JP4870602B2 - Method for producing lithium manganate - Google Patents

Method for producing lithium manganate Download PDF

Info

Publication number
JP4870602B2
JP4870602B2 JP2007071110A JP2007071110A JP4870602B2 JP 4870602 B2 JP4870602 B2 JP 4870602B2 JP 2007071110 A JP2007071110 A JP 2007071110A JP 2007071110 A JP2007071110 A JP 2007071110A JP 4870602 B2 JP4870602 B2 JP 4870602B2
Authority
JP
Japan
Prior art keywords
lithium manganate
particle size
average
lithium
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007071110A
Other languages
Japanese (ja)
Other versions
JP2008063213A (en
Inventor
一雄 隠岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007071110A priority Critical patent/JP4870602B2/en
Publication of JP2008063213A publication Critical patent/JP2008063213A/en
Application granted granted Critical
Publication of JP4870602B2 publication Critical patent/JP4870602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、酸化マンガンとリチウム化合物等を原料として用いるマンガン酸リチウムの製造方法、並びにその製造方法によって得られるマンガン酸リチウムに関し、特に、リチウム電池の正極活物質として好適に使用することができるマンガン酸リチウムの製造方法等に関する。   The present invention relates to a method for producing lithium manganate using manganese oxide and a lithium compound as raw materials, and lithium manganate obtained by the production method, and in particular, manganese that can be suitably used as a positive electrode active material for a lithium battery. The present invention relates to a method for producing lithium acid.

非水電解質二次電池は、従来のニッケルカドミウム二次電池などに比べて作動電圧が高く、かつエネルギー密度が高いという特徴を有し、電子機器の電源として広く利用されている。この非水電解質二次電池の正極活物質としてはLiCoO、LiNiO、LiMn等に代表されるリチウム遷移金属複合酸化物が用いられている。 Nonaqueous electrolyte secondary batteries are characterized by a higher operating voltage and higher energy density than conventional nickel cadmium secondary batteries, and are widely used as power sources for electronic devices. As the positive electrode active material of this non-aqueous electrolyte secondary battery, lithium transition metal composite oxides typified by LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like are used.

なかでもLiMnやLiMnのMnの一部が他の金属で置換されたもの(以下、マンガン酸リチウムともいう)は、構成元素であるマンガンが資源として多量に存在するため、原料が安価に入手しやすく、環境に対する負荷も少ないという利点を有する。かかる利点を活用すべく、マンガン酸リチウムを用いた非水電解質二次電池は、従来、携帯電話、ノート型パソコン、デジタルカメラ等に代表されるモバイル電子機器の用途に用いられてきている。 Among them, LiMn 2 O 4 and LiMn 2 O 4 in which part of Mn is substituted with another metal (hereinafter also referred to as lithium manganate) has a large amount of constituent element manganese as a resource, It has the advantage that raw materials are easily available at low cost and have a low environmental impact. In order to take advantage of this advantage, nonaqueous electrolyte secondary batteries using lithium manganate have been used for mobile electronic devices such as mobile phones, notebook computers, digital cameras and the like.

近年、モバイル電子機器は、さまざまな機能が付与される等の高機能化や、高温や低温での使用等のため、要求特性がより一層厳しいものとなっている。また、電気自動車用バッテリー等の電源への応用が期待されており、自動車の急発進急加速に追随できる高出力高速放電が可能な電池が望まれている。   In recent years, mobile electronic devices have become more demanding due to high functionality such as various functions added and use at high and low temperatures. In addition, application to power sources such as batteries for electric vehicles is expected, and a battery capable of high-output and high-speed discharge that can follow sudden acceleration and rapid acceleration of an automobile is desired.

そのため、マンガン酸リチウムの一次粒子径を微細化し、Liのスムーズな挿入・脱離能を向上させるなどの試みがなされている。   For this reason, attempts have been made to refine the primary particle diameter of lithium manganate and improve the smooth insertion / extraction ability of Li.

例えば、下記の特許文献1には、平均一次粒子径が0.01〜0.2μmの酸化マンガンを用いて、リチウム化合物などと混合・焼成した後に粉砕して、平均一次粒子径が0.01〜0.2μm、平均二次次粒子径が0.2〜100μm(実施例で得られているのは31〜43μm)のマンガン酸リチウムを製造する方法が開示されている。   For example, in Patent Document 1 below, manganese oxide having an average primary particle diameter of 0.01 to 0.2 μm is mixed and fired with a lithium compound or the like and then pulverized to have an average primary particle diameter of 0.01. A method for producing lithium manganate having an average secondary particle diameter of 0.2 to 100 μm (31 to 43 μm is obtained in Examples) is disclosed.

また、特許文献2には、粉砕物の凝集を抑制する目的で、エタノール等の粉砕助剤を用いて、マンガン酸リチウム等を粉砕微粒化する技術が開示されており、実施例では平均粒子径が1μm程度のものが得られている。   Patent Document 2 discloses a technique of pulverizing and atomizing lithium manganate or the like using a pulverization aid such as ethanol for the purpose of suppressing aggregation of the pulverized product. Is about 1 μm.

更に、特許文献3には、マンガン酸リチウムの合成時に結晶径を微細化すべく、ゾルゲル法により溶液から微細なゲルを生成させ、それを焼成する技術が開示されている。   Further, Patent Document 3 discloses a technique for producing a fine gel from a solution by a sol-gel method and firing it in order to refine the crystal diameter during the synthesis of lithium manganate.

特開2002−104827号公報JP 2002-104827 A 特開2003−048719号公報JP 2003-048719 A 特開平10−247497号公報Japanese Patent Laid-Open No. 10-247497

しかしながら、前述した先行技術によって得られるマンガン酸リチウムは、いずれも十分な高機能化がなされていない。   However, none of the lithium manganate obtained by the prior art described above has been sufficiently enhanced.

つまり、特許文献1の製造方法では、平均一次粒子径が小さい酸化マンガンを用いるものの、焼成後の粉砕を100μm以下となるまで行うことが記載されているなど(実施例では平均二次粒子径が30μm以上)、粉砕後のマンガン酸リチウムの平均二次粒子径が大きくなっている。このため、Liの挿入・脱離能が十分とは言えず、正極活物質として使用した場合に、電池内での充放電性が不十分となる。   That is, in the production method of Patent Document 1, although manganese oxide having a small average primary particle size is used, it is described that pulverization after firing is performed to 100 μm or less (in the examples, the average secondary particle size is 30 μm or more), the average secondary particle size of the pulverized lithium manganate is increased. For this reason, it cannot be said that the insertion / extraction ability of Li is sufficient, and when used as a positive electrode active material, the charge / discharge performance in the battery becomes insufficient.

また、特許文献2に開示された製造方法では、焼成前の原料粒子の粒子径に関する記載がなく、一般的な粒子径の原料粒子を焼成した後に、粉砕助剤を添加した状態で粉砕すると(湿式粉砕に近い状態)、マンガン酸リチウムの結晶性の低下が引き起こされ、特に高速放電特性の低下につながることが判明した。   In addition, in the production method disclosed in Patent Document 2, there is no description regarding the particle size of the raw material particles before firing, and after firing the raw material particles having a general particle size, pulverization with the addition of a grinding aid ( It has been found that the crystallinity of lithium manganate is reduced, particularly in high-speed discharge characteristics, in a state close to wet grinding.

一方、特許文献3に開示されるような溶液から生成された微細なゲルを焼成する方法では、晶析反応で生成するマンガン酸リチウムの一次粒子径のコントロールが難しく、一次粒子の成長により平均一次粒子径が増大し、Liのスムーズな挿入・脱離が生じにくくなる。   On the other hand, in the method of firing a fine gel produced from a solution as disclosed in Patent Document 3, it is difficult to control the primary particle diameter of lithium manganate produced by the crystallization reaction, and the average primary is increased by the growth of primary particles. The particle diameter increases, and smooth insertion / extraction of Li is less likely to occur.

本発明が解決しようとする課題は、従来のマンガン酸リチウムに比べて、特にリチウム電池内での高速放電性に優れたマンガン酸リチウムの製造方法、並びにその製造方法によって得られるマンガン酸リチウムを提供することである。   The problem to be solved by the present invention is to provide a method for producing lithium manganate, which is superior in high-speed discharge characteristics in a lithium battery, compared with conventional lithium manganate, and lithium manganate obtained by the production method. It is to be.

本発明者らは、特定の平均凝集粒子径の酸化マンガンを用いて、焼成物を乾式粉砕して平均凝集粒子径を10μm以下とすることで、特に高速放電性に優れたマンガン酸リチウムが得られることを見出し、本発明を完成するに至った。   The inventors of the present invention obtain lithium manganate that is particularly excellent in high-speed discharge performance by dry-grinding the fired product using manganese oxide having a specific average aggregate particle diameter to make the average aggregate particle diameter 10 μm or less. As a result, the present invention has been completed.

即ち、本発明のマンガン酸リチウムの製造方法は、平均凝集粒子径が0.03〜0.5μmである酸化マンガンと少なくともリチウム化合物とを混合した状態で焼成を行う焼成工程と、得られた焼成物を乾式粉砕して平均凝集粒子径が10μm以下のマンガン酸リチウムを得る粉砕工程とを含むものである。なお、本発明における各種の物性値は、具体的には実施例に記載の方法で測定される値である。   That is, the method for producing lithium manganate of the present invention includes a firing step of firing in a state in which manganese oxide having an average aggregate particle size of 0.03 to 0.5 μm and at least a lithium compound are mixed, and the obtained firing And crushing to obtain lithium manganate having an average agglomerated particle size of 10 μm or less by dry pulverization of the product. In addition, the various physical-property values in this invention are values specifically measured by the method as described in an Example.

本発明のマンガン酸リチウムの製造方法によれば、従来のマンガン酸リチウムに比べて、特にリチウム電池内での高速放電特性に優れたマンガン酸リチウムの製造方法、並びにその製造方法によって得られるマンガン酸リチウムを提供することができる。   According to the method for producing lithium manganate of the present invention, compared with conventional lithium manganate, a method for producing lithium manganate superior in high-speed discharge characteristics particularly in a lithium battery, and manganic acid obtained by the production method Lithium can be provided.

本発明で得られるマンガン酸リチウム(厳密には「リチウム・含マンガン金属複合酸化物」を指す)は、一般式LiMn2−x(但し、Mは、Mn以外の元素(置換元素)を示し、xは、組成式中におけるMの構成比(置換割合)を示す)で表され、Mn以外の置換元素を含むものでもよい。 The lithium manganate obtained in the present invention (strictly refers to “lithium / manganese-containing metal composite oxide”) has a general formula of LiMn 2−x M x O 4 (where M is an element other than Mn (substitution element) X represents a constituent ratio (substitution ratio) of M in the composition formula), and may contain a substitution element other than Mn.

置換元素Mは、マンガン酸リチウムのMnと置換し、電解液中へのMnの溶出を抑えるのに有効な元素として働き、電池性能やレート特性を改善する効果のある元素が好ましく、具体的には、Li、K、Ca、Mg、Ba、Fe、Ni、Zn、Co、Cr、Al、B、V、Si、Sn、P、Sb、Nb、Ta、Mo、及びW、F、Ti、Cu、Zr、Pb、Ga、Sc、Sr、Y、In、La、Ce、Nd、S、Biからなる群より選択される少なくとも一種の元素が好ましい。このうち特にMg、Al、Co、Fe、Cr、Ni、Zn、Bなどが好ましく用いられる。   The substitution element M is preferably an element that replaces Mn of lithium manganate and works as an effective element for suppressing elution of Mn into the electrolytic solution, and has an effect of improving battery performance and rate characteristics. Are Li, K, Ca, Mg, Ba, Fe, Ni, Zn, Co, Cr, Al, B, V, Si, Sn, P, Sb, Nb, Ta, Mo, and W, F, Ti, Cu At least one element selected from the group consisting of Zr, Pb, Ga, Sc, Sr, Y, In, La, Ce, Nd, S, and Bi is preferable. Of these, Mg, Al, Co, Fe, Cr, Ni, Zn, B and the like are particularly preferably used.

Mの量は、0≦x≦0.3であり、初期の放充電性を向上させる観点から、x=0が好ましく、繰り返し放充電性(サイクル特性)を向上する観点からは、0<x≦0.3が好ましい。   The amount of M is 0 ≦ x ≦ 0.3, preferably x = 0 from the viewpoint of improving the initial charge / discharge characteristics, and 0 <x from the viewpoint of improving the repeated charge / discharge characteristics (cycle characteristics). ≦ 0.3 is preferred.

得られるマンガン酸リチウムの結晶相は、スピネル型が好ましく、具体的には、X線回折測定により得られる主たるピークがJCPDS(Joint committee on powder diffraction standards):No.35−782に示されるLiMnと一致し又は同等であればよい。 The crystalline phase of the obtained lithium manganate is preferably a spinel type. Specifically, the main peak obtained by X-ray diffraction measurement is JCPDS (Joint committee on powder diffraction standards): No. It may be the same as or equivalent to LiMn 2 O 4 shown in 35-782.

本発明において、一次粒子とは、電子顕微鏡で観察した場合に粒子状として確認できる最小単位のものである。「平均一次粒子径」は、電子顕微鏡で観察される一次粒子の数平均粒径を指す。   In the present invention, primary particles are the smallest units that can be confirmed as particles when observed with an electron microscope. “Average primary particle diameter” refers to the number average particle diameter of primary particles observed with an electron microscope.

また、凝集粒子とは、一次粒子の集合体で、この粒子の粒径の平均値を平均凝集粒子径と称すが、平均凝集粒子径の具体的な測定方法は、後述する。   Aggregated particles are aggregates of primary particles, and the average value of the particle sizes of these particles is referred to as the average aggregated particle size. A specific method for measuring the average aggregated particle size will be described later.

本発明のマンガン酸リチウムの製造方法は、平均凝集粒子径が0.03〜0.5μmである酸化マンガン(以下「Mn源」という)と、少なくともリチウム化合物(以下「Li源」という)とを混合した状態で焼成を行う焼成工程を含むものである。   The method for producing lithium manganate according to the present invention comprises manganese oxide (hereinafter referred to as “Mn source”) having an average aggregate particle size of 0.03 to 0.5 μm and at least a lithium compound (hereinafter referred to as “Li source”). It includes a firing step of firing in a mixed state.

焼成工程は、例えば、Mn源を溶媒とともに湿式粉砕して得られたスラリーと、Li源とを混合し、溶媒除去して固体としたのち、焼成することによって実施することができる。Mn以外のM成分は、M成分を含む塩を溶媒に溶かして添加してもよいし、不溶性の場合は湿式粉砕の際に添加しても良いし、溶液または0.5μm以下の微粒子の形で、Li源を添加する際に一緒に添加してもよい。   The firing step can be carried out, for example, by mixing a slurry obtained by wet pulverizing a Mn source with a solvent and a Li source, removing the solvent to form a solid, and then firing. The M component other than Mn may be added by dissolving a salt containing the M component in a solvent, or in the case of insolubility, it may be added during wet pulverization, or in the form of a solution or fine particles of 0.5 μm or less. Then, when adding the Li source, it may be added together.

本発明のマンガン酸リチウムの平均一次粒子径は、Mn源の平均凝集粒子径により決定される傾向がある。すなわち、Mn源の一次粒子の凝集体(凝集粒子)が、焼成過程でLi源を取り込みながら焼結し、マンガン酸リチウムの一次粒子へと変化していくと考えられる。従って、Mn源の平均凝集粒子径を湿式粉砕などによりコントロールすることで、生成するマンガン酸リチウムの一次粒子をコントロールできる。   The average primary particle size of the lithium manganate of the present invention tends to be determined by the average aggregated particle size of the Mn source. That is, it is considered that the primary particle aggregates (aggregated particles) of the Mn source are sintered while taking in the Li source during the firing process, and change into primary particles of lithium manganate. Therefore, primary particles of lithium manganate to be generated can be controlled by controlling the average aggregated particle size of the Mn source by wet grinding or the like.

Mn源としては、MnO,Mn,Mn、MnOの1種または2種以上が好ましく用いられ、このうち特に、MnOやMnが好適に用いられる。 As the Mn source, one or more of MnO, Mn 3 O 4 , Mn 2 O 3 and MnO 2 are preferably used. Among these, MnO 2 and Mn 2 O 3 are particularly preferably used.

粉砕前のMn源の平均一次粒子径は、とくに制限はないが、湿式粉砕の容易さの観点から、0.01μm〜0.5μmが好ましい。また、粉砕前の平均凝集粒子径は、湿式粉砕のしやすさの観点から、0.03μm〜100μmが好ましく、0.03μm〜50μmがよりこのましい。   The average primary particle size of the Mn source before pulverization is not particularly limited, but is preferably 0.01 μm to 0.5 μm from the viewpoint of ease of wet pulverization. In addition, the average aggregate particle size before pulverization is preferably 0.03 μm to 100 μm, and more preferably 0.03 μm to 50 μm, from the viewpoint of ease of wet pulverization.

Li源としては、炭酸リチウム、水酸化リチウム、酸化リチウム、硝酸リチウム、酢酸リチウム、硫酸リチウムなどのリチウム化合物が好ましく、このうちマンガン酸リチウムの一次粒子コントロールのしやすさの観点から炭酸リチウムが好ましく用いられる。   As the Li source, lithium compounds such as lithium carbonate, lithium hydroxide, lithium oxide, lithium nitrate, lithium acetate, and lithium sulfate are preferable. Of these, lithium carbonate is preferable from the viewpoint of ease of primary particle control of lithium manganate. Used.

粉砕前のLi源の平均一次粒子径は、とくに制限はないが、Mn源との反応性観点から、0.01μm〜10μmが好ましい。また、粉砕前の平均凝集粒子径は、Mn源との反応性観点から0.03μm〜100μmが好ましく、0.03μm〜50μmがよりこのましい。   The average primary particle size of the Li source before pulverization is not particularly limited, but is preferably 0.01 μm to 10 μm from the viewpoint of reactivity with the Mn source. Moreover, the average aggregate particle diameter before pulverization is preferably 0.03 μm to 100 μm, more preferably 0.03 μm to 50 μm, from the viewpoint of reactivity with the Mn source.

本発明では、Mn源を0.03〜0.5μmの平均凝集粒子径にコントロールするが、溶媒の存在化で湿式粉砕することが好ましい。湿式粉砕は、湿式ビーズミル、ボールミル、アトライター、振動ミルなど、ボール媒体式ミルが好ましく用いられる。また、溶媒に溶解しないLi源を用いる場合は、別途Li源を湿式粉砕してもよいし、Mn源とともに粉砕してもよい。   In the present invention, the Mn source is controlled to an average aggregated particle size of 0.03 to 0.5 μm, but wet pulverization is preferably performed in the presence of a solvent. For the wet pulverization, a ball medium type mill such as a wet bead mill, a ball mill, an attritor or a vibration mill is preferably used. Moreover, when using Li source which is not melt | dissolved in a solvent, you may grind | pulverize a Li source separately with a Mn source separately.

湿式粉砕に用いる溶媒は、粉砕後蒸発乾固や噴霧乾燥によって除去する観点から、沸点が乾燥の容易さの観点から、好ましくは100℃以下、より好ましくは90℃以下、さらに好ましくは80℃以下。このような溶媒の具体的なものとして、水、エタノール、アセトン、メチルエチルケトン、トルエン、テトラヒドロフランなどが例示される。このうち、Mn源の平均凝集粒子径を精密にコントロールする観点から、Mn源を溶解させない溶媒が好ましい。例えばMn源がMnOの場合好ましい溶媒は、水やエタノールである。 The solvent used for the wet pulverization is preferably 100 ° C. or less, more preferably 90 ° C. or less, and still more preferably 80 ° C. or less from the viewpoint of removal by evaporation to dryness or spray drying after pulverization, from the viewpoint of ease of drying. . Specific examples of such a solvent include water, ethanol, acetone, methyl ethyl ketone, toluene, and tetrahydrofuran. Among these, a solvent that does not dissolve the Mn source is preferable from the viewpoint of precisely controlling the average aggregated particle size of the Mn source. For example, when the Mn source is MnO 2 , preferred solvents are water and ethanol.

湿式粉砕等による粉砕の際に、平均凝集粒子径をコントロールする方法としては、粉砕時間を調節する方法、ビーズ等の粉砕媒体の粒径を変える方法、粉砕エネルギーを調節する方法、これらを組み合わせる方法などを採用することができる。   As a method of controlling the average aggregate particle size during pulverization by wet pulverization, etc., a method of adjusting the pulverization time, a method of changing the particle size of a pulverizing medium such as beads, a method of adjusting pulverization energy, and a method of combining these methods Etc. can be adopted.

粉砕後、すなわち焼成工程で使用されるMn源の平均凝集粒子径は、マンガン酸リチウムに好適な一次粒子径を生成させる観点から0.03μm〜0.5μmであり、0.04μm〜0.4μmが好ましく、0.05〜0.3μmがより好ましい。また、焼成工程で使用されるMn源の平均一次粒子径は、同様の観点から、0.01〜0.1μmが好ましく、0.03〜0.08μmがより好ましい。   The average aggregated particle size of the Mn source used in the pulverization, that is, in the firing step is 0.03 μm to 0.5 μm and 0.04 μm to 0.4 μm from the viewpoint of generating a primary particle size suitable for lithium manganate. Is preferable, and 0.05 to 0.3 μm is more preferable. Moreover, 0.01-0.1 micrometer is preferable from the same viewpoint, and the average primary particle diameter of the Mn source used at a baking process has more preferable 0.03-0.08 micrometer.

湿式粉砕時の濃度としては、生産性の観点から固形分が1重量%以上が好ましく、2重量%以上がより好ましく、5重量%以上が特に好ましい。また、スラリーの粉砕効率の観点から好ましくは、70重量%以下、より好ましくは60重量%以下、50重量%以下が特に好ましい。   The concentration during wet pulverization is preferably 1% by weight or more, more preferably 2% by weight or more, and particularly preferably 5% by weight or more from the viewpoint of productivity. Further, from the viewpoint of the grinding efficiency of the slurry, it is preferably 70% by weight or less, more preferably 60% by weight or less, and particularly preferably 50% by weight or less.

また、湿式粉砕時の粉砕効率を高める観点から分散剤を添加することが好ましい。分散剤を使用する場合、分散剤としてはアニオン性、ノニオン性もしくはカチオン性界面活性剤、または高分子分散剤を用いることが出来るが、分散性能の点から高分子分散剤の使用が好ましい。   Moreover, it is preferable to add a dispersing agent from a viewpoint of improving the grinding efficiency at the time of wet grinding. When a dispersant is used, an anionic, nonionic or cationic surfactant, or a polymer dispersant can be used as the dispersant, but a polymer dispersant is preferably used from the viewpoint of dispersion performance.

高分子分散剤としては種々の化合物を使用することができるが、分子内に複数のカルボキシル基を有するポリカルボン酸系高分子分散剤、分子内に複数のアミノ基を有するポリアミン系高分子分散剤、分子内に複数のアミド基を有する高分子分散剤や分子内に複数の多環式芳香族化合物を含有する高分子分散剤が好ましい。   Although various compounds can be used as the polymer dispersant, a polycarboxylic acid polymer dispersant having a plurality of carboxyl groups in the molecule and a polyamine polymer dispersant having a plurality of amino groups in the molecule A polymer dispersant having a plurality of amide groups in the molecule and a polymer dispersant containing a plurality of polycyclic aromatic compounds in the molecule are preferred.

ポリアミン系高分子分散剤としてはポリアルキレンアミン、ポリアリルアミンやN,N−ジメチルアミノエチルメタクリレートなどのポリアミンにポリエステルをグラフトさせたくし型ポリマー等を挙げることができる。   Examples of the polyamine polymer dispersant include comb polymers in which a polyester is grafted to a polyamine such as polyalkyleneamine, polyallylamine, and N, N-dimethylaminoethyl methacrylate.

ポリカルボン酸系高分子分散剤としては(メタ)アクリル酸と(メタ)アクリル酸エステルとの共重合体、無水マレイン酸共重合体とアルキルアミンなどの各種アミンやアルコールのアミド化およびエステル化物、およびポリ(メタ)アクリル酸共重合体などのポリカルボン酸のポリエステルやポリアルキレングリコールをグラフトさせたさせたくし型ポリマー等を挙げることができる。   Examples of polycarboxylic acid-based polymer dispersants include copolymers of (meth) acrylic acid and (meth) acrylic acid esters, various amines such as maleic anhydride copolymer and alkylamine, and amidated and esterified products of alcohols, Examples thereof include a polycarboxylic acid polyester such as a poly (meth) acrylic acid copolymer and a comb polymer grafted with a polyalkylene glycol.

分子内に複数のアミド基を有する高分子分散剤としては縮合反応によって得られるポリアミドやポリビニルピロリドンやポリN,N−ジメチルアクリルアミドの共重合体やこれにポリエステルやポリアルキレングリコールをグラフトさせたさせたくし型ポリマー等を挙げることができる。   As a polymer dispersant having a plurality of amide groups in the molecule, polyamide, polyvinyl pyrrolidone, poly N, N-dimethylacrylamide copolymer obtained by condensation reaction or polyester or polyalkylene glycol is grafted on this. Type polymer and the like.

多環式芳香族化合物を含有する高分子分散剤としては、ピレンやキナクリドン骨格を有するビニルモノマーと各種モノマーとの共重合体を挙げることが出来る。   Examples of the polymeric dispersant containing a polycyclic aromatic compound include copolymers of vinyl monomers having a pyrene or quinacridone skeleton and various monomers.

これらの分散剤は単独で、あるいは二種以上の分散剤を混合して用いることができる。分散剤を用いる場合の好適な添加量は0.05重量%〜10重量%である。   These dispersing agents can be used alone or in admixture of two or more kinds of dispersing agents. A suitable addition amount in the case of using a dispersant is 0.05% by weight to 10% by weight.

スラリーの乾燥は、スプレードライで乾燥してもよいし、静置乾燥しても良いし、流動させながら乾燥しても良い。乾燥温度は溶媒の沸点を超える温度〜400℃の範囲が好ましい。   The slurry may be dried by spray drying, static drying, or drying while flowing. The drying temperature is preferably in the range of a temperature exceeding the boiling point of the solvent to 400 ° C.

本発明では、Li源をMn源と同様に湿式粉砕することが好ましく、不溶性の置換元素M化合物を用いる場合も、同様に湿式粉砕することが可能である。   In the present invention, the Li source is preferably wet pulverized in the same manner as the Mn source, and even when an insoluble substitutional element M compound is used, the wet pulverization can be similarly performed.

前記粉砕後、すなわち焼成工程で使用されるLi源の平均凝集粒子径は、Mn源との反応性観点から、0.03μm〜0.5μmが好ましく、0.05〜0.3μmがより好ましい。また、焼成工程で使用されるLi源の平均一次粒子径は、同様の観点から、0.01〜0.5μmが好ましく、0.03〜0.3μmがより好ましい。   From the viewpoint of reactivity with the Mn source, the average aggregate particle size of the Li source used after the pulverization, that is, in the firing step is preferably 0.03 μm to 0.5 μm, and more preferably 0.05 to 0.3 μm. Moreover, 0.01-0.5 micrometer is preferable from the same viewpoint, and the average primary particle diameter of Li source used at a baking process has more preferable 0.03-0.3 micrometer.

焼成工程では、Mn源と少なくともLi源とを混合した状態で焼成を行うが、粉砕前、粉砕のスラリー乾燥前、スラリー乾燥後の何れの時期に混合を行ってもよい。但し、混合を均一に行う観点から、粉砕後のスラリー状態で、ディスパー、ホモミキサー等の分散機を用いて、両者を混合するのが好ましい。   In the firing step, firing is performed in a state where the Mn source and at least the Li source are mixed. However, the firing may be performed at any time before grinding, before grinding slurry drying, or after slurry drying. However, from the viewpoint of uniformly mixing, it is preferable to mix the two in a slurry state after pulverization using a disperser such as a disper or a homomixer.

混合割合は、Li/Mnモル比が好ましくは0.9〜1.1、より好ましくは0.98〜1.02の範囲となるよう混合することが好ましい。なお、置換元素Mを含有させる場合、Li/(Mn+M)のモル比を、上記範囲とするのが好ましい。   The mixing ratio is preferably such that the Li / Mn molar ratio is preferably 0.9 to 1.1, more preferably 0.98 to 1.02. When the substitution element M is contained, the molar ratio of Li / (Mn + M) is preferably in the above range.

本発明では、Mn源の凝集粒子を用いて、焼成により焼結させて一次粒子を生成させる。この際、凝集粒子同士が密に接触していると、2次凝集により生成するマンガン酸リチウムの一次粒子がより大きなものへと成長してしまい、一次粒子径コントロールが困難になってしまう。このような観点から、Mn源の凝集粒子間を分断するスペーサーとしてはたらく物質を添加しても良い。   In the present invention, primary particles are produced by sintering by firing using aggregated particles of a Mn source. At this time, if the agglomerated particles are in close contact with each other, the primary particles of lithium manganate produced by the secondary agglomeration grow to a larger size, making it difficult to control the primary particle size. From such a point of view, a substance that acts as a spacer for separating the agglomerated particles of the Mn source may be added.

このような物質としては、具体的には、焼成過程で消失するものが好ましく、例えば、カーボンブラックなどの炭素材や高分子材料などが例示される。これらを原料の酸化マンガンに対して、0.5〜10重量%、好ましくは1〜8重量%スラリーに添加して混合し、乾燥することで、Mn源の凝集粒子間の緩衝材として働き、よりいっそうマンガン酸リチウムの一次粒子径コントロールが容易になる。   Specifically, such a substance that disappears during the firing process is preferable, and examples thereof include carbon materials such as carbon black and polymer materials. These are added to a slurry of 0.5 to 10% by weight, preferably 1 to 8% by weight of the raw material manganese oxide, mixed and dried to act as a buffer material between the aggregated particles of the Mn source, It becomes easier to control the primary particle size of lithium manganate.

焼成温度は、結晶性の観点から、400℃以上、600℃以上、750℃以上が好ましく、Liの蒸発による組成のずれを防止する観点から1100℃以下、より好ましくは1000℃以下、900℃以下がより好ましい。なお、焼成時間は、焼成温度にもよるが、1〜36時間程度が好ましい。   The firing temperature is preferably 400 ° C. or higher, 600 ° C. or higher, or 750 ° C. or higher from the viewpoint of crystallinity, and 1100 ° C. or lower, more preferably 1000 ° C. or lower, 900 ° C. or lower from the viewpoint of preventing compositional deviation due to Li evaporation. Is more preferable. The firing time is preferably about 1 to 36 hours, although it depends on the firing temperature.

本発明の製造方法は、以上のようにして得られた焼成物を乾式粉砕して、平均凝集粒子径が10μm以下のマンガン酸リチウムを得る粉砕工程を含むものである。マンガン酸リチウムは、好ましい平均凝集粒子径となるよう粉砕されるが、過剰な粉砕による結晶性の低下を防ぐ観点から乾式粉砕が行われる。   The production method of the present invention includes a pulverization step of dry pulverizing the fired product obtained as described above to obtain lithium manganate having an average aggregate particle diameter of 10 μm or less. Lithium manganate is pulverized to have a preferable average agglomerated particle size, but dry pulverization is performed from the viewpoint of preventing a decrease in crystallinity due to excessive pulverization.

乾式粉砕の方法としては、ロータースピードミル、ハンマーミル等の衝撃式粉砕機、乾式転動ボールミル、乾式振動ボールミル、乾式遊星ミル、媒体撹拌ミル等の乾式媒体粉砕機、ジェットミル等の気流式粉砕機、などを用いる方法が挙げられる。なかでも、適度な粉砕を行う観点から、ロータースピードミル、ハンマーミル等の衝撃式粉砕機を用いる方法が好ましい。   The dry pulverization methods include impact pulverizers such as rotor speed mills and hammer mills, dry rolling ball mills, dry vibratory ball mills, dry planetary mills, dry media pulverizers such as medium agitation mills, and airflow pulverization such as jet mills. And a method using a machine. Among these, a method using an impact pulverizer such as a rotor speed mill or a hammer mill is preferable from the viewpoint of appropriate pulverization.

乾式粉砕後のマンガン酸リチウムの平均凝集粒子径としては、Liの挿入・脱離能を向上させ、かつ塗膜の平滑性を維持する観点から、10μm以下が好ましく、8μm以下がより好ましい。また、電池の正極として、塗膜を作成する際に、バインダーの量を減らす観点から、好ましくは0.5μm以上、0.7μm以上が好ましい。   The average agglomerated particle size of lithium manganate after dry pulverization is preferably 10 μm or less, more preferably 8 μm or less, from the viewpoint of improving the insertion / desorption ability of Li and maintaining the smoothness of the coating film. Moreover, when producing a coating film as a positive electrode of a battery, from the viewpoint of reducing the amount of binder, it is preferably 0.5 μm or more and 0.7 μm or more.

また、乾式粉砕後のマンガン酸リチウムの一次粒子径は、電解液へのMnの溶出を抑制し、及び高速放電特性(レート特性)を安定に確保する観点から、0.03μm〜0.5μmが好ましく、0.05〜0.3μmがより好ましい。   Further, the primary particle size of the lithium manganate after dry pulverization is 0.03 μm to 0.5 μm from the viewpoint of suppressing elution of Mn into the electrolyte and ensuring stable high-speed discharge characteristics (rate characteristics). Preferably, 0.05 to 0.3 μm is more preferable.

乾式粉砕後のマンガン酸リチウムのBET比表面積は、電解液の浸透性の観点から、4m/g以上が好ましく、正極を作製する際のバインダー量低減の観点から40m/g以下が好ましい。即ち、4〜40m/gが好ましく、4〜20m/gがより好ましく、4〜10m/gが更に好ましい。 The BET specific surface area of the lithium manganate after dry pulverization is preferably 4 m 2 / g or more from the viewpoint of the permeability of the electrolytic solution, and preferably 40 m 2 / g or less from the viewpoint of reducing the binder amount when producing the positive electrode. That is, 4-40 m < 2 > / g is preferable, 4-20 m < 2 > / g is more preferable, and 4-10 m < 2 > / g is still more preferable.

また、乾式粉砕後のマンガン酸リチウムは、Liイオンのスムーズな移動を達成する観点から、水銀ポロシメーターで測定するピーク細孔径が0.1〜0.5μmであることが好ましく、0.15〜0.5μmがより好ましく、0.2〜0.5μmが更に好ましい。   In addition, the lithium manganate after dry pulverization preferably has a peak pore diameter measured by a mercury porosimeter of 0.1 to 0.5 μm from the viewpoint of achieving smooth movement of Li ions, 0.5 μm is more preferable, and 0.2 to 0.5 μm is still more preferable.

更に、乾式粉砕後のマンガン酸リチウムは、Liの移動に必要なポロシティーとエネルギー密度のバランスの観点から、水銀ポロシメーターで測定した全細孔容量が、0.8ml/g〜2ml/gが好ましい。   Furthermore, the lithium manganate after dry pulverization preferably has a total pore volume measured by a mercury porosimeter of 0.8 ml / g to 2 ml / g from the viewpoint of the balance between porosity and energy density necessary for Li transfer. .

また、マンガン酸リチウムのX線回折スペクトル(XRD)ピーク最強強度は、高速放電特性の観点から、実施例記載の方法によって得られた値が22500〜50000が好ましい。   Moreover, as for the X-ray-diffraction spectrum (XRD) peak strongest intensity | strength of lithium manganate, the value obtained by the method as described in an Example has the preferable 2500-50000 from a viewpoint of a high-speed discharge characteristic.

本発明によって得られるマンガン酸リチウムは、リチウム電池の正極活物質として好適に使用することができる。マンガン酸リチウムを正極活物質として使用する場合、例えば正極活物質、カーボンブラック等の導電性物質、バインダ、及び溶剤を混合したスラリーを集電体となる金属箔に塗布・乾燥することにより正極を作製し、負極、セパレータと共に積層して、電解質液を注入することによって、リチウム電池が製造される。   The lithium manganate obtained by the present invention can be suitably used as a positive electrode active material for a lithium battery. When using lithium manganate as a positive electrode active material, for example, a positive electrode active material, a conductive material such as carbon black, a slurry mixed with a binder, and a solvent are applied to a metal foil serving as a current collector and dried. A lithium battery is manufactured by stacking together with a negative electrode and a separator and injecting an electrolyte solution.

本発明によって得られるマンガン酸リチウムを用いて作製したリチウム電池は、高速放電特性に優れたものとなる。高速放電特性は、後述する電池特性評価において、1Cに対して、60Cの放電量の割合が、好ましくは55%以上、より好ましくは60%以上が好ましい。   A lithium battery produced using the lithium manganate obtained by the present invention has excellent high-speed discharge characteristics. In the battery characteristics evaluation described later, the ratio of the discharge amount of 60C to 55C is preferably 55% or more, and more preferably 60% or more.

本発明のマンガン酸リチウムの製造方法によれば、特定の平均凝集粒子径の酸化マンガンを用いるため、焼成・粉砕後に適度な平均一次粒子径及び平均凝集粒子径のマンガン酸リチウムが得られ易く、Liのスムーズな挿入・脱離が生じ易くなると考えられる。また、このような原料粒子を用いて得られた焼成物を、乾式粉砕して平均凝集粒子径を10μm以下とするため、湿式粉砕する場合と比較して、結晶性(結晶粒度など)の低下が生じにくく、マンガン酸リチウムのLiの挿入・脱離機能が発現し易くなると考えられる。その結果、従来のマンガン酸リチウムに比べて、特にリチウム電池内での高速放電特性に優れたマンガン酸リチウムの製造方法を提供することができると考えられる。   According to the method for producing lithium manganate of the present invention, since manganese oxide having a specific average aggregated particle size is used, it is easy to obtain lithium manganate having an appropriate average primary particle size and average aggregated particle size after firing and pulverization, It is thought that smooth insertion / extraction of Li tends to occur. In addition, since the calcined product obtained using such raw material particles is dry-pulverized to have an average aggregate particle size of 10 μm or less, the crystallinity (crystal grain size, etc.) is reduced as compared with wet pulverization. It is considered that the lithium insertion / extraction function of lithium manganate is easily developed. As a result, it is considered that a method for producing lithium manganate that is excellent in high-speed discharge characteristics particularly in a lithium battery as compared with conventional lithium manganate can be provided.

本発明のマンガン酸リチウムは、以上のような本発明の製造方法により得られるものである。本発明のマンガン酸リチウムは、以上で説明したように、従来のマンガン酸リチウムに比べて、特にリチウム電池内での高速放電特性に優れたものとなる。   The lithium manganate of the present invention is obtained by the production method of the present invention as described above. As described above, the lithium manganate of the present invention is excellent in high-speed discharge characteristics particularly in a lithium battery as compared with conventional lithium manganate.

マンガン酸リチウムを用いた電池の用途は、特に限定されないが、例えばノートパソコン、電子ブックプレーヤー、DVDプレーヤー、携帯オーディオプレーヤー、ビデオムービー、携帯テレビ、携帯電話などの電子機器に使用できるほか、コードレス掃除機やコードレス電動工具、電気自動車、ハイブリットカーなどのバッテリー、燃料電池車の補助電源などの民生用機器に使用できる。このうち特に高出力が求められる自動車用バッテリーとして好適に用いられる。   The use of batteries using lithium manganate is not particularly limited. For example, it can be used for electronic devices such as notebook computers, ebook players, DVD players, portable audio players, video movies, portable TVs, and cell phones, and cordless cleaning. It can be used in consumer equipment such as machines, cordless power tools, batteries for electric cars, hybrid cars, etc., and auxiliary power sources for fuel cell cars. Among these, it is suitably used as a battery for automobiles that require particularly high output.

以下、本発明を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。   Examples and the like specifically showing the present invention will be described below. In addition, the evaluation item in an Example etc. measured as follows.

(1)平均凝集粒子径
レーザー回折/散乱式粒度分布測定装置(LA920堀場製作所製)を用い、スラリーの場合は、スラリーと同一の分散媒とし、それ以外は水を分散媒として超音波1分照射後の粒度分布を相対屈折率1.5で測定した。
(1) Average agglomerated particle diameter Using a laser diffraction / scattering particle size distribution analyzer (LA920 Horiba, Ltd.), in the case of slurry, the dispersion medium is the same as that of the slurry. The particle size distribution after irradiation was measured with a relative refractive index of 1.5.

(2)平均一次粒子径
電界放出形走査電子顕微鏡(S−4000日立製)により撮影した顕微鏡視野に、一次粒子が50〜100個入る倍率でのSEM像から、一次粒子50個を抽出し、そのフェレー(Feret)径を測定した平均値を平均一次粒子径とした。フェレー(Feret)径とは、定方向接線径であり、文献(荒井康夫著「粉体の材料化学」(株)培風館1987年9月10日初版発行第160〜161頁)に記載されているように、各粒子に対して、外接する特定方向(方向は1方向)の接線を引いた場合の接線間の距離を指す。なお、サンプルがスラリーの場合、溶媒を除去したしたものを観察した。
(2) Average primary particle diameter 50 primary particles are extracted from an SEM image at a magnification at which 50 to 100 primary particles enter a microscope field of view taken by a field emission scanning electron microscope (S-4000 Hitachi), The average value obtained by measuring the ferret diameter was defined as the average primary particle diameter. The Feret diameter is a tangential diameter in a fixed direction, and is described in literature (Yasuo Arai, “Materials Chemistry of Powders”, Baifukan Co., Ltd., September 10, 1987, first edition, pages 160-161). In this way, the distance between tangent lines when a tangent line in a specific direction (direction is one direction) is drawn for each particle. In addition, when the sample was a slurry, what removed the solvent was observed.

例えば、実施例1に該当する、合成例2で得られた粉末は、図1に示すSEM像となるが、上記のような測定方法によると、平均一次粒子径は0.3μmとなる。   For example, the powder obtained in Synthesis Example 2 corresponding to Example 1 becomes the SEM image shown in FIG. 1, but according to the measurement method as described above, the average primary particle size is 0.3 μm.

(3)BET比表面積
比表面積測定装置(島津フローソーブIII2305)を用いてBET比表面積を測定した。なお、サンプルがスラリーの場合、溶媒を除去したしたものを用いて測定した。
(3) BET specific surface area The BET specific surface area was measured using the specific surface area measuring apparatus (Shimadzu Flowsorb III2305). In addition, when the sample was a slurry, the measurement was performed using the sample from which the solvent was removed.

(4)ピーク細孔径および全細孔容量
水銀圧入式細孔分布測定装置(ポアサイザー9320、島津製作所)を用いて、0.008μm〜200μmの範囲の細孔容量を測定し、得られた値を全細孔容量とした。また、測定により得られた細孔分布のピークのうち最大ピークのピークトップの細孔径をピーク細孔径とした。
(4) Peak pore diameter and total pore volume Using a mercury intrusion type pore distribution measuring device (pore sizer 9320, Shimadzu Corporation), the pore volume in the range of 0.008 μm to 200 μm was measured, and the obtained value was The total pore volume was used. Moreover, the peak top pore diameter of the maximum peak among the pore distribution peaks obtained by measurement was defined as the peak pore diameter.

(5)XRDピーク最強強度
サンプルをX線回折装置(RINT2500VPC理学製)を用いて、出力120kV、40mA、スキャン速度10°/min、サンプリング0.01°で測定した際のd=4.7付近のピーク強度をXRD最強ピーク強度とした。
(5) XRD peak strongest intensity Using a X-ray diffractometer (RINT2500VPC Rigaku), the sample was measured at an output of 120 kV, 40 mA, a scanning speed of 10 ° / min, and sampling of 0.01 °, and d = near 4.7. Was the XRD strongest peak intensity.

(6)電池の作製
マンガン酸リチウム40重量部に対して、カーボンブラック5重量部、PVDF粉末5重量部、Nメチルピロリドン75重量部を均一に混合し、塗工用ペーストを調製した。当該ペーストをコーターを用いて集電体として用いたアルミニウム箔(厚さ20μm)上に均一に塗工し、140℃にて10分以上かけて乾燥した。乾燥後、プレス機で均一膜厚に成型した後、所定の大きさ(20×15mm)に切断し、試験用正極とした。このときの電極活物質層の厚さは25μmとした。上記の試験用正極を用いて試験セルを作製した。負極電極には金属リチウム箔を所定の大きさに切断して使用し、セパレータはセルガード#2400を使用した。電解液は1mol/l LiPF/EC:DEC(1:1vol%)を用いた。試験セルの組み立てはアルゴン雰囲気下のグローブボックス内で行った。試験セルの組み立て後、25℃にて24時間放置後、高速充放電特性評価を行った。
(6) Preparation of Battery 5 parts by weight of carbon black, 5 parts by weight of PVDF powder, and 75 parts by weight of N methylpyrrolidone were uniformly mixed with 40 parts by weight of lithium manganate to prepare a coating paste. The paste was uniformly coated on an aluminum foil (thickness 20 μm) used as a current collector using a coater, and dried at 140 ° C. over 10 minutes. After drying, the film was formed into a uniform film thickness with a press machine, and then cut into a predetermined size (20 × 15 mm 2 ) to obtain a test positive electrode. At this time, the thickness of the electrode active material layer was set to 25 μm. A test cell was prepared using the test positive electrode. A metal lithium foil was cut into a predetermined size for the negative electrode, and Celgard # 2400 was used for the separator. As the electrolytic solution, 1 mol / l LiPF 6 / EC: DEC (1: 1 vol%) was used. The test cell was assembled in a glove box under an argon atmosphere. After the test cell was assembled, it was allowed to stand at 25 ° C. for 24 hours, and then high-speed charge / discharge characteristics were evaluated.

(7)高速放電特性評価
試験セルに0.2CAにて定電流充放電を行った後、(1)0.5CAで定電流充電した後、1CAで定電流放電された容量(A)と、さらに(2)0.5CAで定電流充電した後、60CAで定電流放電された容量(B)の比を高速放電特性とした。
高速放電特性(%)=B/A×100
(7) Fast discharge characteristics evaluation After performing constant current charge / discharge on the test cell at 0.2 CA, (1) capacity (A) charged at constant current at 0.5 CA, and then charged at constant current at 1 CA (A), Further, (2) the ratio of the capacity (B) discharged at a constant current of 0.5 CA and then discharged at a constant current of 60 CA was defined as a fast discharge characteristic.
High-speed discharge characteristics (%) = B / A × 100

合成例1
平均一次粒子径0.03μm、平均凝集粒子径34μmのMnO15重量部をエタノール85重量部に混合し、ビーズミルにより湿式粉砕し、平均一次粒子径が0.03μm、平均凝集粒子径が0.7μmのMnOのスラリーを得た。次に平均一次粒子径25μm、平均凝集粒子径84μmの炭酸リチウム10重量部をエタノール90重量部に混合し、ビーズミルで湿式粉砕し、平均一次粒子径0.06μm、平均凝集粒子径0.3μmの炭酸リチウムのスラリーを得た。得られたMnOのスラリー100重量部と炭酸リチウムスラリー31.86重量部(Li/Mnモル比=1/2)をディスパーで混合したのちロータリーエバポレーターで蒸発乾固した。得られた粉末を乳鉢で解砕し、850℃、5時間焼成した。
Synthesis example 1
15 parts by weight of MnO 2 having an average primary particle size of 0.03 μm and an average aggregated particle size of 34 μm are mixed with 85 parts by weight of ethanol and wet pulverized by a bead mill. The average primary particle size is 0.03 μm and the average aggregated particle size is 0.00. A slurry of 7 μm MnO 2 was obtained. Next, 10 parts by weight of lithium carbonate having an average primary particle diameter of 25 μm and an average aggregated particle diameter of 84 μm is mixed with 90 parts by weight of ethanol, and wet pulverized by a bead mill, and the average primary particle diameter is 0.06 μm and the average aggregated particle diameter is 0.3 μm. A slurry of lithium carbonate was obtained. 100 parts by weight of the obtained MnO 2 slurry and 31.86 parts by weight of lithium carbonate slurry (Li / Mn molar ratio = 1/2) were mixed with a disper and evaporated to dryness with a rotary evaporator. The obtained powder was crushed in a mortar and baked at 850 ° C. for 5 hours.

得られた粉末をロータースピードミル(P−14フリッチチュ製)で乾式粉砕して、平均一次粒子径0.7μm、平均凝集粒子径1.2μmの粉末を得た。粉末X線回折測定の結果、JCPDS No.35−782記載のスピネル構造のLiMnに相当していた。 The obtained powder was dry-pulverized with a rotor speed mill (P-14 Flitchchu) to obtain a powder having an average primary particle size of 0.7 μm and an average aggregated particle size of 1.2 μm. As a result of powder X-ray diffraction measurement, JCPDS No. It corresponded to LiMn 2 O 4 having a spinel structure described in 35-782.

合成例2
平均一次粒子径0.03μm、平均凝集粒子径34μmのMnO15重量部をエタノール85重量部に混合し、ビーズミルにより湿式粉砕し、平均一次粒子径が0.03μm、平均凝集粒子径が0.3μmのMnOのスラリーを得た。次に平均一次粒子径25μm平均凝集粒子径84μmの炭酸リチウム10重量部をエタノール90重量部に混合し、ビーズミルで湿式粉砕し、平均一次粒子径0.06μm、平均凝集粒子径0.3μmの炭酸リチウムのスラリーを得た。得られたMnOのスラリー100重量部と炭酸リチウムスラリー31.86重量部(Li/Mnモル比=1/2)をディスパーで混合したのちロータリーエバポレーターで蒸発乾固した。得られた粉末を乳鉢で解砕し、850℃、5時間焼成した。得られた粉末をロータースピードミル(P−14フリッチチュ製)で乾式粉砕して、平均一次粒子径0.3μm、平均凝集粒子径1.1μmの粉末を得た。粉末X線回折測定の結果、JCPDS No.35−782記載のスピネル構造のLiMnに相当していた。
Synthesis example 2
15 parts by weight of MnO 2 having an average primary particle size of 0.03 μm and an average aggregated particle size of 34 μm are mixed with 85 parts by weight of ethanol and wet pulverized by a bead mill. The average primary particle size is 0.03 μm and the average aggregated particle size is 0.00. A slurry of 3 μm MnO 2 was obtained. Next, 10 parts by weight of lithium carbonate having an average primary particle diameter of 25 μm and an average aggregated particle diameter of 84 μm are mixed with 90 parts by weight of ethanol and wet-pulverized by a bead mill, and carbonic acid having an average primary particle diameter of 0.06 μm and an average aggregated particle diameter of 0.3 μm. A lithium slurry was obtained. 100 parts by weight of the obtained MnO 2 slurry and 31.86 parts by weight of lithium carbonate slurry (Li / Mn molar ratio = 1/2) were mixed with a disper and evaporated to dryness with a rotary evaporator. The obtained powder was crushed in a mortar and baked at 850 ° C. for 5 hours. The obtained powder was dry-pulverized with a rotor speed mill (P-14 Flitchchu) to obtain a powder having an average primary particle size of 0.3 μm and an average aggregated particle size of 1.1 μm. As a result of powder X-ray diffraction measurement, JCPDS No. It corresponded to LiMn 2 O 4 having a spinel structure described in 35-782.

合成例3
平均一次粒子径0.03μm、平均凝集粒子径34μmのMnO400gをエタノール2267gに混合し、ダイノーミル(シンマルエンタープライゼス製MULTI LAB型)により湿式粉砕し、平均一次粒子径が0.03μm、平均凝集粒子径が0.5μmのMnOのスラリーを得た。その際、ダイノーミル(容量0.6リットル)の粉砕条件としては、φ1mmジルコニアビーズを1784g充填し、周速14m/sの回転速度でスラリー全量を185g/minの通液速度で2回通過(2パス)させる手法でスラリーの粉砕を行った。得られたMnOのスラリー用いて、乾式粉砕までの他の工程を合成例2と全て同じ条件で実施することにより、平均一次粒子径0.5μm、平均凝集粒子径1.3μmの粉末を得た。粉末X線回折測定の結果、JCPDS No.35−782記載のスピネル構造のLiMnに相当していた。
Synthesis example 3
400 g of MnO 2 having an average primary particle size of 0.03 μm and an average aggregated particle size of 34 μm was mixed with 2267 g of ethanol and wet-pulverized with a dyno mill (Shinmaru Enterprises MULTI LAB type), the average primary particle size was 0.03 μm, the average A slurry of MnO 2 with an agglomerated particle size of 0.5 μm was obtained. At that time, as pulverization conditions of the dyno mill (capacity 0.6 liter), 1784 g of φ1 mm zirconia beads were filled, and the whole slurry was passed twice at a rotational speed of 14 m / s at a peripheral speed of 185 g / min (2 The slurry was pulverized by the method of passing. By using the obtained slurry of MnO 2 and carrying out the other steps up to dry grinding under the same conditions as in Synthesis Example 2, a powder having an average primary particle size of 0.5 μm and an average aggregated particle size of 1.3 μm is obtained. It was. As a result of powder X-ray diffraction measurement, JCPDS No. It corresponded to LiMn 2 O 4 having a spinel structure described in 35-782.

合成例4
合成例3でえられた平均凝集粒子径が0.5μmのMnOのスラリー3326.5gを用いて、ダイノーミル(シンマルエンタープライゼス製MULTI LAB型)により湿式粉砕し、平均一次粒子径が0.03μm、平均凝集粒子径が0.2μmのMnOのスラリーを得た。その際、ダイノーミルの粉砕条件としては、合成例3で用いたφ1mmジルコニアビーズのかわりにφ0.2mmジルコニアビーズ1836gを充填し、周速14m/sの回転速度でスラリー全量を185g/minの通液速度で240分間循環粉砕するという条件で行った。得られたMnOのスラリー用いて、乾式粉砕までの他の工程を合成例2と全て同じ条件で実施することにより、平均一次粒子径0.2μm、平均凝集粒子径1μmの粉末を得た。粉末X線回折測定の結果、JCPDS No.35−782記載のスピネル構造のLiMnに相当していた。
Synthesis example 4
Using 3326.5 g of a slurry of MnO 2 having an average aggregate particle diameter of 0.5 μm obtained in Synthesis Example 3, it was wet pulverized by dyno mill (MULTI LAB type manufactured by Shinmaru Enterprises), and the average primary particle diameter was 0.03 μm. A slurry of MnO 2 having an average aggregate particle diameter of 0.2 μm was obtained. At that time, the grinding conditions of the dyno mill were filled with 1836 g of φ0.2 mm zirconia beads instead of the φ1 mm zirconia beads used in Synthesis Example 3, and the total amount of slurry was 185 g / min at a peripheral speed of 14 m / s. This was carried out under the condition of circulating and grinding at a speed for 240 minutes. Using the obtained slurry of MnO 2 , the other steps up to dry grinding were carried out under the same conditions as in Synthesis Example 2 to obtain a powder having an average primary particle size of 0.2 μm and an average aggregated particle size of 1 μm. As a result of powder X-ray diffraction measurement, JCPDS No. It corresponded to LiMn 2 O 4 having a spinel structure described in 35-782.

合成例5
合成例1で得られたLiMn15重量部をエタノール85重量部に混合し、ビーズミルで湿式粉砕し、平均一次粒子径0.3μm、平均凝集粒子径0.3μmのスラリーを得た。このスラリーをロータリーエバポレーターを用いてエタノールを除去して、平均一次粒子径0.3μm、平均凝集粒子径0.3μmの粉末を得た。粉末X線回折測定の結果、JCPDS No.35−782記載のスピネル構造のLiMnに相当していた。
Synthesis example 5
15 parts by weight of LiMn 2 O 4 obtained in Synthesis Example 1 was mixed with 85 parts by weight of ethanol, and wet pulverized with a bead mill to obtain a slurry having an average primary particle size of 0.3 μm and an average aggregated particle size of 0.3 μm. Ethanol was removed from the slurry using a rotary evaporator to obtain a powder having an average primary particle size of 0.3 μm and an average aggregated particle size of 0.3 μm. As a result of powder X-ray diffraction measurement, JCPDS No. It corresponded to LiMn 2 O 4 having a spinel structure described in 35-782.

実施例1
合成例2で得られた粉末のBET比表面積、細孔分布、細孔容量、XRDピーク最強強度の測定を行った。また、この粉末を用いて電池作成し、高速放電特性の測定を行った。結果を表1に示す。表中、「製品一次粒子径」および「製品凝集粒子径」は、合成例2で得られた粉末の「平均一次粒子径」および「平均凝集粒子径」を表す。
Example 1
The powder obtained in Synthesis Example 2 was measured for BET specific surface area, pore distribution, pore volume, and XRD peak strongest intensity. A battery was prepared using this powder, and the high-speed discharge characteristics were measured. The results are shown in Table 1. In the table, “product primary particle diameter” and “product aggregate particle diameter” represent “average primary particle diameter” and “average aggregate particle diameter” of the powder obtained in Synthesis Example 2.

実施例2
合成例4で得られた粉末のBET比表面積、細孔分布、細孔容量、XRDピーク最強強度の測定を行った。また、この粉末を用いて電池作成し、高速放電特性の測定を行った。結果を表1に示す。表中、「製品一次粒子径」および「製品凝集粒子径」は、合成例4で得られた粉末の「平均一次粒子径」および「平均凝集粒子径」を表す。
Example 2
The powder obtained in Synthesis Example 4 was measured for BET specific surface area, pore distribution, pore volume, and XRD peak strongest intensity. A battery was prepared using this powder, and the high-speed discharge characteristics were measured. The results are shown in Table 1. In the table, “product primary particle size” and “product aggregate particle size” represent “average primary particle size” and “average aggregate particle size” of the powder obtained in Synthesis Example 4.

実施例3
合成例3で得られた粉末のBET比表面積、細孔分布、細孔容量、XRDピーク最強強度の測定を行った。また、この粉末を用いて電池作成し、高速放電特性の測定を行った。結果を表1に示す。表中、「製品一次粒子径」および「製品凝集粒子径」は、合成例3で得られた粉末の「平均一次粒子径」および「平均凝集粒子径」を表す。
Example 3
The powder obtained in Synthesis Example 3 was measured for BET specific surface area, pore distribution, pore volume, and XRD peak strongest intensity. A battery was prepared using this powder, and the high-speed discharge characteristics were measured. The results are shown in Table 1. In the table, “product primary particle diameter” and “product aggregate particle diameter” represent “average primary particle diameter” and “average aggregate particle diameter” of the powder obtained in Synthesis Example 3.

比較例1
合成例1の粉末のBET比表面積、細孔分布、細孔容量、XRDピーク最強強度の測定を行った。また、この粉末を用いて電池作成し、高速放電特性の測定を行った。結果を表1に示す。表中、「製品一次粒子径」および「製品凝集粒子径」は、合成例1で得られた粉末の「平均一次粒子径」および「平均凝集粒子径」を表す。
Comparative Example 1
The BET specific surface area, pore distribution, pore volume, and XRD peak strongest strength of the powder of Synthesis Example 1 were measured. A battery was prepared using this powder, and the high-speed discharge characteristics were measured. The results are shown in Table 1. In the table, “product primary particle diameter” and “product aggregate particle diameter” represent “average primary particle diameter” and “average aggregate particle diameter” of the powder obtained in Synthesis Example 1.

比較例2
合成例5で得られた粉末のBET比表面積、細孔分布、細孔容量、XRDピーク最強強度の測定を行った。また、この粉末を用いて電池作成し、高速放電特性の測定を行った。結果を表1に示す。表中、「製品一次粒子径」および「製品凝集粒子径」は、合成例5で得られた粉末の「平均一次粒子径」および「平均凝集粒子径」を表す。
Comparative Example 2
The powder obtained in Synthesis Example 5 was measured for BET specific surface area, pore distribution, pore volume, and XRD peak strongest intensity. A battery was prepared using this powder, and the high-speed discharge characteristics were measured. The results are shown in Table 1. In the table, “product primary particle diameter” and “product aggregate particle diameter” represent “average primary particle diameter” and “average aggregate particle diameter” of the powder obtained in Synthesis Example 5.

Figure 0004870602
Figure 0004870602

表1の結果が示すように、実施例1〜3(合成例2〜4)と比較例1(合成例1)より、MnOの平均凝集粒子径に相当する平均一次粒子径を有するLiMnが得られることがわかる。また、実施例1で得られた微粒マンガン酸リチウムは、比較例1の平均一次粒子径の大きなマンガン酸リチウムよりも高い高速放電特性を有することがわかる。また、マンガン酸リチウムを湿式粉砕して得られた比較例2の微粒子マンガン酸リチウムでは、平均一次粒子径が実施例1と同等になっているにも係わらず、結晶性が低下しているため、高速放電特性が低下することがわかる。 As shown in Table 1 the results of Example 1-3 (Synthesis Example 2-4) and Comparative Example 1 (Synthesis Example 1) than, LiMn 2 having an average primary particle diameter corresponding to an average agglomerated particle size of the MnO 2 It can be seen that O 4 is obtained. Moreover, it turns out that the fine lithium manganate obtained in Example 1 has higher high-speed discharge characteristics than the lithium manganate having a large average primary particle diameter in Comparative Example 1. In addition, in the fine particle lithium manganate of Comparative Example 2 obtained by wet pulverization of lithium manganate, the crystallinity is lowered although the average primary particle diameter is the same as that of Example 1. It can be seen that the high-speed discharge characteristics deteriorate.

実施例1に該当する、合成例2で得られた粉末の走査型電子顕微鏡写真Scanning electron micrograph of the powder obtained in Synthesis Example 2, corresponding to Example 1.

Claims (4)

平均凝集粒子径が0.03〜0.5μmである酸化マンガンと少なくともリチウム化合物とを混合した状態で焼成を行う焼成工程と、得られた焼成物を乾式粉砕して平均凝集粒子径が10μm以下のマンガン酸リチウムを得る粉砕工程とを含むスピネル型のマンガン酸リチウムの製造方法であって、
前記粉砕工程で得られるマンガン酸リチウムのBET比表面積が4〜40m /gで、水銀ポロシメーターで測定する、ピーク細孔径が0.1〜0.5μmでかつ、全細孔容量が0.8ml/g〜2ml/gであるスピネル型のマンガン酸リチウムの製造方法。
A firing step of firing in a state in which manganese oxide having an average aggregated particle size of 0.03 to 0.5 μm and at least a lithium compound are mixed, and an average aggregated particle size of 10 μm or less by dry-grinding the obtained fired product a method of manufacturing a spinel type lithium manganate and a grinding step to obtain a lithium manganate,
The BET specific surface area of the lithium manganate obtained in the pulverization step is 4 to 40 m 2 / g, the peak pore diameter is 0.1 to 0.5 μm and the total pore volume is 0.8 ml as measured with a mercury porosimeter. / G-2ml / g of spinel type lithium manganate manufacturing method.
前記粉砕工程で得られるマンガン酸リチウムの平均一次粒子径が0.03〜0.5μmである請求項1記載のスピネル型のマンガン酸リチウムの製造方法。 The method for producing spinel-type lithium manganate according to claim 1, wherein an average primary particle size of lithium manganate obtained in the pulverization step is 0.03 to 0.5 µm. 前記粉砕工程で得られるマンガン酸リチウムの平均凝集粒子径が0.5〜10μmである請求項1又は2記載のスピネル型のマンガン酸リチウムの製造方法。 The method for producing spinel-type lithium manganate according to claim 1 or 2, wherein the average aggregate particle diameter of lithium manganate obtained in the pulverization step is 0.5 to 10 µm. マンガン酸リチウムが、リチウム電池用である請求項1〜いずれか記載のスピネル型のマンガン酸リチウムの製造方法。 The method for producing spinel type lithium manganate according to any one of claims 1 to 3 , wherein the lithium manganate is for a lithium battery.
JP2007071110A 2006-08-10 2007-03-19 Method for producing lithium manganate Expired - Fee Related JP4870602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071110A JP4870602B2 (en) 2006-08-10 2007-03-19 Method for producing lithium manganate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006218512 2006-08-10
JP2006218512 2006-08-10
JP2007071110A JP4870602B2 (en) 2006-08-10 2007-03-19 Method for producing lithium manganate

Publications (2)

Publication Number Publication Date
JP2008063213A JP2008063213A (en) 2008-03-21
JP4870602B2 true JP4870602B2 (en) 2012-02-08

Family

ID=39286231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071110A Expired - Fee Related JP4870602B2 (en) 2006-08-10 2007-03-19 Method for producing lithium manganate

Country Status (1)

Country Link
JP (1) JP4870602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101475513B1 (en) * 2012-11-06 2014-12-23 주식회사 포스코이에스엠 Manufacturing method of high strength spinel structure lithium manganese complex oxide, high strength spinel structure lithium manganese complex oxide made by the same, and lithium rechargeable batteries comprising the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273267B2 (en) 2007-04-09 2012-09-25 Kao Corporation Method for producing positive electrode active material for battery
JP5415012B2 (en) * 2007-04-09 2014-02-12 花王株式会社 Positive electrode active material sintered body for battery
JP5334506B2 (en) * 2008-09-08 2013-11-06 花王株式会社 Method for producing composition for positive electrode of non-aqueous electrolyte secondary battery
JP4546574B1 (en) * 2008-10-27 2010-09-15 花王株式会社 Lithium composite oxide sintered body
JPWO2010150626A1 (en) 2009-06-25 2012-12-10 日本碍子株式会社 Method for producing spinel type lithium manganate and method for producing positive electrode active material for lithium secondary battery
JP2013055000A (en) * 2011-09-06 2013-03-21 Mitsubishi Chemicals Corp Lithium transition metal-based compound powder for lithium secondary battery positive electrode material and method for producing the same, lithium secondary battery positive electrode including the same, and lithium secondary battery
JP6120493B2 (en) * 2012-05-31 2017-04-26 日揮触媒化成株式会社 Method for producing lithium / manganese composite oxide, method for producing positive electrode for secondary battery containing lithium / manganese composite oxide obtained by the production method, and method for producing lithium ion secondary battery using the same as positive electrode
CN103904322B (en) * 2014-04-03 2016-03-30 湘潭大学 A kind of three-dimensional porous nano carbon compound LiMn2O4 spherical anode material and preparation method thereof
JP2017228412A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
JP2017228413A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
KR20200051931A (en) * 2018-11-06 2020-05-14 주식회사 포스코 Lithium compound, nickel-based positive active material, method of preparing lithium oxide, mehtod of preparing nickel-based positive active material, and secondary battery using the same
CN114085069B (en) * 2021-11-17 2023-03-31 柳州紫荆循环能源科技有限公司 Lithium manganate cathode target material for preparing thin film lithium battery and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3030764B2 (en) * 1995-02-23 2000-04-10 東ソー株式会社 Spinel-type lithium manganese oxide, method for producing the same, and use thereof
JPH10172567A (en) * 1996-12-17 1998-06-26 Nikki Kagaku Kk Manufacture of lithium manganate
JP2001146426A (en) * 1999-11-19 2001-05-29 Mitsubishi Chemicals Corp Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP4254267B2 (en) * 2002-02-21 2009-04-15 東ソー株式会社 Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof
JP4529784B2 (en) * 2004-04-27 2010-08-25 三菱化学株式会社 Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP2006114408A (en) * 2004-10-15 2006-04-27 Izumi Taniguchi Lithium manganese complex oxide particle and positive electrode for secondary battery using this, as well as lithium secondary battery
JP5180448B2 (en) * 2006-08-09 2013-04-10 関東電化工業株式会社 Spinel type lithium manganate and method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using spinel type lithium manganate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101475513B1 (en) * 2012-11-06 2014-12-23 주식회사 포스코이에스엠 Manufacturing method of high strength spinel structure lithium manganese complex oxide, high strength spinel structure lithium manganese complex oxide made by the same, and lithium rechargeable batteries comprising the same

Also Published As

Publication number Publication date
JP2008063213A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4870602B2 (en) Method for producing lithium manganate
JP4546574B1 (en) Lithium composite oxide sintered body
US9640794B2 (en) Lithium transition metal oxide having layered structure
JP5464717B2 (en) Method for producing positive electrode active material
US10468677B2 (en) Spinel-type lithium-manganese-containing complex oxide
JP4210710B2 (en) Method for producing positive electrode active material for lithium battery
JP6062947B2 (en) Precursor of positive electrode active material for lithium secondary battery, positive electrode active material, method for producing the same, and lithium secondary battery including the same
WO2009081703A1 (en) Burned composite metal oxide and process for producing the same
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
CN105474435A (en) Active materials for lithium ion batteries
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
KR101590441B1 (en) Positive composition for lithium secondary battery using spherical nickel-cobalt-manganese-hydroxides, lithium secondary battery having the same and manufacturing method thereof
JP2008186753A (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP6096101B2 (en) Method for producing positive electrode for lithium secondary battery
JP2006062911A (en) Multiple oxide material and positive-electrode active material for lithium secondary battery
JP5208492B2 (en) Composite metal oxide fired body
JP4465407B1 (en) Method for producing positive electrode active material particles for battery
JP5166850B2 (en) Method for producing sintered composite metal oxide
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
KR20160138794A (en) Positive electrode active material for rechargable battery, method for manufacturing the same, and rechargable battery including the same
KR101702405B1 (en) Positive electrode active material for rechargable battery, method for manufacturing the same, and rechargable battery including the same
JP2014231445A (en) Spinel type lithium manganese-based complex oxide and method for producing the same
KR20120095262A (en) Positive composition for lithium secondary battery and manufacturing method thereof
JP2010157519A (en) Method of manufacturing positive electrode active material
WO2014181455A1 (en) Positive electrode active material for non-aqueous secondary cell, positive electrode for non-aqueous secondary cell using same, non-aqueous secondary cell, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Ref document number: 4870602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees