JP2003308831A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2003308831A
JP2003308831A JP2002111193A JP2002111193A JP2003308831A JP 2003308831 A JP2003308831 A JP 2003308831A JP 2002111193 A JP2002111193 A JP 2002111193A JP 2002111193 A JP2002111193 A JP 2002111193A JP 2003308831 A JP2003308831 A JP 2003308831A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002111193A
Other languages
Japanese (ja)
Other versions
JP3992529B2 (en
Inventor
Masayuki Yamada
将之 山田
Eiyo Ka
永姚 夏
Tokuji Ueda
上田  篤司
Shigeo Aoyama
青山  茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2002111193A priority Critical patent/JP3992529B2/en
Publication of JP2003308831A publication Critical patent/JP2003308831A/en
Application granted granted Critical
Publication of JP3992529B2 publication Critical patent/JP3992529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery having high energy density, wherein expansion and contraction of an electrode does not grow even if a charge/discharge cycle is repeated, a conductive network in the inside of the electrode is not broken, and battery capacity does not decrease and internal resistance does not increase. <P>SOLUTION: This nonaqueous secondary battery is provided with a positive electrode, a negative electrode, and a nonaqueous electrolyte, and it uses an electrode formed by filling a negative electrode material containing a complex comprising a material containing an element capable of forming an alloy with lithium and a conductive material in a collector having a three dimensional structure, as the negative electrode. The negative electrode is formed by filling the negative material in the collector together with a binder and by pressing it. The thickness of the negative electrode is 0.1-10 mm, and its porosity is 20-50%, in this nonaqueous secondary battery. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高容量でかつサイ
クル特性に優れた非水電解質二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery having high capacity and excellent cycle characteristics.

【0002】[0002]

【従来の技術】アルカリ金属を活物質とする電池は、高
いエネルギー密度を有する高性能の電池として注目され
ている。その中でも、リチウム電池は特に高いエネルギ
ー密度を有し、貯蔵性などの信頼性においても優れてい
るため、既に一次電池として小型の電子機器の電源に広
く用いられている。また、最近では、小型携帯用電気機
器の普及に伴い、充電して繰り返し使えるリチウム二次
電池の需要が急増している。
2. Description of the Related Art Batteries using an alkali metal as an active material are attracting attention as high-performance batteries having a high energy density. Among them, lithium batteries have a particularly high energy density and are excellent in reliability such as storability, so that they are already widely used as power sources for small electronic devices as primary batteries. In addition, recently, with the spread of small portable electric devices, the demand for lithium secondary batteries that can be charged and used repeatedly is rapidly increasing.

【0003】このリチウム二次電池の負極材料には、例
えば、リチウム金属、リチウム合金又はリチウムを吸蔵
・放出可能な炭素材料にリチウムを吸蔵させた炭素質材
料などが使用されている。
As the negative electrode material of this lithium secondary battery, for example, a lithium metal, a lithium alloy, or a carbonaceous material in which lithium is occluded in a carbon material capable of occluding and releasing lithium is used.

【0004】リチウム金属やリチウム合金を負極に用い
た非水電解質二次電池では、高エネルギー密度の電池が
得られるが、充放電サイクルの進行に伴いリチウムの溶
解と析出が繰り返され、その際に析出した活性なリチウ
ムが電解液の溶媒と反応するため、充放電可能なリチウ
ムが失われて負極の充放電効率が低下するという問題が
ある。さらに、リチウムはデンドライト(樹枝状結晶)
として析出するため、そのデンドライトがセパレータを
貫通して内部短絡を招く危険性がある。
A non-aqueous electrolyte secondary battery using a lithium metal or a lithium alloy as a negative electrode can obtain a battery having a high energy density, but as the charge / discharge cycle progresses, dissolution and precipitation of lithium are repeated, and at that time. Since the deposited active lithium reacts with the solvent of the electrolytic solution, chargeable / dischargeable lithium is lost and the charge / discharge efficiency of the negative electrode is reduced. Furthermore, lithium is a dendrite (dendritic crystal).
As a result, the dendrite may penetrate the separator and cause an internal short circuit.

【0005】このため、リチウム金属やリチウム合金に
代えて、リチウムイオンをドープ・脱ドープすることが
可能なコークス又はガラス状炭素等の非晶質炭素、天然
又は人造の黒鉛等の炭素材料を負極材料として用いるこ
とが行われている。例えば、特開平1−204361号
公報、特開平2−66856号公報、特開平4−248
31号公報、特開平5−17669公報などには、この
炭素材料を負極材料として使用することにより、リチウ
ム二次電池にサイクル耐久性を付与することが記載され
ている。
Therefore, in place of lithium metal or lithium alloy, coke or amorphous carbon such as glassy carbon capable of doping and dedoping lithium ions, or carbon material such as natural or artificial graphite is used as the negative electrode. It is used as a material. For example, JP-A-1-204361, JP-A-2-66856, and JP-A-4-248.
No. 31, JP-A-5-17669, etc. describe that this carbon material is used as a negative electrode material to impart cycle durability to a lithium secondary battery.

【0006】しかし、上記炭素材料を負極材料として使
用した負極の理論容量は、例えば黒鉛では372mAh
/gであり、最近の携帯機器用電池の高容量化の要請に
は不十分である。そこで、最近ではリチウムと合金を形
成することが可能な元素であるケイ素(Si)や錫(S
n)等からなる負極材料が注目を集めている。例えば、
特開平7−29602号公報には、LixSi(0≦x
≦5)を負極活物質として用いた非水電解質二次電池が
記載されている。
However, the theoretical capacity of a negative electrode using the above carbon material as a negative electrode material is, for example, 372 mAh for graphite.
/ G, which is insufficient for the recent demand for higher capacity batteries for portable devices. Therefore, recently, silicon (Si) and tin (S), which are elements capable of forming an alloy with lithium, have been developed.
Negative electrode materials such as n) have attracted attention. For example,
Japanese Patent Laid-Open No. 7-29602 discloses that Li x Si (0 ≦ x
A non-aqueous electrolyte secondary battery using <5) as a negative electrode active material is described.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、リチウ
ムと合金を形成することが可能な元素からなる負極材料
は、上記のような炭素材料に比べて高容量化が可能であ
るが、充放電サイクルによる負極材料の膨張・収縮が大
きく、これにより負極内の導電性ネットワークが破壊さ
れて容量が著しく低下したり、内部抵抗が増大したりす
る問題がある。また、負極合剤を金属箔に塗布する従来
の方式で作製した負極では、負極材料の膨張・収縮が大
きいために負極そのものが厚み方向に大きく膨張し、集
電体の集電性能が低下したり、負極自体が湾曲したり、
又は電池缶が膨れたりするといった問題が生じる。
However, although the negative electrode material composed of an element capable of forming an alloy with lithium can have a higher capacity than the carbon material as described above, There is a problem that the negative electrode material expands and contracts greatly, which destroys the conductive network in the negative electrode, significantly lowering the capacity and increasing the internal resistance. Further, in the negative electrode prepared by the conventional method of applying the negative electrode mixture to the metal foil, the negative electrode material greatly expands and contracts, so that the negative electrode itself greatly expands in the thickness direction and the current collecting performance of the current collector deteriorates. Or the negative electrode itself is curved,
Or, a problem that the battery can swells occurs.

【0008】ここで、リチウムと合金を形成することが
可能な元素からなる負極材料の膨張・収縮が大きい理由
を、ケイ素を例にして説明する。
Here, the reason why the negative electrode material made of an element capable of forming an alloy with lithium has a large expansion and contraction will be described by taking silicon as an example.

【0009】ケイ素は、その結晶学的な単位格子(立方
晶、空間群Fd−3m)に8個のSi原子を含んでい
る。格子定数a=0.5431nmから計算して、単位
格子体積は0.1592nm3であり、Si原子1個の
占める体積(単位格子体積を単位格子中のSi原子数で
除した値)は0.0199nm3である。ケイ素からな
る負極を100mV以下まで充電する(リチウムを挿入
させる)と、リチウムを多く含む化合物であるLi15
4やLi21Si5を生じ、その容量は約4000mAh
/gに相当するが、体積膨張率が極めて大きくなる。例
えば、Li21Si 5の単位格子(立方晶、空間群F4−
3m)には83個のSi原子が含まれている。その格子
定数a=1.8750nmから計算して、単位格子体積
は6.5918nm3であり、Si原子1個の占める体
積は0.079nm3である。この値は単体ケイ素の体
積の3.95倍である。即ち、ケイ素は充電によりその
体積が約4倍に増加する。さらに、このように充放電時
の体積差が極めて大きいため、ケイ素の粒子に大きな歪
みが生じ、粒子が微粉化して粒子間に空間が生じ、導電
性ネットワークが分断され、電気化学的な反応に関与で
きない部分が増加し、充放電容量が低下することにな
る。
Silicon is a crystallographic unit cell (cubic
Crystal, space group Fd-3m) contains 8 Si atoms
It Unit calculated from lattice constant a = 0.5431 nm
Lattice volume is 0.1592 nm3And one Si atom
Volume occupied (unit cell volume is the number of Si atoms in the unit cell)
Value divided by 0.0199 nm3Is. From silicon
Charge the negative electrode to 100 mV or less (insert lithium
And a lithium-rich compound Li15S
iFourAnd Litwenty oneSiFiveAnd its capacity is about 4000 mAh
/ G, but the volume expansion coefficient becomes extremely large. An example
For example, Litwenty oneSi FiveUnit cell (cubic crystal, space group F4-
3m) contains 83 Si atoms. The grid
Unit cell volume calculated from the constant a = 1.8750 nm
Is 6.5918 nm3And a body occupied by one Si atom
Product is 0.079 nm3Is. This value is the body of elemental silicon
3.95 times the product. That is, silicon is
The volume increases about 4 times. Furthermore, when charging and discharging like this
Since the volume difference between the two is extremely large, a large strain is generated in the silicon particles.
And the particles are pulverized to create spaces between the particles,
The sexual network is disrupted and can participate in electrochemical reactions.
This will increase the number of areas that cannot be charged and reduce the charge / discharge capacity.
It

【0010】一方、特開平2000−272911号公
報には、ケイ素の粒子が黒鉛及び非結晶質炭素中に埋設
された複合体粒子を負極に用いた、充放電特性に優れた
リチウム電池が記載されている。黒鉛及び非結晶質炭素
とケイ素とを複合化することによって、ケイ素の粒子の
膨張が緩和でき、充放電サイクル特性は向上する。しか
し、1000mAh/g程度の高容量を発現するような
ケイ素の利用率が高い場合には、充放電サイクル特性は
十分ではなく実用化レベルには達しない。これは、ケイ
素の利用率が高い場合にケイ素の膨張・収縮が大きくな
り、それに伴って上記複合体粒子の膨張・収縮も増加し
て負極内部での導電性ネットワークが破壊されるためと
考えられる。
On the other hand, Japanese Patent Laid-Open No. 2000-272911 describes a lithium battery having excellent charge / discharge characteristics, which uses composite particles in which silicon particles are embedded in graphite and amorphous carbon as a negative electrode. ing. By compounding graphite and amorphous carbon with silicon, the expansion of silicon particles can be relaxed and the charge / discharge cycle characteristics are improved. However, when the utilization rate of silicon that develops a high capacity of about 1000 mAh / g is high, the charge / discharge cycle characteristics are not sufficient and do not reach the level of practical use. It is considered that this is because when the utilization rate of silicon is high, the expansion / contraction of silicon becomes large, and the expansion / contraction of the composite particles also increases accordingly, and the conductive network inside the negative electrode is destroyed. .

【0011】本発明は前記従来の問題を解決するために
なされたものであり、充放電サイクルを繰り返しても電
極の膨張・収縮が大きくならず、また電極内部の導電性
ネットワークが破壊されず、電池容量が減少したり内部
抵抗が増大したりしない高エネルギー密度の非水電解質
二次電池を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and the expansion and contraction of the electrode does not increase even if the charge and discharge cycle is repeated, and the conductive network inside the electrode is not destroyed. It is an object of the present invention to provide a high energy density non-aqueous electrolyte secondary battery in which the battery capacity does not decrease and the internal resistance does not increase.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するた
め、本発明の非水電解質二次電池は、正極と、負極と、
非水電解質とを備え、前記負極として、三次元構造を有
する集電体に、リチウムと合金を形成することが可能な
元素を含有する材料と導電性材料とからなる複合体を含
む負極材料が充填された電極を用いることを特徴とす
る。
In order to achieve the above object, a non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode, a negative electrode, and
A negative electrode material comprising a non-aqueous electrolyte, and a negative electrode containing a composite of a conductive material and a material containing an element capable of forming an alloy with lithium as a current collector having a three-dimensional structure. It is characterized by using a filled electrode.

【0013】三次元構造を有する集電体を用いることに
より、充放電サイクルを繰り返しても負極の膨張・収縮
が大きくならず、また負極内部の導電性ネットワークが
破壊されない。
By using a current collector having a three-dimensional structure, expansion and contraction of the negative electrode does not increase even if charge and discharge cycles are repeated, and the conductive network inside the negative electrode is not destroyed.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0015】本発明の非水電解質二次電池は、正極と、
負極と、非水電解質とを備え、前記負極として、三次元
構造を有する集電体に、リチウムと合金を形成すること
が可能な元素を含有する材料と導電性材料とからなる複
合体を含む負極材料が充填された電極を用いている。
The non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode,
A negative electrode and a non-aqueous electrolyte are provided, and as the negative electrode, a current collector having a three-dimensional structure includes a composite of a material containing an element capable of forming an alloy with lithium and a conductive material. An electrode filled with a negative electrode material is used.

【0016】上記リチウムと合金を形成することが可能
な元素としては、例えば、ケイ素、銀、金、亜鉛、カド
ミウム、アルミニウム、ガリウム、インジウム、タリウ
ム、ゲルマニウム、錫、鉛、アンチモン、ビスマスなど
が挙げられる。特に、ケイ素、錫、アルミニウムが材料
コストや取り扱い上の観点から好ましい。
Examples of the element capable of forming an alloy with lithium are silicon, silver, gold, zinc, cadmium, aluminum, gallium, indium, thallium, germanium, tin, lead, antimony and bismuth. To be Particularly, silicon, tin, and aluminum are preferable from the viewpoint of material cost and handling.

【0017】また、リチウムと合金を形成することが可
能な元素を含有する材料は、結晶、低結晶及びアモルフ
ァスのいずれの状態であっても良い。また、この材料
は、リチウムと合金を形成することが可能な元素の単
体、及びそれらの元素を含む合金又は化合物を用いるこ
とができる。例えば、ケイ素、錫、アルミニウム、酸化
ケイ素(SiO)、酸化錫(SnO)、ケイ素、錫、ア
ルミニウムなどと他の金属の固溶体又は金属間化合物な
どである。ケイ素やゲルマニウムを含有する材料には、
例えばホウ素やリンのドープによりn型あるいはp型の
半導体となって電気抵抗が大きく低下したものを用いて
もよい。
The material containing an element capable of forming an alloy with lithium may be in any of a crystalline state, a low crystalline state and an amorphous state. Further, as the material, a simple substance of an element capable of forming an alloy with lithium and an alloy or a compound containing those elements can be used. For example, it is a solid solution or an intermetallic compound of silicon, tin, aluminum, silicon oxide (SiO), tin oxide (SnO), silicon, tin, aluminum or the like with another metal. For materials containing silicon and germanium,
For example, it is possible to use an n-type or p-type semiconductor that is significantly reduced in electrical resistance by doping with boron or phosphorus.

【0018】また、これらのリチウムと合金を形成する
ことが可能な元素を含有する材料は、導電性材料と複合
化させて複合体を形成しなければならない。この複合化
によって、充放電サイクルに伴う負極材料の微粉化を抑
制でき、さらに微粉化した際の負極材料粒子内の導電性
ネットワークを維持させることができる。
Further, these materials containing an element capable of forming an alloy with lithium must be compounded with a conductive material to form a composite. By this composite, it is possible to suppress pulverization of the negative electrode material due to charge / discharge cycles, and it is possible to maintain the conductive network in the negative electrode material particles when pulverized.

【0019】上記複合体は通常粒子状の形態をなしてお
り、その平均粒子径は2μm以上、100μm以下が好
ましく、特に2〜50μmが好ましい。複合体粒子の平
均粒子径が2μm以上であると、その構造から複合体粒
子を構成するリチウムと合金を形成することが可能な元
素を含有する材料や導電性材料は0.5μm以上の粒子
が使用でき、造粒、複合化が容易となり、複合体粒子の
比表面積が過大となることもなく、製造プロセスや電池
特性に悪影響を及ぼさない。一方、複合体粒子の平均粒
子径が50μm以下であると、三次元構造を有する集電
体への充填が容易となり、電極の作製に有利となる。
The above-mentioned composite is usually in the form of particles, and its average particle diameter is preferably 2 μm or more and 100 μm or less, and particularly preferably 2 to 50 μm. When the average particle size of the composite particles is 2 μm or more, the material containing an element capable of forming an alloy with lithium constituting the composite particles or the conductive material has a particle size of 0.5 μm or more because of its structure. It can be used, granulation and compounding become easy, the specific surface area of the composite particles does not become excessive, and the manufacturing process and battery characteristics are not adversely affected. On the other hand, when the average particle diameter of the composite particles is 50 μm or less, it becomes easy to fill the current collector having a three-dimensional structure, which is advantageous for the production of electrodes.

【0020】また、前記複合体中のリチウムと合金を形
成することが可能な元素の含有量は、30質量%以上、
80質量%以下が好ましい。30質量%以上であると、
1000mAh/g程度の容量を発現させる場合に、リ
チウムと合金を形成することが可能な元素の利用率が高
くなりすぎず、リチウムと合金を形成することが可能な
元素を含有する個々の材料粒子の膨張が大きくならず、
微粉化しにくくなる。また、80質量%以下であると、
リチウムと合金を形成することが可能な元素を含有する
材料と導電性材料との接着点が多くなるため、導電性ネ
ットワークの構築が容易となる。
The content of the element capable of forming an alloy with lithium in the composite is 30% by mass or more,
It is preferably 80% by mass or less. When it is 30 mass% or more,
Individual material particles containing an element capable of forming an alloy with lithium without excessively increasing the utilization rate of the element capable of forming an alloy with lithium when a capacity of about 1000 mAh / g is exhibited. Expansion does not increase,
It becomes difficult to pulverize. Moreover, when it is 80 mass% or less,
Since the number of bonding points between the material containing the element capable of forming an alloy with lithium and the conductive material increases, the construction of the conductive network becomes easy.

【0021】上記複合体に含まれる導電性材料として
は、人造黒鉛、天然黒鉛、土状黒鉛、膨張黒鉛、燐片状
黒鉛又はこれらの熱処理物のほか、有機物を様々な条件
で熱分解した炭素材料、あるいは銅などの金属材料を用
いることができる。特に、繊維状、コイル状の炭素材料
又は金属材料が好ましい。これらは、形状が柔軟性のあ
る細い糸状であるため、それらと接合又は隣接している
リチウムと合金を形成することが可能な元素を含有する
材料の膨張・収縮に効果的に追従することができるため
である。本発明に用いることができる繊維状炭素材料と
しては、ポリアクリロニトリル(PAN)系炭素繊維、
ピッチ系炭素繊維又は気相成長炭素繊維等があるが、何
れを用いてもよい。
As the conductive material contained in the above composite, artificial graphite, natural graphite, earthy graphite, expanded graphite, flake graphite or heat-treated materials thereof, as well as carbon obtained by thermally decomposing organic matter under various conditions. A material or a metal material such as copper can be used. In particular, a fibrous or coiled carbon material or metal material is preferable. Since these are thin threads having a flexible shape, they can effectively follow the expansion and contraction of a material containing an element capable of forming an alloy with lithium which is bonded to or adjacent to them. Because you can. Examples of the fibrous carbon material that can be used in the present invention include polyacrylonitrile (PAN) -based carbon fibers,
There are pitch-based carbon fibers, vapor-grown carbon fibers, and the like, but either may be used.

【0022】リチウムと合金を形成することが可能な元
素を含有する材料と導電性材料とからなる複合体の製造
方法は特に制限されないが、例えば、次に示す方法を用
いることができる。リチウムと合金を形成することが可
能な元素を含有する材料としてケイ素を用い、導電性材
料に炭素を用いた場合、まずケイ素と炭素とを造粒し、
続いて、有機物等の炭素前駆体と混合して炭素前駆体を
炭素化する方法、あるいはケイ素と炭素とを造粒した後
に気相方法により表面を炭素被覆する方法などによっ
て、目的の複合体を得ることができる。造粒方法として
は、転動造粒、圧縮造粒、焼結造粒、振動造粒、混合造
粒、解砕造粒などが好適に使用できる。複合体中の空隙
体積占有率は、混合材料の種類、粒子径、混合割合、造
粒の条件などを制御することで調整できる。炭素を気相
方法で被覆させる方法としては、炭化水素系のガスを熱
分解して被覆させる熱分解CVD法や、炭素棒を用いて
疑似アーク放電により蒸着させるPVD法などが好適に
使用できる。
The method for producing the composite body composed of a material containing an element capable of forming an alloy with lithium and a conductive material is not particularly limited, but for example, the following method can be used. Using silicon as a material containing an element capable of forming an alloy with lithium, when carbon is used as the conductive material, first granulate silicon and carbon,
Then, by a method of carbonizing the carbon precursor by mixing with a carbon precursor such as an organic substance, or a method of carbon coating the surface by a vapor phase method after granulating silicon and carbon, etc. Obtainable. As the granulation method, rolling granulation, compression granulation, sintering granulation, vibration granulation, mixed granulation, crush granulation and the like can be preferably used. The void volume occupancy rate in the composite can be adjusted by controlling the type of mixed material, particle size, mixing ratio, granulation conditions, and the like. As a method of coating carbon by a vapor phase method, a pyrolysis CVD method of thermally decomposing a hydrocarbon-based gas to coat it, a PVD method of vapor deposition by pseudo arc discharge using a carbon rod, and the like can be suitably used.

【0023】上記のようにして得られた本発明の複合体
粒子は、比表面積が10m2/g未満であることが好ま
しい。比表面積が10m2/gを越えると、条件によっ
ては複合体粒子と電解液とが反応して、複合体粒子の表
面に被膜が形成されやすくなり、その被膜にリチウムが
取り込まれて充放電に関与しないリチウムが増加するこ
とによる不可逆容量が増加する可能性があるからであ
る。
The composite particles of the present invention obtained as described above preferably have a specific surface area of less than 10 m 2 / g. If the specific surface area exceeds 10 m 2 / g, the composite particles and the electrolytic solution may react with each other depending on the conditions, and a film may be easily formed on the surface of the composite particles, and lithium may be incorporated into the film for charge / discharge. This is because the irreversible capacity may increase due to an increase in unrelated lithium.

【0024】本発明の非水電解質二次電池の負極では、
三次元構造を有する集電体に上記複合体粒子を含む負極
材料が充填される。即ち、集電体が負極材料中に三次元
的に広がった状態で負極材料と一体化されるので、複合
体粒子の膨張・収縮が大きいものとなっても導電性ネッ
トワークは維持され続ける。また、負極材料と集電体と
の間の平均距離が小さいため、負極の内部抵抗が小さ
い。したがって、負極材料のほとんどがその機能を発揮
することになるため、容量の大きい電池が得られ、大電
流にも耐えることができる。
In the negative electrode of the non-aqueous electrolyte secondary battery of the present invention,
A current collector having a three-dimensional structure is filled with a negative electrode material containing the composite particles. That is, since the current collector is integrated with the negative electrode material in a three-dimensionally spread state in the negative electrode material, the conductive network is maintained even if the expansion and contraction of the composite particles is large. Moreover, since the average distance between the negative electrode material and the current collector is small, the internal resistance of the negative electrode is small. Therefore, most of the negative electrode materials exhibit their functions, so that a battery having a large capacity can be obtained and can withstand a large current.

【0025】上記集電体に上記複合体粒子を含む負極材
料を充填するに際し、負極材料をバインダとともに集電
体に充填してプレスすることが好ましい。バインダによ
り負極材料の脱落が防止でき、また、電極作製時にプレ
スすることにより、電極の厚み方向への膨張に対して収
縮力を与えることができる。よって、複合体粒子の膨張
・収縮が大きいものとなっても電極の膨張は抑制でき
る。
When the current collector is filled with the negative electrode material containing the composite particles, it is preferable to fill the current collector with the binder and press the negative electrode material. The binder can prevent the negative electrode material from falling off, and by pressing at the time of manufacturing the electrode, a contracting force can be applied to the expansion of the electrode in the thickness direction. Therefore, the expansion of the electrode can be suppressed even if the expansion and contraction of the composite particles are large.

【0026】また、上記三次元構造を有する集電体とし
ては、発泡状金属又は繊維状金属焼結体からなるシート
又はマットであることが好ましい。これらは、集電性能
に優れているとともに負極材料の膨張・収縮に対して大
きな抵抗を有しているからである。
The current collector having the three-dimensional structure is preferably a sheet or a mat made of a foamed metal or a fibrous metal sintered body. This is because these are excellent in current collecting performance and have great resistance to expansion and contraction of the negative electrode material.

【0027】以下、リチウムと合金を形成することが可
能な元素を含有する材料にケイ素を用い、導電性材料に
炭素を用いた場合(ケイ素/炭素複合体材料)を例にし
て本発明の負極をさらに説明する。
Hereinafter, the case where silicon is used as a material containing an element capable of forming an alloy with lithium and carbon is used as a conductive material (silicon / carbon composite material) will be described as an example. Will be further explained.

【0028】負極は、例えば、ケイ素/炭素複合体材料
と、フッ素樹脂からなるバインダとに溶媒を混合してス
ラリーとし、このスラリーを発泡状金属のシート又は繊
維状金属焼結体のマットに塗工した後に乾燥して得るこ
とができる。次いで、プレス等で圧縮し、厚さと空隙率
を調整する。また、フッ素樹脂と架橋剤とをトルエン、
キシレン等の有機溶媒に溶解し、これにケイ素/炭素複
合体材料の粉末を混合してスラリーとし、このスラリー
を発泡状金属のシートや繊維状金属焼結体のマットに塗
工し、50〜100℃で乾燥して溶剤を除去し、100
〜180℃で加熱しつつプレス等で圧縮して硬化させて
もよい。
For the negative electrode, for example, a solvent is mixed with a silicon / carbon composite material and a binder made of a fluororesin to prepare a slurry, and the slurry is applied to a foamed metal sheet or a mat of a fibrous metal sintered body. It can be obtained by drying after processing. Then, it is compressed with a press or the like to adjust the thickness and the porosity. Further, the fluororesin and the cross-linking agent are toluene,
It is dissolved in an organic solvent such as xylene, and a powder of a silicon / carbon composite material is mixed with this to make a slurry, which is applied to a foam metal sheet or a mat of fibrous metal sintered body, Remove the solvent by drying at 100 ℃
You may compress and harden it with a press etc., heating at -180 degreeC.

【0029】負極中では、発泡状金属又は繊維状金属焼
結体とバインダとが負極材料を縛りつけているので、ケ
イ素/炭素複合体材料が充放電サイクルの進行によって
膨張・収縮を繰り返すことがあっても、ケイ素/炭素複
合体材料の粒子間の接触が保持されて負極の内部抵抗の
増大が抑制され、また、導電性ネットワークが崩壊する
ことがなく電池の初期容量を保持できる。
In the negative electrode, since the foamed metal or fibrous metal sintered body and the binder bind the negative electrode material, the silicon / carbon composite material may repeatedly expand and contract as the charge / discharge cycle progresses. However, the contact between the particles of the silicon / carbon composite material is maintained, the increase in the internal resistance of the negative electrode is suppressed, and the initial capacity of the battery can be maintained without the conductive network collapsing.

【0030】また、この負極は、プレス等で好ましくは
9.8〜980MPaの圧力で圧縮してその空隙率を調
整することができるので、負極の体積当たりの容量を大
きくできる。また、負極中に適量の隙間を確保して電解
液を容易に負極内に含浸させることができ、リチウムイ
オンの拡散に必要な経路が確保されるので、大電流を流
したときにも負極活物質の利用率が高い。また、充電時
に複合体粒子が膨張しても、その空隙が粒子膨張体積分
を埋め合わせることが出来るため、電極の膨張を抑制で
きる。
Since the negative electrode can be compressed with a press or the like at a pressure of preferably 9.8 to 980 MPa to adjust the porosity, the capacity per volume of the negative electrode can be increased. In addition, since an appropriate amount of gap can be secured in the negative electrode to allow the electrolytic solution to be easily impregnated into the negative electrode, and a route necessary for diffusion of lithium ions can be secured, the negative electrode active even when a large current is passed. High utilization rate of substances. Further, even if the composite particles expand during charging, the voids can make up for the particle expansion volume, so that the expansion of the electrode can be suppressed.

【0031】このように、負極の厚さと空隙率の調整
は、発泡状金属又は繊維状金属焼結体にバインダを含む
ケイ素/炭素複合体材料を充填したものをプレス等で圧
縮して行うが、その厚さは0.1mm以上が好ましく、
より好ましくは0.15mm以上である。厚さが0.1
mm未満であると、電極材料の担持量が少なく電池容量
が小さくなる。また、余りに厚いと、圧縮による空隙率
の調整がしにくいなど、実用性が劣るため10mm以下
とするのが好ましい。この場合、バインダの融点以上に
加熱しつつプレスすると、負極の強度が大きくなって電
池特性が顕著に向上する。また、空隙率が小さいと電解
液の含浸が難しくなり、電解液を経由するイオン伝導性
が低下し、負極材料の働きが制限されて電池容量が低下
するので、空隙率は20〜50%、好ましくは25〜4
0%とするのが好ましい。空隙率は、空隙の占める体積
÷見かけの体積×100で表され、空隙の占める体積は
水銀圧入法で測定される。
As described above, the thickness and porosity of the negative electrode are adjusted by compressing a foamed metal or fibrous metal sintered body filled with a silicon / carbon composite material containing a binder with a press or the like. , Its thickness is preferably 0.1 mm or more,
More preferably, it is 0.15 mm or more. Thickness is 0.1
When it is less than mm, the amount of electrode material carried is small and the battery capacity is small. Further, if it is too thick, it is difficult to adjust the porosity by compression. In this case, if the material is pressed while being heated to the melting point of the binder or higher, the strength of the negative electrode is increased and the battery characteristics are remarkably improved. Further, if the porosity is small, impregnation with the electrolytic solution becomes difficult, the ionic conductivity via the electrolytic solution decreases, the function of the negative electrode material is limited, and the battery capacity decreases, so that the porosity is 20 to 50%. Preferably 25 to 4
It is preferably 0%. The porosity is represented by (volume occupied by voids) / (apparent volume) × 100, and the volume occupied by voids is measured by the mercury porosimetry.

【0032】上記発泡状金属は、連続した開孔を有する
海綿状の多孔体であることが好ましい。これにより、内
部抵抗が小さくなり、充放電サイクルを繰り返しても導
電性ネットワークが維持されるため内部抵抗の増大も防
止でき、さらに電極の膨張も抑制できる。また、発泡状
金属の開孔径は、10μm〜1.0mmであることが好
ましい。開孔径が10μm以上であると、ケイ素/炭素
複合体材料とバインダからなる混合物の開孔内への充填
が容易となり、また1.0mm以下であると、集電体で
ある発泡状金属と負極材料であるリチウムを吸蔵させた
ケイ素/炭素複合体材料との間の平均距離が大きくなら
ず、充放電サイクルに伴う導電性ネットワークの維持が
容易となって、容量低下や電極の内部抵抗増加を引き起
こすことがなくなる。
The foamed metal is preferably a spongy porous body having continuous openings. As a result, the internal resistance becomes small, and the conductive network is maintained even after repeated charge and discharge cycles, so that the internal resistance can be prevented from increasing and the expansion of the electrode can be suppressed. Further, the open pore diameter of the foam metal is preferably 10 μm to 1.0 mm. When the opening diameter is 10 μm or more, the mixture of the silicon / carbon composite material and the binder can be easily filled into the opening, and when the opening diameter is 1.0 mm or less, the foamed metal and the negative electrode as the current collector. The average distance between the material and the silicon / carbon composite material in which lithium is occluded does not become large, which makes it easier to maintain the conductive network with charge / discharge cycles, resulting in reduced capacity and increased internal resistance of the electrode. It will not cause.

【0033】また、発泡状金属の開孔率は、70〜99
%であるのが好ましい。開孔率が70%以上であると、
開孔内に充填しうるケイ素/炭素複合体材料とバインダ
とからなる負極材料を多く充填でき、電池の容量を十分
確保できる。また、開孔率が99%以下であると、発泡
状金属の強度が小さくならず、負極材料を縛りつける力
を維持できるからである。
The porosity of the foam metal is 70 to 99.
% Is preferred. When the open area ratio is 70% or more,
A large amount of the negative electrode material composed of the silicon / carbon composite material and the binder that can be filled in the openings can be filled, and the capacity of the battery can be sufficiently secured. Further, when the porosity is 99% or less, the strength of the foamed metal does not decrease and the force for binding the negative electrode material can be maintained.

【0034】上記発泡状金属の開孔径の場合と同じ理由
によって、繊維状金属焼結体の繊維径(直径)は、1〜
50μmであることが好ましい。繊維状金属焼結体とし
ては、短繊維又は長繊維の焼結体が使用される。その開
孔率は、発泡状金属の場合と同じ理由によって、50〜
95%のものを使用するのが好ましい。
For the same reason as in the case of the opening diameter of the foamed metal, the fiber diameter (diameter) of the fibrous metal sintered body is 1 to
It is preferably 50 μm. As the fibrous metal sintered body, a sintered body of short fibers or long fibers is used. The porosity is 50 to 50 for the same reason as that of the foamed metal.
It is preferable to use 95%.

【0035】本発明の負極に使用される発泡状金属や繊
維状金属焼結体の材質は、ニッケル、銅、ニッケル−銅
合金、ニッケル−鉄−クロム合金などのリチウムに対し
て耐食性を有する金属が好ましく使用される。
The material of the foamed metal or fibrous metal sintered body used for the negative electrode of the present invention is a metal having corrosion resistance to lithium such as nickel, copper, nickel-copper alloy, nickel-iron-chromium alloy. Is preferably used.

【0036】リチウムと合金を形成することが可能な元
素を含有する材料と導電性材料とからなる複合体はバイ
ンダと混合して負極用合剤とすることが出来るが、さら
に負極用の導電材を混合してもよい。合剤を作製する際
の負極用導電材は、構成された非水電解質二次電池にお
いて化学変化を起こさない電子伝導性材料であれば特に
限定されない。通常、天然黒鉛(鱗状黒鉛、鱗片状黒
鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、ア
セチレンブラック、ケッチェンブラック、炭素繊維、金
属粉(銅粉、ニッケル粉、アルミニウム粉、銀粉な
ど)、金属繊維、又は特開昭59−20971号公報に
記載のポリフェニレン誘導体などの導電性材料を使用で
きる。これらの導電性材料は単独でも使用できるが、複
数の導電性材料を混合して使用することもできる。
A composite of a material containing an element capable of forming an alloy with lithium and a conductive material can be mixed with a binder to form a mixture for the negative electrode. May be mixed. The conductive material for the negative electrode when producing the mixture is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the constructed non-aqueous electrolyte secondary battery. Usually, natural graphite (scaly graphite, flake graphite, earth graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, metal powder (copper powder, nickel powder, aluminum powder, silver powder, etc.), A metal fiber or a conductive material such as a polyphenylene derivative described in JP-A-59-20971 can be used. These conductive materials can be used alone, or a plurality of conductive materials can be mixed and used.

【0037】上記バインダとしては、熱可塑性樹脂、熱
硬化性樹脂のいずれを用いてもよい。バインダには、通
常、でんぷん、ポリビニルアルコール、カルボキシメチ
ルセルロース、ヒドロキシプロピルセルロース、再生セ
ルロース、ジアセチルセルロース、ポリビニルクロリ
ド、ポリビニルピロリドン、ポリテトラフルオロエチレ
ン(PTFE)、ポリフッ化ビニリデン(PVDF)、
ポリエチレン、ポリプロピレン、エチレン−プロピレン
−ジエンターポリマー(EPDM)、スルホン化EPD
M、スチレン−ブタジエンゴム、ブタジエンゴム、ポリ
ブタジエン、フッ素ゴム、ポリエチレンオキシド、など
の多糖類、熱可塑性樹脂、ゴム弾性を有するポリマーな
どやこれらの変成体のうち少なくとも1種又はこれらの
混合物を用いることができる。特に、電解液の溶媒に溶
けず、電気化学的に非水電解質二次電池が機能する条件
下で安定なフッ素樹脂を用いるのが好ましい。フッ素樹
脂は耐熱性と耐薬品性に優れており、フッ素樹脂をバイ
ンダに使用すると、負極材料粒子間の接触の保持と、負
極材料の集電体からの脱落防止の効果が向上する。バイ
ンダに使用するフッ素樹脂は、ポリテトラフルオロエチ
レン、ポリフッ化ビニリデンの如き、有機溶剤に分散又
は可溶なものを使用するのが好ましい。この場合、バイ
ンダを有機溶剤に分散又は溶解させ、これと負極材料と
を混合してスラリーを作り、このスラリーを集電体に充
填するのが好ましい。なお、フッ素樹脂としては、硬化
剤(架橋剤等)とともに使用するものも好ましく使用で
きる。
As the binder, either a thermoplastic resin or a thermosetting resin may be used. The binder is usually starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF),
Polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPD
M, styrene-butadiene rubber, butadiene rubber, polybutadiene, fluororubber, polyethylene oxide, and other polysaccharides, thermoplastic resins, polymers having rubber elasticity, and the like, and at least one of these modified substances or a mixture thereof. You can In particular, it is preferable to use a fluororesin that does not dissolve in the solvent of the electrolytic solution and is stable under the condition that the non-aqueous electrolyte secondary battery functions electrochemically. The fluororesin has excellent heat resistance and chemical resistance, and when the fluororesin is used as a binder, the effects of maintaining contact between the negative electrode material particles and preventing the negative electrode material from falling off from the current collector are improved. The fluororesin used for the binder is preferably one that is dispersed or soluble in an organic solvent, such as polytetrafluoroethylene or polyvinylidene fluoride. In this case, it is preferable to disperse or dissolve the binder in an organic solvent, mix this with the negative electrode material to form a slurry, and fill the current collector with the slurry. As the fluororesin, those used together with a curing agent (such as a crosslinking agent) can be preferably used.

【0038】本発明の非水電解質二次電池の正極には、
従来の塗布方式で形成した電極を用いることが出来る。
さらには、アルミニウム、チタニウム、ステンレス(S
US316又はSUS316L)を主成分とする発泡状
金属又は繊維状金属焼結体に、リチウムを吸蔵・放出可
能な正極材料と導電材との混合物をバインダとともに充
填し、その厚さが0.1mm以上で、空隙率が20〜5
0%であるものを用いてもよい。
The positive electrode of the non-aqueous electrolyte secondary battery of the present invention comprises:
An electrode formed by a conventional coating method can be used.
Furthermore, aluminum, titanium, stainless steel (S
(US316 or SUS316L) as a main component, a foamed metal or fibrous metal sintered body is filled with a mixture of a positive electrode material capable of occluding / releasing lithium and a conductive material together with a binder, and the thickness thereof is 0.1 mm or more. And the porosity is 20-5
You may use what is 0%.

【0039】また、リチウムを吸蔵・放出可能な正極材
料には、例えば、周期表の4属、5属、6属、7属、8
属、9属、10属、11属、12属、13属及び14属
に属する金属を主体とする酸化物、複合酸化物、硫化物
等のカルコゲン化物、及びこれらの金属を主体とするオ
キシハロゲン化物が使用される。また、ポリアニリン、
ポリピロール、ポリチオフェン、ポリアセン、ポリパラ
フェニレン、又はそれらの誘導体等の導電性高分子材料
も正極材料として使用できる。
The positive electrode material capable of inserting and extracting lithium includes, for example, 4th group, 5th group, 6th group, 7th group and 8th group of the periodic table.
Chalcogenides such as oxides, complex oxides, sulfides, and the like containing metals belonging to the genus, 9th group, 10th group, 11th group, 12th group, 13th group and 14th group, and oxyhalogens mainly containing these metals Compounds are used. Also, polyaniline,
A conductive polymer material such as polypyrrole, polythiophene, polyacene, polyparaphenylene, or a derivative thereof can also be used as the positive electrode material.

【0040】作動電位が高く、リチウムを吸蔵・放出す
る容量が大きい正極材料を使用することによって電池の
エネルギー密度を高くできるので、化学式がLiCoO
2、LiNiO2、LiMnO2又はLiMn24で示さ
れるスピネル型リチウムマンガン複合酸化物を正極材料
として用いるのが好ましい。
The energy density of the battery can be increased by using a positive electrode material having a high operating potential and a large capacity for occluding / releasing lithium. Therefore, the chemical formula is LiCoO 2.
It is preferable to use a spinel type lithium manganese composite oxide represented by 2 , LiNiO 2 , LiMnO 2 or LiMn 2 O 4 as the positive electrode material.

【0041】なお、正極材料の粉末の粒子径は、電極を
作製しやすく、リチウムの吸蔵と放出がスムーズに行わ
れ、かつあまり嵩高くならないように1〜80μmとす
るのが好ましい。
The particle size of the powder of the positive electrode material is preferably 1 to 80 μm so that an electrode can be easily manufactured, lithium can be occluded and desorbed smoothly, and the volume of the positive electrode material does not become too bulky.

【0042】正極は、例えば次のようにして作製され
る。即ち、正極材料の粉末、導電材及びバインダである
フッ素樹脂からなる混合物に、有機溶媒を加えてスラリ
ーとし、このスラリーを金属箔上に塗布するか、あるい
は発泡状金属のシート又は繊維状金属焼結体のマットに
塗工し、乾燥して有機溶媒を除去する。次いで、プレス
等によって圧縮し、正極の厚さと空隙率を調整する。
The positive electrode is manufactured, for example, as follows. That is, a mixture of a powder of a positive electrode material, a conductive material and a fluororesin which is a binder is mixed with an organic solvent to form a slurry, and the slurry is applied onto a metal foil, or a foamed metal sheet or a fibrous metal baking is applied. It is applied to a mat of ties and dried to remove the organic solvent. Then, it is compressed by a press or the like to adjust the thickness and porosity of the positive electrode.

【0043】なお、正極用のバインダは、前記した負極
の場合に使用したものと同様なものが好適に使用でき
る。
As the binder for the positive electrode, the same binder as that used for the negative electrode can be preferably used.

【0044】また、本発明に用いられる非水電解質は、
非水系の液状電解質、ポリマー電解質のいずれも用い得
るが、一般に電解液と呼ばれる液状電解質が多用される
ので、以下、この液状電解質に関して「電解液」という
表現で説明する。即ち、非水系の電解液は、有機溶媒
と、その有機溶媒に溶解しているリチウム塩とから構成
されている。有機溶媒としては、プロピレンカーボネー
ト、エチレンカーボネート、ブチレンカーボネート、ジ
メチルカーボネート、ジエチルカーボネート、メチルエ
チルカーボネート、γ−ブチロラクトン、1,2−ジメ
トキシエタン、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、ジメチルスルフォキシド、1,3−ジオ
キソラン、ホルムアミド、ジメチルホルムアミド、ジオ
キソラン、アセトニトリル、ニトロメタン、蟻酸メチ
ル、酢酸メチル、燐酸トリエステル、トリメトキシメタ
ン、ジオキソラン誘導体、スルホラン、3−メチル−2
−オキサゾリジノン、プロピレンカーボネート誘導体、
テトラヒドロフラン誘導体、ジエチルエーテル、1,3
−プロパンサルトン、などの非プロトン性有機溶媒の1
種又は2種以上を混合した溶媒を用いることができる。
また、その有機溶媒に溶解させるリチウム塩としては、
例えば、LiClO4、LiBF6、LiPF6、LiC
3SO3、LiCF3CO2、LiAsF6、LiSb
6、LiB10Cl10、低級脂肪族カルボン酸リチウ
ム、LiAlCl4、LiCl、LiBr、LiI、ク
ロロボランリチウム、四フェニルホウ酸リチウムなどの
1種以上の塩を用いることができる。中でも、エチレン
カーボネート又はプロピレンカーボネートと、1,2−
ジメトキシエタン及び/又はジエチルカーボネート及び
/又はメチルエチルカーボネートの混合溶媒に、LiC
lO4、LiBF6、LiPF6及び/又はLiCF3SO
3を溶解させた電解液が好ましい。
The non-aqueous electrolyte used in the present invention is
Either a non-aqueous liquid electrolyte or a polymer electrolyte can be used, but since a liquid electrolyte generally called an electrolytic solution is often used, the expression "electrolytic solution" will be described below with respect to this liquid electrolyte. That is, the non-aqueous electrolyte solution is composed of an organic solvent and a lithium salt dissolved in the organic solvent. Examples of the organic solvent include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3. -Dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2
-Oxazolidinone, propylene carbonate derivative,
Tetrahydrofuran derivative, diethyl ether, 1,3
-One of aprotic organic solvents such as propane sultone
A solvent which is a mixture of two or more species can be used.
Further, as the lithium salt to be dissolved in the organic solvent,
For example, LiClO 4 , LiBF 6 , LiPF 6 , LiC
F 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSb
One or more salts of F 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiAlCl 4 , LiCl, LiBr, LiI, lithium chloroborane, lithium tetraphenylborate and the like can be used. Among them, ethylene carbonate or propylene carbonate and 1,2-
In a mixed solvent of dimethoxyethane and / or diethyl carbonate and / or methyl ethyl carbonate, LiC
lO 4 , LiBF 6 , LiPF 6 and / or LiCF 3 SO
An electrolytic solution in which 3 is dissolved is preferable.

【0045】これらの非水電解質の電池内での使用量は
特に限定されないが、活物質の量や電池のサイズによっ
て必要量を調整することができる。支持電解質であるリ
チウム塩の濃度は特に限定されないが、電解液1dm3
当たり0.2〜3.0molが好ましい。この濃度の範
囲内であれば、イオン伝導度が低下したり、リチウム塩
が析出したりするがない。
The amount of these non-aqueous electrolytes used in the battery is not particularly limited, but the required amount can be adjusted depending on the amount of active material and the size of the battery. The concentration of the lithium salt that is the supporting electrolyte is not particularly limited, but the electrolyte solution may be 1 dm 3
It is preferably 0.2 to 3.0 mol. Within this concentration range, the ionic conductivity does not decrease and the lithium salt does not precipitate.

【0046】セパレータとしては、微孔性フィルムや不
織布などが用いられるが、その材質としては、例えば、
ポリエチレンやポリプロピレンなどのポリオレフィンの
ほか、耐熱用途として、四フッ化エチレン−パーフルオ
ロアルコキシエチレン共重合体(PFA)などのフッ素
樹脂、ポリフェニレンサルファイド(PPS)、ポリエ
ーテルエーテルケトン(PEEK)、ポリブチレンテレ
フタレート(PBT)などが挙げられる。
As the separator, a microporous film or a non-woven fabric is used, and its material is, for example,
In addition to polyolefins such as polyethylene and polypropylene, fluororesins such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polybutylene terephthalate, etc. (PBT) and the like.

【0047】本発明の非水電解質二次電池の形状は、コ
イン型、ボタン型、シート型、積層型、円筒型、偏平
型、角型、電気自動車等に用いる大型のものなどいずれ
であってもよい。
The shape of the non-aqueous electrolyte secondary battery of the present invention may be any of coin type, button type, sheet type, laminated type, cylindrical type, flat type, square type, large type used for electric vehicles and the like. Good.

【0048】[0048]

【実施例】次に、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES Next, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.

【0049】(実施例1)リチウムと合金を形成するこ
とが可能な元素を含有する材料と導電性材料とからなる
複合体を以下のようにして作製した。
Example 1 A composite of a material containing an element capable of forming an alloy with lithium and a conductive material was prepared as follows.

【0050】まず、粒子径1μmのケイ素粉末と、長さ
5μmで直径0.2μmの気相成長炭素繊維(VGC
F)と、粒子径2μmの黒鉛とを、ケイ素:VGCF:
黒鉛=60:10:30の質量比で混合し、遊星ボール
ミルを用いて転動造粒した。その結果、平均粒子径15
μmの複合体粒子が得られた。続いて、ベンゼンを炭素
源として化学蒸着処理方法(CVD)により、温度10
00℃で上記複合体粒子の表面を炭素で被覆した。被覆
した炭素量は被覆前後の質量変化から求めた。被覆後の
複合体粒子の組成は、ケイ素:VGCF:黒鉛:被覆炭
素=56:9:28:7の質量比であった。なお、この
複合体粒子の平均粒子径は約15μmであった。
First, silicon powder having a particle diameter of 1 μm and vapor-grown carbon fiber (VGC) having a length of 5 μm and a diameter of 0.2 μm are used.
F) and graphite having a particle diameter of 2 μm, silicon: VGCF:
Graphite was mixed at a mass ratio of 60:10:30, and tumbled and granulated using a planetary ball mill. As a result, the average particle size is 15
Composite particles of μm were obtained. Then, using benzene as a carbon source, a chemical vapor deposition method (CVD) is performed to obtain a temperature of 10
The surface of the composite particles was coated with carbon at 00 ° C. The amount of carbon coated was determined from the change in mass before and after coating. The composition of the composite particles after coating was a mass ratio of silicon: VGCF: graphite: coated carbon = 56: 9: 28: 7. The average particle size of the composite particles was about 15 μm.

【0051】負極は次のように作製した。まず、上記複
合体粒子を90質量部、導電材として炭素粉末を5質量
部、バインダとしてポリフッ化ビニリデンを5質量部混
合し、これをN−メチル−2−ピロリドンに分散させて
スラリーを作製した。得られたスラリーを、厚さが0.
5mmのニッケルの発泡体シート(開孔率98%、平均
孔径0.2mm)に塗工し、100℃で加熱乾燥した。
このシートを直径16mmの円形に打ち抜き、プレスで
加圧して、その厚さを0.2mmに圧縮して負極とし
た。この負極中に含まれる水分を完全に除くため、13
Paの減圧下で120℃にて24時間保持して乾燥し
た。この負極の空隙率は37%であった。
The negative electrode was manufactured as follows. First, 90 parts by mass of the composite particles, 5 parts by mass of carbon powder as a conductive material, and 5 parts by mass of polyvinylidene fluoride as a binder were mixed and dispersed in N-methyl-2-pyrrolidone to prepare a slurry. . The resulting slurry has a thickness of 0.
A 5 mm nickel foam sheet (porosity: 98%, average pore size: 0.2 mm) was applied and dried by heating at 100 ° C.
This sheet was punched into a circular shape having a diameter of 16 mm, pressed by a press, and its thickness was compressed to 0.2 mm to obtain a negative electrode. To completely remove the water contained in this negative electrode,
It was kept under reduced pressure of Pa at 120 ° C. for 24 hours and dried. The porosity of this negative electrode was 37%.

【0052】次に、正極を以下のようにして作製した。
まず、LiMnO2の粉末を100質量部、導電材とし
てカーボンブラックを5質量部、同じく導電材として鱗
片状黒鉛を5質量部、バインダとしてポリテトラフルオ
ロエチレンを0.7質量部混合し、乾燥後に直径16m
m、厚さ0.1mmのペレット状に加圧成形し、250
℃で加熱乾燥して正極とした。
Next, a positive electrode was prepared as follows.
First, 100 parts by mass of LiMnO 2 powder, 5 parts by mass of carbon black as a conductive material, 5 parts by mass of scaly graphite as a conductive material, and 0.7 parts by mass of polytetrafluoroethylene as a binder were mixed and dried. Diameter 16m
m, pressure-molded into pellets with a thickness of 0.1 mm, 250
It was heated and dried at ℃ to obtain a positive electrode.

【0053】セパレータは、ポリプロピレン製の不織布
とポリプロピレン製の微孔性フィルムからなるものを用
い、電解液は、エチレンカーボネートとエチルメチルカ
ーボネートの容積比1:1の混合溶媒に、1mol/d
3の濃度となるようにLiPF6を溶解させたものを使
用した。
A separator made of polypropylene non-woven fabric and polypropylene microporous film was used, and the electrolyte was 1 mol / d in a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 1.
It was used as obtained by dissolving LiPF 6 at a concentration of m 3.

【0054】上記負極、正極、セパレータ、電解液を用
い、図1に示すようなコイン型非水電解質二次電池を作
製した。図1に示すように、正極端子を兼ねる金属外装
缶4の開口端部を内方に締め付けることにより、金属外
装缶4と負極端子を兼ねる封口板5及びガスケット6と
で、正極1、負極2及び電解液を含浸させたセパレータ
3を密閉している。なお、電解液の電極等への含浸と電
池の封口は、露点がマイナス50℃の乾燥空気雰囲気と
したグローブボックス中で行った。
A coin type non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced using the above negative electrode, positive electrode, separator and electrolytic solution. As shown in FIG. 1, by tightening the open end of the metal outer can 4 that also serves as the positive electrode terminal inward, the metal outer can 4 and the sealing plate 5 and the gasket 6 that also serve as the negative electrode terminal make the positive electrode 1 and the negative electrode 2 And the separator 3 impregnated with the electrolytic solution is sealed. The impregnation of the electrode and the like with the electrolytic solution and the sealing of the battery were performed in a glove box in a dry air atmosphere with a dew point of -50 ° C.

【0055】上記コイン型非水電解質二次電池を用いて
以下の条件で充放電サイクル特性を調べた。即ち、充電
は電流密度を0.5mA/cm2として定電流で行い、
充電電圧が120mVに達した後、1/10の電流密度
になるまで定電圧で充電を行った。放電は電流密度0.
5mA/cm2の定電流で行い、放電終止電圧は1.5
Vとした。その結果、2サイクル目の放電容量、50サ
イクル目の容量保持率は、それぞれ1000mAh/
g、95%であった。放電容量は複合体粒子1g当たり
で算出した。また、50サイクル目の容量保持率は50
サイクル目の放電容量を2サイクル目の放電容量で割る
ことによりを算出した。
Using the coin type non-aqueous electrolyte secondary battery, the charge / discharge cycle characteristics were examined under the following conditions. That is, charging was performed at a constant current with a current density of 0.5 mA / cm 2 .
After the charging voltage reached 120 mV, charging was performed at a constant voltage until the current density became 1/10. The discharge has a current density of 0.
Performed at a constant current of 5 mA / cm 2 , the discharge end voltage is 1.5
It was set to V. As a result, the discharge capacity at the second cycle and the capacity retention rate at the 50th cycle were each 1000 mAh /
g, 95%. The discharge capacity was calculated per 1 g of the composite particles. The capacity retention rate at the 50th cycle is 50
It was calculated by dividing the discharge capacity at the second cycle by the discharge capacity at the second cycle.

【0056】さらに、上記負極と金属リチウムとを組み
合わせ、上記と同様の電解液とセパレータとを用いてモ
デルセルを作製した。このモデルセルを用いて上記負極
の厚み変化を調べた。その結果、上記と同じ条件で10
00mAh/gまで充電した際の負極の厚みは0.25
mmとなり、充電前の負極の厚み0.2mmから計算す
ると、負極の厚みの膨張率は125%であった。
Further, a model cell was prepared by combining the above negative electrode and metallic lithium and using the same electrolytic solution and separator as above. Using this model cell, the change in thickness of the negative electrode was investigated. As a result, 10
The thickness of the negative electrode when charged to 00 mAh / g is 0.25.
mm, and the coefficient of expansion of the thickness of the negative electrode was 125% when calculated from the thickness of the negative electrode before charging of 0.2 mm.

【0057】(実施例2)ニッケルの発泡体シートに代
えて、プレス前の厚さが0.5mmの繊維状ニッケル焼
結体マット(開孔率91%、繊維径20μm)を用いた
こと以外は、実施例1と同様にしてコイン型非水電解質
二次電池とモデルセルを作製し、同様に充放電サイクル
特性と負極の厚み変化を調べた。
(Example 2) In place of the nickel foam sheet, a fibrous nickel sintered mat having a thickness of 0.5 mm before pressing (aperture ratio 91%, fiber diameter 20 μm) was used. In the same manner as in Example 1, a coin type non-aqueous electrolyte secondary battery and a model cell were produced, and charge / discharge cycle characteristics and changes in the thickness of the negative electrode were similarly examined.

【0058】このコイン型非水電解質二次電池の2サイ
クル目の放電容量、50サイクル目の容量保持率はそれ
ぞれ1000mAh/g、85%であった。また、この
モデルセルを用いた負極の充電前後の厚み変化は、10
00mAh/gまで充電した際の負極の厚みは0.3m
mとなり、充電前の負極の厚み0.2mmから計算する
と、負極の厚みの膨張率は150%であった。
The discharge capacity at the second cycle and the capacity retention rate at the 50th cycle of this coin type non-aqueous electrolyte secondary battery were 1000 mAh / g and 85%, respectively. The thickness change of the negative electrode using this model cell before and after charging was 10
The thickness of the negative electrode when charged to 00 mAh / g is 0.3 m
m, and the expansion coefficient of the thickness of the negative electrode was 150% when calculated from the thickness of the negative electrode before charging of 0.2 mm.

【0059】(実施例3)ニッケルの発泡体シートに代
えて、プレス前の厚さが0.6mmの銅の発泡体シート
(開孔率96%、平均孔径0.2mm)を用いて作製し
た負極(厚み0.3mm、空隙率34%)を使用したこ
と以外は、実施例1と同様にしてコイン型非水電解質二
次電池とモデルセルを作製し、同様に充放電サイクル特
性と負極の厚み変化を調べた。
(Example 3) Instead of the nickel foam sheet, a copper foam sheet having a thickness of 0.6 mm before pressing (aperture ratio 96%, average pore diameter 0.2 mm) was used. A coin type non-aqueous electrolyte secondary battery and a model cell were produced in the same manner as in Example 1 except that a negative electrode (thickness 0.3 mm, porosity 34%) was used, and charge / discharge cycle characteristics and negative electrode The change in thickness was examined.

【0060】このコイン型非水電解質二次電池の2サイ
クル目の放電容量、50サイクル目の容量保持率はそれ
ぞれ1000mAh/g、92%であった。また、この
モデルセルを用いた負極の充電前後の厚み変化は、10
00mAh/gまで充電した際の負極の厚みは0.42
mmとなり、充電前の負極の厚み0.3mmから計算す
ると、負極の厚みの膨張率は140%であった。
The discharge capacity at the second cycle and the capacity retention rate at the 50th cycle of this coin type non-aqueous electrolyte secondary battery were 1000 mAh / g and 92%, respectively. The thickness change of the negative electrode using this model cell before and after charging was 10
The thickness of the negative electrode when charged to 00 mAh / g is 0.42.
mm, and the coefficient of expansion of the thickness of the negative electrode was 140% when calculated from the thickness of the negative electrode before charging of 0.3 mm.

【0061】(比較例1)ニッケルの発泡体シートに代
えて、厚み10μmの銅箔を用いて作製した負極(厚み
0.07mm、空隙率28%)を使用したこと以外は、
実施例1と同様にしてコイン型非水電解質二次電池とモ
デルセルを作製し、同様に充放電サイクル特性と負極の
厚み変化を調べた。
Comparative Example 1 A negative electrode (thickness 0.07 mm, porosity 28%) produced by using a copper foil having a thickness of 10 μm was used in place of the nickel foam sheet, except that a nickel foil was used.
A coin type non-aqueous electrolyte secondary battery and a model cell were prepared in the same manner as in Example 1, and charge / discharge cycle characteristics and changes in the thickness of the negative electrode were similarly examined.

【0062】このコイン型非水電解質二次電池の2サイ
クル目の放電容量、50サイクル目の容量保持率はそれ
ぞれ1000mAh/g、60%であった。また、この
モデルセルを用いた負極の充電前後の厚み変化は、10
00mAh/gまで充電した際の負極の厚みは0.16
mmとなり、充電前の負極の厚み0.07mmから計算
すると、負極の厚みの膨張率は229%であった。
The discharge capacity at the second cycle and the capacity retention rate at the 50th cycle of this coin type non-aqueous electrolyte secondary battery were 1000 mAh / g and 60%, respectively. The thickness change of the negative electrode using this model cell before and after charging was 10
The thickness of the negative electrode when charged to 00 mAh / g is 0.16
mm, and the expansion coefficient of the thickness of the negative electrode was 229% when calculated from the thickness of the negative electrode before charging of 0.07 mm.

【0063】(比較例2)実施例1で用いた複合体粒子
に代えて、粒子径5μmのケイ素粉末を用いて作製した
負極(厚さ0.2mm、空隙率36%)を使用したこと
以外は、実施例1と同様にしてコイン型非水電解質二次
電池とモデルセルを作製し、同様に充放電サイクル特性
と負極の厚み変化を調べた。
Comparative Example 2 A negative electrode (thickness 0.2 mm, porosity 36%) prepared by using silicon powder having a particle diameter of 5 μm instead of the composite particles used in Example 1 was used. In the same manner as in Example 1, a coin type non-aqueous electrolyte secondary battery and a model cell were produced, and charge / discharge cycle characteristics and changes in the thickness of the negative electrode were similarly examined.

【0064】このコイン型非水電解質二次電池の2サイ
クル目の放電容量、50サイクル目の容量保持率はそれ
ぞれ1500mAh/g、10%であった。また、この
モデルセルを用いた負極の充電前後の厚み変化は、10
00mAh/gまで充電した際の負極の厚みは0.33
mmとなり、充電前の負極の厚み0.2mmから計算す
ると、負極の厚みの膨張率は165%であった。
The discharge capacity at the second cycle and the capacity retention rate at the 50th cycle of this coin type non-aqueous electrolyte secondary battery were 1500 mAh / g and 10%, respectively. The thickness change of the negative electrode using this model cell before and after charging was 10
The thickness of the negative electrode is 0.33 when charged to 00 mAh / g.
mm, and the expansion coefficient of the thickness of the negative electrode was 165% when calculated from the thickness of the negative electrode before charging of 0.2 mm.

【0065】[0065]

【発明の効果】以上説明したように、本発明では、三次
元構造を有する集電体に、リチウムと合金を形成するこ
とが可能な元素を含有する材料と導電性材料とからなる
複合体を含む負極材料が充填された負極とすることによ
り、充放電サイクルを繰り返しても電極の膨張・収縮が
大きくならず、また電極内部の導電性ネットワークが破
壊されず、電池容量が減少したり内部抵抗が増大したり
しない高エネルギー密度の非水電解質二次電池を提供す
ることができる。
As described above, according to the present invention, a current collector having a three-dimensional structure is provided with a composite of a conductive material and a material containing an element capable of forming an alloy with lithium. By using a negative electrode filled with a negative electrode material that contains the electrode, expansion and contraction of the electrode does not increase even after repeated charge and discharge cycles, the conductive network inside the electrode is not destroyed, and the battery capacity decreases and internal resistance decreases. It is possible to provide a non-aqueous electrolyte secondary battery having a high energy density that does not increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のコイン型非水電解質二次電池の断面図
である。
FIG. 1 is a cross-sectional view of a coin type non-aqueous electrolyte secondary battery of the present invention.

【符号の説明】 1 正極 2 負極 3 セパレータ 4 金属外装缶 5 封口板 6 ガスケット[Explanation of symbols] 1 positive electrode 2 Negative electrode 3 separator 4 metal exterior cans 5 Seal plate 6 gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 篤司 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (72)発明者 青山 茂夫 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H017 AA03 CC27 CC28 EE01 EE04 EE09 5H029 AJ03 AJ06 AK04 AK05 AL01 AL06 AL18 AM03 DJ07 EJ01 EJ03 5H050 AA07 AA08 BA16 CA10 CA11 CB01 CB07 CB29 DA04 DA06 DA07 EA10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Atsushi Ueda             Hitachi Ma, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. (72) Inventor Shigeo Aoyama             Hitachi Ma, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. F-term (reference) 5H017 AA03 CC27 CC28 EE01 EE04                       EE09                 5H029 AJ03 AJ06 AK04 AK05 AL01                       AL06 AL18 AM03 DJ07 EJ01                       EJ03                 5H050 AA07 AA08 BA16 CA10 CA11                       CB01 CB07 CB29 DA04 DA06                       DA07 EA10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、非水電解質とを備えた
非水電解質二次電池であって、前記負極として、三次元
構造を有する集電体に、リチウムと合金を形成すること
が可能な元素を含有する材料と導電性材料とからなる複
合体を含む負極材料が充填された電極を用いることを特
徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein as the negative electrode, an alloy with lithium is formed on a current collector having a three-dimensional structure. A non-aqueous electrolyte secondary battery using an electrode filled with a negative electrode material containing a composite of a material containing a possible element and a conductive material.
【請求項2】 前記負極が、前記負極材料をバインダと
ともに前記集電体に充填してプレスしたものである請求
項1に記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is obtained by filling the negative electrode material together with a binder in the current collector and pressing the current collector.
【請求項3】 前記負極の厚さが0.1〜10mmであ
り、その空隙率が20〜50%である請求項1に記載の
非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode has a thickness of 0.1 to 10 mm and a porosity of 20 to 50%.
【請求項4】 前記集電体が、発泡状金属又は繊維状金
属焼結体から構成されている請求項1に記載の非水電解
質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the current collector is made of a foamed metal or a fibrous metal sintered body.
【請求項5】 前記発泡状金属又は前記繊維状金属焼結
体が、ニッケル及び銅からなる群から選ばれる少なくと
も一種を含む金属からなる請求項4に記載の非水電解質
二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 4, wherein the foamed metal or the fibrous metal sintered body is made of a metal containing at least one selected from the group consisting of nickel and copper.
【請求項6】 前記リチウムと合金を形成することが可
能な元素が、ケイ素である請求項1に記載の非水電解質
二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the element capable of forming an alloy with lithium is silicon.
【請求項7】 前記複合体が、前記リチウムと合金を形
成することが可能な元素を30〜80質量%の範囲で含
有している請求項1に記載の非水電解質二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 1, wherein the composite contains an element capable of forming an alloy with the lithium in a range of 30 to 80 mass%.
【請求項8】 前記複合体の粒子表面が、炭素で被覆さ
れている請求項1に記載の非水電解質二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the particle surface of the composite is coated with carbon.
JP2002111193A 2002-04-12 2002-04-12 Nonaqueous electrolyte secondary battery Expired - Lifetime JP3992529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111193A JP3992529B2 (en) 2002-04-12 2002-04-12 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111193A JP3992529B2 (en) 2002-04-12 2002-04-12 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003308831A true JP2003308831A (en) 2003-10-31
JP3992529B2 JP3992529B2 (en) 2007-10-17

Family

ID=29394100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111193A Expired - Lifetime JP3992529B2 (en) 2002-04-12 2002-04-12 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3992529B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259636A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2006035961A1 (en) * 2004-09-29 2006-04-06 Toshiba Battery Co., Ltd. Non-aqueous electrolyte battery
JP2006260886A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous metal anode and lithium secondary battery using the same
JP2007335283A (en) * 2006-06-16 2007-12-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008112710A (en) * 2006-10-03 2008-05-15 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2009199744A (en) * 2008-02-19 2009-09-03 Sumitomo Electric Ind Ltd Negative electrode for lithium secondary battery and its manufacturing method
JP2009266473A (en) * 2008-04-23 2009-11-12 Sony Corp Negative electrode and secondary battery
JP2014510386A (en) * 2011-04-06 2014-04-24 シャイン カンパニー リミテッド Battery having electrode structure containing metal fiber, and method for manufacturing said electrode structure
JP2019537233A (en) * 2017-05-22 2019-12-19 エルジー・ケム・リミテッド Flexible electrode, method of manufacturing the same, and secondary battery including the same
KR20210076891A (en) * 2018-05-25 2021-06-24 폭스바겐 악티엔게젤샤프트 Lithium anode and method for manufacturing the same
CN113270566A (en) * 2020-02-14 2021-08-17 本田技研工业株式会社 Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2022015692A (en) * 2020-07-09 2022-01-21 本田技研工業株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery including the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259636A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2006035961A1 (en) * 2004-09-29 2006-04-06 Toshiba Battery Co., Ltd. Non-aqueous electrolyte battery
JP2006260886A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous metal anode and lithium secondary battery using the same
JP2007335283A (en) * 2006-06-16 2007-12-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008112710A (en) * 2006-10-03 2008-05-15 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2009199744A (en) * 2008-02-19 2009-09-03 Sumitomo Electric Ind Ltd Negative electrode for lithium secondary battery and its manufacturing method
US9634330B2 (en) 2008-04-23 2017-04-25 Sony Corporation Anode and secondary battery
JP2009266473A (en) * 2008-04-23 2009-11-12 Sony Corp Negative electrode and secondary battery
KR101604132B1 (en) * 2008-04-23 2016-03-16 소니 주식회사 Anode and secondary battery
US9929409B2 (en) 2011-04-06 2018-03-27 Jenax Inc. Battery having electrode structure including metal fiber and preparation method of electrode structure
JP2014510386A (en) * 2011-04-06 2014-04-24 シャイン カンパニー リミテッド Battery having electrode structure containing metal fiber, and method for manufacturing said electrode structure
JP7027642B2 (en) 2017-05-22 2022-03-02 エルジー エナジー ソリューション リミテッド Flexible electrode, its manufacturing method and the secondary battery including it
JP2019537233A (en) * 2017-05-22 2019-12-19 エルジー・ケム・リミテッド Flexible electrode, method of manufacturing the same, and secondary battery including the same
US11196038B2 (en) 2017-05-22 2021-12-07 Lg Chem, Ltd. Flexible electrode, method for manufacturing the same and secondary battery including the same
KR20210076891A (en) * 2018-05-25 2021-06-24 폭스바겐 악티엔게젤샤프트 Lithium anode and method for manufacturing the same
KR102396605B1 (en) 2018-05-25 2022-05-12 폭스바겐 악티엔게젤샤프트 Lithium anode and method for manufacturing the same
JP7140789B2 (en) 2020-02-14 2022-09-21 本田技研工業株式会社 Electrodes for lithium-ion secondary batteries, and lithium-ion secondary batteries
JP2021128889A (en) * 2020-02-14 2021-09-02 本田技研工業株式会社 Electrode for lithium-ion secondary battery and lithium-ion secondary battery
CN113270566A (en) * 2020-02-14 2021-08-17 本田技研工业株式会社 Electrode for lithium ion secondary battery, and lithium ion secondary battery
EP3866221B1 (en) * 2020-02-14 2023-08-16 Honda Motor Co., Ltd. Lithium-ion secondary battery electrode and lithium-ion secondary battery
JP2022015692A (en) * 2020-07-09 2022-01-21 本田技研工業株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery including the same
JP7324737B2 (en) 2020-07-09 2023-08-10 本田技研工業株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with the same
US11870074B2 (en) 2020-07-09 2024-01-09 Honda Motor Co., Ltd. Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery including same

Also Published As

Publication number Publication date
JP3992529B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
JP3987853B2 (en) Electrode material and method for producing the same, non-aqueous secondary battery and method for producing the same
JP3897709B2 (en) Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5214202B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2004071305A (en) Non-aqueous electrolyte rechargeable battery
JP4374661B2 (en) Non-aqueous electrolyte secondary battery
KR20160149862A (en) Silicon oxide-carbon-polymer composite, and negative electrode active material comprising the same
KR20130094366A (en) Negative active material and lithium battery containing the material
JP3188853B2 (en) Non-aqueous electrolyte secondary battery
JP2001126733A (en) Nonaqueous electrolytic material
JP2014132529A (en) Nonaqueous electrolytic secondary battery
JP3992529B2 (en) Nonaqueous electrolyte secondary battery
JP5851801B2 (en) Lithium secondary battery
KR20110056911A (en) Positive electrode for lithium rechargeable battery, method for manufacturing the same and lithium rechargeable battery including the same
JP2018006331A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP4077294B2 (en) Nonaqueous electrolyte secondary battery
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JP3734169B2 (en) Battery negative electrode material and battery using the same
JP4686801B2 (en) Non-aqueous electrolyte secondary battery
JP4352503B2 (en) Non-aqueous electrolyte secondary battery
JP4267885B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode using the negative electrode material, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3992529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term