JP4352503B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4352503B2
JP4352503B2 JP10789799A JP10789799A JP4352503B2 JP 4352503 B2 JP4352503 B2 JP 4352503B2 JP 10789799 A JP10789799 A JP 10789799A JP 10789799 A JP10789799 A JP 10789799A JP 4352503 B2 JP4352503 B2 JP 4352503B2
Authority
JP
Japan
Prior art keywords
battery
lithium
positive electrode
negative electrode
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10789799A
Other languages
Japanese (ja)
Other versions
JP2000299125A (en
Inventor
庄一郎 渡邊
和也 岩本
敦史 上田
潤 布目
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP10789799A priority Critical patent/JP4352503B2/en
Publication of JP2000299125A publication Critical patent/JP2000299125A/en
Application granted granted Critical
Publication of JP4352503B2 publication Critical patent/JP4352503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液を用いた二次電池に関する。
【0002】
【従来の技術】
近年、AV機器あるいはパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高い。この中でリチウムを活物質とする負極を用いた非水電解液二次電池はとりわけ高電圧、高エネルギー密度を有する電池として期待が大きい。
【0003】
上述の電池では、正極活物質にLiCoOやLiNiO、LiMn等のリチウムに対して4V級の電圧を示すリチウム含有金属酸化物が用いられ、負極にはリチウムをインターカレート、デインターカレートできる炭素材料等が用いられている。
【0004】
このような非水電解液電池の電解液としては例えばエチレンカーボネート、プロピレンカーボネートなどの環状エステル、テトラヒドロフランなどの環状エーテル、ジメトキシエタンなどの非環状エーテル、炭酸ジメチルやプロピオン酸メチルなどの非環状エステルなどの非水溶媒や、これらの多元系混合溶媒が用いられている。
【0005】
近年は、携帯型情報端末機器(例えば携帯電話やノートパソコン)のみならず、電気自動車や電力貯蔵用など期待される用途は多岐にわたりその使用環境も過酷な条件が増えてきている。特に、電気自動車等の電源としての用途を考えた場合、電池は夏期には80℃以上の高温環境にさらされることとなり、このような厳しい環境温度においても高い信頼性を有する電池が要望されている。
【0006】
【発明が解決しようとする課題】
上述のようにこれらの二次電池では、高電圧においても電気分解されない非水系の有機溶媒を電解液に用いているが、高温環境下では特に正極の酸化触媒能力が高くなり、非水溶媒が正極表面上で酸化分解され、電解液の組成が変化して電解液の電導度低下による放電特性の劣化や、分解生成物(例えば炭酸ガスなど)が気体として発生し、最悪の場合電池が漏液することがあった。
【0007】
本発明はこのような課題を解決するものであり、高温で保存しても高い信頼性を有する優れた電池を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、リチウム含有酸化物を正極活物質とし、リチウムの吸蔵、放出が可能な材料を負極とし、非水電解液とを用いた非水電解液二次電池において、電解液に、1,2−ジフェニルエチレン、cis−スチルベン、trans−スチルベン、トリフェニルエチレン、p−フルオロ−cis−スチルベンで表される有機化合物を添加するものである。
【0009】
これらが、電解液の総重量中0.1〜20質量%の範囲で含有されることを特徴とする。これにより、電解液の耐酸化分解性が向上し、高温で保存しても高い信頼性を有する優れた電池を提供することができる。
【0010】
【発明の実施の形態】
電解液の酸化分解挙動について詳細に調査すると、正極活物質であるリチウム含有金属酸化物表面で酸化分解が生じるが、分解生成物は低分子化合物が多く、気体として電解液系外に放出されるか、電解液に溶解していることがわかった。
【0011】
このように酸化分解が起こっても正極活物質の活性点は被毒されることがなく高い活性を持ち続けるために電解液の酸化分解反応が継続的に進行し、電解液の枯渇や分解ガスの大量発生による内圧上昇、漏液に至っていることがわかった。本発明は電解液に酸化重合されやすい1,2−ジフェニルエチレン、cis−スチルベン、trans−スチルベン、トリフェニルエチレン、p−フルオロ−cis−スチルベンで表される有機化合物を少量電解液に添加することにより、正極表面の活性点に保護膜を生成させ、継続的な電解液溶媒の酸化分解を防止するものである。
【0012】
本発明で用いられるより好ましいリチウム含有遷移金属酸化物正極活物質としては、Li CoO 、Li NiO (米国特許第4302518号明細書)、Li MnO 、Li Co Ni1−y(特開昭63−299056号公報)、Li Co 1−f 、LiNi1−y(M=Ti,V,Mn,Fe)、LiCoNi(M=Ti,Mn,Al,Mg,Fe,Zr)、Li Mn 、Li Mn2−y (M=Na、Mg、Sc、Y、Fe、Co、Ni、Ti、Zr、Cu、Zn、Al、Pb、Sb)(ここでx=0〜1.2、y=0〜0.9、f=0.9〜0.98、z=2.0〜2.3、a+b+c=1、0≦a≦1、0≦b≦1、0≦c<1)があげられる。ここで、上記のx値は、充放電開始前の値であり、充放電により増減する。
【0013】
本発明で用いるようなリチウム含有遷移金属酸化物正極活物質はリチウムの炭酸塩、硝酸塩、酸化物又は水酸化物とコバルト、マンガンあるいはニッケル等遷移金属の炭酸塩、硝酸塩、酸化物又は水酸化物等を所望の組成に応じて粉砕混合し、焼成する方法や溶液反応により合成することができる。特に焼成法が好ましく、焼成温度は、混合された化合物の一部が分解、溶融する温度の250〜1500℃であればよい。焼成時間は1〜80時間であることが好ましい。焼成ガス雰囲気としては、空気中、酸化雰囲気、還元雰囲気いずれでもよく特に限定されない。
【0014】
本発明においては、複数の異なった正極活物質を併用してもよい。例えば、充放電時の膨張収縮挙動が反対のものを用いることができる。放電時(リチウムイオン挿入時)に膨張し、充電時(リチウムイオン放出時)に収縮する正極活物質の好ましい例はスピネル型リチウム含有マンガン酸化物であり、放電時(リチウムイオン挿入時)に収縮し、充電時(リチウムイオン放出時)に膨張する正極活物質の好ましい例はリチウム含有コバルト酸化物である。スピネル型リチウム含有マンガン酸化物の好ましい構造式としては、Li−x Mn (0≦x≦1)であり、リチウム含有コバルト酸化物の好ましい例としてはLi−x CoO(0≦x≦1)である。
【0015】
本発明における正極合剤中の導電剤は、構成された電池において、化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、フッ化カーボン、銅、ニッケル、アルミニウム、銀等の金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物あるいはポリフェニレン誘導体などの有機導電性材料などを単独又はこれらの混合物として含ませることができる。これらの導電剤のなかで、人造黒鉛、アセチレンブラック、ニッケル粉末が特に好ましい。導電剤の添加量は、特に限定されないが、1〜50質量%が好ましく、特に1〜30質量%が好ましい。カーボンやグラファイトでは、2〜15質量%が特に好ましい。
【0016】
本発明における正極合剤中の好ましい結着剤は、分解温度が300℃以上のポリマーである。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体を挙げる事ができる。特に、この中で最も好ましいのはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)である。
【0017】
正極の集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば何でもよい。例えば、材料としてステンレス鋼、ニッケル、アルミニウム、チタン、炭素などの他に、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが用いられる。特に、アルミニウムあるいはアルミニウム合金が好ましい。これらの材料の表面を酸化することも用いられる。また、表面処理により集電体表面に凹凸を付けてもよい。形状は、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群、不織布体の成形体などが用いられる。厚みは、特に限定されないが、1〜500μmのものが用いられる。
【0018】
本発明で用いられる負極材料としては、リチウム、リチウム合金、合金、金属間化合物、炭素、有機化合物、無機化合物、金属錯体、有機高分子化合物等のリチウムイオンを吸蔵・放出できる化合物であればよい。これらは単独でも、組み合わせて用いてもよい。
【0019】
リチウム合金としては、Li−Al(米国特許第4002492号明細書等),Li−Al−Mn、Li−Al−Mg、Li−Al−Sn、Li−Al−In、Li−Al−Cd、Li−Al−Te、Li−Ga(特開昭60−257072号公報)、Li−Cd,Li−In,Li−Pb,Li−Bi、Li−Mg、などが挙げられる。この場合、リチウムの含有量は10%以上であることが好ましい。
【0020】
合金、金属間化合物としては遷移金属と珪素の化合物や遷移金属とスズの化合物などが挙げられ、特にニッケルと珪素の化合物が好ましい。
【0021】
炭素質材料としては、コークス、熱分解炭素類、天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ、黒鉛化メソフェーズ小球体、気相成長炭素、ガラス状炭素類、炭素繊維(ポリアクリロニトリル系、ピッチ系、セルロース系、気相成長炭素系)、不定形炭素、有機物の焼成された炭素などが挙げられ、これらは単独でも、組み合わせて用いてもよい。なかでもメソフェーズ小球体を黒鉛化したもの、天然黒鉛、人造黒鉛等の黒鉛材料が好ましい。尚、炭素質材料には、炭素以外にも、O、B,P,N,S,SiC,BCなどの異種化合物を含んでもよい。含有量としては0〜10質量%が好ましい。
【0022】
無機化合物としては例えば、スズ化合物、珪素化合物、無機酸化物としては、例えば、チタン酸化物類、タングステン酸化物類、モリブデン酸化物類、ニオブ酸化物類、バナジウム酸化物類、鉄酸化物類等が挙げられる。また、無機カルコゲナイドとしては、例えば、硫化鉄、硫化モリブデン、硫化チタン等が挙げられる。有機高分子化合物としては、ポリチオフェン、ポリアセチレン等の高分子化合物、窒化物としては、コバルト窒化物類、銅窒化物類、ニッケル窒化物類、鉄窒化物類、マンガン窒化物類等を用いることができる。
【0023】
これらの負極材料を複合して用いても良く、例えば、炭素と合金、炭素と無機化合物などの組み合わせが考えられる。
【0024】
本発明で用いられる炭素材料の平均粒子サイズは0.1〜60μmが好ましい。より好ましくは、0.5〜30μmである。比表面積は1〜10m /gであることが好ましい。また、結晶構造上は、炭素六角平面の間隔(d002 )が3.35〜3.40ÅでC軸方向の結晶子の大きさ(LC )が100Å以上の黒鉛が好ましい。
【0025】
本発明においては正極活物質にLiが含有されているため、Liを含有しない負極材料(炭素など)を用いることができる。また、そのようなLiを含有しない負極材に、少量(負極材100質量部に対し、0.01〜10質量部程度)のLiを含有させておくと、一部のLiが電解質などと反応したりして不活性となっても、上記負極材に含有させたLiで補充することができるので好ましい。上記のように負極材にLiを含有させるには、例えば、負極材を圧着した集電体上に加熱・溶融したリチウム金属を塗布して負極材にLiを含浸させたり、あるいは予め電極群中に圧着などによりリチウム金属を貼付し、電解液中で電気化学的に負極材料中にLiをドープさせたりすればよい。
【0026】
負極合剤中の導電剤は、正極合剤中の導電剤同様、構成された電池において、化学変化を起こさない電子伝導性材料であれば何でもよい。また、負極材料に炭素質材料を用いる場合は炭素質材料自体が電子伝導性を有するので導電剤を含有してもしなくてもよい。
【0027】
負極合剤中の結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよいが、本発明において好ましい結着剤は、分解温度が300℃以上のポリマーである。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体を挙げる事ができる。より好ましくは、スチレンブタジエンゴム、ポリフッ化ビニリデンである。なかでも最も好ましいのは、スチレンブタジエンゴムである。
【0028】
負極の集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば何でもよい。例えば、材料としてステンレス鋼、ニッケル、銅、チタン、炭素などの他に、銅やステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの、Al−Cd合金などが用いられる。特に、銅あるいは銅合金が好ましい。これらの材料の表面を酸化することも用いられる。また、表面処理により集電体表面に凹凸を付けてもよい。形状は、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが用いられる。厚みは、特に限定されないが、1〜500μmのものが用いられる。
【0029】
電極合剤には、導電剤や結着剤の他、フィラー、分散剤、イオン導電剤、圧力増強剤及びその他の各種添加剤を用いることができる。フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0〜30質量%が好ましい。
【0030】
本発明における正極・負極は、正極活物質あるいは負極材料を含む合剤層の他に、集電体と合剤層の密着や導電性、サイクル特性、充放電効率の改良等の目的で導入する下塗り層や、合剤層の機械的保護や化学的保護の目的で導入する保護層などを有してもよい。この下塗り層や保護層は、結着剤や導電剤粒子、導電性を持たない粒子などを含む事ができる。
【0031】
本発明における非水電解液は、溶媒と、その溶媒に溶解するリチウム塩とから構成されている。非水溶媒としては、例えば、エチレンカーボネ−ト(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの非環状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の非環状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、ジメチルスルホキシド、N−メチルピロリドンなどの非プロトン性有機溶媒を挙げることができ、これらの一種または二種以上を混合して使用する。なかでも環状カーボネートと非環状カーボネートとの混合系または環状カーボネートと非環状カーボネート及び脂肪族カルボン酸エステルとの混合系を主成分とすることが好ましい。
【0032】
これらの溶媒に溶解するリチウム塩としては、例えばLiClO 、LiBF 、LiPF 、LiAlCl、LiSbF、LiSCN、LiCl、LiCFSO、LiCFCO、Li(CFSO、LiAsF 、LiN(CFSO、LiB10Cl10(特開昭57−74974号公報)、低級脂肪族カルボン酸リチウム(特開昭60−41773号公報)、LiCl、LiBr、LiI(特開昭60−247265号公報)、クロロボランリチウム(特開昭61−165957号公報)、四フェニルホウ酸リチウム(特開昭61−214376号公報)等を挙げることができ、これらを使用する電解液等に単独又は二種以上を組み合わせて使用することができるが、特にLiPFを含ませることがより好ましい。
【0033】
本発明における特に好ましい非水電解液は、エチレンカーボネートとエチルメチルカーボネートを少なくとも含み、リチウム塩としてLiPF を含む電解液である。これら電解液を電池内に添加する量は、特に限定されないが、正極活物質や負極材料の量や電池のサイズによって必要量用いることができる。リチウム塩の非水溶媒に対する溶解量は、特に限定されないが、0.2〜2mol/lが好ましい。特に、0.5〜1.5mol/lとすることがより好ましい。
【0034】
また、上記電解液には必要に応じて、良好な充放電特性を得る目的で、2−メチルフラン、チオフェン(特開昭61−161673号公報)、ピロール(特開平3−59963号公報)、アニリン(特開昭60−79677号公報)、クラウンエーテル、ピリジン、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、含窒素芳香族複素環化合物(特開平9−204932号公報)などの有機添加物を溶解させてもよい。この電解液は、通常、多孔性ポリマー、ガラスフィルタ、不織布などのようなセパレーターに含浸あるいは充填させて使用される。
【0035】
また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを電解液に含ませることができる。また、高温保存に適性をもたせるために電解液に炭酸ガスを含ませることができる。
【0036】
また、有機固体電解質に上記非水電解液を含有させたゲル電解質を用いることもできる。上記有機固体電解質とは、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンなどやこれらの誘導体、混合物、複合体などの高分子マトリックス材料が有効である。特に、フッ化ビニリデンとヘキサフルオロプロピレンの共重合体やポリフッ化ビニリデンとポリエチレンオキサイドの混合物が好ましい。
【0037】
セパレーターとしては、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性の微多孔性薄膜が用いられる。また、80℃以上で孔を閉塞し、抵抗をあげる機能を持つことが好ましい。耐有機溶剤性と疎水性からポリプロピレン、ポリエチレンなどの単独又は組み合わせたオレフィン系ポリマーあるいはガラス繊維などからつくられたシートや不織布が用いられる。セパレーターの孔径は、電極シートより脱離した活物質、結着剤、導電剤が透過しない範囲であることが望ましく、例えば、0.01〜1μmであるものが望ましい。セパレーターの厚みは、一般的には、10〜300μmが用いられる。また、空孔率は、電子やイオンの透過性と素材や膜圧に応じて決定されるが、一般的には30〜80%であることが望ましい。
【0038】
電池の形状はコイン型、ボタン型、シート型、円筒型、偏平型、角型などいずれにも適用できる。電池の形状がコイン型やボタン型のときは、正極活物質や負極材料の合剤はペレットの形状に圧縮されて主に用いられる。そのペレットの厚みや直径は電池の大きさにより決められる。また、電池の形状がシート型、円筒型、角型のとき、正極活物質や負極材料の合剤は、集電体の上に塗布(コート)、乾燥、圧縮されて、主に用いられる。塗布方法は、一般的な方法を用いることができる。例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、キャスティング法、ディップ法及びスクイーズ法を挙げることができる。そのなかでもブレード法、ナイフ法及びエクストルージョン法が好ましい。塗布は、0.1〜100m/分の速度で実施されることが好ましい。この際、合剤の溶液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることができる。塗布は、片面ずつ逐時でも両面同時でもよい。また、塗布層を集電体の両側に設けるのが好ましく、一方の面の塗布層が合剤層を含む複数層から構成されていても良い。合剤層は、正極活物質や負極材料のようにリチウムイオンの挿入放出に係わる物質の他に、結着剤や導電材料などを含む。合剤層の他に、活物質を含まない保護層、集電体上に設けられる下塗り層、合剤層間に設けられる中間層等を有していてもよい。これらの活物質を有さない層は、導電性粒子や絶縁性粒子、結着剤を含むのが好ましい。
【0039】
また、塗布は連続でも間欠でもストライプでもよい。その塗布層の厚み、長さや巾は、電池の大きさにより決められるが、片面の塗布層の厚みは、ドライ後の圧縮された状態で、1〜2000μmが特に好ましい。
【0040】
ペレットやシートの乾燥又は脱水方法としては、一般に採用されている方法を利用することができる。特に、熱風、真空、赤外線、遠赤外線、電子線及び低湿風を単独あるいは組み合わせて用いることが好ましい。温度は80〜350℃の範囲が好ましく、特に100〜250℃の範囲が好ましい。含水量は、電池全体で2000ppm以下が好ましく、正極合剤、負極合剤や電解質ではそれぞれ500ppm以下にすることがサイクル性の点で好ましい。シートのプレス法は、一般に採用されている方法を用いることができるが、特に金型プレス法やカレンダープレス法が好ましい。プレス圧は、特に限定されないが、0.2〜3t/cmが好ましい。カレンダープレス法のプレス速度は、0.1〜50m/分が好ましい。プレス温度は、室温〜200℃が好ましい。負極シートに対する正極シートの幅の比率は、0.9〜1.1が好ましい。特に、0.95〜1.0が好ましい。正極活物質と負極材料の含有量比は、化合物種類や合剤処方により異なるため、限定できないが、容量、サイクル性、安全性の観点で最適な値に設定できる。
【0041】
尚、本発明における電極の巻回体は、必ずしも真円筒形である必要はなく、その断面が楕円である長円筒形や長方形等の角柱状の形状であっても構わない。
【0042】
本発明の好ましい組合せは、上記の化学材料や電池構成部品の好ましいものを組み合わすことが好ましいが、特に正極活物質として、Lix CoO、Lix NiO、LixMn(ここで0≦x≦1)を含み、導電剤としてアセチレンブラックも共に含む。正極集電体はステンレス鋼かアルミニウムから作られている、ネット、シート、箔、ラスなどの形状をしている。負極材料としてはリチウム金属単独ではなく、合金、炭素質材料等少なくとも一種の化合物を含むことが好ましい。負極集電体はステンレス鋼か銅から作られている、ネット、シート、箔、ラスなどの形状をしている。正極活物質あるいは負極材料とともに用いる合剤には、電子伝導剤としてアセチレンブラック、黒鉛などの炭素材料を混合してもよい。結着剤はポリフッ化ビニリデン、ポリテトラフルオロエチレンなどの含フッ素熱可塑性化合物、アクリル酸を含むポリマー、スチレンブタジエンゴム、エチレンプロピレンターポリマーなどのエラストマーを単独あるいは混合して用いることができる。また、電解液として、エチレンカーボネート、さらに、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどの環状、非環状カーボネートあるいはそれらに酢酸メチル、プロピオン酸メチルなどの脂肪族カルボン酸エステル化合物を加えた組合せ、リチウム塩として、LiPFを含むことが好ましい。さらに、セパレーターとして、ポリプロピレンあるいはポリエチレンの単独またはそれらの組合せが好ましい。電池の形状は、円筒形、偏平形、薄形、角形など、どのような形状でもよい。電池には、誤動作にも安全を確保できる手段(例、内圧開放型安全弁、電流遮断型安全弁、高温で抵抗を上げるセパレーター)を備えることが好ましい。
【0043】
【実施例】
以下、本発明の実施例を図面を参照しながら説明する。
【0044】
実験1)
図1に本実験1で用いた円筒形電池の縦断面図を示す。図において、1は耐有機電解液性のステンレス鋼板を加工した電池ケース、2は安全弁を設けた封口板、3は絶縁パッキングを示す。4は極板群であり、正極および負極がセパレーターを介して複数回渦巻状に巻回されてケース1内に収納されている。そして上記正極からは正極リ−ド5が引き出されて封口板2に接続され、負極からは負極リ−ド6が引き出されて電池ケース1の底部に接続されている。7は絶縁リングで極板群4の上下部にそれぞれ設けられている。以下正、負極板等について詳しく説明する。
【0045】
正極はLiCOとCoとを混合し、900℃で10時間焼成して合成したLiCoOの粉末の重量に対して、アセチレンブラック3%、フッ素樹脂系結着剤7%を混合し、カルボキシメチルセルロース水溶液に懸濁させて正極合剤ペーストとした。厚さ0.03mmのアルミ箔に正極合剤ペーストを塗工し、乾燥後圧延して厚さ0.18mm、幅37mm、長さ390mmの正極板とした。
【0046】
負極はメソフェーズ小球体を2800℃の高温で黒鉛化したもの(以下メソフェーズ黒鉛と称す)を用いた。このメソフェーズ黒鉛の重量に対して、スチレン/ブタジエンゴム5%を混合した後、カルボキシメチルセルロース水溶液に懸濁させてペースト状にした。そしてこの負極合剤ペーストを厚さ0.02mmのCu箔の両面に塗工し、乾燥後圧延して、厚さ0.20mm、幅39mm、長さ420mmの負極板とした。
【0047】
そして、正極板にはアルミニウム製、負極板にはニッケル製のリ−ドをそれぞれ取り付け、厚さ0.025mm、幅45mm、長さ950mmのポリプロピレン製セパレーターを介して渦巻状に巻回し、直径17.0mm、高さ50.0mmの電池ケースに納入した。電解液にはエチレンカーボネートとジエチルカーボネートとプロピオン酸メチルとを30:50:20の体積比で混合した溶媒に1mol/lのLiPFを溶解し、これに1,2−ジフェニルエチレン、cis−スチルベン、trans−スチルベン、トリフェニルエチレン、p−フルオロ−cis−スチルベン、ビフェニレン、9,10−ジヒドロフェナントレンをそれぞれ電解液総重量の2質量%添加したものを用い、これを注液した後封口し、電池1〜4および6〜8とした。
【0048】
実験2
上記有機化合物を加えていない電解液を用いた以外は、(実験1)と同様の電池を構成し、これを電池9とした。
【0049】
次に、電池1〜4と電池6〜9を各5セルずつ用意して、環境温度20℃で、充電電圧4.2V、充電時間2時間の制限電流500mAの定電圧充電を行った充電状態の電池の1Aでの放電特性を調べた後、充電状態で80℃の恒温槽に15日間保存し、保存後の電池についても同様の条件で充電、放電を行い保存後の容量回復率(保存後の容量/保存前の容量×100(%))を求めた結果を(表1)に示す。
【0050】
【表1】

Figure 0004352503
【0051】
(表1)から、電池1〜4および6〜8の保存後の容量維持率は添加剤を加えない電池9の65.2%に比べて90%以上と非常に良いことがわかった。
【0052】
以上のように、明らかに(表1)に示した添加有機化合物は効果が有ることがわかった。また、この添加有機化合物の含有量に対する検討を行った結果、0.1質量%以上で電池の保存後の容量維持率に効果が現れた。ただし、20質量%以上では逆に電池の放電特性そのものが悪くなった。これは、電解液自身の電気伝導度が減少したためと考えられる。
【0053】
【発明の効果】
以上のように本発明は、高温保存特性のよい電池を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実験1および実験2における円筒形電池の縦断面図
【符号の説明】
1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極リ−ド
6 負極リ−ド
7 絶縁リング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery using a non-aqueous electrolyte.
[0002]
[Prior art]
In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is a high demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Among these, a nonaqueous electrolyte secondary battery using a negative electrode using lithium as an active material is particularly expected as a battery having a high voltage and a high energy density.
[0003]
In the above-described battery, a lithium-containing metal oxide that exhibits a voltage of 4 V with respect to lithium, such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4, or the like is used as the positive electrode active material, and lithium is intercalated and dehydrated in the negative electrode. Carbon materials that can be intercalated are used.
[0004]
Examples of the electrolyte for such a nonaqueous electrolyte battery include cyclic esters such as ethylene carbonate and propylene carbonate, cyclic ethers such as tetrahydrofuran, acyclic ethers such as dimethoxyethane, and acyclic esters such as dimethyl carbonate and methyl propionate. These non-aqueous solvents and these multicomponent mixed solvents are used.
[0005]
In recent years, not only portable information terminal devices (for example, mobile phones and notebook personal computers) but also various applications such as electric vehicles and power storage are expected, and the use environment is increasing in severe conditions. In particular, when considering use as a power source for an electric vehicle or the like, the battery is exposed to a high temperature environment of 80 ° C. or more in the summer, and a battery having high reliability is demanded even in such severe environmental temperature. Yes.
[0006]
[Problems to be solved by the invention]
As described above, in these secondary batteries, a non-aqueous organic solvent that is not electrolyzed even at a high voltage is used as an electrolytic solution. However, the oxidation catalyst ability of the positive electrode is particularly high in a high-temperature environment, and the non-aqueous solvent is not used. It is oxidized and decomposed on the surface of the positive electrode, the composition of the electrolyte changes, and the discharge characteristics deteriorate due to the decrease in the conductivity of the electrolyte, and decomposition products (for example, carbon dioxide gas) are generated as a gas. There was a liquid.
[0007]
The present invention solves such problems, and provides an excellent battery having high reliability even when stored at a high temperature.
[0008]
[Means for Solving the Problems]
The present invention provides a non-aqueous electrolyte secondary battery using a lithium-containing oxide as a positive electrode active material, a material capable of occluding and releasing lithium as a negative electrode, and a non-aqueous electrolyte . An organic compound represented by 2-diphenylethylene, cis-stilbene, trans-stilbene, triphenylethylene, p-fluoro-cis-stilbene is added.
[0009]
These are contained in the range of 0.1 to 20% by mass in the total weight of the electrolytic solution. Thereby, the oxidative decomposition resistance of the electrolytic solution is improved, and an excellent battery having high reliability even when stored at a high temperature can be provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
When the oxidative decomposition behavior of the electrolyte is investigated in detail, oxidative decomposition occurs on the surface of the lithium-containing metal oxide, which is the positive electrode active material, but the decomposition products are mostly low-molecular compounds and are released as gases out of the electrolyte system. Or dissolved in the electrolyte.
[0011]
In this way, even if oxidative decomposition occurs, the active site of the positive electrode active material is not poisoned, and the oxidative decomposition reaction of the electrolytic solution continuously proceeds to keep high activity. It was found that the internal pressure increased due to a large amount of water, leading to leakage. In the present invention, a small amount of an organic compound represented by 1,2-diphenylethylene, cis-stilbene, trans-stilbene, triphenylethylene, p-fluoro-cis-stilbene, which is easily oxidatively polymerized in the electrolyte, is added to the electrolyte. Thus, a protective film is generated at the active site on the positive electrode surface, and continuous oxidative decomposition of the electrolyte solution solvent is prevented.
[0012]
As a more preferable lithium-containing transition metal oxide positive electrode active material used in the present invention, Li x CoO 2 , Li x NiO 2 (US Pat. No. 4,302,518), Li x MnO 2 , Li x Co y Ni 1-y O 2 (Japanese Patent Laid-Open No. 63-299056), Li x Co f V 1-f O z, Li x Ni 1- y M y O 2 (M = Ti, V, Mn, Fe), Li x Co a Ni b M c O 2 (M = Ti, Mn, Al, Mg, Fe, Zr) , Li x Mn 2 O 4 , Li x Mn 2-y M y O 4 (M = Na, Mg, Sc, Y, Fe, Co, Ni, Ti, Zr, Cu, Zn, Al, Pb, Sb) (where x = 0 to 1.2, y = 0 0.9, f = 0.9 to 0.98, z = 2.0 to 2.3, a + b + c = 1, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c <1). Here, said x value is a value before the start of charging / discharging, and it increases / decreases by charging / discharging.
[0013]
The lithium-containing transition metal oxide positive electrode active material used in the present invention includes lithium carbonate, nitrate, oxide or hydroxide and transition metal carbonate, nitrate, oxide or hydroxide such as cobalt, manganese or nickel. Etc. can be synthesized by a method of pulverizing and mixing them according to a desired composition and firing, or a solution reaction. The firing method is particularly preferable, and the firing temperature may be 250 to 1500 ° C., which is a temperature at which a part of the mixed compound is decomposed and melted. The firing time is preferably 1 to 80 hours. The firing gas atmosphere may be any of air, oxidizing atmosphere, and reducing atmosphere, and is not particularly limited.
[0014]
In the present invention, a plurality of different positive electrode active materials may be used in combination. For example, the one having the opposite expansion / contraction behavior during charging / discharging can be used. A preferred example of a positive electrode active material that expands during discharge (when lithium ions are inserted) and contracts during charge (when lithium ions are released) is spinel-type lithium-containing manganese oxide, and contracts during discharge (when lithium ions are inserted). A preferable example of the positive electrode active material that expands during charging (when lithium ions are released) is lithium-containing cobalt oxide. A preferred structural formula of the spinel-type lithium-containing manganese oxide is Li 1 -x Mn 2 O 4 (0 ≦ x ≦ 1), and a preferred example of the lithium-containing cobalt oxide is Li 1 -x CoO 2 (0 ≦ x ≦ 1).
[0015]
The conductive agent in the positive electrode mixture in the present invention may be any electronic conductive material that does not cause a chemical change in the constituted battery. For example, natural graphite (such as flake graphite), graphite such as artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon fiber, metal fiber, etc. Conductive fibers, metal powders such as carbon fluoride, copper, nickel, aluminum and silver, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide or polyphenylene derivatives An organic conductive material or the like can be contained alone or as a mixture thereof. Among these conductive agents, artificial graphite, acetylene black, and nickel powder are particularly preferable. Although the addition amount of a electrically conductive agent is not specifically limited, 1-50 mass % is preferable and 1-30 mass % is especially preferable. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
[0016]
A preferable binder in the positive electrode mixture in the present invention is a polymer having a decomposition temperature of 300 ° C. or higher. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotri Fluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer ( CTFE), vinylidene fluoride - hexafluoropropylene - tetrafluoroethylene copolymer, vinylidene fluoride - perfluoromethylvinylether - can be exemplified tetrafluoroethylene copolymer. Particularly preferred among these are polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
[0017]
The current collector for the positive electrode may be any electronic conductor that does not cause a chemical change in the constructed battery. For example, in addition to stainless steel, nickel, aluminum, titanium, carbon, etc., materials obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium, or silver are used. In particular, aluminum or an aluminum alloy is preferable. Oxidizing the surface of these materials is also used. Moreover, you may give an unevenness | corrugation to the collector surface by surface treatment. As the shape, a film, a sheet, a net, a punched product, a lath body, a porous body, a foamed body, a fiber group, a non-woven body shaped body, and the like are used in addition to the foil. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.
[0018]
The negative electrode material used in the present invention may be any compound that can occlude / release lithium ions, such as lithium, lithium alloy, alloy, intermetallic compound, carbon, organic compound, inorganic compound, metal complex, and organic polymer compound. . These may be used alone or in combination.
[0019]
Examples of lithium alloys include Li—Al (US Pat. No. 4,0024922, etc.), Li—Al—Mn, Li—Al—Mg, Li—Al—Sn, Li—Al—In, Li—Al—Cd, Li -Al-Te, Li-Ga (Japanese Patent Laid-Open No. 60-257072), Li-Cd, Li-In, Li-Pb, Li-Bi, Li-Mg, and the like. In this case, the lithium content is preferably 10% or more.
[0020]
Examples of alloys and intermetallic compounds include transition metal and silicon compounds and transition metal and tin compounds, with nickel and silicon compounds being particularly preferred.
[0021]
Carbonaceous materials include coke, pyrolytic carbons, natural graphite, artificial graphite, mesocarbon microbeads, graphitized mesophase microspheres, vapor-grown carbon, glassy carbons, carbon fibers (polyacrylonitrile-based, pitch-based, Cellulose-based, vapor-grown carbon-based), amorphous carbon, carbon obtained by firing organic matter, and the like may be used, and these may be used alone or in combination. Of these, graphite materials such as graphitized mesophase spherules, natural graphite, and artificial graphite are preferable. The carbonaceous material may contain other kinds of compounds such as O, B, P, N, S, SiC, and B 4 C in addition to carbon. As content, 0-10 mass % is preferable.
[0022]
Examples of inorganic compounds include tin compounds and silicon compounds. Examples of inorganic oxides include titanium oxides, tungsten oxides, molybdenum oxides, niobium oxides, vanadium oxides, and iron oxides. Is mentioned. Examples of inorganic chalcogenides include iron sulfide, molybdenum sulfide, and titanium sulfide. As the organic polymer compound, a polymer compound such as polythiophene or polyacetylene, and as the nitride, cobalt nitride, copper nitride, nickel nitride, iron nitride, manganese nitride, or the like may be used. it can.
[0023]
These negative electrode materials may be used in combination. For example, a combination of carbon and an alloy, carbon and an inorganic compound, or the like is conceivable.
[0024]
The average particle size of the carbon material used in the present invention is preferably 0.1 to 60 μm. More preferably, it is 0.5-30 micrometers. The specific surface area is preferably 1 to 10 m 2 / g. In terms of the crystal structure, graphite having a carbon hexagonal plane spacing (d002) of 3.35 to 3.40 mm and a crystallite size (LC) in the C-axis direction of 100 mm or more is preferable.
[0025]
In the present invention, since the positive electrode active material contains Li, a negative electrode material (carbon or the like) that does not contain Li can be used. Further, the anode material containing no such Li, (relative to anode material 100 parts by weight of 0.01 to 10 parts by weight approximately) a small amount when allowed to contain Li of the like part of Li electrolyte reaction Even if it becomes inactive, it is preferable because it can be replenished with Li contained in the negative electrode material. In order to contain Li in the negative electrode material as described above, for example, a heated and melted lithium metal is applied on a current collector to which the negative electrode material is pressure-bonded, and the negative electrode material is impregnated with Li, or in advance in the electrode group. Lithium metal may be attached to the electrode by pressure bonding or the like, and the anode material may be electrochemically doped with Li in the electrolyte.
[0026]
The conductive agent in the negative electrode mixture may be anything as long as it is an electron conductive material that does not cause a chemical change in the constructed battery, like the conductive agent in the positive electrode mixture. Further, when a carbonaceous material is used for the negative electrode material, the carbonaceous material itself has electronic conductivity, and therefore it may or may not contain a conductive agent.
[0027]
The binder in the negative electrode mixture may be either a thermoplastic resin or a thermosetting resin, but a preferable binder in the present invention is a polymer having a decomposition temperature of 300 ° C. or higher. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), fluorine Vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride- Hexafluoropropylene - tetrafluoroethylene copolymer, vinylidene fluoride - perfluoromethylvinylether - can be exemplified tetrafluoroethylene copolymer. More preferred are styrene butadiene rubber and polyvinylidene fluoride. Of these, styrene butadiene rubber is most preferable.
[0028]
As the current collector for the negative electrode, any electronic conductor that does not cause a chemical change in the constructed battery may be used. For example, in addition to stainless steel, nickel, copper, titanium, carbon and the like, materials obtained by treating the surface of copper or stainless steel with carbon, nickel, titanium, or silver, Al-Cd alloys, and the like are used. In particular, copper or a copper alloy is preferable. Oxidizing the surface of these materials is also used. Moreover, you may give an unevenness | corrugation to the collector surface by surface treatment. As the shape, a film, a sheet, a net, a punched product, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like are used in addition to the foil. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.
[0029]
In addition to the conductive agent and the binder, a filler, a dispersant, an ionic conductive agent, a pressure enhancer, and other various additives can be used for the electrode mixture. Any filler can be used as long as it is a fibrous material that does not cause a chemical change in the constructed battery. Usually, olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0-30 mass % is preferable.
[0030]
The positive electrode / negative electrode in the present invention is introduced for the purpose of improving the adhesion, conductivity, cycle characteristics, charge / discharge efficiency of the current collector and the mixture layer, in addition to the positive electrode active material or the mixture layer containing the negative electrode material. You may have an undercoat layer, a protective layer introduced for the purpose of mechanical protection or chemical protection of the mixture layer, and the like. This undercoat layer and protective layer can contain binders, conductive agent particles, non-conductive particles, and the like.
[0031]
The non-aqueous electrolyte in the present invention is composed of a solvent and a lithium salt dissolved in the solvent. Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC). ), Acyclic carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate, and γ such as γ-butyrolactone -Lactones, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), acyclic ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, Dimethyl Sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl Aprotic organic solvents such as 2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, dimethyl sulfoxide, N-methylpyrrolidone, etc. These may be used, and one or two or more of these may be used in combination. Among these, it is preferable that a mixed system of a cyclic carbonate and an acyclic carbonate or a mixed system of a cyclic carbonate, an acyclic carbonate and an aliphatic carboxylic acid ester as a main component.
[0032]
Examples of the lithium salt dissolved in these solvents include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiB 10 Cl 10 (JP 57-74974 A), lower aliphatic lithium carboxylate (JP 60-41773 A), LiCl, LiBr, LiI ( JP-A-60-247265), lithium chloroborane (JP-A 61-165957), lithium tetraphenylborate (JP-A 61-214376), and the like. It can be used singly or in combination of two or more in liquid etc., but especially LiPF 6 is more preferable.
[0033]
A particularly preferred nonaqueous electrolytic solution in the present invention is an electrolytic solution containing at least ethylene carbonate and ethyl methyl carbonate and LiPF 6 as a lithium salt. The amount of the electrolytic solution added to the battery is not particularly limited, but a necessary amount can be used depending on the amount of the positive electrode active material and the negative electrode material and the size of the battery. The amount of lithium salt dissolved in the non-aqueous solvent is not particularly limited, but is preferably 0.2 to 2 mol / l. In particular, 0.5 to 1.5 mol / l is more preferable.
[0034]
In addition, for the purpose of obtaining good charge / discharge characteristics, the above electrolyte solution may have 2-methylfuran, thiophene (JP-A 61-161673), pyrrole (JP-A 3-59963), Aniline (JP-A-60-79777), crown ether, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, nitrogen-containing aromatic heterocyclic compound (special Organic additives such as Kaihei 9-204932) may be dissolved. This electrolytic solution is usually used by impregnating or filling a separator such as a porous polymer, a glass filter, and a nonwoven fabric.
[0035]
In order to make the electrolyte nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride chloride can be contained in the electrolyte. In addition, carbon dioxide gas can be included in the electrolyte in order to make it suitable for high-temperature storage.
[0036]
Moreover, the gel electrolyte which made the organic solid electrolyte contain the said non-aqueous electrolyte can also be used. Examples of the organic solid electrolyte include polymer matrices such as polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, polyhexafluoropropylene, and derivatives, mixtures, and composites thereof. The material is effective. In particular, a copolymer of vinylidene fluoride and hexafluoropropylene or a mixture of polyvinylidene fluoride and polyethylene oxide is preferable.
[0037]
As the separator, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. Moreover, it is preferable to have a function of closing the hole at 80 ° C. or higher and increasing the resistance. Sheets and nonwoven fabrics made from olefin polymers such as polypropylene and polyethylene, glass fibers, or the like, which are resistant to organic solvents and hydrophobic, are used. The pore diameter of the separator is preferably in a range where the active material, the binder, and the conductive agent detached from the electrode sheet do not permeate, for example, 0.01 to 1 μm is desirable. The thickness of the separator is generally 10 to 300 μm. The porosity is determined according to the permeability of the electrons and ions, the material, and the film pressure, but is generally preferably 30 to 80%.
[0038]
The shape of the battery can be applied to any of coin type, button type, sheet type, cylindrical type, flat type, square type, and the like. When the shape of the battery is a coin type or a button type, the mixture of the positive electrode active material and the negative electrode material is mainly used after being compressed into a pellet shape. The thickness and diameter of the pellet are determined by the size of the battery. Moreover, when the shape of the battery is a sheet type, a cylindrical type, or a square type, the positive electrode active material and the negative electrode material mixture are mainly used after being applied (coated), dried and compressed on the current collector. As a coating method, a general method can be used. Examples thereof include a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a casting method, a dip method, and a squeeze method. Of these, blade method, knife method and extrusion method are preferred. The application is preferably performed at a speed of 0.1 to 100 m / min. Under the present circumstances, the surface state of a favorable coating layer can be obtained by selecting the said application | coating method according to the solution physical property and dryness of a mixture. The application may be performed one side at a time or simultaneously on both sides. Moreover, it is preferable to provide an application layer on both sides of the current collector, and the application layer on one surface may be composed of a plurality of layers including a mixture layer. The mixture layer includes a binder, a conductive material, and the like in addition to a material related to insertion and release of lithium ions such as a positive electrode active material and a negative electrode material. In addition to the mixture layer, it may have a protective layer containing no active material, an undercoat layer provided on the current collector, an intermediate layer provided between the mixture layers, and the like. The layer not having these active materials preferably contains conductive particles, insulating particles, and a binder.
[0039]
The application may be continuous, intermittent, or striped. The thickness, length, and width of the coating layer are determined by the size of the battery, but the thickness of the coating layer on one side is particularly preferably 1 to 2000 μm in a compressed state after drying.
[0040]
As a method for drying or dehydrating pellets and sheets, a generally adopted method can be used. In particular, it is preferable to use hot air, vacuum, infrared rays, far infrared rays, electron beams and low-humidity air alone or in combination. The temperature is preferably in the range of 80 to 350 ° C, particularly preferably in the range of 100 to 250 ° C. The water content is preferably 2000 ppm or less for the entire battery, and preferably 500 ppm or less for each of the positive electrode mixture, the negative electrode mixture, and the electrolyte in terms of cycleability. As a sheet pressing method, a generally adopted method can be used, and a mold pressing method and a calendar pressing method are particularly preferable. Although a press pressure is not specifically limited, 0.2-3 t / cm < 2 > is preferable. The press speed of the calendar press method is preferably 0.1 to 50 m / min. The pressing temperature is preferably room temperature to 200 ° C. The ratio of the width of the positive electrode sheet to the negative electrode sheet is preferably 0.9 to 1.1. In particular, 0.95-1.0 is preferable. The content ratio of the positive electrode active material and the negative electrode material varies depending on the compound type and the mixture formulation, and thus cannot be limited, but can be set to an optimal value from the viewpoint of capacity, cycle performance, and safety.
[0041]
In addition, the wound body of the electrode in the present invention does not necessarily have a true cylindrical shape, and may have a prismatic shape such as a long cylindrical shape or a rectangular shape whose cross section is an ellipse.
[0042]
The preferred combination of the present invention is preferably a combination of the above-described chemical materials and preferred battery components. In particular, Lix CoO 2 , Lix NiO 2 , LixMn 2 O 4 (where 0 ≦ x ≦ 1) and also includes acetylene black as a conductive agent. The positive electrode current collector is made of stainless steel or aluminum and has a net, sheet, foil, or lath shape. The negative electrode material preferably contains at least one compound such as an alloy or a carbonaceous material instead of lithium metal alone. The negative electrode current collector is made of stainless steel or copper and has the shape of a net, sheet, foil, lath or the like. In the mixture used together with the positive electrode active material or the negative electrode material, a carbon material such as acetylene black or graphite may be mixed as an electron conductive agent. As the binder, fluorine-containing thermoplastic compounds such as polyvinylidene fluoride and polytetrafluoroethylene, polymers containing acrylic acid, elastomers such as styrene butadiene rubber and ethylene propylene terpolymer can be used alone or in combination. In addition, as an electrolytic solution, ethylene carbonate, a cyclic or non-cyclic carbonate such as diethyl carbonate, dimethyl carbonate, or ethyl methyl carbonate, or a combination of these with an aliphatic carboxylic acid ester compound such as methyl acetate or methyl propionate, lithium As the salt, LiPF 6 is preferably included. Further, as the separator, polypropylene or polyethylene alone or a combination thereof is preferable. The shape of the battery may be any shape such as a cylindrical shape, a flat shape, a thin shape, or a square shape. It is preferable that the battery is provided with means (eg, an internal pressure relief type safety valve, a current cutoff type safety valve, a separator that increases resistance at high temperatures) that can ensure safety against malfunction.
[0043]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0044]
( Experiment 1)
FIG. 1 shows a longitudinal sectional view of the cylindrical battery used in Experiment 1 . In the figure, 1 is a battery case obtained by processing a stainless steel plate resistant to organic electrolyte, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which a positive electrode and a negative electrode are wound in a spiral shape a plurality of times via a separator and housed in the case 1. A positive electrode lead 5 is drawn from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn from the negative electrode and connected to the bottom of the battery case 1. 7 are insulating rings provided on the upper and lower portions of the electrode plate group 4, respectively. Hereinafter, the positive and negative electrode plates will be described in detail.
[0045]
The positive electrode is a mixture of Li 2 CO 3 and Co 3 O 4 and calcined at 900 ° C. for 10 hours to synthesize LiCoO 2 powder weight of 3% acetylene black and 7% fluororesin binder. The resulting mixture was suspended in an aqueous carboxymethyl cellulose solution to obtain a positive electrode mixture paste. A positive electrode mixture paste was applied to an aluminum foil having a thickness of 0.03 mm, dried and rolled to obtain a positive electrode plate having a thickness of 0.18 mm, a width of 37 mm, and a length of 390 mm.
[0046]
As the negative electrode, mesophase small spheres graphitized at a high temperature of 2800 ° C. (hereinafter referred to as mesophase graphite) were used. After mixing 5% of styrene / butadiene rubber with respect to the weight of this mesophase graphite, it was suspended in a carboxymethyl cellulose aqueous solution to form a paste. This negative electrode mixture paste was applied to both sides of a 0.02 mm thick Cu foil, dried and rolled to obtain a negative electrode plate having a thickness of 0.20 mm, a width of 39 mm, and a length of 420 mm.
[0047]
Then, an aluminum lead is attached to the positive electrode plate and a nickel lead is attached to the negative electrode plate, respectively, wound in a spiral shape through a polypropylene separator having a thickness of 0.025 mm, a width of 45 mm, and a length of 950 mm. Delivered to a battery case with a height of 0.0 mm and a height of 50.0 mm. In the electrolytic solution, 1 mol / l LiPF 6 was dissolved in a solvent in which ethylene carbonate, diethyl carbonate and methyl propionate were mixed at a volume ratio of 30:50:20, and 1,2-diphenylethylene, cis-stilbene was dissolved therein. , Trans-stilbene, triphenylethylene, p-fluoro-cis-stilbene, biphenylene, and 9,10-dihydrophenanthrene added to each 2% by weight of the total weight of the electrolyte, Batteries 1 to 4 and 6 to 8 were used.
[0048]
( Experiment 2 )
Except for using the electrolytic solution not adding the organic compound constitutes the battery similar to Experiment 1, which was used as a battery 9.
[0049]
Next, 5 batteries each of batteries 1 to 4 and batteries 6 to 9 were prepared, and charged at a constant voltage of 500 mA at a charging voltage of 4.2 V and a charging time of 2 hours at an environmental temperature of 20 ° C. After examining the discharge characteristics at 1A, the battery was stored in a constant temperature bath at 80 ° C. for 15 days in the charged state. The stored battery was charged and discharged under the same conditions, and the capacity recovery rate after storage (storage) The results of calculating the subsequent capacity / capacity before storage × 100 (%) are shown in Table 1.
[0050]
[Table 1]
Figure 0004352503
[0051]
From (Table 1), it was found that the capacity retention ratios after storage of the batteries 1 to 4 and 6 to 8 were very good at 90% or more compared to 65.2% of the battery 9 to which no additive was added.
[0052]
As described above, it was clearly found that the additive organic compounds shown in Table 1 are effective. Moreover, as a result of examining the content of the added organic compound, an effect was exhibited in the capacity retention rate after storage of the battery at 0.1% by mass or more. However, when the content was 20% by mass or more, the discharge characteristics of the battery were deteriorated. This is presumably because the electrical conductivity of the electrolyte itself decreased.
[0053]
【The invention's effect】
The present invention as described above, it is possible to provide a battery with high-temperature preserved properties.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a cylindrical battery in Experiment 1 and Experiment 2 of the present invention.
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

Claims (1)

リチウム含有酸化物を正極活物質とし、リチウムの吸蔵、放出が可能な材料を負極材料とし、環状カーボネートと非環状カーボネートとの混合系または環状カーボネートと非環状カーボネート及び脂肪族カルボン酸エステルとの混合系を主成分とする非水電解液を用い、前記非水電解液中に、1,2−ジフェニルエチレン、cis−スチルベン、trans−スチルベン、トリフェニルエチレン、p−フルオロ−cis−スチルベンからなる群から選ばれる有機化合物を少なくとも1種類含有する非水電解液二次電池であって、
前記有機化合物の総量が、前記非水電解液の総重量中0.1〜20質量%の範囲である非水電解液二次電池
A lithium-containing oxide is used as a positive electrode active material, a material capable of occluding and releasing lithium is used as a negative electrode material, and a mixed system of cyclic carbonate and acyclic carbonate or a mixture of cyclic carbonate, acyclic carbonate and aliphatic carboxylic acid ester A non-aqueous electrolyte mainly composed of a system , wherein the non-aqueous electrolyte comprises 1,2-diphenylethylene, cis-stilbene, trans-stilbene, triphenylethylene, p-fluoro-cis-stilbene and at least one non-aqueous electrolyte secondary battery containing an organic compound selected from,
The non-aqueous electrolyte secondary battery in which the total amount of the organic compound is in the range of 0.1 to 20% by mass in the total weight of the non-aqueous electrolyte .
JP10789799A 1999-04-15 1999-04-15 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4352503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10789799A JP4352503B2 (en) 1999-04-15 1999-04-15 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10789799A JP4352503B2 (en) 1999-04-15 1999-04-15 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000299125A JP2000299125A (en) 2000-10-24
JP4352503B2 true JP4352503B2 (en) 2009-10-28

Family

ID=14470850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10789799A Expired - Fee Related JP4352503B2 (en) 1999-04-15 1999-04-15 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4352503B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424257B1 (en) * 2001-10-20 2004-03-22 삼성에스디아이 주식회사 Non aqueous electrolyte for improving overcharge safety and lithium battery using the same
KR100458603B1 (en) * 2002-04-01 2004-12-03 주식회사 엘지화학 Non-aqueous electrolyte comprising new additive and lithium ion secondary battery comprising thereof
JP5073161B2 (en) * 2004-10-13 2012-11-14 三星エスディアイ株式会社 Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system
JP2007172968A (en) * 2005-12-21 2007-07-05 Sony Corp Electrolyte and battery
JP2009211941A (en) * 2008-03-04 2009-09-17 Sony Corp Nonaqueous electrolyte secondary battery
JP2009272170A (en) * 2008-05-08 2009-11-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014192146A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Nonaqueous secondary battery, and electrolytic solution for nonaqueous secondary battery use

Also Published As

Publication number Publication date
JP2000299125A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
JP3633510B2 (en) Non-aqueous electrolyte secondary battery system including a non-aqueous electrolyte secondary battery and a charge control system, and devices equipped with the same
JP4374661B2 (en) Non-aqueous electrolyte secondary battery
JP4510331B2 (en) Nonaqueous electrolyte secondary battery
KR100747382B1 (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
JP3827545B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP4836371B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery including the same
KR20060106622A (en) Negative electrode for non-aqueous secondary battery
EP1202361B1 (en) Rechargeable nonaqueous electrolytic battery
CN105428712B (en) Rechargeable lithium battery
KR100763218B1 (en) Negative electrode for non-aqueous secondary battery
KR20150116330A (en) Rechargeable lithium battery
JP2001210366A (en) Nonaqueous electrochemical device and its electrolytic solution
KR101723993B1 (en) Negative electrode for rechargeable lithium battery, method for preparing the same, and rechargeable lithium battery including the same
JP4686801B2 (en) Non-aqueous electrolyte secondary battery
JP4352503B2 (en) Non-aqueous electrolyte secondary battery
KR20220048837A (en) Positive electrode for lithium secondary battery, and rechargebaly lithium battery including the same
JP4077294B2 (en) Nonaqueous electrolyte secondary battery
JP2000357517A (en) Electrode, battery using the same, and nonaqueous electrolyte secondary battery
KR101553389B1 (en) Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same
JP2001185214A (en) Nonaqueous electrochemical device and electrolyte thereof
JP4568922B2 (en) Non-aqueous electrolyte secondary battery
JPH11224693A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees