6)の例を図1〜3に示す。なお、開気孔平均径は気孔数500〜1000個について個数平均値を採った。
【0048】
【表2】
Figure 0004254267
実施例19
実施例11〜14で得られたスラリーの少量をメタノール中に入れ、超音波により分散し、粒子径分布をレーザー回折散乱法にて測定した。スラリーを構成する粉末の平均体積粒子径として表3の結果を得た。粒度分布の広さを示す標準偏差はいすれも0.5程度であった。次に、実施例11〜15で得られた試料について、10gをメスシリンダーに入れ、50回振動前後の体積を測定し、粉末の嵩密度を求めた。また、平均粒子径を上述の測定法で求めた。結果を表3に併せて示す。さらに、実施例11〜15で得られた試料の組織を走査型電子顕微鏡で観察した結果、いずれも結晶一次粒子は1〜5μmの大きさであり平均粒子径は約2μmであった。顆粒二次粒子の平均径は約20μmであり、球状であった。
【0049】
【表3】
Figure 0004254267
実施例20
実施例11および12で得られた試料と導電剤/結着剤(アセチレンブラック/テフロン(登録商標))を混合して正極物質とし、負極物質として金属リチウムを、電解液としてLiPF6を溶解させたエチレンカーボネート/ジメチルカーボネート溶液を用いコインセル型電池を作成した。充放電試験は60℃で電流密度0.4mA/cm2、電圧4.3〜3.0Vの範囲で行った。サイクル維持率を10回目と50回目の放電容量の差から求め表4の結果を得た。
【0050】
【表4】
Figure 0004254267
実施例21
実施例1〜10、比較例1〜5及び比較例6の試料について、放電レート特性を測定した。各試料粉末と導電剤/結着剤(アセチレンブラック/テフロン(登録商標)系樹脂)を混合して正極活物質とし、負極活物質として金属リチウムを、電解液としてLiPF6を溶解させたエチレンカーボネート/ジメチルカーボネート溶液を用いコインセル型電池を作成した。これらの電池について室温にて放電レートを測定した。測定結果の例を図4に示す。また、すべての試料についてレート維持率(0.3Cでの放電容量を基準としたときの5.5Cでの放電容量の比率)と放電容量を表5に示す。実施例1〜10の試料は比較例1〜5及び比較例6の試料に比べて優れた放電レート特性であることが明確である。
【0051】
【表5】
Figure 0004254267
【発明の効果】
本発明のリチウムマンガン複合酸化物は非水電解質二次電池の正極活物質として優れた放電レート特性を示す。従って、高出力リチウムイオン二次電池の正極材料として特に有用である。リチウムイオン二次電池の高出力化はハイブリッド電気自動車用途では特に要求されており、そのための有効な材料となる。それ以外のリチウムイオン二次電池の用途、例えばピュアー電気自動車用、電力貯蔵用、携帯機器用等の電源においても有用な正極材料として利用でき、工業的利用価値は高い。
【図面の簡単な説明】
【図1】実施例2における試料の顆粒二次粒子の断面を示す図である。
【図2】比較例2における試料の顆粒二次粒子の断面を示す図である。
【図3】比較例6における試料の顆粒二次粒子の断面を示す図である。
【図4】実施例2、比較例2及び比較例6における試料の放電レート特性を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium manganese composite oxide powder, a method for producing the same, and a nonaqueous electrolyte secondary battery that is used therefor.
[0002]
[Prior art]
When lithium manganese composite oxide is used as a positive electrode active material of a non-aqueous electrolyte secondary battery, a powder composed of granular secondary particles of appropriate size in which crystalline primary particles are sintered is used. As a method for producing granular secondary particles, several methods have been applied conventionally. For example, in JP 2000-169151 A, when a lithium manganese composite oxide is obtained from a reaction between electrolytic manganese dioxide and lithium carbonate, the size of electrolytic manganese dioxide as a starting material is adjusted by pulverization, so that Japanese Patent Application Laid-Open No. 10-172567 discloses a method for producing granule secondary particles having a maintained size by spray-drying a slurry in which electrolytic manganese dioxide powder is dispersed in an aqueous solution of a water-soluble lithium compound, and granulating the granules. JP-A-10-228515 and JP-A-10-297924 disclose a method for forming secondary particles, and a method for forming granulated secondary particles by compacting and agglomerating fine powder using a roller compactor or the like. Has been.
[0003]
As is known from these disclosure documents, conventionally, from the viewpoint of increasing the discharge capacity per volume of the battery, emphasis has been placed on making the granular secondary particles as dense as possible and increasing the packing density of the powder. Therefore, there are few examples characterized to date about the structure of the granular secondary particles, especially the inherent pores.
[0004]
For example, Japanese Patent Application Laid-Open No. 2002-75365 discloses a feature of pores inherent in granular secondary particles. This is to provide a positive electrode active material having excellent high-rate charge / discharge characteristics and cycle characteristics by forming pores inside the particles of the positive electrode active material. However, since these pores are closed and the pores do not communicate with the external environment of the particles, lithium ions are not sufficiently diffused into the electrolyte, and improvement of the high rate characteristics and cycle characteristics is insufficient. It was a thing. That is, in Table 2 on page 5 of the above publication, the high rate charge / discharge characteristics are evaluated by the ratio of the capacity when energized with 2.0 coulombs and the capacity when energized with 0.2 coulombs. %, Which is insufficient as a high rate charge / discharge characteristic.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to control the structure of secondary particles of lithium manganese composite oxide granules, and in particular, pay attention to the shape of open pores in the granules. An object of the present invention is to provide a lithium manganese composite oxide positive electrode active material suitable as a constituent material of a non-aqueous electrolyte secondary battery exhibiting high output characteristics, and a method for producing the same.
[0006]
[Means for Solving the Problems]
In the present invention, the size and amount of open pores present in the secondary particles of lithium manganese composite oxide particles are such that the discharge rate characteristics of a non-aqueous electrolyte secondary battery using this oxide as a positive electrode active material (Japanese Patent Laid-Open No. 2002-75365). It was accomplished by finding that it is a factor governing the high-rate charge / discharge characteristics in the publication. That is, lithium-manganese composite oxide granulated secondary particles of the present invention, the composition formula Li X M Y Mn 3-X -Y O 4-Z F Z ( wherein, X = 1.0 to 1.2, Y = 0 to 0.3, Z = 0 to 0.3, M: one or more elements selected from Al, Co, Ni, Cr, and Fe), and the content of boric acid compounds contained as impurities is Primary crystal of lithium manganese composite oxide in which the atomic ratio (B / Mn) of manganese and boron in the lithium manganese composite oxide is 0 <B / Mn <0.0005 and the average diameter is 0.5 to 4.0 μm A large number of micrometer-sized open pores are formed in a mesh shape, and the size of the pores is in the range of 0.5 to 3 μm as an average diameter, and the amount is average with respect to the granule volume. 3-20 vol. % , The specific surface area is 0.2 to 1.0 m 2 / g, and the average diameter is 5 to 30 μm .
[0007]
The greatest feature is that a large number of micrometer-sized open pores are present in a network form in the granule secondary particles (hereinafter sometimes simply referred to as “granules”). As a result, the discharge rate characteristics of the battery can be improved.
[0008]
Micrometer-sized open pores are defined by size and amount, the size is 0.5 to 3 μm as an average diameter, and the amount is 3 to 20 vol. %. When the average pore diameter is less than 0.5 μm, the discharge rate characteristics of the battery are degraded. Moreover, when the open pores exceed 3 μm, it is difficult to maintain the strength of the granules. The most preferable average diameter is in the range of 1.0 to 2.5 μm.
[0009]
The ratio of open pores is 3 vol. If it is less than 5%, the discharge rate characteristics of the battery deteriorate, and 20 vol. If it exceeds 50%, it becomes difficult to ensure a high powder packing density required as an electrode material. The most preferred open pore ratio is 5-15 vol. %.
[0010]
The average diameter and amount of the open pores are values obtained by approximating the open pores in a spherical shape, and can be obtained by taking a scanning electron micrograph of the cut surface of the granule as a measurement method and performing image analysis processing, Here, the number average value obtained from the average of 500 or more pores is used.
[0011]
In addition to having many open pores, the granule secondary particles of the present invention have a specific surface area of 0.2 to 1.0 m 2 / g, an average diameter of the granule secondary particles of 5 to 30 μm, and an average diameter of the crystal primary particles constituting the granules. Is characterized by 0.5-4.0 μm. These values are specified in order to maximize the performance of the secondary battery as the positive electrode active material. For example, if the specific surface area exceeds 1.0 m 2 / g, or if the crystal primary particle diameter is less than 0.5 μm, cycle deterioration of charge / discharge capacity becomes significant at a temperature of 50 ° C. or higher. If it is less than 2 / g or exceeds the crystal primary particle diameter of 4.0 μm, the discharge rate characteristics are deteriorated, which is not preferable. If the average diameter of the granule secondary particles is outside the range of 5 to 30 μm, it is inconvenient in constructing the sheet electrode and is not appropriate.
[0012]
Lithium-manganese composite oxide of the present invention, the set Narushiki Li X M Y Mn 3-X -Y O 4-Z F Z ( wherein, X = 1.0~1.2, Y = 0~0.3 , Z = 0~0.3, M: Al , Co, Ni, Cr, represented by F e or al least one element selected). The Li content X and the content Y of the additive element M are important in determining the charge / discharge capacity and charge / discharge repetition stability, and particularly preferred ranges are X = 1.05 to 1.15, Y = 0.05 to 0.25, X + Y = 1.15 to 1.30 are selected.
[0013]
When a certain amount or more of boric acid compound is present on the surface of the granules and inside the open pores, the battery performance is adversely affected. Ihan circumference boric acid compound such affect the battery performance is 0 <B / Mn <0.0005 in a molar ratio to manganese, it is favorable preferable is 0 <B / Mn <0.0003.
[0014]
The powder production method of the present invention is obtained by granulating a slurry in which a fine powder of manganese oxide and a fine powder of lithium carbonate are dispersed by spray drying and then firing at a temperature of 700 to 900 ° C. A slurry in which powder, a lithium raw material, and an open pore forming agent are dispersed is granulated by spray drying, and then fired at a temperature of 700 to 900 ° C.
[0015]
Examples of the manganese oxide powder include electrolytic manganese dioxide, chemically synthesized manganese dioxide, Mn 3 O 4 , and Mn 2 O 3 .
[0016]
Examples of the lithium source include water- insoluble lithium carbonate. When lithium carbonate that is insoluble in water is used as the lithium source, the lithium carbonate also acts as an open pore forming agent, so that the particle size of lithium carbonate and manganese oxide is important as a factor governing the pore size. The particle size is suitably in the submicron order, and the average particle size of the lithium carbonate and manganese oxide mixed powder is preferably 1 μm or less, and more preferably in the range of 0.3 to 0.7 μm. Such a particle size can be easily achieved by putting a powder of manganese oxide and a powder of lithium carbonate in water and pulverizing and mixing them. As the pulverizing and mixing apparatus, a ball mill, a vibration mill, a wet medium stirring mill, or the like can be used.
[0017]
When it is desired to increase the total volume of the open pores, an open pore preparation other than lithium carbonate may be added.
[0020]
As the open pore forming agent, a substance that disappears by heating, as exemplified by carbon black, carbon nanotube, graphite and the like, is used.
[0021]
The amount of pores can be controlled by the amount of open pore forming agent and the amount of lithium carbonate. The average amount of pores is 3 to 20 vol. % Is preferable, and 5 to 15 vol. % Is most preferred.
[0022]
The wet pulverized and mixed slurry is granulated by spray drying. Spray drying can be performed with a normal spray dryer in which the slurry is sprayed with a rotating disk or a fluid nozzle and the droplets are dried with hot air. As a granulation method, methods other than spray drying such as submerged granulation method and rolling granulation method can be applied, but spray drying is most industrially advantageous.
[0023]
In order to enhance the performance of the lithium manganese composite oxide of the present invention as a secondary cathode material, compounds of elements other than manganese and lithium, for example, compounds such as aluminum and chromium are often added as additive elements. When the additive element M is added, it is preferably added in the form of an oxide of the element or a precursor thereof (hydroxide, etc.). The addition method is a slurry comprising manganese oxide and lithium carbonate before pulverization and mixing. It is appropriate to add to.
[0024]
The boron compound according to claim 11 is added for the purpose of controlling the shape of the crystalline primary particles of the lithium manganese composite oxide. Thereby, uniform meshing of open pores is achieved. As the boron compound, H 3 BO 3, B 2 O 3, Li 2 O.nB 2 O 3 (n = 1 to 5), etc. can be used, and the addition must be before firing, before spray drying. It is appropriate to put it in a slurry. The addition amount is in the range of 0.0005 to 0.05 in terms of molar ratio to manganese, and more preferably in the range of 0.01 to 0.001. The boron compound remains as a boric acid compound on the surface of the composite oxide granules and inside the open pores after firing. Since the remaining boric acid compound adversely affects battery performance, it is preferably removed by washing until the molar ratio of boron to manganese is less than 0.0005.
[0025]
Ihan circumference boric acid compound such affect the battery performance is 0 <B / Mn <0.0005 in a molar ratio to manganese, it is favorable preferable is 0 <B / Mn <0.0003.
[0026]
The nonaqueous electrolyte secondary battery using the lithium manganese composite oxide of the present invention as the positive electrode active material exhibits excellent discharge rate characteristics. This excellent discharge rate characteristic is presumed to be caused by a large number of open pores in a uniform network existing in the granular secondary particles of the lithium manganese composite oxide of the present invention. In other words, the discharge rate is improved depending on the ease of transport of lithium ions in the positive electrode active material, but the positive electrode active material is converted into a network structure by a large number of open pores, and as a result, the lithium ion material has an internal to external surface. It is presumed that the transport distance between the electrolytes has been shortened and transport has become easier.
[0027]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
[0028]
Example 1
Lithium carbonate powder (average particle size 7 μm), electrolytic manganese dioxide powder (average particle size 3 μm), and boric acid were weighed so as to have the composition Li 1.1 Mn 1.9 B 0.01 O 4 , and an appropriate amount of water was added. It grind | pulverized for 1 hour with a formula mill. Water was added and adjusted so as to obtain a slurry having a solid content concentration of 15 wt%, and water was evaporated by a spray dryer to obtain spherical granular dried particles. Spray drying was performed at a hot air inlet temperature of 250 ° C. This dry powder was fired at 850 ° C. for 5 hours to obtain a lithium manganese composite oxide. The sample was further washed in a 95 ° C. warm water bath for 1 hour, filtered and dried to obtain a sample.
[0029]
Examples 2-4
In addition to the lithium carbonate, electrolytic manganese dioxide, and boric acid powders used in Example 1, as additives (M), powders of aluminum hydroxide, chromium oxide, and nickel hydroxide were added, and the composition Li 1.1 M 0.1 A sample was obtained by the same method as in Example 1 except that it was weighed so as to be Mn 1.8 B 0.01 O 4 (M = Al, Cr or Ni).
[0030]
Example 5
In addition to the lithium carbonate, electrolytic manganese dioxide, and boric acid powders used in Example 1, lithium fluoride and aluminum hydroxide powders were added as additives, and the composition Li 1.03 Al 0.16 Mn 1.81 B 0.005 O 3.8 F A sample was obtained by the same method as in Example 1 except that the weight was adjusted to 0.2 .
[0031]
Example 6
In addition to the powders of lithium carbonate, electrolytic manganese dioxide, and boric acid used in Example 1, each powder of aluminum hydroxide was added as an additive and weighed so that the composition was Li 1.08 Al 0.15 Mn 1.78 B 0.01 O 4. A sample was obtained by the same method as in Example 1 except that.
[0032]
Example 7
In addition to the powders of lithium carbonate, electrolytic manganese dioxide, and boric acid used in Example 1, each powder of aluminum hydroxide was added as an additive and weighed so that the composition was Li 1.01 Al 0.33 Mn 1.67 B 0.01 O 4. A sample was obtained by the same method as in Example 1 except that.
[0033]
Example 8
In addition to the powders of lithium carbonate, electrolytic manganese dioxide, and boric acid used in Example 1, each powder of aluminum hydroxide was added as an additive and weighed so that the composition was Li 1.12 Al 0.01 Mn 1.88 B 0.01 O 4. A sample was obtained by the same method as in Example 1 except that.
[0034]
Example 9
In addition to the powders of lithium carbonate, electrolytic manganese dioxide, and boric acid used in Example 1, each powder of aluminum hydroxide was added as an additive and weighed so that the composition was Li 1.2 Al 0.1 Mn 1.8 B 0.10 O 4. A sample was obtained by the same method as in Example 1 except that.
[0035]
Example 10
In addition to the powders of lithium carbonate, electrolytic manganese dioxide, and boric acid used in Example 1, each powder of aluminum hydroxide was added as an additive and weighed so that the composition Li 1.1 Al 0.1 Mn 1.8 B 0.005 O 4 was obtained. A sample was obtained by the same method as in Example 1 except that.
[0036]
Example 11
Lithium carbonate powder (average particle size 7 μm), electrolytic manganese dioxide powder (average particle size 3 μm) and boric acid were weighed to a composition of Li 1.1 Mn 1.9 B 0.01 O 4 and placed in a nylon pot containing zirconia balls. After transferring and adding an appropriate amount of water, it was pulverized with a ball mill for 48 hours. Water was further added to the slurry thus obtained to adjust the solid content concentration to 15 wt%. The slurry did not show solid-liquid separation even after being left for 2 hours, and showed a good dispersion state. Water was evaporated from the slurry with a spray dryer to obtain spherical dry particles. The spray drying was performed at a hot air inlet temperature of 250 ° C and an outlet temperature of 140 ° C. The obtained powder was fired at 850 ° C. for 10 hours to obtain a sample. This sample was dissolved in hydrochloric acid, and the solution was measured using ICP for composition analysis. The composition of the sample including the boric acid compound was Li 1.1 Mn 1.9 B 0.01 O 4 , and the atomic ratio B / Mn of manganese in the lithium manganese complex oxide to boron in the boric acid compound was 0.0053. .
[0037]
Example 12
Except that aluminum hydroxide was added to each of the lithium carbonate powder, electrolytic manganese dioxide, and boric acid powder used in Example 11 and weighed and added to a composition of Li 1.1 Al 0.1 Mn 1.8 B 0.01 O 4. The same operation as in Example 11 was performed. The composition of the obtained sample including the boric acid compound is Li 1.1 Mn 1.8 Al 0.1 B 0.01 O 4 , and the atomic ratio B / Mn between manganese in the lithium manganese composite oxide and boron in the boric acid compound is 0. .0056.
[0038]
Example 13
Except for adding chromium oxide Cr 2 O 3 to each powder of lithium carbonate powder, electrolytic manganese dioxide, and boric acid used in Example 11 and weighing and adding the composition Li 1.1 Cr 0.1 Mn 1.8 B 0.01 O 4. The same operation as in Example 11 was performed. The composition of the obtained sample including the boric acid compound is Li 1.1 Mn 1.8 Cr 0.1 B 0.01 O 4 , and the atomic ratio B / Mn between manganese in the lithium manganese complex oxide and boron in the boric acid compound is 0. .0056.
[0039]
Example 14
Aluminum hydroxide and lithium fluoride were added to each of the lithium carbonate powder, electrolytic manganese dioxide, and boric acid powder used in Example 11, and weighed so that the composition was Li 1.1 Al 0.1 Mn 1.8 B 0.01 O 3.9 F 0.1. Except for the addition, the same operation as in Example 11 was performed. The composition of the obtained sample including the boric acid compound was Li 1.1 Al 0.1 Mn 1.8 B 0.01 O 3.9 F 0.1 , and the atomic ratio B / Mn of manganese in the lithium manganese composite oxide to boron in the boric acid compound Was 0.0056.
[0040]
Example 15
The spinel type lithium manganate powder obtained in Example 12 was suspended in water at a slurry concentration of 20 wt% and stirred at 95 ° C. for 6 hours. Thereafter, the solid was filtered and dried to obtain a sample. The obtained sample was dissolved in hydrochloric acid, the solution was measured using ICP, and the composition analysis was performed. The composition of the sample including the boric acid compound was Li 1.1 Mn 1.8 Al 0.1 B 0.0004 , and the atomic ratio B / Mn of manganese in the lithium manganese composite oxide to boron in the boric acid compound was 0.00022. .
[0041]
Comparative Example 1
A sample was obtained in the same manner as in Example 1, except that the lithium carbonate powder was replaced with lithium hydroxide monohydrate (LiOH.H 2 O) powder. The lithium hydroxide monohydrate was completely dissolved in water in the slurry before spray drying.
[0042]
Comparative Examples 2-4
Samples were obtained in exactly the same manner as in Examples 2 to 4, except that the lithium carbonate powder was replaced with lithium hydroxide monohydrate (LiOH.H 2 O) powder. The lithium hydroxide monohydrate was completely dissolved in water in the slurry before spray drying.
[0043]
Comparative Example 5
A sample was obtained in the same manner as in Example 5, except that the lithium carbonate powder was replaced with lithium hydroxide monohydrate (LiOH.H 2 O) powder. The lithium hydroxide monohydrate was completely dissolved in water in the slurry before spray drying.
[0044]
Comparative Example 6
Each powder of electrolytic manganese dioxide (average particle size 15 μm) and lithium carbonate (average particle size 3 μm) was weighed to have a composition of Li 1.12 Mn 1.88 O 4 , dry-mixed, and then calcined at 900 ° C. for 12 hours. A sample having a complex oxide was obtained.
[0045]
Example 16
As a result of measuring the particle size of the mixed powder of manganese dioxide and lithium carbonate contained in the slurry used for spray drying in Example 1 with a laser diffraction scattering particle size meter, the average volume particle size was 0.65 μm, and the particle size distribution was wide. The standard deviation shown was 0.07.
[0046]
Example 17
For the samples of Examples 1 to 10, Comparative Examples 1 to 5, and Comparative Example 6, the composition was analyzed by chemical analysis, the specific surface area was measured by a BET measuring device, the average secondary particle diameter was measured by a laser diffraction scattering particle size meter, and the granules were The average diameter of the constituting crystal primary particles was obtained by observation with a scanning electron microscope, and the results shown in Table 1 were obtained.
[0047]
[Table 1]
Figure 0004254267
Example 18
For the samples of Examples 1 to 10, Comparative Examples 1 to 5, and Comparative Example 6, cross-sectional photographs of the granular secondary particles were taken with a scanning electron microscope. At this time, a photograph sample was prepared by embedding the powder in a curable resin and exposing the cut surface of the granules by surface polishing. Electron microscopic image analysis was performed to determine the average diameter and amount of open pores present in the granule secondary particles, and the results shown in Table 2 were obtained. Examples of electron micrographs (Example 2, Comparative Example 2 and Comparative Example 6) of the cut surfaces of the granules are shown in FIGS. The average open pore diameter was a number average value for 500 to 1000 pores.
[0048]
[Table 2]
Figure 0004254267
Example 19
A small amount of the slurry obtained in Examples 11 to 14 was placed in methanol and dispersed by ultrasonic waves, and the particle size distribution was measured by a laser diffraction scattering method. The results shown in Table 3 were obtained as the average volume particle diameter of the powder constituting the slurry. All of the standard deviations indicating the breadth of the particle size distribution were about 0.5. Next, about the sample obtained in Examples 11-15, 10g was put into the measuring cylinder, the volume before and behind 50 times vibration was measured, and the bulk density of the powder was calculated | required. Moreover, the average particle diameter was calculated | required with the above-mentioned measuring method. The results are also shown in Table 3. Furthermore, as a result of observing the structure | tissue of the sample obtained in Examples 11-15 with the scanning electron microscope, as for all, the crystal | crystallization primary particle was a magnitude | size of 1-5 micrometers, and the average particle diameter was about 2 micrometers. The average diameter of the granule secondary particles was about 20 μm and was spherical.
[0049]
[Table 3]
Figure 0004254267
Example 20
The sample obtained in Examples 11 and 12 and a conductive agent / binder (acetylene black / Teflon (registered trademark)) were mixed to form a positive electrode material, metallic lithium as a negative electrode material, and LiPF 6 as an electrolytic solution were dissolved. A coin cell battery was prepared using an ethylene carbonate / dimethyl carbonate solution. The charge / discharge test was performed at 60 ° C. in a current density of 0.4 mA / cm 2 and a voltage of 4.3 to 3.0 V. The cycle retention rate was determined from the difference between the discharge capacity at the 10th time and the 50th time, and the results shown in Table 4 were obtained.
[0050]
[Table 4]
Figure 0004254267
Example 21
The discharge rate characteristics of the samples of Examples 1 to 10, Comparative Examples 1 to 5, and Comparative Example 6 were measured. Ethylene carbonate in which each sample powder and conductive agent / binder (acetylene black / Teflon (registered trademark) resin) are mixed to form a positive electrode active material, metallic lithium as a negative electrode active material, and LiPF 6 as an electrolyte solution / A coin cell battery was prepared using a dimethyl carbonate solution. The discharge rate of these batteries was measured at room temperature. An example of the measurement result is shown in FIG. Table 5 shows the rate maintenance rate (the ratio of the discharge capacity at 5.5 C with respect to the discharge capacity at 0.3 C) and the discharge capacity for all the samples. It is clear that the samples of Examples 1 to 10 have excellent discharge rate characteristics as compared with the samples of Comparative Examples 1 to 5 and Comparative Example 6.
[0051]
[Table 5]
Figure 0004254267
【The invention's effect】
The lithium manganese composite oxide of the present invention exhibits excellent discharge rate characteristics as a positive electrode active material for a non-aqueous electrolyte secondary battery. Therefore, it is particularly useful as a positive electrode material for high-power lithium ion secondary batteries. High output of a lithium ion secondary battery is particularly required for hybrid electric vehicle applications, and is an effective material for that purpose. It can be used as a positive electrode material useful in other power sources for lithium ion secondary batteries, such as for pure electric vehicles, for power storage, and for portable devices, and has high industrial utility value.
[Brief description of the drawings]
1 is a diagram showing a cross section of a granule secondary particle of a sample in Example 2. FIG.
2 is a view showing a cross section of a granule secondary particle of a sample in Comparative Example 2. FIG.
3 is a view showing a cross section of a granule secondary particle of a sample in Comparative Example 6. FIG.
4 is a graph showing discharge rate characteristics of samples in Example 2, Comparative Example 2, and Comparative Example 6. FIG.

Claims (7)

組成式Li Mn 3−X−Y 4−Z (式中、X=1.0〜1.2、Y=0〜0.3、Z=0〜0.3、M:Al,Co,Ni,Cr,Feから選ばれる1種以上の元素)で表示され、なおかつ不純物として含まれるホウ酸化合物の含有量がリチウムマンガン系複合酸化物中のマンガンとホウ素との原子比(B/Mn)で0<B/Mn<0.0005、平均径が0.5〜4.0μmのリチウムマンガン複合酸化物の結晶一次粒子が集合してなる、マイクロメーターサイズの開気孔が多数存在し、その開気孔の平均径が0.5〜3μmの範囲にあり、且つその開気孔の全体積が、顆粒全体積に対して平均3〜20vol.%の範囲にあり、比表面積が0.2〜1.0m /g、平均径が5〜30μmのリチウムマンガン複合酸化物顆粒二次粒子。 In the composition formula Li X M Y Mn 3-X -Y O 4-Z F Z ( wherein, X = 1.0~1.2, Y = 0~0.3 , Z = 0~0.3, M: 1 or more elements selected from Al, Co, Ni, Cr, and Fe), and the content of the boric acid compound contained as an impurity is the atomic ratio of manganese and boron in the lithium manganese composite oxide ( B / Mn) 0 <B / Mn <0.0005, and a large number of micrometer-sized open pores formed by agglomeration of primary particles of lithium manganese composite oxide having an average diameter of 0.5 to 4.0 μm And the average diameter of the open pores is in the range of 0.5 to 3 μm, and the total volume of the open pores is 3-20 vol. % Range near the is, specific surface area of 0.2~1.0m 2 / g, an average diameter of 5~30μm lithium manganese composite oxide granulated secondary particles. 不純物として含まれるホウ酸化合物がホウ酸リチウム及び/又はホウ酸リチウムナトリウムである請求項に記載のリチウムマンガン複合酸化物顆粒二次粒子。The lithium manganese composite oxide granule secondary particle according to claim 1 , wherein the boric acid compound contained as an impurity is lithium borate and / or lithium sodium borate. マンガン酸化物の微粉末と炭酸リチウムの微粉末又は、マンガン酸化物の微粉末と炭酸リチウム微粉末および請求項に記載のMの元素を含む化合物を分散したスラリーを噴霧乾燥により顆粒化した後、700〜900℃の温度で焼成することを特徴とする請求項1乃至請求項記載のリチウムマンガン複合酸化物顆粒二次粒子の製造方法。After granulating the slurry in which the fine powder of manganese oxide and fine powder of lithium carbonate or the fine powder of manganese oxide and fine powder of lithium carbonate and the compound containing the element of M according to claim 1 are dispersed by spray drying the method according to claim 1 or claim 2 lithium-manganese composite oxide granulated secondary particles according and firing at a temperature of 700 to 900 ° C.. マンガン酸化物の微粉末及び炭酸リチウムの微粉末の平均粒子径が1μm以下である請求項記載のリチウムマンガン複合酸化物顆粒二次粒子の製造方法。The method for producing secondary particles of lithium manganese composite oxide granules according to claim 3 , wherein the average particle size of the fine powder of manganese oxide and the fine powder of lithium carbonate is 1 µm or less. スラリー中に、マンガン、リチウム、フッ素及び請求項に記載のM以外の元素の化合物であり、且つ、開気孔形成剤以外の化合物を添加剤として加えることを特徴とする請求項乃至請求項記載のリチウムマンガン複合酸化物顆粒二次粒子の製造方法。 3. The compound of manganese, lithium, fluorine, and an element other than M according to claim 1 , and a compound other than an open pore forming agent is added as an additive to the slurry. 4. The method for producing secondary particles of lithium manganese composite oxide granules according to 4 . 添加物がホウ素化合物であり、該化合物をB/Mnモル比0.0005〜0.05の範囲内で、スラリー中に加え、焼成後水洗によりホウ素をB/Mnモル比0.0005未満にまで除去することを特徴とする請求項記載のリチウムマンガン複合酸化物顆粒二次粒子の製造方法。The additive is a boron compound, and the compound is added to the slurry in a range of B / Mn molar ratio of 0.0005 to 0.05, and boron is washed to a B / Mn molar ratio of less than 0.0005 by washing with water after firing. It removes, The manufacturing method of the lithium manganese complex oxide granule secondary particle of Claim 5 characterized by the above-mentioned. 正極活物質として、請求項1乃至請求項に記載のリチウムマンガン複合酸化物顆粒二次粒子を用いることを特徴とする非水電解質二次電池。As a positive electrode active material, a non-aqueous electrolyte secondary battery, which comprises using a lithium manganese composite oxide granulated secondary particles of claim 1 to claim 2.
JP2003043243A 2002-02-21 2003-02-20 Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof Expired - Fee Related JP4254267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043243A JP4254267B2 (en) 2002-02-21 2003-02-20 Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002044877 2002-02-21
JP2002195797 2002-07-04
JP2003043243A JP4254267B2 (en) 2002-02-21 2003-02-20 Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2004083388A JP2004083388A (en) 2004-03-18
JP4254267B2 true JP4254267B2 (en) 2009-04-15

Family

ID=32074063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043243A Expired - Fee Related JP4254267B2 (en) 2002-02-21 2003-02-20 Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4254267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9306212B2 (en) 2013-07-19 2016-04-05 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, and positive electrode and rechargeable lithium battery including the same

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362934A (en) * 2003-06-04 2004-12-24 Sony Corp Positive electrode material and battery
JP4740409B2 (en) 2003-06-11 2011-08-03 株式会社日立製作所 Lithium secondary battery for electric vehicle or hybrid vehicle
JP2005302510A (en) * 2004-04-12 2005-10-27 Rikogaku Shinkokai Lithium-ion secondary battery
EP1909346A4 (en) * 2005-07-21 2010-01-27 Sumitomo Chemical Co Positive electrode active material for nonaqueous electrolyte secondary battery
JP2007053081A (en) * 2005-07-21 2007-03-01 Sumitomo Chemical Co Ltd Positive active material for nonaqueous electrolyte secondary battery
JP4777733B2 (en) * 2005-09-29 2011-09-21 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
JP4870602B2 (en) * 2006-08-10 2012-02-08 花王株式会社 Method for producing lithium manganate
JP2008251523A (en) * 2007-03-06 2008-10-16 Hitachi Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2008126824A1 (en) 2007-04-09 2008-10-23 Kao Corporation Positive electrode active material sintered body for battery
US8273267B2 (en) 2007-04-09 2012-09-25 Kao Corporation Method for producing positive electrode active material for battery
JP2009064576A (en) * 2007-09-04 2009-03-26 Toyota Motor Corp Positive electrode active material and lithium secondary battery
DE102008029804A1 (en) * 2008-06-24 2010-07-08 Süd-Chemie AG Mixed oxide containing a lithium manganese spinel and process for its preparation
EP2355212A4 (en) 2008-10-27 2016-01-20 Kao Corp Sintered lithium complex oxide
JP4465407B1 (en) 2008-10-27 2010-05-19 花王株式会社 Method for producing positive electrode active material particles for battery
JP5631993B2 (en) * 2010-06-23 2014-11-26 日本碍子株式会社 Plate-like particles for positive electrode active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
US8821765B2 (en) 2010-08-31 2014-09-02 Ngk Insulators, Ltd. Cathode active material for lithium secondary battery
WO2012029803A1 (en) 2010-08-31 2012-03-08 日本碍子株式会社 Positive-electrode active material for lithium secondary battery
CN103797624A (en) 2011-09-16 2014-05-14 日本碍子株式会社 Positive electrode active material precursor particles and method for manufacturing same, and method for manufacturing positive electrode active material for lithium secondary cell
JP5872279B2 (en) * 2011-12-21 2016-03-01 日揮触媒化成株式会社 Spinel-type lithium-manganese composite oxide
JP6045194B2 (en) * 2012-05-23 2016-12-14 日揮触媒化成株式会社 Method for producing lithium / manganese composite oxide, lithium / manganese composite oxide obtained by the production method, positive electrode active material for secondary battery containing the same, and lithium ion secondary battery using the same as positive electrode active material
WO2014038394A1 (en) 2012-09-04 2014-03-13 日本碍子株式会社 Positive electrode active material for lithium secondary battery
WO2014061399A1 (en) 2012-10-15 2014-04-24 日本碍子株式会社 Positive active material for lithium secondary battery, and positive electrode obtained using same
KR101409973B1 (en) * 2012-11-15 2014-06-19 주식회사 포스코이에스엠 Lithium manganese composite oxide comprising primary particle having controlled vertical angle, and manufacturing method of the same
KR102007411B1 (en) 2013-01-07 2019-10-01 삼성에스디아이 주식회사 Positive active material, positive electrode and lithium battery comprising the same, and method for preparation of the positive active material
CN104507866B (en) * 2013-07-26 2017-02-22 株式会社Lg 化学 Anode active material and method for manufacturing same
US9905851B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
US9905850B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
JP5703409B2 (en) * 2014-04-30 2015-04-22 日本碍子株式会社 Lithium composite oxide sintered plate for lithium secondary battery
KR101593401B1 (en) * 2014-10-14 2016-02-12 주식회사 이엔에프테크놀로지 Porous cathod active material for lithium rechargeable battery and preparation method thereof
JP6873614B2 (en) * 2016-06-22 2021-05-19 日本ケミコン株式会社 Lithium-ion secondary battery and its manufacturing method
JP6500001B2 (en) 2016-08-31 2019-04-10 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN112889163B (en) * 2018-10-30 2024-09-20 日本碍子株式会社 Button type lithium secondary battery
WO2021251786A1 (en) 2020-06-12 2021-12-16 주식회사 에코프로비엠 Cathode active material and lithium secondary battery comprising same
JP7191071B2 (en) * 2020-10-16 2022-12-16 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and secondary battery comprising the positive electrode active material
CN115924931B (en) * 2023-01-06 2024-07-30 中国科学院新疆理化技术研究所 Compound lithium sodium borate, preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9306212B2 (en) 2013-07-19 2016-04-05 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, and positive electrode and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JP2004083388A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4254267B2 (en) Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof
US7217406B2 (en) Lithium-manganese composite oxide granular secondary particle, method for production thereof and use thereof
EP3425705B1 (en) Spinel-type lithium-manganese-containing complex oxide
US9640794B2 (en) Lithium transition metal oxide having layered structure
WO2018012015A1 (en) Cathode active material for all-solid-state lithium secondary battery
JPWO2019044733A1 (en) Cathode active material for all-solid-state lithium secondary batteries
JP4919147B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
JP6586220B2 (en) Lithium metal composite oxide with layer structure
JP6251843B2 (en) Method for producing lithium metal composite oxide having layer structure
US10442699B2 (en) Method of manufacturing a positive electrode active material for lithium secondary batteries
JP6544579B2 (en) Method for producing lithium tungstate, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using lithium tungstate
WO2019044734A1 (en) Positive electrode active substance for all solid-state lithium secondary battery
EP3351510B1 (en) Spinel type lithium nickel manganese-containing composite oxide
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP6630725B2 (en) 5V class spinel lithium manganese-containing composite oxide
GB2528222A (en) Positive electrode active material for lithium secondary battery
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP4179075B2 (en) Method for producing lithium manganese composite oxide granules
JP2002326818A (en) Production method of slurry and production method of lithium transition metal compound oxide
JPWO2016175312A1 (en) 5V spinel-type lithium manganese-containing composite oxide
JP6649369B2 (en) Method for producing 5V-class spinel-type lithium manganese-containing composite oxide
JP6546582B2 (en) Method for producing lithium metal composite oxide having layered crystal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4254267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees