JP2008112710A - Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery - Google Patents

Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery Download PDF

Info

Publication number
JP2008112710A
JP2008112710A JP2007002679A JP2007002679A JP2008112710A JP 2008112710 A JP2008112710 A JP 2008112710A JP 2007002679 A JP2007002679 A JP 2007002679A JP 2007002679 A JP2007002679 A JP 2007002679A JP 2008112710 A JP2008112710 A JP 2008112710A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium secondary
secondary battery
electrode material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007002679A
Other languages
Japanese (ja)
Inventor
Akihiro Oda
明博 織田
Koichi Takei
康一 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007002679A priority Critical patent/JP2008112710A/en
Publication of JP2008112710A publication Critical patent/JP2008112710A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium secondary battery for realizing such lithium secondary battery as of large charge/discharge capacitance, small initial irreversible capacitance, and excellent charge/discharge characteristics, along with a negative electrode for the lithium secondary battery using the same and the lithium secondary battery. <P>SOLUTION: The negative electrode material for the lithium secondary battery contains Si particles whose average particle size (D50) is 0.05-5 μm and a plurality of kinds of carbonaceous material, with oxygen content being 5 wt.% or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池用負極材料、当該材料を用いたリチウム二次電池用負極及び当該負極を用いたリチウム二次電池に関する。   The present invention relates to a negative electrode material for a lithium secondary battery, a negative electrode for a lithium secondary battery using the material, and a lithium secondary battery using the negative electrode.

電子機器の小型化、薄型化、軽量化が進む中で、電子機器の電源用の電池として、また電子機器のバックアップ用電池として、高エネルギー密度で充電でき、高効率で放電できるリチウム二次電池が注目を集めている。また、リチウム二次電池は、環境に与える影響が少なく、安全性も高いリチウムを用いているため、電気自動車の動力源として、さらに分散型の電力貯蔵用電池としての開発も行われている。   Lithium secondary batteries that can be charged with high energy density and discharged with high energy density as power source batteries for electronic devices and as backup batteries for electronic devices as electronic devices become smaller, thinner, and lighter Has attracted attention. In addition, since lithium secondary batteries use lithium that has little impact on the environment and high safety, they are being developed as power sources for electric vehicles and further as distributed power storage batteries.

従来の典型的なリチウム二次電池は、負極活物質として炭素材を用い、電池の充電時にリチウムをイオン状態で炭素材中に挿入(インターカレーション)し、放電時にはリチウムをイオンとして放出(デインターカレーション)する‘‘ロッキングチェアー型’’を採用している。しかし、この電池構成では、炭素材に対するリチウムイオンの挿入量を高めるのが困難であり、二次電池としての充放電容量を高めることができない。例えば、黒鉛を用いると、充電による組成はLiCとなり、この理論充放電容量は372Ah/kgである。これは、リチウム金属の理論充放電容量3860Ah/kg(リチウムベース)の1/10以下と低い。 A conventional typical lithium secondary battery uses a carbon material as a negative electrode active material, lithium is inserted into the carbon material in an ionic state (intercalation) when the battery is charged, and lithium is released as an ion during discharge. "Rocking chair type" that intercalates) is adopted. However, in this battery configuration, it is difficult to increase the amount of lithium ions inserted into the carbon material, and the charge / discharge capacity as a secondary battery cannot be increased. For example, when graphite is used, the composition by charging is LiC 6 and the theoretical charge / discharge capacity is 372 Ah / kg. This is as low as 1/10 or less of the lithium metal theoretical charge / discharge capacity of 3860 Ah / kg (lithium base).

一方、電池を装着する電子機器側からは、充放電容量をより一層向上させたリチウム二次電池負極材が要求されている。   On the other hand, a negative electrode material for a lithium secondary battery having a further improved charge / discharge capacity is required from the electronic device side to which the battery is mounted.

従来の高容量負極材としては、アルミニウム、鉛等のリチウムと金属間化合物を形成可能な元素が挙げられるが、単独又は導電性粒子と混合して負極材に用いるとサイクル劣化が速く、実質的には負極材として適用できない。   Examples of conventional high-capacity negative electrode materials include elements capable of forming an intermetallic compound with lithium, such as aluminum and lead. However, when used as a negative electrode material alone or mixed with conductive particles, cycle deterioration is rapid and substantial. Cannot be applied as a negative electrode material.

リチウムと化合物を形成可能な元素を含む粒子と炭素質物質からなる負極材をリチウム二次電池に使用する提案は種々あるが(例えば、特許文献1〜3参照)、融点の低いSn(融点232℃)、Pb(融点327℃)、Zn(融点419℃)、Al(融点660℃)等をリチウムと化合物を形成可能な元素として使用可能としているため、800℃以上で炭素化処理した場合、溶融による凝集、粗大化などが生じ、製品の性能を予想外に低下させる恐れがある。   There are various proposals for using a negative electrode material composed of particles containing an element capable of forming a compound with lithium and a carbonaceous material for a lithium secondary battery (see, for example, Patent Documents 1 to 3), but Sn having a low melting point (melting point 232). ), Pb (melting point 327 ° C.), Zn (melting point 419 ° C.), Al (melting point 660 ° C.) and the like can be used as an element capable of forming a compound with lithium. When carbonized at 800 ° C. or higher, Aggregation and coarsening may occur due to melting, and the performance of the product may be unexpectedly reduced.

また、熱膨張率の高いSn(22.0ppm/K、at25℃)、Al(23.1ppm/K、at25℃)、Mg(24.8ppm/K、at25℃)、Pb(28.9ppm/K、at25℃)等の元素も使用可能としているため、炭素化熱処理、冷却の過程で炭素との密着性が維持できなくなり、粒子形状を保持できなくなる恐れもあり、製品の性能低下を招く。   Further, Sn (22.0 ppm / K, at 25 ° C.), Al (23.1 ppm / K, at 25 ° C.), Mg (24.8 ppm / K, at 25 ° C.), Pb (28.9 ppm / K) having a high thermal expansion coefficient. , At 25 ° C.) and the like can be used, so that the adhesion with carbon cannot be maintained in the process of carbonization heat treatment and cooling, and the particle shape may not be maintained, resulting in a decrease in product performance.

また、Siをベースとした多くの金属間化合物の開発も精力的に進められている(例えば、特許文献4〜7参照)。しかしながら、これらの化合物は充放電容量が大きいものの、初期不可逆容量が大きく、また、充放電サイクル特性に乏しいという課題があり、未だ実用化に至っていない。
特開平05−286763号公報 特開平06−279112号公報 特開平10−003920号公報 特開2004−045986号公報 特開2001−243946号公報 特開2001−297757号公報 特開2004−277371号公報
In addition, development of many intermetallic compounds based on Si has been energetically advanced (see, for example, Patent Documents 4 to 7). However, although these compounds have a large charge / discharge capacity, there are problems that the initial irreversible capacity is large and the charge / discharge cycle characteristics are poor, and they have not yet been put into practical use.
Japanese Patent Laid-Open No. 05-286863 Japanese Patent Laid-Open No. 06-279112 JP-A-10-003920 JP 2004-045986 A JP 2001-243946 A JP 2001-297757 A JP 2004-277371 A

本発明は、充放電容量が大きく、初期不可逆容量が小さく、なおかつ充放電サイクル特性に優れたリチウム二次電池を得るためのリチウム二次電池用負極材料及びこれを用いたリチウム二次電池用負極を提供することを目的とするものである。   The present invention relates to a negative electrode material for a lithium secondary battery for obtaining a lithium secondary battery having a large charge / discharge capacity, a small initial irreversible capacity, and excellent charge / discharge cycle characteristics, and a negative electrode for a lithium secondary battery using the same. Is intended to provide.

また、本発明は、充放電容量が大きく、初期不可逆容量が小さく、なおかつ充放電サイクル特性に優れたリチウム二次電池を提供することを目的とするものである。   Another object of the present invention is to provide a lithium secondary battery having a large charge / discharge capacity, a small initial irreversible capacity, and excellent charge / discharge cycle characteristics.

本発明は、以下(1)〜(17)に記載の事項をその特徴とするものである。   The present invention is characterized by the following items (1) to (17).

(1)平均粒径(D50)が0.05〜5μmのSi粒子および複数種の炭素質物質を含み、酸素含有量が5重量%以下であるリチウム二次電池用負極材料。   (1) A negative electrode material for a lithium secondary battery comprising Si particles having an average particle diameter (D50) of 0.05 to 5 μm and a plurality of types of carbonaceous materials, and having an oxygen content of 5% by weight or less.

(2)前記複数種の炭素質物質が、炭素質物質(A)及び該炭素質物質(A)よりも結晶性の低い炭素質物質(B)を含む上記(1)記載のリチウム二次電池用負極材料。   (2) The lithium secondary battery according to (1), wherein the plural types of carbonaceous materials include a carbonaceous material (A) and a carbonaceous material (B) having lower crystallinity than the carbonaceous material (A). Negative electrode material.

(3)前記炭素質物質(A)が、黒鉛及びカーボンブラックから選ばれる少なくとも1種を含む上記(2)記載のリチウム二次電池用負極材料。   (3) The negative electrode material for a lithium secondary battery according to (2), wherein the carbonaceous material (A) includes at least one selected from graphite and carbon black.

(4)前記黒鉛の平均粒径(D50)が0.1〜20μmである上記(3)記載のリチウム二次電池用負極材料。   (4) The negative electrode material for a lithium secondary battery according to (3), wherein the graphite has an average particle diameter (D50) of 0.1 to 20 μm.

(5)前記炭素質物質(B)が、非晶質炭素である上記(2)〜(4)のいずれか記載のリチウム二次電池用負極材料。   (5) The negative electrode material for a lithium secondary battery according to any one of (2) to (4), wherein the carbonaceous material (B) is amorphous carbon.

(6)前記Si粒子と前記炭素質物質(A)の重量比が99.5/0.5〜0.5/99.5である上記(2)〜(5)に記載のリチウム二次電池用負極材料。   (6) The lithium secondary battery according to any one of (2) to (5), wherein a weight ratio of the Si particles to the carbonaceous material (A) is 99.5 / 0.5 to 0.5 / 99.5. Negative electrode material.

(7)前記炭素質物質(A)と前記炭素質物質(B)の重量比が90/10〜30/70である上記(2)〜(6)に記載のリチウム二次電池用負極材料。   (7) The negative electrode material for a lithium secondary battery according to the above (2) to (6), wherein the weight ratio of the carbonaceous material (A) to the carbonaceous material (B) is 90/10 to 30/70.

(8)表面が炭素被覆されている上記(1)〜(7)のいずれか記載のリチウム二次電池用負極材料。   (8) The negative electrode material for a lithium secondary battery according to any one of (1) to (7), wherein the surface is carbon-coated.

(9)前記炭素被覆層の比率(被覆炭素重量/炭素被覆前の負極材料重量)が、0.1/99.9〜50/50である上記(8)記載のリチウム二次電池用負極材料。   (9) The negative electrode material for a lithium secondary battery according to (8), wherein the ratio of the carbon coating layer (coating carbon weight / negative electrode material weight before carbon coating) is 0.1 / 99.9 to 50/50. .

(10)平均粒径(D50)が0.05〜5μmのSi粒子を湿式粉砕法により調製する工程、および前記Si粒子と複数種の炭素質物質を混合する工程、を有するリチウム二次電池用負極材料の製造方法。   (10) For a lithium secondary battery comprising a step of preparing Si particles having an average particle size (D50) of 0.05 to 5 μm by a wet pulverization method, and a step of mixing the Si particles and a plurality of types of carbonaceous materials. Manufacturing method of negative electrode material.

(11)平均粒径(D50)が0.05〜5μmのSi粒子を湿式粉砕法により調製する工程、前記Si粒子、炭素質物質(A)および加熱によって該炭素質物質(A)よりも結晶性の低い炭素質物質(B)となる前駆体を混合する工程、および前記混合により得られた混合物を熱処理する工程、を有するリチウム二次電池用負極材料の製造方法。   (11) A step of preparing Si particles having an average particle size (D50) of 0.05 to 5 μm by a wet pulverization method, the Si particles, the carbonaceous material (A), and a crystal that is more crystalline than the carbonaceous material (A) by heating. The manufacturing method of the negative electrode material for lithium secondary batteries which has the process of mixing the precursor used as carbonaceous substance (B) with low property, and the process of heat-processing the mixture obtained by the said mixing.

(12)前記湿式粉砕法がビーズミルを用いた粉砕である上記(10)または(11)に記載のリチウム二次電池用負極材料の製造方法。   (12) The method for producing a negative electrode material for a lithium secondary battery according to the above (10) or (11), wherein the wet pulverization method is pulverization using a bead mill.

(13)前記混合が湿式混合である上記(10)〜(12)のいずれか記載のリチウム二次電池用負極材料の製造方法。   (13) The method for producing a negative electrode material for a lithium secondary battery according to any one of (10) to (12), wherein the mixing is wet mixing.

(14)前記熱処理の温度が、700〜2000℃の範囲である上記(11)〜(13)のいずれか記載のリチウム二次電池用負極材料の製造方法。   (14) The method for producing a negative electrode material for a lithium secondary battery according to any one of (11) to (13), wherein the temperature of the heat treatment is in a range of 700 to 2000 ° C.

(15)表面を炭素被覆する工程をさらに有する、上記(10)〜(14)のいずれか記載のリチウム二次電池用負極材料の製造方法。   (15) The method for producing a negative electrode material for a lithium secondary battery according to any one of the above (10) to (14), further comprising a step of coating the surface with carbon.

(16)上記(1)〜(9)のいずれか記載のリチウム二次電池用負極材料もしくは上記(10)〜(15)のいずれか記載の製造方法により得られるリチウム二次電池用負極材料および結着剤を含む混合物と、集電体と、を一体化してなるリチウム二次電池用負極。   (16) The negative electrode material for a lithium secondary battery according to any one of (1) to (9) above or the negative electrode material for a lithium secondary battery obtained by the production method according to any one of (10) to (15) above A negative electrode for a lithium secondary battery, which is formed by integrating a mixture containing a binder and a current collector.

(17)上記(16)に記載のリチウム二次電池用負極を備えてなるリチウム二次電池。   (17) A lithium secondary battery comprising the lithium secondary battery negative electrode according to (16).

本発明によれば、充放電容量が大きく、初期不可逆容量が小さく、なおかつ充放電サイクル特性に優れたリチウム二次電池を得るためのリチウム二次電池用負極材料を提供することが可能となる。   According to the present invention, it is possible to provide a negative electrode material for a lithium secondary battery for obtaining a lithium secondary battery having a large charge / discharge capacity, a small initial irreversible capacity, and excellent charge / discharge cycle characteristics.

また、本発明によれば、充放電容量が大きく、初期不可逆容量が小さく、なおかつ充放電サイクル特性に優れたリチウム二次電池を得るためのリチウム二次電池用負極を提供することが可能となる。   Moreover, according to the present invention, it is possible to provide a negative electrode for a lithium secondary battery for obtaining a lithium secondary battery having a large charge / discharge capacity, a small initial irreversible capacity, and excellent charge / discharge cycle characteristics. .

さらに、本発明によれば、充放電容量が大きく、初期不可逆容量が小さく、なおかつ充放電サイクル特性に優れたリチウム二次電池を提供することが可能となる。   Furthermore, according to the present invention, it is possible to provide a lithium secondary battery having a large charge / discharge capacity, a small initial irreversible capacity, and excellent charge / discharge cycle characteristics.

以下、発明を実施するための最良の形態について説明する。   The best mode for carrying out the invention will be described below.

(リチウム二次電池用負極材料)
本発明のリチウム二次電池用負極材料は、リチウム二次電池の負極の活物質として用いられるものであり、Si粒子及び複数種の炭素質物質を含むことを特徴とする。また、必要に応じ他の金属元素を含んでいてもよく、そのような金属元素としては、例えば、Ni、Cu、Co、Cr、Fe、Ag、Tiからなる群から選択される1種類以上の元素が挙げられる。
(Anode material for lithium secondary battery)
The negative electrode material for a lithium secondary battery according to the present invention is used as an active material for a negative electrode of a lithium secondary battery, and includes Si particles and a plurality of types of carbonaceous materials. In addition, other metal elements may be included as necessary. Examples of such metal elements include one or more selected from the group consisting of Ni, Cu, Co, Cr, Fe, Ag, and Ti. Elements.

上記Si粒子は、小粒径の微細粒子であり、その平均粒径(D50)は、0.05〜5μm、好ましくは0.05〜1μm、さらに好ましくは0.1〜0.5μmである。なお、Si粒子の平均粒径は、レーザー回折散乱法、電子顕微鏡観察(SEM観察)によって測定することができる。   The Si particles are small particles having a small particle diameter, and the average particle diameter (D50) is 0.05 to 5 μm, preferably 0.05 to 1 μm, and more preferably 0.1 to 0.5 μm. In addition, the average particle diameter of Si particle | grains can be measured by the laser diffraction scattering method and electron microscope observation (SEM observation).

上記のような小粒径の微細Si粒子を用いることで、負極からの活物質粒子の脱落が起こりにくくなり、負極の長寿命化が可能となる。つまり、Si粒子は、リチウムの吸蔵・放出時に著しい体積変化を伴うため、次第に微結晶化又は微粉化し、それに起因して負極にクラックが発生し、一部の活物質粒子の電気化学的接触が失われることになり、これは、二次電池の重要な特性の1つである「充放電サイクル特性」低下の要因となる。そこで、本発明では、当初から小粒径の微細Si粒子を用いることにより、充放電時におけるSi粒子の更なる微粉化を抑制し、充放電サイクル特性の低下を抑制している。   By using the fine Si particles having a small particle diameter as described above, it is difficult for the active material particles to fall off the negative electrode, and the life of the negative electrode can be extended. In other words, since the Si particles are accompanied by a significant volume change at the time of occlusion / release of lithium, they gradually become microcrystallized or pulverized, resulting in cracks in the negative electrode, and electrochemical contact of some active material particles. This is lost, and this becomes a factor of deterioration of “charge / discharge cycle characteristics” which is one of important characteristics of the secondary battery. Therefore, in the present invention, by using fine Si particles having a small particle diameter from the beginning, further pulverization of Si particles during charge / discharge is suppressed, and deterioration of charge / discharge cycle characteristics is suppressed.

一方、上記のような小粒径の微細Si粒子は、その表面積が大きいことから、比較的大粒径の粒子(例えば数十μmのもの)に比べて酸化され易く、これは、二次電池の重要な特性の1つである1サイクル目の「不可逆容量」増大の要因となる。具体的には、Si粒子が酸化されてその粒子中に酸素が多量に含まれることになると、電気化学的にインターカレートされたリチウムイオンが酸素原子と強固な結合を形成し、放電時にリチウムイオンが解離されなくなってしまう。従って、本発明で用いる小粒径の微細Si粒子は、当該Si粒子と結合している酸素の量が当該Si粒子に対して5重量%未満であることが好ましく、2重量%以下であることがより好ましく、1重量%以下であることが特に好ましい。このように酸素の含有量が低い微細Si粒子を用いることにより、本発明の負極材料中の酸素含有量を5重量%以下にすることができ、その結果、1サイクル目の不可逆容量増大が抑制され、高い充放電効率を有するリチウム二次電池を提供することが可能となる。なお、上記した負極材料中の酸素含有量は、低ければ低いほど好ましく、勿論酸素を全く含まないことが最も好ましいが、現在到達可能な酸素含有量の最低値は0.005重量%程度であると考えられる。また、負極材料中の酸素含有量は、当該材料を不活性ガス(ヘリウム)気流中で加熱し、酸素を赤外検出器にて測定して得られるスペクトルを、酸素量が分かっている基準物質(酸化イットリウム)と比較することで算出することができる。   On the other hand, the fine Si particles having a small particle size as described above are easily oxidized compared to particles having a relatively large particle size (for example, particles of several tens of μm) because of their large surface area. It becomes a factor of increase in the “irreversible capacity” in the first cycle, which is one of the important characteristics of. Specifically, when Si particles are oxidized and contain a large amount of oxygen, electrochemically intercalated lithium ions form a strong bond with oxygen atoms, and lithium ions are discharged during discharge. Ions are no longer dissociated. Therefore, the fine Si particles having a small particle size used in the present invention preferably have an amount of oxygen bonded to the Si particles of less than 5% by weight with respect to the Si particles and not more than 2% by weight. Is more preferable, and it is particularly preferably 1% by weight or less. By using fine Si particles having a low oxygen content in this way, the oxygen content in the negative electrode material of the present invention can be reduced to 5% by weight or less, and as a result, an increase in irreversible capacity in the first cycle is suppressed. Thus, it is possible to provide a lithium secondary battery having high charge / discharge efficiency. The oxygen content in the negative electrode material is preferably as low as possible. Of course, it is most preferable that no oxygen is contained at all, but the lowest oxygen content that can be reached at present is about 0.005% by weight. it is conceivable that. In addition, the oxygen content in the negative electrode material is obtained by heating the material in an inert gas (helium) stream and measuring the oxygen with an infrared detector. It can be calculated by comparing with (yttrium oxide).

また、本発明で用いるSi粒子の調製法は、必要な粒子径及び酸素含有量が達成されるものであれば特に制限はないが、製造コストの観点より、比較的安価に入手可能な大粒子のSiを粉砕して作製することが好ましい。粉砕手法としては、例えば、乾式粉砕法及び湿式粉砕法等を採用でき、上記酸素含有量を抑制する観点では、湿式粉砕法を採用することが好ましい。   The method for preparing Si particles used in the present invention is not particularly limited as long as the necessary particle size and oxygen content are achieved, but from the viewpoint of production cost, large particles that can be obtained relatively inexpensively. It is preferable to pulverize Si. As a pulverization method, for example, a dry pulverization method and a wet pulverization method can be employed. From the viewpoint of suppressing the oxygen content, it is preferable to employ a wet pulverization method.

上記乾式粉砕法としては、例えば、ジェットミル、振動ミル、ボールミル等が挙げられる。粉砕に際してのSi粒子の酸化を抑制するため、Si粒子が接する粉砕雰囲気は酸素を含まない不活性雰囲気(窒素、アルゴン、ヘリウム等)とすることが好ましい。   Examples of the dry pulverization method include a jet mill, a vibration mill, and a ball mill. In order to suppress oxidation of the Si particles during pulverization, the pulverization atmosphere in contact with the Si particles is preferably an inert atmosphere (nitrogen, argon, helium, etc.) that does not contain oxygen.

また、上記湿式粉砕法としては、例えば、ビーズミル、ボールミル等が挙げられる。用いる溶媒としては、Siに対して不活性なものであることが好ましく、例えば、トルエン、キシレン、メシチレン、メチルナフタレン、クレオソート油等を使用することができる。また、これら溶媒中に水分が含有されていると、粉砕中にSiと反応してSi酸化物が生じる恐れがあるため、蒸留或いはゼオライト等の乾燥剤を用いて水分含有量を少なくした溶媒を用いることが好ましい。   Examples of the wet pulverization method include a bead mill and a ball mill. The solvent to be used is preferably inert to Si, and for example, toluene, xylene, mesitylene, methylnaphthalene, creosote oil and the like can be used. In addition, if moisture is contained in these solvents, there is a possibility that Si oxides may be generated by reacting with Si during pulverization. Therefore, a solvent having a reduced moisture content using a drying agent such as distillation or zeolite is used. It is preferable to use it.

また、粉砕に際して、粉砕装置に起因する不純物がSi粒子に混入すると、得られるリチウム二次電池のサイクル特性や充放電効率等が劣化する傾向にあるため、粉砕容器、ビーズ、ボール等の材質は、上記特性への影響が少ない材質を選択することが望ましい。そのような材質としては、例えば、アルミナ、部分安定化ジルコニア等を挙げることができる。   In addition, when pulverization, impurities resulting from the pulverizer are mixed into Si particles, the cycle characteristics and charge / discharge efficiency of the resulting lithium secondary battery tend to deteriorate. It is desirable to select a material that has little influence on the above characteristics. Examples of such materials include alumina and partially stabilized zirconia.

本発明で用いる複数種の炭素質物質は、特に限定されないが、比較的高い電子伝導性を有する炭素質物質(A)及び該炭素質物質(A)よりも結晶性の低い炭素質物質(B)を含むものであることが好ましく、炭素質物質(B)が非晶質炭素であることがより好ましい。   The plural types of carbonaceous materials used in the present invention are not particularly limited, but a carbonaceous material (A) having a relatively high electron conductivity and a carbonaceous material (B) having a lower crystallinity than the carbonaceous material (A). ), And the carbonaceous material (B) is more preferably amorphous carbon.

上記炭素質物質(A)としては、特に限定されないが、黒鉛及びカーボンブラックから選ばれる1種以上であることが好ましく、黒鉛及びカーボンブラックの他に、カーボンナノチューブ及びカーボンファイバーからなる群から選択される1種類以上の炭素質物質を含んでいてもよい。また、Ni、Cu、Co、Cr、Fe、Ag、Ti等の金属元素を含んでいてもよい。   The carbonaceous material (A) is not particularly limited, but is preferably at least one selected from graphite and carbon black, and selected from the group consisting of carbon nanotubes and carbon fibers in addition to graphite and carbon black. One or more types of carbonaceous materials may be included. Moreover, metal elements, such as Ni, Cu, Co, Cr, Fe, Ag, Ti, may be included.

上記黒鉛としては、メソフェーズ小球体の黒鉛化物を含め、人造黒鉛や天然黒鉛を使用することができる。これらの黒鉛は単独で又は二種以上組み合わせて使用できる。黒鉛の結晶構造は、特に限定されないが、例えば、面間隔d(002)が、0.3354〜0.34nmであることが好ましく、0.3354〜0.337nmであることがより好ましい。また、上記黒鉛の形態は、特に制限されず、不定形状、平板状(又は扁平状)、薄片状、粉粒状等が挙げられる。また、黒鉛の平均粒径(D50)は、0.1〜20μmであることが好ましく、0.5〜10μmがより好ましくは0.5〜5μmがさらに好ましい。小粒径の黒鉛を用いることで、負極材料の中に黒鉛を均一に分散することができ、これにより、Si粒子の電気的接触不良が抑制され、得られるリチウム二次電池の充放電サイクル特性が一層改善されると共に負極の長寿命化が可能となる。   As the graphite, artificial graphite and natural graphite can be used, including graphitized mesophase spherules. These graphites can be used alone or in combination of two or more. Although the crystal structure of graphite is not particularly limited, for example, the interplanar spacing d (002) is preferably 0.3354 to 0.34 nm, and more preferably 0.3354 to 0.337 nm. In addition, the form of the graphite is not particularly limited, and examples thereof include an indefinite shape, a flat plate shape (or flat shape), a flake shape, and a powder particle shape. Moreover, it is preferable that the average particle diameter (D50) of graphite is 0.1-20 micrometers, 0.5-10 micrometers is more preferable, 0.5-5 micrometers is further more preferable. By using graphite with a small particle size, it is possible to uniformly disperse graphite in the negative electrode material, thereby suppressing poor electrical contact of Si particles, and charge / discharge cycle characteristics of the resulting lithium secondary battery As a result, the life of the negative electrode can be extended.

上記カーボンブラックとしては、特に限定されないが、例えば、アセチレンブラック、ケッチェンブラック、サーマルブラック、ファーネスブラック等が挙げられる。   Although it does not specifically limit as said carbon black, For example, acetylene black, Ketjen black, thermal black, furnace black etc. are mentioned.

本発明の負極材料の製造方法としては、特に制限はないが、例えば、上記Si粒子及び上記複数種の炭素質物質もしくはその前躯体を乾式混合或いは湿式混合し、必要に応じて熱処理する方法が挙げられる。好ましくは、加熱によって炭素質物質(B)となる前駆体を適当な溶媒に溶解し、これにSi粒子と炭素質物質(A)を加えて湿式混合した後、溶媒を除去し、さらに、熱処理することで炭素質物質(B)の前駆体を炭化させ、Si粒子、炭素質物質(A)及び炭素質物質(B)を複合化させた複合化粒子(負極材料)を製造する。このように炭素質物質(B)の前駆体を用いて複合化粒子を作製することによって、Si粒子の表面を当該前駆体で覆うことができ、Si粒子表面の酸化が抑制されるという利点があるとともに、当該前駆体がバインダーとして機能し、Si粒子及び炭素質物質(A)をより強固に結着・複合化させることができる。   The method for producing the negative electrode material of the present invention is not particularly limited. For example, there is a method in which the Si particles and the plurality of types of carbonaceous materials or precursors thereof are dry-mixed or wet-mixed and heat-treated as necessary. Can be mentioned. Preferably, the precursor that becomes the carbonaceous material (B) is dissolved in an appropriate solvent by heating, and the Si particles and the carbonaceous material (A) are added thereto and wet-mixed. Then, the solvent is removed, and the heat treatment is further performed. Thus, the precursor of the carbonaceous material (B) is carbonized to produce composite particles (negative electrode material) in which the Si particles, the carbonaceous material (A), and the carbonaceous material (B) are composited. Thus, by producing composite particles using the precursor of the carbonaceous material (B), the surface of the Si particles can be covered with the precursor, and the oxidation of the Si particle surface is suppressed. In addition, the precursor functions as a binder, and the Si particles and the carbonaceous material (A) can be bound and combined more firmly.

上記炭素質物質(B)の前躯体としては、例えば、石炭系ピッチ材料、石油系ピッチ材料、合成ピッチ材料等のピッチ系材料やタール系材料、ビニル系樹脂、セルロース系樹脂、フェノール系樹脂等の樹脂系材料を用いることができる。特に、ピッチ系材料やタール系材料は、湿式粉砕法でSi微粒子を作製する場合に使用される溶媒(トルエン、キシレン、メシチレン、メチルナフタレン、クレオソート油等)に溶解するので、本発明の負極材料を構成する各成分との均一な混合が可能となり、好ましい。   Examples of the precursor of the carbonaceous substance (B) include pitch-based materials such as coal-based pitch materials, petroleum-based pitch materials, and synthetic pitch materials, tar-based materials, vinyl-based resins, cellulose-based resins, phenol-based resins, and the like. The resin-based material can be used. In particular, pitch-based materials and tar-based materials are dissolved in a solvent (toluene, xylene, mesitylene, methylnaphthalene, creosote oil, etc.) used when producing Si fine particles by a wet pulverization method. Uniform mixing with each component constituting the material is possible, which is preferable.

また、各成分を混合する際には、Si粒子の酸化を抑制するために、低酸素濃度環境下で行うことが好ましく、例えば、混合装置内を不活性ガス(窒素、アルゴン、ヘリウム)或いは減圧雰囲気とすることによって実現することができる。   Moreover, when mixing each component, in order to suppress the oxidation of Si particle | grains, it is preferable to carry out in a low oxygen concentration environment, for example, the inside of a mixing device is inert gas (nitrogen, argon, helium) or pressure reduction. This can be realized by setting the atmosphere.

また、上記熱処理時の温度は、炭素質物質(B)の前駆体を炭素化するのに十分な温度であればよく、特に限定されないが、700〜2000℃の範囲であることが好ましく、900〜1500℃の範囲であることがより好ましく、1000〜1300℃の範囲であることが特に好ましい。この熱処理温度が700℃未満であると、炭素質物質(B)を生成する前駆体の炭素化が不十分となる傾向にあり、得られるリチウム二次電池の充放電効率、サイクル特性が悪化する恐れがあり、2000℃よりも高くなると、Si粒子と炭素質物質との反応によって電気化学的に不活性な炭化珪素(SiC)が生成し、得られるリチウム二次電池の充放電容量が大きく低下する恐れがある。   The temperature during the heat treatment is not particularly limited as long as the temperature is sufficient to carbonize the precursor of the carbonaceous material (B), but is preferably in the range of 700 to 2000 ° C. More preferably, it is in the range of ˜1500 ° C., and particularly preferably in the range of 1000-1300 ° C. When the heat treatment temperature is lower than 700 ° C., carbonization of the precursor that generates the carbonaceous material (B) tends to be insufficient, and the charge / discharge efficiency and cycle characteristics of the obtained lithium secondary battery are deteriorated. If the temperature exceeds 2000 ° C., electrochemically inactive silicon carbide (SiC) is generated by the reaction between the Si particles and the carbonaceous material, and the charge / discharge capacity of the resulting lithium secondary battery is greatly reduced. There is a fear.

また、上記熱処理を行う際の雰囲気は、真空雰囲気または不活性ガス雰囲気で行うことが、Si粒子や炭素質物質の酸化を防止し、リチウム二次電池の不可逆容量の増大を抑制するという観点から好ましい。   Moreover, the atmosphere at the time of performing the heat treatment is performed in a vacuum atmosphere or an inert gas atmosphere from the viewpoint of preventing the oxidation of the Si particles and the carbonaceous material and suppressing the increase in the irreversible capacity of the lithium secondary battery. preferable.

また、本発明の負極材料中のSi粒子と炭素質物質(A)の重量比は、特に限定されないが、99.5/0.5〜0.5/99.5の範囲から選択でき、99/1〜1/99の範囲から選択することが好ましい。充放電容量は、Si粒子の割合が大きくなるにつれて大きくなる。   The weight ratio of the Si particles to the carbonaceous material (A) in the negative electrode material of the present invention is not particularly limited, but can be selected from the range of 99.5 / 0.5 to 0.5 / 99.5, 99 It is preferable to select from the range of / 1 to 1/99. The charge / discharge capacity increases as the proportion of Si particles increases.

また、本発明の負極材料中の炭素質物質(A)と炭素質物質(B)の重量比は、特に限定されないが、炭素質物質(A)が多いほど複合化粒子の電子伝導性が向上し、充放電サイクル特性が向上する一方、炭素質物質(B)が少なすぎると複合化粒子のバインダーとしての機能が不足し、複合化が困難となる傾向になることを考慮して、90/10〜30/70の範囲であることが好ましく、80/20〜40/60の範囲がより好ましく、70/30〜40/60の範囲が特に好ましい。   Further, the weight ratio of the carbonaceous material (A) and the carbonaceous material (B) in the negative electrode material of the present invention is not particularly limited, but as the carbonaceous material (A) increases, the electronic conductivity of the composite particles improves. On the other hand, considering that the charge / discharge cycle characteristics are improved, if the amount of the carbonaceous material (B) is too small, the function of the composite particles as a binder is insufficient and the composite tends to be difficult. The range is preferably 10-30 / 70, more preferably 80 / 20-40 / 60, and particularly preferably 70 / 30-40 / 60.

また、複合材粒子(負極材料)の表面を更に炭素で被覆すると、得られるリチウム二次電池の充放電サイクルが向上するため好ましい。この充放電サイクル性の向上は、被覆炭素が複合化粒子表面に露出或いは表面近傍にあるSi粒子の充放電中における脱落を抑制しているためと考えられる。   Moreover, it is preferable to further coat the surface of the composite material particle (negative electrode material) with carbon because the charge / discharge cycle of the obtained lithium secondary battery is improved. This improvement in charge / discharge cycleability is thought to be due to the fact that the coated carbon suppresses falling off during charge / discharge of the Si particles exposed on the surface of the composite particles or in the vicinity of the surface.

上記炭素被覆は、例えば、得られた複合化粒子を粉砕し、加熱によって炭素化する被覆炭素前駆体により複合化粒子表面を被覆し、加熱することによって行うことができる。被覆炭素前駆体による被覆は、例えば、被覆炭素前駆体を適当な溶媒に溶解したものと複合化粒子とを混合した後、溶媒を除去する湿式法や公知の表面改質装置(ホソカワミクロン製メカノフュージョン、ノビルタ、奈良機械製ハイブリダイザー等)を用いて乾式で複合化粒子表面に被覆炭素前駆体を被覆する乾式法のいずれも採用することができる。また、CVD法等の公知の気相法を採用することもできる。   The carbon coating can be performed, for example, by pulverizing the obtained composite particles, coating the surface of the composite particles with a coated carbon precursor that is carbonized by heating, and heating. The coating with the coated carbon precursor can be performed, for example, by mixing a coated carbon precursor dissolved in an appropriate solvent with composite particles, and then removing the solvent by a wet method or a known surface modification apparatus (Mechanofusion manufactured by Hosokawa Micron). Any dry method in which the surface of the composite particles is coated with a coated carbon precursor using a nobilta, a hybridizer manufactured by Nara Machinery Co., Ltd., etc. can be employed. Further, a known vapor phase method such as a CVD method can also be employed.

また、上記被覆炭素前駆体は、前述の、加熱により炭素質物質(B)となる前駆体として用いうる材料(ピッチ系材料、タール系材料、樹脂系材料等)と同様のものを用いることができる。   The coated carbon precursor may be the same as the material (pitch-based material, tar-based material, resin-based material, etc.) that can be used as the precursor that becomes the carbonaceous substance (B) by heating. it can.

また、複合化粒子(炭素被覆前の負極材料)に対する表面炭素被覆層の比率(被覆炭素重量/複合化粒子重量)は、0.1/99.9〜50/50の範囲であることが好ましく、0.5/99.5〜50/50の範囲であることがより好ましく、1/99〜30/70の範囲であることが特に好ましい。   The ratio of the surface carbon coating layer to the composite particles (negative electrode material before carbon coating) (coating carbon weight / composite particle weight) is preferably in the range of 0.1 / 99.9 to 50/50. The range of 0.5 / 99.5 to 50/50 is more preferable, and the range of 1/99 to 30/70 is particularly preferable.

(リチウム二次電池用負極)
本発明のリチウム二次電池用負極は、例えば、本発明のリチウム二次電池用負極材料、結着剤および必要に応じて添加される各種添加剤等を溶媒などとともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等により混練し、ペースト状の負極材スラリーを調製し、これを例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法により集電体に塗布、乾燥し、必要に応じて、ロールプレス等の成形法により圧縮成形することで形成することができる。また、ペースト状の負極材スラリーをシート状、ペレット状等に成形し、これをロールプレス等の成形法により集電体と一体化することで形成することもできる。本発明の負極材料で構成されたリチウム二次電池用負極を用いることにより、放電容量が大きく、不可逆容量が小さく、なおかつ充放電サイクル特性が優れたリチウム二次電池を製造できる。
(Anode for lithium secondary battery)
The negative electrode for a lithium secondary battery according to the present invention includes, for example, a negative electrode material for a lithium secondary battery according to the present invention, a binder, and various additives added as necessary together with a solvent, a stirrer, a ball mill, a super sand mill, etc. Kneaded by a pressure kneader or the like to prepare a paste-like negative electrode material slurry, which is, for example, a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure It can be formed by applying and drying on a current collector by a known method such as a coating method or a screen printing method, and if necessary, compression molding by a molding method such as a roll press. Alternatively, the paste-like negative electrode material slurry can be formed into a sheet shape, a pellet shape, or the like, and then integrated with the current collector by a forming method such as a roll press. By using the negative electrode for a lithium secondary battery composed of the negative electrode material of the present invention, a lithium secondary battery having a large discharge capacity, a small irreversible capacity, and excellent charge / discharge cycle characteristics can be produced.

上記結着剤としては、例えば、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリルなどが使用できる。また、水系バインダーであるセルロース系やスチレンブタジエンゴムの水分散体等を用いることもできる。   Examples of the binder include thermoplastic resins such as polypropylene and polyethylene, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate, butyl ( Ethylenically unsaturated carboxylic acid ester such as (meth) acrylate, ethylenically unsaturated carboxylic acid such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, polytetrafluoroethylene, polyvinylidene fluoride, fluororubber, polyethylene oxide Polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like can be used. In addition, an aqueous dispersion of a cellulose-based or styrene-butadiene rubber that is an aqueous binder can also be used.

上記結着剤の使用量は、本発明の負極材料の粒度によって左右されるが、接着強度の点から使用量は多い方が好ましく、具体的には、本発明の負極材料100重量部に対して3〜25重量部であることが好ましく、5〜20重量部であることがより好ましい。   The amount of the binder used depends on the particle size of the negative electrode material of the present invention, but the amount used is preferably larger from the viewpoint of adhesive strength. Specifically, the amount of the binder is 100 parts by weight of the negative electrode material of the present invention. The amount is preferably 3 to 25 parts by weight, and more preferably 5 to 20 parts by weight.

上記溶媒としては、通常、結着剤を溶解又は分散可能な溶媒が使用され、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等の有機溶媒を例示することができる。   As the solvent, a solvent capable of dissolving or dispersing the binder is usually used, and examples thereof include organic solvents such as N-methyl-2-pyrrolidone and N, N-dimethylformamide.

上記溶媒の使用量は、ペースト状となる限り特に制限されず、例えば、本発明の負極材料100重量部に対して、通常、60〜150重量部程度、好ましくは60〜100重量部程度である。   The amount of the solvent used is not particularly limited as long as it becomes a paste, and is usually about 60 to 150 parts by weight, preferably about 60 to 100 parts by weight with respect to 100 parts by weight of the negative electrode material of the present invention. .

また、電極としての導電性を向上させるために、上記添加剤として、導電補助剤を混合してもよい。導電補助剤としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック(例えば、アセチレンブラック、サーマルブラック、ファーネスブラック)、グラファイトあるいは導電性を示す酸化物や窒化物等が挙げられ、これらは単独で又は2種以上組み合わせて使用できる。導電補助剤の使用量は、本発明の負極材料と導電補助剤の総量に対して1〜10重量%程度が好ましく、1〜5重量%程度がより好ましい。   Moreover, in order to improve the electroconductivity as an electrode, you may mix a conductive support agent as said additive. Examples of the conductive auxiliary agent include natural graphite, artificial graphite, carbon black (for example, acetylene black, thermal black, furnace black), graphite, conductive oxide, nitride, and the like. Two or more types can be used in combination. About 1 to 10 weight% is preferable with respect to the total amount of the negative electrode material of this invention, and a conductive support agent, and, as for the usage-amount of a conductive support agent, about 1 to 5 weight% is more preferable.

さらに、上記添加剤として、スラリー粘度を調節するための増粘剤を混合してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどを挙げることができる。   Furthermore, you may mix the thickener for adjusting a slurry viscosity as said additive. Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, and casein.

上記集電体の材質については、特に限定されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等、公知のものを用いることができる。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなどを使用することもできる。   The material of the current collector is not particularly limited, and known materials such as aluminum, copper, nickel, titanium, stainless steel, and the like can be used. A porous material such as porous metal (foamed metal) or carbon paper can also be used.

上記負極材ペーストの集電体への塗布量は、特に制限はないが、5〜15mg/cm程度が好ましく、7〜13mg/cm程度がより好ましい。 The coating amount of the current collector of the negative electrode material paste is not particularly limited, preferably about 5 to 15 mg / cm 2, about 7~13mg / cm 2 is more preferable.

(リチウム二次電池)
本発明のリチウム二次電池は、例えば、本発明のリチウム二次電池用負極とリチウムを吸蔵・放出可能な正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。また、この他にも、通常当該分野において使用されるガスケット、封口板、ケースなどをさらに備えていてもよい。
(Lithium secondary battery)
The lithium secondary battery of the present invention is obtained, for example, by placing the negative electrode for a lithium secondary battery of the present invention and the positive electrode capable of occluding / releasing lithium through a separator and injecting an electrolyte. Can do. In addition, a gasket, a sealing plate, a case, and the like that are usually used in the field may be further provided.

上記正極は、負極と同様にして、集電体表面上に正極活物質や導電剤等を含む正極材料層を形成することで得ることができる。この場合の集電体には、アルミニウム、チタン、ステンレス鋼等の金属や合金を箔状、穴開け箔状、メッシュ状等にしたものを用いることができる。   The positive electrode can be obtained by forming a positive electrode material layer containing a positive electrode active material, a conductive agent and the like on the current collector surface in the same manner as the negative electrode. As the current collector in this case, a metal or alloy such as aluminum, titanium, stainless steel or the like made into a foil shape, a perforated foil shape, a mesh shape, or the like can be used.

上記正極活物質としては、特に制限はなく、例えば、LiNiO、LiCoO、LiMn、LiMnO、LiCo0.33Ni0.33Mn0.33等のリチウム複合酸化物やCr、Cr、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS,ポリアニリン、ポリピロール等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。 As the positive electrode active material is not particularly limited, for example, LiNiO 2, LiCoO 2, LiMn 2 O 4, LiMnO 2, LiCo 0.33 Ni 0.33 Mn 0.33 O 2 and lithium composite oxides and Cr 3 O 8 , Cr 2 O 5 , V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Conductive polymers such as polyaniline and polypyrrole, porous carbon and the like can be used alone or in combination.

上記導電剤としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラックなどを例示できる。   Examples of the conductive agent include natural graphite, artificial graphite, carbon black, and acetylene black.

上記電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiClF、LiSbF、LiAlO、LiAlCl、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiI、LiSOCF等の溶媒和しにくいアニオンを生成するリチウム塩(電解質)を、例えば、カーボネート類、ラクトン類、鎖状エーテル類、環状エーテル類、スルホラン類、スルホキシド類、ニトリル類、アミド類、ポリオキシアルキレングリコール類等の非水系溶媒に溶解した、いわゆる有機電解液を使用することができ、この場合、非水系リチウム二次電池を製造することができる。また、電解質濃度は、電解液1Lに対して電解質0.3〜5モルであることが好ましく、0.5〜3モルであることがより好ましく、0.8〜1.5モルであることが特に好ましい。 Examples of the electrolytic solution include LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiClF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ). 2 , LiC (CF 3 SO 2 ) 3 , LiCl, LiI, LiSO 3 CF 3 and other lithium salts (electrolytes) that produce anions that are difficult to solvate, such as carbonates, lactones, chain ethers, cyclic So-called organic electrolytes dissolved in non-aqueous solvents such as ethers, sulfolanes, sulfoxides, nitriles, amides, polyoxyalkylene glycols can be used. In this case, a non-aqueous lithium secondary battery is used. Can be manufactured. The electrolyte concentration is preferably 0.3 to 5 mol of electrolyte, more preferably 0.5 to 3 mol, and more preferably 0.8 to 1.5 mol with respect to 1 L of the electrolyte solution. Particularly preferred.

電解液に用いる上記溶媒として、具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、ジメチルスルホキシド、3−メチル−1,3−オキサゾリジン−2―オン、γ−ブチロラクトン、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、メチルプロピルカーボネート、メチルエチルカーボネート、ブチルエチルカーボネート、ジプロビルカーボネート、1,2−ジメトキシエタン、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、4−メチルジオキソラン、1,3−ジオキソラン、アセトニトリル、プロピオニトリル、ベンゾニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジエチレングリコール、酢酸メチル、酢酸エチル等を用いることができ、これら溶媒は、単独でも2種以上を混合したものであってもよい。   Specific examples of the solvent used in the electrolytic solution include ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, dimethyl sulfoxide, 3 -Methyl-1,3-oxazolidine-2-one, γ-butyrolactone, diethyl carbonate, dimethoxyethane, dimethyl carbonate, methylpropyl carbonate, methylethyl carbonate, butylethyl carbonate, diprovir carbonate, 1,2-dimethoxyethane, dimethyl ether , Diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyldioxolane, 1,3-dioxolane, acetonitrile, pro Onitrile, benzonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, diethylene glycol, methyl acetate, ethyl acetate and the like can be used, and these solvents may be used alone or in combination of two or more. Good.

上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、多孔質フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウム二次電池の正極と負極が使用中も直接接触しない構造にした場合は、セパレータを使用しなくとも良い。   As said separator, the nonwoven fabric, cloth, porous film which combined polyolefin, such as polyethylene and a polypropylene, a porous film, or those combined can be used, for example. In addition, when it is set as the structure where the positive electrode and negative electrode of a lithium secondary battery to produce do not contact directly during use, it is not necessary to use a separator.

本発明のリチウム二次電池の構造は、特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群とし、これら極板群を外装体中に封入した構造とするのが一般的である。また、本発明のリチウム二次電池は、ペーパー型、ボタン型、コイン型、積層型、角型、円筒型など任意の形態とすることができる。   The structure of the lithium secondary battery of the present invention is not particularly limited. Usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound into a flat spiral shape to form a wound electrode plate group. Are generally laminated to form a laminated electrode plate group, and the electrode plate group is enclosed in an exterior body. Moreover, the lithium secondary battery of the present invention can be in any form such as a paper type, a button type, a coin type, a stacked type, a square type, and a cylindrical type.

本発明のリチウム二次電池は、充放電容量が大きく、初期不可逆容量が小さく、なおかつ充放電サイクル特性に優れるため、分散型、可搬性電池として、電子機器、電気機器、自動車、電力貯蔵などの電源や補助電源として好適である。   Since the lithium secondary battery of the present invention has a large charge / discharge capacity, a small initial irreversible capacity, and excellent charge / discharge cycle characteristics, it is a distributed type, portable battery, such as an electronic device, an electric device, an automobile, and an electric power storage. It is suitable as a power source or an auxiliary power source.

以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although an example and a comparative example explain the present invention in detail, the present invention is not limited to these examples.

<負極材料および負極の作製>
(実施例1)
(生コークスの作製)
石炭系コールタールを、オートクレーブを用いて10kg・G、500℃で10時間熱処理し、生コークスを作製した。
<Production of negative electrode material and negative electrode>
(Example 1)
(Production of raw coke)
The coal-based coal tar was heat-treated at 10 kg · G and 500 ° C. for 10 hours using an autoclave to produce raw coke.

(黒鉛の作製)
生コークスを自由粉砕機(奈良機械製作所社製「SJM―3」)で粉砕した後、窒素雰囲気中、900℃で1時間焼成処理した。その後、ジェットミルを用いて粉砕し、次いで窒素雰囲気中、3000℃で焼成することによって平均粒子径(D50)が2μmの黒鉛(炭素質物質(A))を得た。
(Production of graphite)
The raw coke was pulverized with a free crusher (“SJM-3” manufactured by Nara Machinery Co., Ltd.) and then baked at 900 ° C. for 1 hour in a nitrogen atmosphere. Then, it grind | pulverized using the jet mill, Then, graphite (carbonaceous substance (A)) with an average particle diameter (D50) of 2 micrometers was obtained by baking at 3000 degreeC in nitrogen atmosphere.

(Si微粒子の作製)
平均粒子径が20μmのSi材料(東洋金属株式会社製、高純度金属珪素粉)3kg、Siの分散材として酸化エチレン付加脂肪族アミン(花王(株)製「ホモゲノールL1820」)1.5kg及びメチルナフタレン12kgを、直径が0.3mmのジルコニア製ビーズと共に、窒素ガスで置換したビーズミルに投入し、3時間湿式粉砕し、平均粒子径(D50)が0.2μmのSi微粒子を20重量%含むメチルナフタレンを作製した。なお、Si微粒子の平均粒子径の測定は、Si微粒子を含むメチルナフタレンに超音波を1分間照射して微粒子を分散させた後、粒度分析計マイクロトラック(日機装(株)製「HRA」)を用いて行った。
(Preparation of Si fine particles)
3 kg of Si material having an average particle size of 20 μm (manufactured by Toyo Kinzoku Co., Ltd., high-purity metal silicon powder), 1.5 kg of ethylene oxide-added aliphatic amine (“Homogenol L1820” manufactured by Kao Co., Ltd.) Methyl containing 20% by weight of Si fine particles having an average particle size (D50) of 0.2 μm and 12 kg of naphthalene in a bead mill substituted with nitrogen gas together with zirconia beads having a diameter of 0.3 mm for 3 hours. Naphthalene was produced. The average particle size of the Si fine particles was measured by irradiating methyl naphthalene containing Si fine particles with ultrasonic waves for 1 minute to disperse the fine particles, and then using a particle size analyzer Microtrac (“HRA” manufactured by Nikkiso Co., Ltd.). Used.

(負極材料の作製)
上記で作製した平均粒子径が2μmの黒鉛2kg、コールタールピッチ(大阪化成(株)製「ペレット」)1.4kg及び上記で作製したSi微粒子を20重量%含むメチルナフタレン2.4kgを、二軸加熱ニーダーを用いて100℃で1時間混合した後、200℃でメチルナフタレンを蒸発させた。次いで、窒素雰囲気中、900℃で1時間焼成し、Si微粒子、黒鉛及びピッチ(炭素質物質(B))からなる複合化粒子を作製した。
(Preparation of negative electrode material)
2 kg of graphite having an average particle diameter of 2 μm prepared above, 1.4 kg of coal tar pitch (“pellet” manufactured by Osaka Kasei Co., Ltd.) and 2.4 kg of methylnaphthalene containing 20% by weight of Si fine particles prepared as described above, After mixing at 100 ° C. for 1 hour using an axial heating kneader, methyl naphthalene was evaporated at 200 ° C. Subsequently, it baked at 900 degreeC in nitrogen atmosphere for 1 hour, and produced the composite particle which consists of Si microparticles | fine-particles, graphite, and pitch (carbonaceous substance (B)).

次に、上記で得た複合化粒子200gを、アルミナ製の振動ミルで5分間粉砕した後、コールタールピッチ(川崎製鉄(株)製「PKQL」)60gを溶かしたテトラヒドロフランに分散し、テトラヒドロフランをエバポレーターで蒸発させて、複合化粒子表面をピッチで被覆した。ついで、このピッチ被覆複合化粒子を、窒素雰囲気中、1150℃で1時間焼成した後、粉砕機で解砕し、さらに、390メッシュの篩でふるい、負極材料を得た。なお、この負極材料中の酸素含有量は、0.9重量%であった。この酸素含有量は、酸素・窒素分析装置(TC436:LECO社製)を用いて測定した。より詳細には、当該装置のインパルス炉を5400Wに設定することで炉内の温度を1600℃とし、当該炉内において、負極材料0.1〜0.2gを不活性ガス(ヘリウム)気流中で加熱し、発生する酸素量を赤外検出器にて測定した。得られたスペクトルを、酸素量が分かっている基準物質(酸化イットリウム)と比較することで負極材料の酸素含有量を算出した。   Next, 200 g of the composite particles obtained above were pulverized for 5 minutes with a vibrating mill made of alumina, and then dispersed in tetrahydrofuran in which 60 g of coal tar pitch (“PKQL” manufactured by Kawasaki Steel Corporation) was dissolved. The composite particle surface was coated with pitch by evaporating with an evaporator. Next, the pitch-coated composite particles were fired at 1150 ° C. for 1 hour in a nitrogen atmosphere, then pulverized with a pulverizer, and further sieved with a 390 mesh sieve to obtain a negative electrode material. The oxygen content in the negative electrode material was 0.9% by weight. This oxygen content was measured using an oxygen / nitrogen analyzer (TC436: manufactured by LECO). More specifically, the temperature in the furnace is set to 1600 ° C. by setting the impulse furnace of the apparatus to 5400 W, and 0.1 to 0.2 g of the negative electrode material is in an inert gas (helium) stream in the furnace. After heating, the amount of oxygen generated was measured with an infrared detector. The oxygen content of the negative electrode material was calculated by comparing the obtained spectrum with a reference material (yttrium oxide) whose oxygen content was known.

(負極の作製)
上記で得た負極材料5gに、結着剤としてポリフッ化ビニリデンを負極材料重量の10重量%、溶剤のN−メチルピロリドンを同じく10重量%の量で加え、混錬して均一なスラリーとした。ついで、このスラリーを40μm厚の電解銅箔に塗布し、乾燥させ、ロール圧延して圧密化させた後、直径9mmのポンチを用いて打ち抜きして得た円板部材を負極とした。なお、銅箔上の負極材料層の厚みは40μmであった。
(Preparation of negative electrode)
To 5 g of the negative electrode material obtained above, polyvinylidene fluoride as a binder was added in an amount of 10 wt% of the negative electrode material weight, and N-methylpyrrolidone as a solvent was also added in an amount of 10 wt%, and kneaded to obtain a uniform slurry. . Next, the slurry was applied to an electrolytic copper foil having a thickness of 40 μm, dried, roll-rolled and consolidated, and then a disk member obtained by punching using a punch having a diameter of 9 mm was used as a negative electrode. The thickness of the negative electrode material layer on the copper foil was 40 μm.

(実施例2)
ポリフッ化ビニリデンを負極材料重量の15重量%用いた以外は、実施例1と同様にして負極材料および負極を作製した。
(Example 2)
A negative electrode material and a negative electrode were produced in the same manner as in Example 1, except that polyvinylidene fluoride was used at 15% by weight of the negative electrode material.

(実施例3)
平均粒子径が2μmの黒鉛の代わりに、これと同様にして作製した平均粒子径が4μmの黒鉛を用いた以外は、実施例1と同様にして負極材料および負極を作製した。
(Example 3)
A negative electrode material and a negative electrode were produced in the same manner as in Example 1 except that graphite having an average particle diameter of 4 μm was used instead of graphite having an average particle diameter of 2 μm.

(実施例4)
平均粒子径が2μmの黒鉛の代わりに、アセチレンブラック(電気化学工業(株)製「デンカブラック」)を用いた以外は、実施例1と同様にして負極材料および負極を作製した。
Example 4
A negative electrode material and a negative electrode were produced in the same manner as in Example 1 except that acetylene black (“DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.) was used instead of graphite having an average particle size of 2 μm.

(実施例5)
ポリフッ化ビニリデンを負極材料重量の20重量%用いた以外は、実施例3と同様にして負極材料および負極を作製した。
(Example 5)
A negative electrode material and a negative electrode were produced in the same manner as in Example 3 except that polyvinylidene fluoride was used at 20% by weight of the negative electrode material.

(実施例6)
コールタールピッチ(大阪化成(株)製「ペレット」)を1.0kg用いた以外は、実施例2と同様にして負極材料および負極を作製した。
(Example 6)
A negative electrode material and a negative electrode were produced in the same manner as in Example 2 except that 1.0 kg of coal tar pitch (“pellet” manufactured by Osaka Kasei Co., Ltd.) was used.

(比較例1)
(Si微粒子の作製)
平均粒子径が20μmのSi材料(東洋金属株式会社製、高純度金属珪素粉)100gを、ステンレス製のボールミル容器に入れ、ステンレス製の直径10mmのボールを数十個入れた。この容器内を窒素ガスで置換した後、10時間乾式粉砕を行い、平均粒子径(D50)が0.2μmのSi微粒子を作製した。
(Comparative Example 1)
(Preparation of Si fine particles)
100 g of Si material having an average particle diameter of 20 μm (manufactured by Toyo Kinzoku Co., Ltd., high-purity metal silicon powder) was placed in a stainless steel ball mill container, and several tens of stainless steel balls having a diameter of 10 mm were placed therein. After the inside of the container was replaced with nitrogen gas, dry pulverization was performed for 10 hours to produce Si fine particles having an average particle diameter (D50) of 0.2 μm.

(負極材料の作製)
実施例1で作製した平均粒子径が2μmの黒鉛200g、コールタールピッチ(大阪化成(株)製「ペレット」)140g及び上記で作製したSi微粒子48gを、二軸加熱ニーダーを用いて100℃で1時間混合した。ついで、次いで、窒素雰囲気中、900℃で1時間焼成し、Si微粒子、黒鉛及びピッチ(炭素質物質(B))からなる複合化粒子を作製した。
(Preparation of negative electrode material)
200 g of graphite having an average particle diameter of 2 μm prepared in Example 1, 140 g of coal tar pitch (“pellet” manufactured by Osaka Kasei Co., Ltd.) and 48 g of the Si fine particles prepared as described above at 100 ° C. using a biaxial heating kneader. Mix for 1 hour. Subsequently, it baked at 900 degreeC in nitrogen atmosphere for 1 hour, and produced the composite particle which consists of Si microparticles, graphite, and pitch (carbonaceous substance (B)).

次に、上記で得た複合化粒子200gを、アルミナ製の振動ミルで5分間粉砕した後、コールタールピッチ(川崎製鉄(株)製「PKQL」)60gを溶かしたテトラヒドロフランに分散し、テトラヒドロフランをエバポレーターで蒸発させて、複合化粒子表面をピッチで被覆した。ついで、このピッチ被覆複合化粒子を、窒素雰囲気中、1150℃で1時間焼成した後、粉砕機で解砕し、さらに、390メッシュの篩でふるい、負極材料を得た。なお、負極材料中の酸素含有量は、9.2重量%であった。   Next, 200 g of the composite particles obtained above were pulverized for 5 minutes with a vibrating mill made of alumina, and then dispersed in tetrahydrofuran in which 60 g of coal tar pitch (“PKQL” manufactured by Kawasaki Steel Corporation) was dissolved. The composite particle surface was coated with pitch by evaporating with an evaporator. Next, the pitch-coated composite particles were fired at 1150 ° C. for 1 hour in a nitrogen atmosphere, then pulverized with a pulverizer, and further sieved with a 390 mesh sieve to obtain a negative electrode material. The oxygen content in the negative electrode material was 9.2% by weight.

(負極の作製)
上記で得た負極材料を用いた以外は、実施例1と同様にして負極を作製した。
(Preparation of negative electrode)
A negative electrode was produced in the same manner as in Example 1 except that the negative electrode material obtained above was used.

(比較例2)
平均粒子径が0.2μmのSi微粒子の代わりに、平均粒子径が約20μmのSi材料(東洋金属株式会社製、高純度金属珪素粉)を粉砕せずにそのまま用いた以外は、実施例1と同様にして負極材料および負極を作製した。なお、負極材料中の酸素含有量は、0.9重量%であった。
(Comparative Example 2)
Example 1 except that a Si material (manufactured by Toyo Metal Co., Ltd., high-purity metal silicon powder) having an average particle diameter of about 20 μm was used as it was without pulverizing instead of the Si fine particles having an average particle diameter of 0.2 μm. In the same manner, a negative electrode material and a negative electrode were produced. The oxygen content in the negative electrode material was 0.9% by weight.

(比較例3)
(SiO微粒子の作製)
平均粒子径が20μmのSiO材料3kg、分散材として(花王(株)製「ホモゲノールL1820」)900g及びメチルナフタレン7kgを、直径が0.3mmのジルコニア製ビーズを入れたビーズミルで3時間湿式粉砕し、平均粒子径(D50)が1μmのSiO微粒子を30重量%含むメチルナフタレンを作製した。
(Comparative Example 3)
(Preparation of SiO fine particles)
3 kg of SiO material with an average particle diameter of 20 μm, 900 g of dispersion material (“Homogenol L1820” manufactured by Kao Corporation) and 7 kg of methylnaphthalene are wet-ground for 3 hours in a bead mill containing zirconia beads having a diameter of 0.3 mm. Then, methylnaphthalene containing 30% by weight of SiO fine particles having an average particle diameter (D50) of 1 μm was prepared.

(負極材料の作製)
実施例1で作製した平均粒子径が2μmの黒鉛2kg及びコールタールピッチ(大阪化成(株)社「ペレット」)1.4kg及び上記で作製したSiO微粒子を30重量%含むメチルナフタレン9kgを、二軸加熱ニーダーを用いて100℃で1時間混合した後、200℃でメチルナフタレンを蒸発させた。次いで、窒素雰囲気中、900℃で1時間焼成し、Si微粒子、黒鉛及びピッチ(炭素質物質(B))からなる複合化粒子を作製した。
(Preparation of negative electrode material)
2 kg of graphite having an average particle diameter of 2 μm prepared in Example 1, 1.4 kg of coal tar pitch (“pellet”, Osaka Kasei Co., Ltd.) and 9 kg of methylnaphthalene containing 30% by weight of SiO fine particles prepared as described above, After mixing at 100 ° C. for 1 hour using an axial heating kneader, methyl naphthalene was evaporated at 200 ° C. Subsequently, it baked at 900 degreeC in nitrogen atmosphere for 1 hour, and produced the composite particle which consists of Si microparticles | fine-particles, graphite, and pitch (carbonaceous substance (B)).

次に、上記で得た複合化粒子200gを、アルミナ製の振動ミルで5分間粉砕した後、コールタールピッチ(川崎製鉄(株)製「PKQL」)60gを溶かしたテトラヒドロフランに分散し、テトラヒドロフランをエバポレーターで蒸発させて、複合化粒子表面をピッチで被覆した。ついで、このピッチ被覆複合化粒子を、窒素雰囲気中、1150℃で1時間焼成した後、粉砕機で解砕し、さらに、390メッシュの篩でふるい、負極材料を得た。なお、この負極材料中の酸素含有量は、14重量%であった。   Next, 200 g of the composite particles obtained above were pulverized for 5 minutes with a vibrating mill made of alumina, and then dispersed in tetrahydrofuran in which 60 g of coal tar pitch (“PKQL” manufactured by Kawasaki Steel Corporation) was dissolved. The composite particle surface was coated with pitch by evaporating with an evaporator. Next, the pitch-coated composite particles were fired at 1150 ° C. for 1 hour in a nitrogen atmosphere, then pulverized with a pulverizer, and further sieved with a 390 mesh sieve to obtain a negative electrode material. The oxygen content in the negative electrode material was 14% by weight.

(負極の作製)
上記で得た負極材料を用いた以外は、実施例1と同様にして負極を作製した。
(Preparation of negative electrode)
A negative electrode was produced in the same manner as in Example 1 except that the negative electrode material obtained above was used.

<リチウム二次電池の作製と評価>
(リチウム二次電池の作製)
作用極として各実施例及び各比較例で得られた負極を用い、対極として厚さ1mmの金属リチウムを用い、これら両極をセパレーター(宝泉株式会社製「セルガード#2400」)を介して対向させた。さらに1.5MLiPF/エチレンカーボネート、ジエチルカーボネート及びジメチルカーボネートの混合溶液(1:1:1容量比)にビニレンカーボネートを1重量%添加した非水電解液を注入し、通常の方法によってリチウム二次電池を作製した。
<Production and evaluation of lithium secondary battery>
(Production of lithium secondary battery)
The negative electrode obtained in each Example and each Comparative Example was used as a working electrode, and 1 mm thick metal lithium was used as a counter electrode, and both electrodes were opposed to each other via a separator (“Celguard # 2400” manufactured by Hosen Co., Ltd.). It was. Further, a nonaqueous electrolytic solution in which 1% by weight of vinylene carbonate was added to a mixed solution of 1.5 M LiPF 6 / ethylene carbonate, diethyl carbonate and dimethyl carbonate (1: 1: 1 volume ratio) was injected, and a secondary lithium secondary solution was injected by a normal method. A battery was produced.

(リチウム二次電池の評価)
上記で作製したリチウム二次電池について、1サイクル放電容量、1サイクル不可逆容量および30サイクル容量維持率を下記に従い測定した。結果をまとめて表1に示す。
(Evaluation of lithium secondary battery)
About the lithium secondary battery produced above, 1 cycle discharge capacity, 1 cycle irreversible capacity, and 30 cycle capacity maintenance rate were measured according to the following. The results are summarized in Table 1.

放電容量:対極(リチウム極)に対し、0.1Cに相当する電流で0.02Vまで充電した。放電はリチウム極に対して0.1Cに相当する電流で1.5Vまで行い、初期(初回)放電容量を測定した。なお、放電容量は、カット電圧が1.5Vの時の容量とした。   Discharge capacity: The counter electrode (lithium electrode) was charged to 0.02 V with a current corresponding to 0.1 C. Discharge was performed up to 1.5 V with a current corresponding to 0.1 C with respect to the lithium electrode, and the initial (initial) discharge capacity was measured. The discharge capacity was the capacity when the cut voltage was 1.5V.

不可逆容量:初期(初回)不可逆容量は1サイクル目の充電容量と1サイクル目における放電容量の値の差で算出した。   Irreversible capacity: The initial (first) irreversible capacity was calculated by the difference between the charge capacity at the first cycle and the discharge capacity at the first cycle.

容量維持率:上記充放電サイクルを30回繰り返し、充放電容量に対する30サイクル目の放電容量の比率を、容量維持率(%)として算出した。なお、3サイクル目以降は、充放電の電流値を1.0Cに相当する値に設定した。

Figure 2008112710
Capacity maintenance rate: The above charge / discharge cycle was repeated 30 times, and the ratio of the discharge capacity at the 30th cycle to the charge / discharge capacity was calculated as the capacity maintenance rate (%). In the third and subsequent cycles, the charge / discharge current value was set to a value corresponding to 1.0C.
Figure 2008112710

表1から、実施例の負極材料を用いれば、初期充放電容量が大きく、初期不可逆容量が小さく、なおかつ充放電サイクル特性に優れたリチウム二次電池を得ることが可能であることがわかる。   From Table 1, it can be seen that by using the negative electrode material of the example, it is possible to obtain a lithium secondary battery having a large initial charge / discharge capacity, a small initial irreversible capacity, and excellent charge / discharge cycle characteristics.

Claims (17)

平均粒径(D50)が0.05〜5μmのSi粒子および複数種の炭素質物質を含み、酸素含有量が5重量%以下であるリチウム二次電池用負極材料。   A negative electrode material for a lithium secondary battery, comprising Si particles having an average particle diameter (D50) of 0.05 to 5 μm and a plurality of types of carbonaceous materials, and having an oxygen content of 5% by weight or less. 前記複数種の炭素質物質が、炭素質物質(A)及び該炭素質物質(A)よりも結晶性の低い炭素質物質(B)を含む請求項1記載のリチウム二次電池用負極材料。   2. The negative electrode material for a lithium secondary battery according to claim 1, wherein the plurality of types of carbonaceous materials include a carbonaceous material (A) and a carbonaceous material (B) having lower crystallinity than the carbonaceous material (A). 前記炭素質物質(A)が、黒鉛及びカーボンブラックから選ばれる少なくとも1種を含む請求項2記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to claim 2, wherein the carbonaceous material (A) contains at least one selected from graphite and carbon black. 前記黒鉛の平均粒径(D50)が0.1〜20μmである請求項3記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to claim 3, wherein the graphite has an average particle diameter (D50) of 0.1 to 20 μm. 前記炭素質物質(B)が、非晶質炭素である請求項2〜4のいずれか記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to any one of claims 2 to 4, wherein the carbonaceous substance (B) is amorphous carbon. 前記Si粒子と前記炭素質物質(A)の重量比が99.5/0.5〜0.5/99.5である請求項2〜5のいずれかに記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to any one of claims 2 to 5, wherein a weight ratio of the Si particles to the carbonaceous material (A) is 99.5 / 0.5 to 0.5 / 99.5. . 前記炭素質物質(A)と前記炭素質物質(B)の重量比が90/10〜30/70である請求項2〜6のいずれかに記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to any one of claims 2 to 6, wherein a weight ratio of the carbonaceous material (A) to the carbonaceous material (B) is 90/10 to 30/70. 表面が炭素被覆されている請求項1〜7のいずれか記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to claim 1, wherein the surface is carbon-coated. 前記炭素被覆層の比率(被覆炭素重量/炭素被覆前の負極材料重量)が、0.1/99.9〜50/50である請求項8記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to claim 8, wherein a ratio of the carbon coating layer (coating carbon weight / negative electrode material weight before carbon coating) is 0.1 / 99.9 to 50/50. 平均粒径(D50)が0.05〜5μmのSi粒子を湿式粉砕法により調製する工程、および
前記Si粒子と複数種の炭素質物質を混合する工程、
を有するリチウム二次電池用負極材料の製造方法。
A step of preparing Si particles having an average particle size (D50) of 0.05 to 5 μm by a wet pulverization method, and a step of mixing the Si particles and a plurality of types of carbonaceous materials,
The manufacturing method of the negative electrode material for lithium secondary batteries which has this.
平均粒径(D50)が0.05〜5μmのSi粒子を湿式粉砕法により調製する工程、
前記Si粒子、炭素質物質(A)および加熱によって該炭素質物質(A)よりも結晶性の低い炭素質物質(B)となる前駆体を混合する工程、および
前記混合により得られた混合物を熱処理する工程
を有するリチウム二次電池用負極材料の製造方法。
A step of preparing Si particles having an average particle diameter (D50) of 0.05 to 5 μm by a wet pulverization method;
A step of mixing the Si particles, the carbonaceous material (A), and a precursor that becomes a carbonaceous material (B) having lower crystallinity than the carbonaceous material (A) by heating, and a mixture obtained by the mixing. The manufacturing method of the negative electrode material for lithium secondary batteries which has the process to heat-process.
前記湿式粉砕法がビーズミルを用いた粉砕である請求項10または11に記載のリチウム二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a lithium secondary battery according to claim 10 or 11, wherein the wet pulverization method is pulverization using a bead mill. 前記混合が湿式混合である請求項10〜12のいずれか記載のリチウム二次電池用負極材料の製造方法。   The said mixing is wet mixing, The manufacturing method of the negative electrode material for lithium secondary batteries in any one of Claims 10-12. 前記熱処理の温度が、700〜2000℃の範囲である請求項11〜13のいずれか記載のリチウム二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a lithium secondary battery according to any one of claims 11 to 13, wherein a temperature of the heat treatment is in a range of 700 to 2000 ° C. 表面を炭素被覆する工程をさらに有する、請求項10〜14のいずれか記載のリチウム二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a lithium secondary battery according to any one of claims 10 to 14, further comprising a step of coating the surface with carbon. 請求項1〜9のいずれか1項記載のリチウム二次電池用負極材料もしくは請求項10〜15のいずれか1項記載の製造方法により得られるリチウム二次電池用負極材料および結着剤を含む混合物と、集電体と、を一体化してなるリチウム二次電池用負極。   The negative electrode material for lithium secondary batteries according to any one of claims 1 to 9, or the negative electrode material for lithium secondary batteries obtained by the production method according to any one of claims 10 to 15 and a binder. A negative electrode for a lithium secondary battery obtained by integrating a mixture and a current collector. 請求項16に記載のリチウム二次電池用負極を備えてなるリチウム二次電池。   A lithium secondary battery comprising the negative electrode for a lithium secondary battery according to claim 16.
JP2007002679A 2006-10-03 2007-01-10 Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery Pending JP2008112710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002679A JP2008112710A (en) 2006-10-03 2007-01-10 Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006271704 2006-10-03
JP2007002679A JP2008112710A (en) 2006-10-03 2007-01-10 Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2008112710A true JP2008112710A (en) 2008-05-15

Family

ID=39445099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002679A Pending JP2008112710A (en) 2006-10-03 2007-01-10 Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2008112710A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053173A1 (en) 2007-10-26 2009-04-30 Asahi Glass Company, Ltd. Glass for information recording media, substrate, glass substrate for magnetic disk and magnetic disk
JP2010129169A (en) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode
JP2011210649A (en) * 2010-03-30 2011-10-20 Mitsui Eng & Shipbuild Co Ltd Manufacturing method of carbon coating electrode material for secondary battery, and carbon coating electrode material
WO2011112042A3 (en) * 2010-03-11 2012-03-01 주식회사 엘지화학 Organic polymer-silicon composite particle, preparation method for same, and cathode and lithium secondary battery including same
JP2012124118A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Lithium ion secondary battery and method of manufacturing the same
WO2014104842A1 (en) 2012-12-27 2014-07-03 삼성정밀화학 주식회사 Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material comprising same, negative electrode structure and secondary battery comprising same, and method for manufacturing same
JP2014534142A (en) * 2011-09-19 2014-12-18 ハイドロ−ケベック Particulate cathode material and method for producing the same
US20150263342A1 (en) * 2014-02-21 2015-09-17 Kratos LLC Nanosilicon material preparation for functionalized group iva particle frameworks
JP2015533755A (en) * 2012-08-21 2015-11-26 クラトス・エル・エル・シー Functionalized IVA group particles and methods of use thereof
JP2016001630A (en) * 2015-10-07 2016-01-07 日立化成株式会社 Lithium ion secondary battery and method of manufacturing the same
US9461309B2 (en) 2012-08-21 2016-10-04 Kratos LLC Group IVA functionalized particles and methods of use thereof
KR20160126017A (en) 2014-04-16 2016-11-01 쇼와 덴코 가부시키가이샤 Negative electrode material for lithium-ion battery, and use therefor
JP2017091724A (en) * 2015-11-06 2017-05-25 新日鐵住金株式会社 Negative electrode active substance material, manufacturing method thereof, negative electrode and battery
JP2017112057A (en) * 2015-12-18 2017-06-22 東ソー株式会社 Silicon-based particle, lithium ion secondary battery negative electrode active material including the same, and manufacturing methods thereof
CN108701822A (en) * 2016-02-29 2018-10-23 日本电气株式会社 Negative electrode active material and use its lithium rechargeable battery
KR101927414B1 (en) 2018-10-19 2018-12-10 삼성전자주식회사 Electro active material for secondary battery, conductive composition for secondary battery, cathode material, cathode structure and secondary battery comprising the same, and fabricating methods thereof
WO2019031597A1 (en) 2017-08-10 2019-02-14 昭和電工株式会社 Lithium ion secondary battery negative electrode material and lithium ion secondary battery
US10637050B2 (en) * 2013-08-02 2020-04-28 Wacker Chemie Ag Method for size-reduction of silicon and use of the size-reduced silicon in a lithium-ion battery
EP3709396A1 (en) * 2017-03-28 2020-09-16 Enevate Corporation Methods of forming carbon-silicon composite material on a current
US11522178B2 (en) 2016-07-05 2022-12-06 Kratos LLC Passivated pre-lithiated micron and sub-micron group IVA particles and methods of preparation thereof
US11637280B2 (en) 2017-03-31 2023-04-25 Kratos LLC Precharged negative electrode material for secondary battery
WO2023121060A1 (en) * 2021-12-21 2023-06-29 포스코홀딩스 주식회사 Anode active material precursor for lithium secondary battery, anode active material including same, and method for manufacturing same
WO2023162692A1 (en) * 2022-02-25 2023-08-31 Dic株式会社 Nano silicon, nano silicon slurry, method for producing nano silicon, active material for secondary batteries, and secondary battery
WO2024141042A1 (en) * 2022-12-30 2024-07-04 宁德新能源科技有限公司 Negative electrode material, secondary battery and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308831A (en) * 2002-04-12 2003-10-31 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2004296269A (en) * 2003-03-27 2004-10-21 Nippon Carbon Co Ltd Negative electrode material for lithium ion secondary battery, its manufacturing method, and battery using the same
JP2005063767A (en) * 2003-08-08 2005-03-10 Mitsui Mining & Smelting Co Ltd Negative electrode material for nonaqueous electrolyte solution secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308831A (en) * 2002-04-12 2003-10-31 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2004296269A (en) * 2003-03-27 2004-10-21 Nippon Carbon Co Ltd Negative electrode material for lithium ion secondary battery, its manufacturing method, and battery using the same
JP2005063767A (en) * 2003-08-08 2005-03-10 Mitsui Mining & Smelting Co Ltd Negative electrode material for nonaqueous electrolyte solution secondary battery

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053173A1 (en) 2007-10-26 2009-04-30 Asahi Glass Company, Ltd. Glass for information recording media, substrate, glass substrate for magnetic disk and magnetic disk
JP2010129169A (en) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode
US9142859B2 (en) 2010-03-11 2015-09-22 Lg Chem, Ltd. Polymer-silicon composite particles, method of making the same, and anode and lithium secondary battery including the same
WO2011112042A3 (en) * 2010-03-11 2012-03-01 주식회사 엘지화학 Organic polymer-silicon composite particle, preparation method for same, and cathode and lithium secondary battery including same
JP2011210649A (en) * 2010-03-30 2011-10-20 Mitsui Eng & Shipbuild Co Ltd Manufacturing method of carbon coating electrode material for secondary battery, and carbon coating electrode material
JP2012124118A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Lithium ion secondary battery and method of manufacturing the same
EP2758340B1 (en) * 2011-09-19 2019-07-24 Hydro-Québec Particulate anode materials and methods for their preparation
JP2014534142A (en) * 2011-09-19 2014-12-18 ハイドロ−ケベック Particulate cathode material and method for producing the same
JP2018048080A (en) * 2011-09-19 2018-03-29 ハイドロ−ケベック Particulate negative electrode material and method for producing the same
US9837662B2 (en) 2011-09-19 2017-12-05 Hydro-Quebec Particulate anode materials and methods for their preparation
US9559355B2 (en) 2011-09-19 2017-01-31 HYDRO-QUéBEC Particulate anode materials and methods for their preparation
EP3546093A1 (en) * 2011-09-19 2019-10-02 Hydro-Québec Particulate anode materials and methods for their preparation
KR101769872B1 (en) * 2011-09-19 2017-08-21 하이드로-퀘벡 Particulate anode materials and methods for their preparation
JP2015533755A (en) * 2012-08-21 2015-11-26 クラトス・エル・エル・シー Functionalized IVA group particles and methods of use thereof
US9461309B2 (en) 2012-08-21 2016-10-04 Kratos LLC Group IVA functionalized particles and methods of use thereof
US9461304B2 (en) 2012-08-21 2016-10-04 Kratos LLC Group IVA functionalized particles and methods of use thereof
US11005097B2 (en) 2012-08-21 2021-05-11 Kratos LLC Group IVA functionalized particles and methods of use thereof
US10211454B2 (en) 2012-08-21 2019-02-19 Kratos LLC Group IVA functionalized particles and methods of use thereof
KR101939270B1 (en) * 2012-12-27 2019-01-16 삼성전자주식회사 Electro active material for secondary battery, conductive composition for secondary battery, cathode material, cathode structure and secondary battery comprising the same, and fabricating methods thereof
JP2016509739A (en) * 2012-12-27 2016-03-31 サムスン エレクトロニクス カンパニー リミテッド Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material including the same, negative electrode structure and secondary battery including the same, and manufacturing method thereof
US9761869B2 (en) 2012-12-27 2017-09-12 Samsung Electronics Co., Ltd Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material comprising same, negative electrode structure and secondary battery comprising same, and method for manufacturing same
US9911976B2 (en) 2012-12-27 2018-03-06 Samsung Electronics Co., Ltd Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material comprising same, negative electrode structure and secondary battery comprising same, and method for manufacturing same
CN104781958A (en) * 2012-12-27 2015-07-15 三星精密化学株式会社 Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material comprising same, negative electrode structure and secondary battery comprising same, and method for manufacturing same
US10586978B2 (en) 2012-12-27 2020-03-10 Samsung Electronics Co., Ltd Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material comprising same, negative electrode structure and secondary battery comprising same, and method for manufacturing same
WO2014104842A1 (en) 2012-12-27 2014-07-03 삼성정밀화학 주식회사 Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material comprising same, negative electrode structure and secondary battery comprising same, and method for manufacturing same
KR20140094676A (en) 2012-12-27 2014-07-31 삼성정밀화학 주식회사 Electro active material for secondary battery, conductive composition for secondary battery, cathode material, cathode structure and secondary battery comprising the same, and fabricating methods thereof
US10637050B2 (en) * 2013-08-02 2020-04-28 Wacker Chemie Ag Method for size-reduction of silicon and use of the size-reduced silicon in a lithium-ion battery
US20150263342A1 (en) * 2014-02-21 2015-09-17 Kratos LLC Nanosilicon material preparation for functionalized group iva particle frameworks
KR20160126017A (en) 2014-04-16 2016-11-01 쇼와 덴코 가부시키가이샤 Negative electrode material for lithium-ion battery, and use therefor
US10164257B2 (en) 2014-04-16 2018-12-25 Showa Denko K.K. Negative electrode material for lithium-ion battery, and use therefor
JP2016001630A (en) * 2015-10-07 2016-01-07 日立化成株式会社 Lithium ion secondary battery and method of manufacturing the same
JP2017091724A (en) * 2015-11-06 2017-05-25 新日鐵住金株式会社 Negative electrode active substance material, manufacturing method thereof, negative electrode and battery
JP2017112057A (en) * 2015-12-18 2017-06-22 東ソー株式会社 Silicon-based particle, lithium ion secondary battery negative electrode active material including the same, and manufacturing methods thereof
CN108701822A (en) * 2016-02-29 2018-10-23 日本电气株式会社 Negative electrode active material and use its lithium rechargeable battery
US11522178B2 (en) 2016-07-05 2022-12-06 Kratos LLC Passivated pre-lithiated micron and sub-micron group IVA particles and methods of preparation thereof
EP4117052A1 (en) * 2017-03-28 2023-01-11 Enevate Corporation Electrode comprising a carbon-silicon composite material on a current collector
EP3709396A1 (en) * 2017-03-28 2020-09-16 Enevate Corporation Methods of forming carbon-silicon composite material on a current
US11637280B2 (en) 2017-03-31 2023-04-25 Kratos LLC Precharged negative electrode material for secondary battery
KR20190132545A (en) 2017-08-10 2019-11-27 쇼와 덴코 가부시키가이샤 Negative electrode material and lithium ion secondary battery for lithium ion secondary battery
WO2019031597A1 (en) 2017-08-10 2019-02-14 昭和電工株式会社 Lithium ion secondary battery negative electrode material and lithium ion secondary battery
KR101927414B1 (en) 2018-10-19 2018-12-10 삼성전자주식회사 Electro active material for secondary battery, conductive composition for secondary battery, cathode material, cathode structure and secondary battery comprising the same, and fabricating methods thereof
WO2023121060A1 (en) * 2021-12-21 2023-06-29 포스코홀딩스 주식회사 Anode active material precursor for lithium secondary battery, anode active material including same, and method for manufacturing same
WO2023162692A1 (en) * 2022-02-25 2023-08-31 Dic株式会社 Nano silicon, nano silicon slurry, method for producing nano silicon, active material for secondary batteries, and secondary battery
JP7485230B2 (en) 2022-02-25 2024-05-16 Dic株式会社 Nanosilicon, nanosilicon slurry, method for producing nanosilicon, active material for secondary battery, and secondary battery
WO2024141042A1 (en) * 2022-12-30 2024-07-04 宁德新能源科技有限公司 Negative electrode material, secondary battery and electronic device

Similar Documents

Publication Publication Date Title
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP5831579B2 (en) Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP4854289B2 (en) Non-aqueous electrolyte secondary battery
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP5927788B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5277656B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP6609909B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5494344B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5494343B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7279757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2006068066A1 (en) Composite electrode active material for non-aqueous electrolyte secondary battery or non-aqueous electrolyte electrochemical capacitor and its production method
JP2004259475A (en) Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP5799500B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012178344A (en) Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2003168429A (en) Nonaqueous electrolyte secondary battery
JP2013187016A (en) Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2017050204A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
JP2008251523A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009187924A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP2012124115A (en) Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5990872B2 (en) Lithium secondary battery negative electrode material, lithium secondary battery negative electrode and lithium secondary battery
JP5699592B2 (en) Method for producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5682276B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113