JP2008251523A - Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008251523A
JP2008251523A JP2007315080A JP2007315080A JP2008251523A JP 2008251523 A JP2008251523 A JP 2008251523A JP 2007315080 A JP2007315080 A JP 2007315080A JP 2007315080 A JP2007315080 A JP 2007315080A JP 2008251523 A JP2008251523 A JP 2008251523A
Authority
JP
Japan
Prior art keywords
substance
secondary battery
electrolyte secondary
negative electrode
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007315080A
Other languages
Japanese (ja)
Inventor
Kiyoshi Suzuki
清志 鈴木
Koichi Katayama
宏一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007315080A priority Critical patent/JP2008251523A/en
Publication of JP2008251523A publication Critical patent/JP2008251523A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which is excellent in discharging load characteristics and cycle characteristics and has a high battery capacity, to provide a negative electrode for the nonaqueous electrolyte secondary battery, and to provide a negative electrode material for the nonaqueous electrolyte secondary battery. <P>SOLUTION: The negative electrode material for the nonaqueous electrolyte secondary battery is obtained at least by a mixture of a substance A and a substance B having different particle diameter distributions, and (i) an average particle diameter (D50) of the substance A is 18 μm or more and 40 μm or less, (ii) an average particle diameter of the substance B is 1 μm or more and 15 μm or less, (iii) a difference of the average particle diameter of the substance A and the average particle diameter of the substance B is 5 μm or more, (iv) a ratio of the substance B against a total volume of the substance A and the substance B is 10 wt.% ore more, and (v) a value of a standard deviation of the anode material for the nonaqueous electrolyte secondary battery obtained from the particle diameter distribution is 0.250 or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水電解液二次電池用負極材、当該負極材を用いてなる非水電解液二次電池用負極、及び当該負極を用いてなる、放電負荷特性、サイクル特性及び高電池容量化に優れ、ポータブル電子機器用、電気自動車用、電力貯蔵用等に好適な非水電解液二次電池に関する。   The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery, a negative electrode for a non-aqueous electrolyte secondary battery using the negative electrode material, and a discharge load characteristic, a cycle characteristic and a high battery capacity using the negative electrode. The present invention relates to a nonaqueous electrolyte secondary battery suitable for portable electronic devices, electric vehicles, power storage, and the like.

携帯電話やノート型パソコンなどの電子機器の小型軽量化に伴い、リチウムイオン二次電池などの非水電解液二次電池には、高エネルギー密度化が要求されている。現在の非水電解液二次電池は、一般に、正極活物質(正極材)としてリチウム酸化物、負極活物質(負極材)として炭素材料が用いられているが、電池性能を向上させるためには、これら正極材及び負極材の特性を向上させることが重要である。   With the reduction in size and weight of electronic devices such as mobile phones and notebook computers, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are required to have higher energy density. Current non-aqueous electrolyte secondary batteries generally use lithium oxide as a positive electrode active material (positive electrode material) and a carbon material as a negative electrode active material (negative electrode material). In order to improve battery performance, It is important to improve the characteristics of the positive electrode material and the negative electrode material.

負極材に用いられる炭素材料は、2種類に分けられる。1つは結晶化度の低い非晶質炭素材料であり、もう一つは結晶化度の高い黒鉛材料であるが、現在、携帯電話やノート型パソコンには、黒鉛材料が主として用いられている。この黒鉛材料は、非晶質炭素材料に比べて真密度が高く、電池の高エネルギー密度化に有効であるが、理論容量が372mAh/gと決まっており、更なる容量増加に対応するのは難しい状況である。   The carbon material used for the negative electrode material is classified into two types. One is an amorphous carbon material with a low degree of crystallinity, and the other is a graphite material with a high degree of crystallinity. Currently, graphite materials are mainly used in mobile phones and notebook computers. . This graphite material has a higher true density than the amorphous carbon material and is effective for increasing the energy density of the battery. However, the theoretical capacity is determined to be 372 mAh / g, and it corresponds to further increase in capacity. It is a difficult situation.

また、黒鉛並の高い放電容量を保持しつつ、不可逆容量を非常に低く抑え、充放電効率と電解液に対する安定性を向上させた非水溶媒二次電池を提供することを目的に、黒鉛性炭素質物の表面に、該黒鉛性炭素質物100重量部に対する残炭量が0.1重量部以上12重量部以下となるような有機物の炭化物を付着してなる複合炭素質物からなる非水溶媒二次電池用電極材料が開示されている(特許文献1参照)。
特開平10−158005号公報
In order to provide a non-aqueous solvent secondary battery that maintains a high discharge capacity comparable to that of graphite while keeping the irreversible capacity very low and improving the charge / discharge efficiency and stability to the electrolyte. A non-aqueous solvent comprising a composite carbonaceous material obtained by adhering an organic carbide such that the amount of residual carbon with respect to 100 parts by weight of the graphitic carbonaceous material is 0.1 to 12 parts by weight on the surface of the carbonaceous material. An electrode material for a secondary battery is disclosed (see Patent Document 1).
JP-A-10-158005

本発明は、放電負荷特性、サイクル特性及び高電池容量化に優れた非水電解液二次電池とそれを得るための非水電解液二次電池用負極および非水電解液二次電池用負極材を提供することを目的とする。   The present invention relates to a non-aqueous electrolyte secondary battery excellent in discharge load characteristics, cycle characteristics and high battery capacity, a negative electrode for a non-aqueous electrolyte secondary battery and a negative electrode for a non-aqueous electrolyte secondary battery for obtaining the same. The purpose is to provide materials.

上記の目的を達成するため、検討を行った結果、粒子径分布が異なる2種類の物質を混合し、粒子径分布をブロード化することで、粒子同士の空隙を減らし、高密度化における電極配向性を抑制し、さらには注液性を改善することができること、さらにサイクル特性、放電負荷特性も改善されることがわかった。   As a result of studies to achieve the above objective, two types of substances with different particle size distributions are mixed together to broaden the particle size distribution, thereby reducing voids between particles and increasing the electrode orientation at higher density. It was found that the liquid injection property can be improved, and the cycle characteristics and discharge load characteristics are also improved.

即ち、本発明は、(1)粒子径分布が異なる物質Aと物質Bを少なくとも混合して得られる非水電解液二次電池用負極材であって、
(i)前記物質Aの平均粒子径(D50)が18μm以上40μm以下であり、
(ii)前記物質Bの平均粒子径(D50)が1μm以上15μm以下であり、
(iii)前記物質Aの平均粒子径と前記物質Bの平均粒子径の差が5μm以上であり、
(iv)前記物質Aと前記物質Bの総量に対して物質Bの割合が10重量%以上であり、
(v)粒子径分布から得られる前記非水電解液二次電池用負極材の標準偏差の値が0.250以上であり、かつ前記物質Aおよび前記物質Bの標準偏差の値より大きい、
ことを特徴とする、非水電解液二次電池用負極材に関する。
That is, the present invention is (1) a negative electrode material for a non-aqueous electrolyte secondary battery obtained by mixing at least a substance A and a substance B having different particle size distributions,
(I) The average particle diameter (D50) of the substance A is 18 μm or more and 40 μm or less,
(Ii) The average particle diameter (D50) of the substance B is 1 μm or more and 15 μm or less,
(Iii) The difference between the average particle diameter of the substance A and the average particle diameter of the substance B is 5 μm or more,
(Iv) The ratio of the substance B to the total amount of the substance A and the substance B is 10% by weight or more,
(V) The standard deviation value of the negative electrode material for a nonaqueous electrolyte secondary battery obtained from the particle size distribution is 0.250 or more, and is larger than the standard deviation values of the substance A and the substance B.
The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery.

また、本発明は、(2)前記物質Aと前記物質Bのいずれか一方もしくは両方が、炭素材料である前記(1)記載の非水電解液二次電池用負極材に関する。   The present invention also relates to (2) the negative electrode material for a non-aqueous electrolyte secondary battery according to (1), wherein either one or both of the substance A and the substance B is a carbon material.

また、本発明は、(3)前記物質Aと前記物質Bのいずれか一方もしくは両方が、黒鉛である前記(1)または(2)記載の非水電解液二次電池用負極材に関する。   The present invention also relates to (3) the negative electrode material for a non-aqueous electrolyte secondary battery according to (1) or (2), wherein either one or both of the substance A and the substance B is graphite.

また、本発明は、(4)複数の扁平状の黒鉛質微粒子を配向面が非平行となるように集合或いは結合させてなる黒鉛である前記(3)記載の非水電解液二次電池用負極材に関する。   Further, the present invention is (4) a graphite obtained by collecting or combining a plurality of flat graphite fine particles so that their orientation planes are not parallel to each other. The present invention relates to a negative electrode material.

また、本発明は、(5)前記(1)〜(4)のいずれか一項に記載の非水電解液二次電池用負極材を用いてなることを特徴とする非水電解液二次電池用負極に関する。   Moreover, this invention uses the negative electrode material for nonaqueous electrolyte secondary batteries as described in any one of (5) said (1)-(4), The nonaqueous electrolyte secondary characterized by the above-mentioned. The present invention relates to a negative electrode for a battery.

また、本発明は、(6)前記(5)記載の非水電解液二次電池用負極を用いてなることを特徴とする非水電解液二次電池に関する。   The present invention also relates to (6) a nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery described in (5) above.

本発明によれば、放電負荷特性、サイクル特性及び高電池容量化に優れた非水電解液二次電池とそれを得るための非水電解液二次電池用負極、非水電解液二次電池用負極材を提供することが可能となる。   According to the present invention, a nonaqueous electrolyte secondary battery excellent in discharge load characteristics, cycle characteristics, and high battery capacity, a negative electrode for a nonaqueous electrolyte secondary battery for obtaining the same, and a nonaqueous electrolyte secondary battery A negative electrode material can be provided.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<非水電解液二次電池用負極材>
本発明の非水電解液二次電池用負極材は、粒子径分布が異なる物質Aと物質Bを少なくとも混合して得られる非水電解液二次電池用負極材であって、(i)前記物質Aの平均粒子径(D50)が18μm以上40μm以下であり、(ii)前記物質Bの平均粒子径(D50)が1μm以上15μm以下であり、(iii)前記物質Aの平均粒子径と前記物質Bの平均粒子径の差が5μm以上であり、(iv)前記物質Aと前記物質Bの総量に対して前記物質Bの割合が10重量%以上であり、(v)粒子径分布から得られる前記非水電解液二次電池用負極材の標準偏差の値が0.250以上であり、かつ前記物質Aおよび前記物質Bの標準偏差の値より大きい、ことを特徴とする。
<Negative electrode material for non-aqueous electrolyte secondary battery>
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention is a negative electrode material for a non-aqueous electrolyte secondary battery obtained by mixing at least a substance A and a substance B having different particle size distributions. The average particle diameter (D50) of the substance A is 18 μm or more and 40 μm or less, (ii) the average particle diameter (D50) of the substance B is 1 μm or more and 15 μm or less, and (iii) the average particle diameter of the substance A and the above The difference in the average particle diameter of the substance B is 5 μm or more, (iv) the ratio of the substance B to the total amount of the substance A and the substance B is 10% by weight or more, and (v) obtained from the particle size distribution. The standard deviation value of the negative electrode material for a non-aqueous electrolyte secondary battery is 0.250 or more and is larger than the standard deviation values of the substance A and the substance B.

本発明の非水電解液二次電池用負極材は、粒子径分布が異なる物質Aと物質Bを少なくとも混合することにより作製することができる。ここで、粒子径分布は、例えば、レーザー光散乱法を利用した粒子径分布測定装置(例えば、株式会社島津製作所製 SALD−3000)を用いて測定することができる。また、物質Aと物質Bの混合は、例えば、室温において公知の混合装置を用いて行うことができ、その手段や条件等は特に限定されないが、例えば、リボン型混合機、V型混合機、円錐型混合機、プラネタリミキサ、らいかい機などを用いて機械的に行なわれる。   The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention can be produced by mixing at least substances A and B having different particle size distributions. Here, the particle size distribution can be measured using, for example, a particle size distribution measuring apparatus using a laser light scattering method (for example, SALD-3000 manufactured by Shimadzu Corporation). Further, the mixing of the substance A and the substance B can be performed using, for example, a known mixing apparatus at room temperature, and the means and conditions thereof are not particularly limited. For example, a ribbon type mixer, a V type mixer, It is performed mechanically using a conical mixer, a planetary mixer, a raker, or the like.

また、上記物質Aと上記物質Bは、いずれか一方もしくは両方が炭素材料であることが好ましく、共に炭素材料であることがより好ましく、電極の充填量を上げる観点から、いずれか一方もしくは両方が黒鉛であることがさらにより好ましく、共に黒鉛であることが特に好ましい。ここで、炭素材料としては、黒鉛(結晶質炭素)、易黒鉛化性炭素(非晶質炭素)、難黒鉛化性炭素(非晶質炭素)などが例示される。前記易黒鉛化性炭素は2000℃以上の温度で熱処理を行なうと黒鉛結晶が発達し黒鉛構造に移行しやすい炭素材料であり、真密度が2220kg/m未満であり、例えばコークス、炭素繊維などが挙げられる。黒鉛は、天然黒鉛の他、易黒鉛化性炭素を高温で熱処理した人造黒鉛などが挙げられ、真密度が2220kg/m以上のものである。人造黒鉛としては、複数の扁平状の黒鉛質微粒子を、配向面が非平行となるように集合或いは結合させてなる、粒子内部に空隙を有する黒鉛であることが好ましい(特開平10−158005号公報等参照)。難黒鉛化性炭素は高温処理を行なっても黒鉛構造に至らない炭素材料であり、真密度が2220kg/m未満であり、例えばフルフリルアルコール樹脂などが挙げられる。なお、真密度は、JIS R7212に基づくブタノール法によって求めることができる。本発明において、上記物質Aと物質Bの具体的な組合せとしては、黒鉛と黒鉛、又は黒鉛と易黒鉛化性炭素であることが好ましく、黒鉛と黒鉛であることがより好ましい。 Moreover, it is preferable that one or both of the substance A and the substance B is a carbon material, more preferably a carbon material. From the viewpoint of increasing the filling amount of the electrode, either one or both are It is even more preferable that it is graphite, and it is particularly preferable that both are graphite. Here, examples of the carbon material include graphite (crystalline carbon), graphitizable carbon (amorphous carbon), non-graphitizable carbon (amorphous carbon), and the like. The graphitizable carbon is a carbon material that easily develops into a graphite structure when heat-treated at a temperature of 2000 ° C. or higher, and has a true density of less than 2220 kg / m 3 , such as coke and carbon fiber. Is mentioned. Examples of the graphite include natural graphite and artificial graphite obtained by heat-treating easily graphitizable carbon at a high temperature. The true density is 2220 kg / m 3 or more. The artificial graphite is preferably graphite having voids inside the particles, in which a plurality of flat graphite fine particles are aggregated or bonded so that the orientation planes are non-parallel (Japanese Patent Laid-Open No. 10-158005). (See publications). Non-graphitizable carbon is a carbon material that does not reach a graphite structure even when subjected to high temperature treatment, and has a true density of less than 2220 kg / m 3 , and examples thereof include furfuryl alcohol resin. The true density can be obtained by a butanol method based on JIS R7212. In the present invention, the specific combination of the substance A and the substance B is preferably graphite and graphite, or graphite and graphitizable carbon, and more preferably graphite and graphite.

また、本発明において、(i)前記物質Aの平均粒子径(D50)は18μm以上40μm以下であり、好ましくは18μm以上30μm以下であり、さらに好ましくは20μm以上25μm以下である。前記物質Aの平均粒子径が18μm未満では、比表面積が大きくなることで充放電効率が低下し、さらに電極に塗工する際に用いる負極材とバインダを含んだペーストの粘土が向上する。前記物質Aの平均粒子径が40μm超では、比表面積が小さくなることで、充放電効率は向上するが、放電負荷特性は低下する。   In the present invention, (i) the average particle diameter (D50) of the substance A is 18 μm or more and 40 μm or less, preferably 18 μm or more and 30 μm or less, and more preferably 20 μm or more and 25 μm or less. When the average particle size of the substance A is less than 18 μm, the specific surface area is increased, whereby the charge / discharge efficiency is lowered, and the clay of the paste containing the negative electrode material and the binder used when applied to the electrode is improved. When the average particle size of the substance A is more than 40 μm, the specific surface area is reduced, whereby the charge / discharge efficiency is improved, but the discharge load characteristics are lowered.

また、本発明において、(ii)前記物質Bの平均粒子径(D50)が1μm以上15μm以下であり、好ましくは3μm以上15μm以下であり、さらに好ましくは3μm以上10μm以下である。前記物質Bの平均粒子径が1μm未満では、粒子同士が凝集しやすく物質Aと均一混合しにくいため、充放電効率が低下する。前記物質Bの平均粒子径15μm超では、物質Aと平均粒子径が近づき、高密度化における電極配向性の抑制や注液性の改善は期待できず、放電負荷特性やサイクル維持率が低下する。   In the present invention, (ii) the average particle diameter (D50) of the substance B is 1 μm or more and 15 μm or less, preferably 3 μm or more and 15 μm or less, and more preferably 3 μm or more and 10 μm or less. If the average particle diameter of the substance B is less than 1 μm, the particles are likely to aggregate with each other and difficult to be uniformly mixed with the substance A, so that the charge / discharge efficiency decreases. If the average particle diameter of the substance B exceeds 15 μm, the average particle diameter is close to that of the substance A, and it is not expected to suppress the electrode orientation and improve the liquid injection property at high density, and the discharge load characteristics and the cycle maintenance ratio decrease. .

また、本発明では、(iii)前記物質Aの平均粒子径と前記物質Bの平均粒子径の差が5μm以上であり、好ましくは10μm以上30μm以下である。前記平均粒子径の差が5μm未満では、物質Aと物質Bの平均粒子径の差が無く、高密度化における電極配向性の抑制や注液性の改善は期待できず、放電負荷特性やサイクル維持率が低下する。   In the present invention, (iii) the difference between the average particle diameter of the substance A and the average particle diameter of the substance B is 5 μm or more, preferably 10 μm or more and 30 μm or less. If the difference in the average particle diameter is less than 5 μm, there is no difference in the average particle diameter between the substance A and the substance B, and it is not expected to suppress the electrode orientation and improve the liquid injection property at high density. Maintenance rate decreases.

なお、本発明における平均粒子径(D50)とは、粒子径分布の累積体積が50体積%となる粒子径であり、通常、レーザー回折法、例えば、レーザー回折式粒度分布測定装置(株式会社島津製作所製、SALD−3000J)を用いて測定することができる。   The average particle size (D50) in the present invention is a particle size in which the cumulative volume of the particle size distribution is 50% by volume, and is usually a laser diffraction method, for example, a laser diffraction type particle size distribution measuring device (Shimadzu Corporation). This can be measured using a SALD-3000J manufactured by Seisakusho.

また、本発明において、(iv)前記物質Aと前記物質Bの総量に対して物質Bの割合が10重量%以上であり、好ましくは、30重量%以上である。前記物質Bの割合が10重量%未満では粒子径分布がシャープとなり、期待される高密度化における電極配向性及び注液性の改善が期待できず、放電負荷特性やサイクル維持率が低下する。なお、負極材中の物質Bの配合割合が多くなると、電極に対する塗工性が悪化し、充放電効率が低下する傾向があるので、本発明の負極材に含まれる物質Bの割合は、60重量%以下であることが好ましく、40重量%以下であることがより好ましい。また、本発明において、前記物質Aと前記物質Bの総量に対して物質Aの割合は90重量%以上であり、好ましくは70重量%以下である。   In the present invention, (iv) the ratio of the substance B to the total amount of the substance A and the substance B is 10% by weight or more, preferably 30% by weight or more. When the ratio of the substance B is less than 10% by weight, the particle size distribution becomes sharp, and improvement in electrode orientation and liquid injection property in the expected high density cannot be expected, and the discharge load characteristics and cycle maintenance ratio are lowered. In addition, since the applicability | paintability with respect to an electrode will deteriorate and charging / discharging efficiency will fall when the mixture ratio of the substance B in a negative electrode material increases, the ratio of the substance B contained in the negative electrode material of this invention is 60. It is preferably no more than wt%, more preferably no more than 40 wt%. In the present invention, the ratio of the substance A to the total amount of the substance A and the substance B is 90% by weight or more, preferably 70% by weight or less.

また、本発明において、(v)粒子径分布から得られる前記非水電解液二次電池用負極材の標準偏差の値が0.250以上であり、好ましくは0.300〜0.400である。前記前記非水電解液二次電池用負極材の標準偏差の値が0.250未満では、電極の高密度化が期待できない。そして、前記非水電解液二次電池用負極材の標準偏差の値は、前記物質Aおよび前記物質Bの標準偏差の値より大きく、0.050以上大きいことが好ましい。ここで、標準偏差は、対数スケール上で定義された標準偏差であり、例えば、レーザー回折式粒度分布測定装置(株式会社島津製作所製、SALD−3000J)に属している解析ソフトにより算出することができる。
また、本発明の非水電解液二次電池用負極材の平均粒子径は、10μm以上40μm以下であることが好ましく、10μm以上30μm以下であることがより好ましく、10μm以上25μm以下であることが特に好ましい。前記非水電解液二次電池用負極材の平均粒子径が40μmを超える場合は、電極表面に凸凹ができ、短絡を引き起こしやすくなる。一方、平均粒子径が10μm未満である場合は、比表面積が大きくなり、電極塗工性や密着性が悪化する傾向にあり、安全性が低下する傾向にある。
In the present invention, the standard deviation value of the negative electrode material for a non-aqueous electrolyte secondary battery obtained from (v) particle size distribution is 0.250 or more, preferably 0.300 to 0.400. . If the value of the standard deviation of the negative electrode material for a non-aqueous electrolyte secondary battery is less than 0.250, higher electrode density cannot be expected. The standard deviation value of the negative electrode material for a non-aqueous electrolyte secondary battery is preferably larger than the standard deviation values of the substance A and the substance B, and is larger by 0.050 or more. Here, the standard deviation is a standard deviation defined on a logarithmic scale, and can be calculated by, for example, analysis software belonging to a laser diffraction particle size distribution measuring apparatus (SALD-3000J, manufactured by Shimadzu Corporation). it can.
The average particle size of the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is preferably 10 μm or more and 40 μm or less, more preferably 10 μm or more and 30 μm or less, and preferably 10 μm or more and 25 μm or less. Particularly preferred. When the average particle diameter of the negative electrode material for a non-aqueous electrolyte secondary battery exceeds 40 μm, the electrode surface is uneven, and a short circuit is likely to occur. On the other hand, when the average particle diameter is less than 10 μm, the specific surface area increases, the electrode coatability and the adhesion tend to deteriorate, and the safety tends to decrease.

<非水電解液二次電池用負極>
本発明の非水電解液二次電池用負極は、本発明の非水電解液二次電池用負極材を用いてなり、例えば、本発明の非水電解液二次電池用負極材、有機系結着剤(バインダー)および必要に応じて添加される各種添加剤等を溶剤などとともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等により混練し、粘度を調整してペースト状の負極材スラリーとした後、これを例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法により集電体に塗布、乾燥し、必要に応じて、ロールプレス等の成形法により圧縮成形することで形成することができる。また、ペースト状の負極材スラリーをシート状、ペレット状等に成形し、これをロールプレス等の成形法により集電体と一体化することで形成することもできる。
<Negative electrode for non-aqueous electrolyte secondary battery>
The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention uses the negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention. For example, the negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, an organic type A binder (binder) and various additives added as necessary are kneaded with a solvent, etc., with a stirrer, ball mill, super sand mill, pressure kneader, etc. Then, this is applied to the current collector by a known method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, screen printing method, etc. It can be formed by drying and, if necessary, compression molding by a molding method such as a roll press. Alternatively, the paste-like negative electrode material slurry can be formed into a sheet shape, a pellet shape, or the like, and then integrated with the current collector by a forming method such as a roll press.

上記有機系結着剤としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム;メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ブチルメタクリレート、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート等のエチレン性不飽和カルボン酸エステル;アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル;ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電率の大きな高分子化合物などが使用できる。上記有機系結着剤は、本発明の非水電解液二次電池用負極材と有機系結着剤との混合物100重量部に対して1〜20重量部含まれることが好ましい。   Examples of the organic binder include polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, and butyl rubber; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, and hydroxyethyl acrylate. Ethylenically unsaturated carboxylic acid esters such as hydroxyethyl methacrylate; ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid; unsaturated nitriles such as acrylonitrile and methacrylonitrile; Polymer compounds with high ionic conductivity such as vinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, etc. There can be used. The organic binder is preferably contained in an amount of 1 to 20 parts by weight with respect to 100 parts by weight of the mixture of the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention and the organic binder.

また、上記溶剤としては、通常、結着剤を溶解又は分散可能な溶媒が使用され、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等の有機溶媒を例示することができる。溶剤の使用量は、ペースト状となる限り特に制限されず、例えば、本発明の非水電解液二次電池用負極材100重量部に対して、通常、60〜150重量部程度、好ましくは60〜100重量部程度である。   Moreover, as said solvent, the solvent which can melt | dissolve or disperse | distribute a binder normally is used, For example, organic solvents, such as N-methyl-2-pyrrolidone and N, N- dimethylformamide, can be illustrated. The amount of the solvent used is not particularly limited as long as it is in a paste form. For example, it is usually about 60 to 150 parts by weight, preferably 60 parts per 100 parts by weight of the negative electrode material for a nonaqueous electrolyte secondary battery of the present invention. About 100 parts by weight.

また、上記添加剤として、負極材スラリーの増粘剤を用いることもできる。この増粘剤としては、例えば、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどが挙げられる。また、上記添加剤として、電極としての導電性を向上させるために導電補助剤を混合してもよい。導電補助剤としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック(例えば、アセチレンブラック、サーマルブラック、ファーネスブラック)、グラファイトあるいは導電性を示す酸化物や窒化物等が挙げられ、これらは単独で又は2種以上組み合わせて使用できる。このような添加剤の使用量は、二次電池の特性を低下させない範囲であれば特に限定されないが、本発明の非水電解液二次電池用負極材と添加剤の総量に対して1〜10重量%程度が好ましく、1〜5重量%程度がより好ましい。   Moreover, the thickener of a negative electrode material slurry can also be used as said additive. Examples of the thickener include carboxymethyl cellulose, sodium carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, and casein. Moreover, you may mix a conductive support agent in order to improve the electroconductivity as an electrode as said additive. Examples of the conductive auxiliary agent include natural graphite, artificial graphite, carbon black (for example, acetylene black, thermal black, furnace black), graphite, conductive oxide, nitride, and the like. Two or more types can be used in combination. The amount of such an additive used is not particularly limited as long as it does not deteriorate the characteristics of the secondary battery, but 1 to the total amount of the negative electrode material for non-aqueous electrolyte secondary battery and the additive of the present invention. About 10% by weight is preferable, and about 1 to 5% by weight is more preferable.

また、上記集電体としては、例えば、アルミニウム、ニッケル、銅等の箔、メッシュなど、公知のものを使用することができる。また、上記負極材ペーストの集電体への塗布量は、特に制限はないが、5〜15mg/cm程度が好ましく、7〜13mg/cm程度がより好ましい。 Moreover, as said collector, well-known things, such as foil, meshes, such as aluminum, nickel, copper, can be used, for example. The coating amount of the current collector of the negative electrode material paste is not particularly limited, preferably about 5 to 15 mg / cm 2, about 7~13mg / cm 2 is more preferable.

<非水電解液二次電池>
本発明の非水電解液二次電池は、本発明の非水電解液二次電池用負極を用いてなり、例えば、本発明の非水電解液二次電池用負極と正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。非水電解液二次電池の代表例としては、リチウムイオン二次電池が挙げられる。また、この他にも、通常当該分野において使用されるガスケット、封口板、ケースなどをさらに備えていてもよい。
<Nonaqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present invention uses the negative electrode for a non-aqueous electrolyte secondary battery of the present invention. For example, the negative electrode for a non-aqueous electrolyte secondary battery of the present invention and a positive electrode are interposed via a separator. Can be obtained by injecting an electrolytic solution. A typical example of the non-aqueous electrolyte secondary battery is a lithium ion secondary battery. In addition, a gasket, a sealing plate, a case, and the like that are usually used in the field may be further provided.

上記正極は、負極と同様にして、集電体表面上に正極活物質や導電剤等を含む正極材層を形成することで得ることができる。   The positive electrode can be obtained by forming a positive electrode material layer containing a positive electrode active material, a conductive agent and the like on the current collector surface in the same manner as the negative electrode.

上記正極活物質としては、特に制限はなく、例えば、LiNiO、LiCoO、LiMn、LiMnO、LiCo0.33Ni0.33Mn0.33等のリチウム複合酸化物やCr、Cr、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS,ポリアニリン、ポリピロール等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。また、上記導電剤としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラックなどを例示できる。 As the positive electrode active material is not particularly limited, for example, LiNiO 2, LiCoO 2, LiMn 2 O 4, LiMnO 2, LiCo 0.33 Ni 0.33 Mn 0.33 O 2 and lithium composite oxides and Cr 3 O 8 , Cr 2 O 5 , V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Conductive polymers such as polyaniline and polypyrrole, porous carbon and the like can be used alone or in combination. Examples of the conductive agent include natural graphite, artificial graphite, carbon black, and acetylene black.

上記電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiClF、LiSbF、LiAlO、LiAlCl、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiI、LiSOCF等の溶媒和しにくいアニオンを生成するリチウム塩(電解質)を、例えば、カーボネート類、ラクトン類、鎖状エーテル類、環状エーテル類、スルホラン類、スルホキシド類、ニトリル類、アミド類、ポリオキシアルキレングリコール類等の非水系溶媒に溶解した、いわゆる有機電解液を使用する。 Examples of the electrolytic solution include LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiClF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ). 2 , LiC (CF 3 SO 2 ) 3 , LiCl, LiI, LiSO 3 CF 3 and other lithium salts (electrolytes) that produce anions that are difficult to solvate, such as carbonates, lactones, chain ethers, cyclic A so-called organic electrolytic solution dissolved in a non-aqueous solvent such as ethers, sulfolanes, sulfoxides, nitriles, amides, polyoxyalkylene glycols or the like is used.

上記非水系溶媒としては、具体的には、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、ジメチルスルホキシド、3−メチル−1,3−オキサゾリジン−2―オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、1,2−ジメトキシエタン、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、4−メチルジオキソラン、1,3−ジオキソラン、アセトニトリル、プロピオニトリル、ベンゾニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジエチレングリコール、酢酸メチル、酢酸エチル等を用いることができ、これら溶媒は、単独でも2種以上を混合したものであってもよい。   Specific examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, dimethyl sulfoxide, and 3-methyl. -1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, 1,2-dimethoxy Ethane, dimethyl ether, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyldioxolane, 1,3-dioxolane, aceto Nitrile, propionitrile, benzonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, diethylene glycol, methyl acetate, ethyl acetate, etc. can be used, and these solvents can be used alone or as a mixture of two or more. It may be.

また、上記電解質の濃度は、特に限定されないが、電解液1Lに対して電解質0.3〜5モルであることが好ましく、0.5〜3モルであることがより好ましく、0.8〜1.5モルであることが特に好ましい。   Further, the concentration of the electrolyte is not particularly limited, but is preferably 0.3 to 5 mol, more preferably 0.5 to 3 mol, and 0.8 to 1 with respect to 1 L of the electrolytic solution. Particularly preferred is .5 moles.

上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、多孔質フィルム又はそれらを組み合わせたものを使用することができる。なお、作製する二次電池の正極と負極が使用中も直接接触しない構造にした場合は、セパレータを使用しなくとも良い。   As said separator, the nonwoven fabric, cloth, porous film which combined polyolefin, such as polyethylene and a polypropylene, a porous film, or those combined can be used, for example. In addition, when it is set as the structure where the positive electrode and negative electrode of the secondary battery which are produced do not contact directly during use, it is not necessary to use a separator.

また、本発明の非水電解液二次電池の構造は、特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群とし、これら極板群を外装体中に封入した構造とするのが一般的である。また、本発明の非水電解液二次電池は、ペーパー型、ボタン型、コイン型、積層型、角型、円筒型など任意の形態とすることができる。なお、図1に非水電解液二次電池の一例として、円筒型リチウムイオン二次電池の一例の一部断面正面図を示す。図1に示す円筒型リチウムイオン二次電池は、薄板状に加工された正極1と、同様に加工された負極2がポリエチレン製微孔膜のセパレータ3を介して重ね合わせたものを捲回し、これを金属製の電池缶7に挿入し、密閉化されている。正極1は正極タブ4を介して正極蓋6に接合され、負極2は負極タブ5を介して電池底部に接合されている。正極蓋6はガスケット8にて電池缶(負極缶)7へ固定されている。   Further, the structure of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited. Usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound in a flat spiral shape to form a wound electrode plate. It is common to form a group or to laminate them as a flat plate to form a laminated electrode plate group and to enclose these electrode plate groups in an exterior body. In addition, the nonaqueous electrolyte secondary battery of the present invention can have any form such as a paper type, a button type, a coin type, a stacked type, a square type, and a cylindrical type. In addition, the partial cross section front view of an example of a cylindrical lithium ion secondary battery is shown in FIG. 1 as an example of a non-aqueous electrolyte secondary battery. The cylindrical lithium ion secondary battery shown in FIG. 1 is obtained by winding a positive electrode 1 processed into a thin plate shape and a negative electrode 2 processed in the same manner through a separator 3 made of polyethylene microporous membrane, This is inserted into a metal battery can 7 and sealed. The positive electrode 1 is bonded to the positive electrode lid 6 via the positive electrode tab 4, and the negative electrode 2 is bonded to the battery bottom via the negative electrode tab 5. The positive electrode lid 6 is fixed to a battery can (negative electrode can) 7 with a gasket 8.

本発明の非水電解液二次電池は、従来の炭素材料を負極に用いた非水電解液二次電池と比較して、放電負荷特性、サイクル特性、高電池容量化及び安全性に優れるため、各種電子・電機機器、自動車、電力貯蔵などの電源や補助電源として好適である。   The non-aqueous electrolyte secondary battery of the present invention is superior in discharge load characteristics, cycle characteristics, high battery capacity, and safety compared to non-aqueous electrolyte secondary batteries using a conventional carbon material for the negative electrode. It is suitable as a power source and auxiliary power source for various electronic / electrical equipment, automobiles, power storage and the like.

以下、本発明を実施例により具体的に説明するが、本発明は、当該実施例の記載により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by description of the said Example.

<非水電解液二次電池用負極材の作製>
(実施例1〜6、比較例1〜9)
表1〜2に示すように、粒子径分布が異なる物質Aおよび物質Bを、V型混合機を用いて10分間混合し、非水電解液二次電池用負極材を作製した。物質Aおよび物質Bの平均粒子径、標準偏差、真密度、非水電解液二次電池用負極材の平均粒子径及び標準偏差について以下のとおり測定した。
<Preparation of negative electrode material for non-aqueous electrolyte secondary battery>
(Examples 1-6, Comparative Examples 1-9)
As shown in Tables 1 and 2, Substance A and Substance B having different particle size distributions were mixed for 10 minutes using a V-type mixer to prepare a negative electrode material for a non-aqueous electrolyte secondary battery. The average particle diameter, standard deviation, true density of substance A and substance B, and the average particle diameter and standard deviation of the negative electrode material for nonaqueous electrolyte secondary batteries were measured as follows.

なお、物質A、物質Bとして各実施例および比較例で使用した人造黒鉛、天然黒鉛、非晶質炭素の製造方法については以下のとおりである。また、表1〜2における物質Aと物質Bの混合比率の単位は、重量部である。   In addition, it is as follows about the manufacturing method of the artificial graphite used in each Example and the comparative example as the substance A and the substance B, natural graphite, and amorphous carbon. Moreover, the unit of the mixing ratio of the substance A and the substance B in Tables 1-2 is a weight part.

(物性測定)
平均粒子径:試料(物質A、物質B又は非水電解液二次電池用負極材)を界面活性剤と共に精製水中に分散させた溶液を、レーザー回折式粒度分布測定装置(株式会社島津製作所製、SALD−3000J)の試料水槽に入れ、超音波をかけながらポンプで循環させながら、レーザー回折式で測定した。得られた粒子径分布の累積体積が50体積%となる粒子径を平均粒径(D50)とした。
(Physical property measurement)
Average particle size: Laser diffraction type particle size distribution measuring device (manufactured by Shimadzu Corporation) was prepared by dispersing a sample (substance A, substance B or negative electrode material for non-aqueous electrolyte secondary battery) in purified water together with a surfactant. , SALD-3000J) was measured by laser diffraction while circulating with a pump while applying ultrasonic waves. The particle diameter at which the cumulative volume of the obtained particle diameter distribution was 50% by volume was defined as the average particle diameter (D50).

標準偏差:レーザー回折式粒度分布測定装置(株式会社島津製作所製、SALD−3000J)に属している解析ソフトにより算出した。   Standard deviation: It was calculated by analysis software belonging to a laser diffraction type particle size distribution measuring apparatus (manufactured by Shimadzu Corporation, SALD-3000J).

真密度:JIS R7212に基づくブタノール法によって測定した。   True density: Measured by a butanol method based on JIS R7212.

(物質A又は物質Bとして使用した炭素材料)
(a)人造黒鉛
平均粒子径が5μmのコークス粉末100重量部、タールピッチ30重量部、平均粒子径が48μmの炭化珪素30重量部、及びコールタール20重量部を混合し、270℃で1時間混合した。得られた混合物を粉砕し、ペレット状に加圧成形、窒素中で1000℃で予備焼成した後、アチソン炉を用いて3000℃で黒鉛化した。上記によって得られた黒鉛ブロックをハンマーミルもしくはジェットミルを用いて、得られる人造黒鉛の平均粒子径が所望の値となるように粉砕条件を適宜選択して粉砕を行った。次いで、粉砕した人造黒鉛を250mesh標準篩を通過させた。得られた人造黒鉛の走査型電子顕微鏡(SEM)写真によれば、この黒鉛質粒子は、複数の扁平状の粒子が配向面が非平行となるように集合又は結合した構造をしていた。
(Carbon material used as substance A or substance B)
(A) Artificial graphite 100 parts by weight of coke powder having an average particle diameter of 5 μm, 30 parts by weight of tar pitch, 30 parts by weight of silicon carbide having an average particle diameter of 48 μm, and 20 parts by weight of coal tar are mixed at 270 ° C. for 1 hour. Mixed. The obtained mixture was pulverized, pressed into pellets, pre-fired at 1000 ° C. in nitrogen, and then graphitized at 3000 ° C. using an Atchison furnace. The graphite block obtained as described above was pulverized by using a hammer mill or a jet mill and appropriately selecting the pulverization conditions so that the average particle diameter of the resulting artificial graphite would be a desired value. The pulverized artificial graphite was then passed through a 250 mesh standard sieve. According to the scanning electron microscope (SEM) photograph of the obtained artificial graphite, the graphite particles had a structure in which a plurality of flat particles were aggregated or bonded so that their orientation planes were non-parallel.

(b)天然黒鉛
中国産の天然黒鉛を、ハンマーミルもしくはジェットミルを用いて、得られる天然黒鉛の平均粒子径が所望の値となるように粉砕条件を適宜選択して粉砕を行った。次いで、粉砕した天然黒鉛を250meshの標準篩を通過させた。
(B) Natural Graphite Natural graphite produced in China was pulverized using a hammer mill or a jet mill with appropriate selection of pulverization conditions so that the average particle diameter of the natural graphite obtained would be a desired value. The ground natural graphite was then passed through a 250 mesh standard sieve.

(c)非晶質炭素
石炭系コークスを、ハンマーミルもしくはジェットミルを用いて、得られる非晶質炭素の平均粒子径が所望の値となるように粉砕条件を適宜選択して粉砕を行った。次いで、粉砕した非晶質炭素を250mesh標準篩を通過させた。
(C) Amorphous carbon Coal coke was pulverized by using a hammer mill or a jet mill and appropriately selecting the pulverization conditions so that the average particle diameter of the obtained amorphous carbon would be a desired value. . The ground amorphous carbon was then passed through a 250 mesh standard sieve.

<負極材の評価>
上記で得た各実施例および比較例の非水電解液二次電池用負極材を用いてリチウムイオン二次電池を以下のようにして作製した。
<Evaluation of negative electrode material>
Using the negative electrode materials for non-aqueous electrolyte secondary batteries obtained in the above examples and comparative examples, lithium ion secondary batteries were produced as follows.

(負極の作製)
各非水電解液二次電池用負極材98重量%、結着剤としてスチレンブタジエン
ゴム(日本ゼオン株式会社製、商品名「BM−400B」)1重量%、増粘剤としてカルボキシメチルセルロース(第一工業製薬株式会社製)1重量%を混合し、水に分散させて均一なスラリーとした。このスラリーを40μm厚の銅箔の 面に塗布し、80℃及び140℃で乾燥させ、加圧成形し、さらにφ9.5mmの大きさに切り出して負極を作製した。
(Preparation of negative electrode)
98% by weight of the negative electrode material for each non-aqueous electrolyte secondary battery, 1% by weight of styrene butadiene rubber (manufactured by Zeon Corporation, trade name “BM-400B”) as a binder, and carboxymethyl cellulose (first) as a thickener Kogyo Seiyaku Co., Ltd.) 1% by weight was mixed and dispersed in water to obtain a uniform slurry. This slurry was applied to the surface of a 40 μm thick copper foil, dried at 80 ° C. and 140 ° C., pressure-molded, and cut into a size of φ9.5 mm to produce a negative electrode.

(リチウムイオン二次電池の作製)
作用極として上記で作製した負極を用い、対極として厚さ1mmの金属リチウムを用い、これら両極をセパレーター(旭化成株式会社製、微細孔オレフィン膜)を介して対向させた。さらに1.0M LiPF/エチレンカーボネート及びメチルエチルカーボネートの混合溶液(3:7容量比)にビニレンカーボネートを0.5重量%添加した非水電解液を注入し、通常の方法によってリチウムイオン二次電池を作製した。
(Production of lithium ion secondary battery)
The negative electrode prepared above was used as the working electrode, and 1 mm thick metal lithium was used as the counter electrode, and both electrodes were opposed to each other through a separator (manufactured by Asahi Kasei Co., Ltd., microporous olefin membrane). Further, a nonaqueous electrolyte solution containing 0.5% by weight of vinylene carbonate was injected into a mixed solution (3: 7 volume ratio) of 1.0M LiPF 6 / ethylene carbonate and methyl ethyl carbonate, and a secondary lithium ion solution was obtained by a conventional method. A battery was produced.

得られたリチウムイオン二次電池について以下の評価を行った。   The following evaluation was performed about the obtained lithium ion secondary battery.

(充電容量・放電容量)
作製したリチウムイオン二次電池(電極密度1700kg/m)を25℃の雰囲気下において、定電流定電圧方式で、定電流0.2mA、定電圧0V(Li/Li)、カット電流0.02mAの条件で充電し、この時の充電容量(kg/Ah)を測定した。次いで、定電流方式で、定電流0.2mA、カット電圧1.5V(Li/Li)になるまで定電流放電し、この時の放電容量(kg/Ah)を測定した。
(Charge capacity / Discharge capacity)
The produced lithium ion secondary battery (electrode density: 1700 kg / m 3 ) in an atmosphere of 25 ° C. by a constant current constant voltage method, a constant current of 0.2 mA, a constant voltage of 0 V (Li / Li + ), and a cut current of 0.3. The battery was charged under the condition of 02 mA, and the charge capacity (kg / Ah) at this time was measured. Next, constant current discharge was performed by a constant current method until a constant current of 0.2 mA and a cut voltage of 1.5 V (Li / Li + ) were obtained, and the discharge capacity (kg / Ah) at this time was measured.

(充放電効率)
上記で測定した充電容量及び放電容量から、充放電効率(%)を以下の式により算出した。
(Charge / discharge efficiency)
From the charge capacity and discharge capacity measured above, the charge / discharge efficiency (%) was calculated by the following formula.

充放電効率(%)=放電容量/充電容量×100
(放電負荷容量)
作製したリチウムイオン二次電池(電極密度1700kg/m)を25℃の雰囲気下において、定電流定電圧方式で、定電流0.2mA、定電圧0V(Li/Li)、カット電流0.02mAの条件で充電した。次いで、定電流方式で、定電流5.0mA、カット電圧1.5V(Li/Li)になるまで定電流放電し、この時の放電容量(kg/Ah)を測定し、放電負荷容量とした。
Charging / discharging efficiency (%) = discharge capacity / charge capacity × 100
(Discharge load capacity)
The produced lithium ion secondary battery (electrode density: 1700 kg / m 3 ) in an atmosphere of 25 ° C. by a constant current constant voltage method, a constant current of 0.2 mA, a constant voltage of 0 V (Li / Li + ), and a cut current of 0.3. The battery was charged under the condition of 02 mA. Next, a constant current discharge is performed until a constant current of 5.0 mA and a cut voltage of 1.5 V (Li / Li + ) are obtained, and a discharge capacity (kg / Ah) at this time is measured. did.

(サイクル維持率)
作製したリチウムイオン二次電池(電極密度1700kg/m)を25℃の雰囲気下において、定電流定電圧方式で、定電流0.4mA、定電圧0V(Li/Li)、カット電流0.02mAの条件で充電した。次いで、定電流方式で、定電流0.4mA、カット電圧1.5V(Li/Li)になるまで定電流放電し、この時の放電容量(kg/Ah)を測定した。この充放電を300回繰り返し、1サイクル目の放電容量に対する300サイクル目の放電容量の比率を、サイクル維持率(%)として算出した。
(Cycle maintenance rate)
The produced lithium ion secondary battery (electrode density: 1700 kg / m 3 ) in an atmosphere at 25 ° C. is a constant current constant voltage method, a constant current of 0.4 mA, a constant voltage of 0 V (Li / Li + ), and a cut current of 0.5. The battery was charged under the condition of 02 mA. Subsequently, constant current discharge was performed by a constant current method until a constant current of 0.4 mA and a cut voltage of 1.5 V (Li / Li + ) were obtained, and the discharge capacity (kg / Ah) at this time was measured. This charge / discharge was repeated 300 times, and the ratio of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle was calculated as the cycle maintenance ratio (%).

(圧縮性)
上記で作製した負極を線圧150kg/cmの圧力でプレスし、電極密度を測定した。

Figure 2008251523
Figure 2008251523
(Compressibility)
The negative electrode produced above was pressed at a linear pressure of 150 kg / cm, and the electrode density was measured.
Figure 2008251523
Figure 2008251523

表1及び表2から、各実施例の負極材は、放電負荷特性、サイクル特性、圧縮性に優れたリチウムイオン二次電池を提供できることがわかる。   From Table 1 and Table 2, it can be seen that the negative electrode material of each example can provide a lithium ion secondary battery excellent in discharge load characteristics, cycle characteristics, and compressibility.

実施例1に対する比較例として、材質Bの平均粒子径が17.6μmで非水電解液二次電池用負極材の標準偏差が0.231である比較例1はサイクル維持率及び電極密度が低く、材質Aの平均粒子径が45.3μm、材質Bの平均粒子径が25.1μmである比較例2は放電負荷容量、サイクル維持率及び電極密度が低く、材質Bの平均粒子径が0.9μmである比較例3は充放電効率、サイクル維持率及び電極密度が低く、材質Bの平均粒子径が17.6μm、物質Bの混合割合が5重量%、非水電解液二次電池用負極材の標準偏差が0.243である比較例4はサイクル維持率及び電極密度が低いことがわかる。実施例2に対する比較例として、材質Bの平均粒子径が19.8μm、物質Aの平均粒子径と物質Bの平均粒子径の差が0.5μm、非水電解液二次電池用負極材の標準偏差が0.216である比較例5は放電負荷容量、サイクル維持率及び電極密度が低いことがわかる。実施例3に対する比較例として、材質Bの平均粒子径が19.8μm、非水電解液二次電池用負極材の標準偏差が0.234である比較例6は放電負荷容量、サイクル維持率及び電極密度が低いことがわかる。実施例4に対する比較例として、材質Bの平均粒子径が17.6μm、物質Aの平均粒子径と物質Bの平均粒子径の差が2.7μm、非水電解液二次電池用負極材の標準偏差が0.222である比較例7は放電負荷容量、サイクル維持率及び電極密度が低いことがわかる。実施例5に対する比較例として、材質Bの平均粒子径が19.8μm、非水電解液二次電池用負極材の標準偏差が0.232である比較例8は放電負荷容量、サイクル維持率及び電極密度が低いことがわかる。実施例6に対する比較例として、材質Bの平均粒子径が17.6μm、物質Aの平均粒子径と物質Bの平均粒子径の差が2.2μm、非水電解液二次電池用負極材の標準偏差が0.236である比較例9はサイクル維持率及び電極密度が低いことがわかる。   As a comparative example with respect to Example 1, Comparative Example 1 in which the average particle diameter of the material B is 17.6 μm and the standard deviation of the negative electrode material for a non-aqueous electrolyte secondary battery is 0.231 has a low cycle maintenance factor and electrode density. Comparative Example 2 in which the average particle size of material A is 45.3 μm and the average particle size of material B is 25.1 μm is low in discharge load capacity, cycle retention rate and electrode density, and the average particle size of material B is 0.00. Comparative Example 3 of 9 μm has low charge / discharge efficiency, cycle maintenance rate and electrode density, the average particle diameter of material B is 17.6 μm, the mixing ratio of substance B is 5% by weight, and the negative electrode for non-aqueous electrolyte secondary battery It turns out that the comparative example 4 whose standard deviation of material is 0.243 has a low cycle maintenance factor and electrode density. As a comparative example with respect to Example 2, the average particle size of material B was 19.8 μm, the difference between the average particle size of material A and the average particle size of material B was 0.5 μm, and the negative electrode material for a nonaqueous electrolyte secondary battery It can be seen that Comparative Example 5 having a standard deviation of 0.216 has a low discharge load capacity, cycle retention rate, and electrode density. As a comparative example with respect to Example 3, Comparative Example 6 in which the average particle size of material B is 19.8 μm and the standard deviation of the negative electrode material for nonaqueous electrolyte secondary batteries is 0.234 is the discharge load capacity, cycle retention rate, and It can be seen that the electrode density is low. As a comparative example for Example 4, the average particle size of material B was 17.6 μm, the difference between the average particle size of material A and the average particle size of material B was 2.7 μm, and the negative electrode material for nonaqueous electrolyte secondary batteries It can be seen that Comparative Example 7 having a standard deviation of 0.222 has a low discharge load capacity, cycle retention rate, and electrode density. As a comparative example with respect to Example 5, Comparative Example 8 in which the average particle size of material B is 19.8 μm and the standard deviation of the negative electrode material for nonaqueous electrolyte secondary batteries is 0.232 is the discharge load capacity, the cycle retention rate, and It can be seen that the electrode density is low. As a comparative example with respect to Example 6, the average particle diameter of material B is 17.6 μm, the difference between the average particle diameter of substance A and the average particle diameter of substance B is 2.2 μm, and the negative electrode material for a nonaqueous electrolyte secondary battery It can be seen that Comparative Example 9 having a standard deviation of 0.236 has a low cycle retention ratio and electrode density.

したがって、本発明により、放電負荷特性、サイクル特性及び高電池容量化に優れる非水電解液二次電池とそれを得るための負極、非水電解液二次電池用負極材を提供することが可能となる。   Therefore, according to the present invention, it is possible to provide a nonaqueous electrolyte secondary battery excellent in discharge load characteristics, cycle characteristics and high battery capacity, a negative electrode for obtaining the same, and a negative electrode material for a nonaqueous electrolyte secondary battery. It becomes.

非水電解液二次電池(円筒型リチウム二次電池)の一実施形態を示す断面正面図である。It is a section front view showing one embodiment of a nonaqueous electrolyte secondary battery (cylindrical lithium secondary battery).

符号の説明Explanation of symbols

1:正極
2:負極
3:セパレータ
4:正極タブ
5:負極タブ
6:正極蓋
7:電池缶(負極缶)
8:ガスケット
1: Positive electrode 2: Negative electrode 3: Separator 4: Positive electrode tab 5: Negative electrode tab 6: Positive electrode lid 7: Battery can (negative electrode can)
8: Gasket

Claims (6)

粒子径分布が異なる物質Aと物質Bを少なくとも混合して得られる非水電解液二次電池用負極材であって、
(i)前記物質Aの平均粒子径(D50)が18μm以上40μm以下であり、
(ii)前記物質Bの平均粒子径(D50)が1μm以上15μm以下であり、
(iii)前記物質Aの平均粒子径と前記物質Bの平均粒子径の差が5μm以上であり、
(iv)前記物質Aと前記物質Bの総量に対して物質Bの割合が10重量%以上であり、
(v)粒子径分布から得られる前記非水電解液二次電池用負極材の標準偏差の値が0.250以上であり、かつ前記物質Aおよび前記物質Bの標準偏差の値より大きい、
ことを特徴とする、非水電解液二次電池用負極材。
A negative electrode material for a non-aqueous electrolyte secondary battery obtained by mixing at least a substance A and a substance B having different particle size distributions,
(I) The average particle diameter (D50) of the substance A is 18 μm or more and 40 μm or less,
(Ii) The average particle diameter (D50) of the substance B is 1 μm or more and 15 μm or less,
(Iii) The difference between the average particle diameter of the substance A and the average particle diameter of the substance B is 5 μm or more,
(Iv) The ratio of the substance B to the total amount of the substance A and the substance B is 10% by weight or more,
(V) The standard deviation value of the negative electrode material for a nonaqueous electrolyte secondary battery obtained from the particle size distribution is 0.250 or more, and is larger than the standard deviation values of the substance A and the substance B.
The negative electrode material for nonaqueous electrolyte secondary batteries characterized by the above-mentioned.
前記物質Aと前記物質Bのいずれか一方もしくは両方が、炭素材料である請求項1記載の非水電解液二次電池用負極材。   2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein one or both of the substance A and the substance B is a carbon material. 前記物質Aと前記物質Bのいずれか一方もしくは両方が、黒鉛である請求項1または2記載の非水電解液二次電池用負極材。   3. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein one or both of the substance A and the substance B is graphite. 前記黒鉛が、複数の扁平状の黒鉛質微粒子を配向面が非平行となるように集合或いは結合させてなる黒鉛である請求項3記載の非水電解液二次電池用負極材。   The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 3, wherein the graphite is graphite obtained by collecting or combining a plurality of flat graphite fine particles so that the orientation planes are non-parallel. 請求項1〜4のいずれか一項に記載の非水電解液二次電池用負極材を用いてなることを特徴とする非水電解液二次電池用負極。   A negative electrode for a non-aqueous electrolyte secondary battery, comprising the negative electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4. 請求項5記載の非水電解液二次電池用負極を用いてなることを特徴とする非水電解液二次電池。   A non-aqueous electrolyte secondary battery comprising the negative electrode for a non-aqueous electrolyte secondary battery according to claim 5.
JP2007315080A 2007-03-06 2007-12-05 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Pending JP2008251523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315080A JP2008251523A (en) 2007-03-06 2007-12-05 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007055674 2007-03-06
JP2007315080A JP2008251523A (en) 2007-03-06 2007-12-05 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008251523A true JP2008251523A (en) 2008-10-16

Family

ID=39976202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315080A Pending JP2008251523A (en) 2007-03-06 2007-12-05 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008251523A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026514A (en) * 2007-07-18 2009-02-05 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2013065440A (en) * 2011-09-16 2013-04-11 Toshiba Corp Electrode for battery, nonaqueous electrolyte battery, and battery pack
WO2014092071A1 (en) * 2012-12-13 2014-06-19 日東電工株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
WO2014092141A1 (en) * 2012-12-13 2014-06-19 昭和電工株式会社 Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
JP2017530509A (en) * 2014-07-29 2017-10-12 エルジー・ケム・リミテッド Graphite secondary particles and lithium secondary battery containing the same
JPWO2016121322A1 (en) * 2015-01-27 2017-11-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery negative electrode plate and non-aqueous electrolyte secondary battery using the negative electrode plate
US9923239B2 (en) 2011-07-14 2018-03-20 Nec Energy Devices, Ltd. Lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158005A (en) * 1996-08-08 1998-06-16 Hitachi Chem Co Ltd Graphite particle, its production, graphite paste using the same, negative electrode of lithium secondary cell and lithium secondary cell
JP2003323895A (en) * 2002-02-26 2003-11-14 Sony Corp Nonaqueous electrolyte battery
JP2004083388A (en) * 2002-02-21 2004-03-18 Tosoh Corp Lithium manganese composite oxide granule secondary particle and method for producing the same and application thereof
JP2004342548A (en) * 2003-05-19 2004-12-02 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery, manufacturing method for same, positive electrode material for lithium secondary battery using same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2006309998A (en) * 2005-04-27 2006-11-09 Mitsui Mining & Smelting Co Ltd Ab5 type hydrogen storage alloy powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158005A (en) * 1996-08-08 1998-06-16 Hitachi Chem Co Ltd Graphite particle, its production, graphite paste using the same, negative electrode of lithium secondary cell and lithium secondary cell
JP2004083388A (en) * 2002-02-21 2004-03-18 Tosoh Corp Lithium manganese composite oxide granule secondary particle and method for producing the same and application thereof
JP2003323895A (en) * 2002-02-26 2003-11-14 Sony Corp Nonaqueous electrolyte battery
JP2004342548A (en) * 2003-05-19 2004-12-02 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery, manufacturing method for same, positive electrode material for lithium secondary battery using same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2006309998A (en) * 2005-04-27 2006-11-09 Mitsui Mining & Smelting Co Ltd Ab5 type hydrogen storage alloy powder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026514A (en) * 2007-07-18 2009-02-05 Panasonic Corp Nonaqueous electrolyte secondary battery
US9923239B2 (en) 2011-07-14 2018-03-20 Nec Energy Devices, Ltd. Lithium ion battery
JP2013065440A (en) * 2011-09-16 2013-04-11 Toshiba Corp Electrode for battery, nonaqueous electrolyte battery, and battery pack
US9601749B2 (en) 2011-09-16 2017-03-21 Kabushiki Kaisha Toshiba Electrode for battery, nonaqueous electrolyte battery, and battery pack
CN104838533A (en) * 2012-12-13 2015-08-12 日东电工株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
CN104838526A (en) * 2012-12-13 2015-08-12 昭和电工株式会社 Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
JP2014120227A (en) * 2012-12-13 2014-06-30 Nitto Denko Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same
JPWO2014092141A1 (en) * 2012-12-13 2017-01-12 昭和電工株式会社 Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
WO2014092141A1 (en) * 2012-12-13 2014-06-19 昭和電工株式会社 Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
WO2014092071A1 (en) * 2012-12-13 2014-06-19 日東電工株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2017530509A (en) * 2014-07-29 2017-10-12 エルジー・ケム・リミテッド Graphite secondary particles and lithium secondary battery containing the same
US10361426B2 (en) 2014-07-29 2019-07-23 Lg Chem, Ltd. Secondary graphite particle and secondary lithium battery comprising the same
JPWO2016121322A1 (en) * 2015-01-27 2017-11-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery negative electrode plate and non-aqueous electrolyte secondary battery using the negative electrode plate

Similar Documents

Publication Publication Date Title
JP6716288B2 (en) Lithium-ion battery electrode, lithium-ion battery, and method for manufacturing lithium-ion battery electrode
CN106797022B (en) Potassium ion secondary battery or potassium ion capacitor
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP6609909B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2863457A1 (en) Lithium secondary battery comprising multilayered active material layer
KR102080255B1 (en) Negative electrode active material and negative electrode for secondary battery comprising the same
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5360871B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2016219410A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018110076A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2008251523A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN113574702A (en) Negative electrode active material for secondary battery, method for producing same, negative electrode for secondary battery comprising same, and lithium secondary battery
JP7083696B2 (en) Non-water secondary battery
JP2015173071A (en) Slurry for lithium ion battery, negative electrode for lithium ion battery, method for manufacturing negative electrode for lithium ion battery, lithium ion battery, and method for producing negative electrode active material for lithium ion battery
JP2011175842A (en) Negative electrode material for lithium battery, negative electrode for lithium secondary battery, and lithium battery
JP2012221951A (en) Negative electrode material for lithium secondary battery, method for manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery
KR101914561B1 (en) Electrode for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising the same
JP2007242348A (en) Lithium-ion secondary battery
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP2020145062A (en) Negative electrode mixture for secondary battery, negative electrode for secondary battery, and secondary battery
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507