JPH1116573A - Lithium cobalt double oxide for lithium ion secondary battery and its manufacture - Google Patents
Lithium cobalt double oxide for lithium ion secondary battery and its manufactureInfo
- Publication number
- JPH1116573A JPH1116573A JP9170603A JP17060397A JPH1116573A JP H1116573 A JPH1116573 A JP H1116573A JP 9170603 A JP9170603 A JP 9170603A JP 17060397 A JP17060397 A JP 17060397A JP H1116573 A JPH1116573 A JP H1116573A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- cobalt
- plane
- diffraction pattern
- ray diffraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウムイオン二
次電池に正極活物質として用いられるリチウムコバルト
複酸化物およびその製造方法に関する。The present invention relates to a lithium-cobalt double oxide used as a positive electrode active material in a lithium ion secondary battery and a method for producing the same.
【0002】[0002]
【従来の技術】近年、携帯電話やノート型パソコンなど
の携帯機器の普及にともない、高いエネルギー密度を有
する小型、軽量で高い容量を持つ二次電池の開発が強く
望まれている。このようなものとしてリチウムイオン二
次電池があり、その研究開発が盛んに行われている。2. Description of the Related Art In recent years, with the spread of portable devices such as portable telephones and notebook personal computers, there is a strong demand for the development of small, lightweight, high capacity secondary batteries having a high energy density. As such a device, there is a lithium ion secondary battery, and research and development thereof have been actively conducted.
【0003】リチウムイオン二次電池は、リチウムコバ
ルト複酸化物(LiCoO2)を正極活物質として、リ
チウム、リチウム合金や、カーボンファイバー、グラフ
ァイトなどのカーボンを負極として用い、4V級の高い
電圧が得られるため、高エネルギー密度を持つ電池とし
て期待され、実用化が進んでいる。そして、優れたサイ
クル特性および電子導伝率を有するリチウムイオン二次
電池の開発は、すでに多くの成果が報告されている。A lithium ion secondary battery uses a lithium-cobalt double oxide (LiCoO 2 ) as a positive electrode active material and lithium, a lithium alloy, carbon fiber, carbon such as graphite as a negative electrode, and obtains a high voltage of 4V class. Therefore, it is expected as a battery having a high energy density, and its practical use is progressing. Many results have already been reported in the development of lithium ion secondary batteries having excellent cycle characteristics and electron conductivity.
【0004】このようなリチウムイオン二次電池に正極
活物質として用いられるリチウムコバルト複酸化物を製
造するために、例えば、炭酸リチウム(Li2CO3)粉
末および酸化コバルト(Co3O4)粉末を秤取し、混合
造粒機で、該炭酸リチウム粉末および該酸化コバルト粉
末にバインダーを添加して造粒物を作製した後、該造粒
物を酸素含有雰囲気で焼成する方法が知られている。In order to produce a lithium cobalt double oxide used as a positive electrode active material in such a lithium ion secondary battery, for example, lithium carbonate (Li 2 CO 3 ) powder and cobalt oxide (Co 3 O 4 ) powder A method of weighing the mixture, adding a binder to the lithium carbonate powder and the cobalt oxide powder by a mixing granulator to prepare a granulated product, and firing the granulated product in an oxygen-containing atmosphere is known. I have.
【0005】ところで、実使用を考える場合、電池の高
容量化にともなって携帯機器の使用電力も増える傾向に
あり、これに伴い電池は常に高い温度(約60℃)の状
態にある。したがって、このような高い温度における放
電容量の劣化特性、すなわち電池の高温保存特性は、実
使用において重要である。By the way, when considering actual use, the power consumption of portable equipment tends to increase as the capacity of the battery increases, and the battery is constantly at a high temperature (about 60 ° C.). Therefore, the deterioration characteristics of the discharge capacity at such a high temperature, that is, the high-temperature storage characteristics of the battery are important in actual use.
【0006】しかしながら、上記方法で製造されたリチ
ウムコバルト複酸化物は、高温保存特性が優れたリチウ
ムイオン二次電池を供給し得ていない。[0006] However, the lithium-cobalt double oxide produced by the above method cannot supply a lithium-ion secondary battery having excellent high-temperature storage characteristics.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、上記
状況に鑑み、高温保存特性が優れたリチウムイオン二次
電池の供給が可能となるリチウムコバルト複酸化物およ
びその製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium-cobalt double oxide capable of supplying a lithium-ion secondary battery having excellent high-temperature storage characteristics, and a method for producing the same. It is in.
【0008】本発明者は、上記課題を解決すべく鋭意研
究を進めた。すなわち、電池の容量劣化率の差異の原因
を突き止めるべく、種々のリチウムコバルト複酸化物を
繰り返し合成し、XRD測定を行うとともに、電池を作
製し容量劣化率の測定を行うことにより、検討した。さ
らに、得られた回折図形をリートベルト解析を用いて詳
細に検討した。その結果、リチウムコバルト複酸化物の
結晶構造、すなわちX線回折図形と容量劣化率との間に
相関があることを見い出し、本発明のリチウムコバルト
複酸化物に到達した。The present inventor has made intensive studies to solve the above problems. That is, in order to find out the cause of the difference in the capacity deterioration rate of the battery, various lithium-cobalt double oxides were repeatedly synthesized, XRD measurement was performed, and the battery was manufactured and the capacity deterioration rate was measured. Furthermore, the obtained diffraction pattern was examined in detail using Rietveld analysis. As a result, they found that there was a correlation between the crystal structure of the lithium-cobalt double oxide, that is, the X-ray diffraction pattern and the capacity deterioration rate, and reached the lithium-cobalt double oxide of the present invention.
【0009】また、容量劣化率の低いリチウムイオン二
次電池の供給が可能となる、すなわち所望の結晶構造を
有するリチウムコバルト複酸化物を製造するためには、
原料粉末である炭酸リチウム粉末および酸化コバルト粉
末の粒度、該両粉末の配合割合、並びに造粒物の焼成条
件が重要な要因であることを見い出し、本発明方法に到
達した。Further, in order to supply a lithium ion secondary battery having a low capacity deterioration rate, that is, to produce a lithium-cobalt double oxide having a desired crystal structure,
It has been found that the particle size of the lithium carbonate powder and the cobalt oxide powder, which are the raw material powders, the mixing ratio of the two powders, and the sintering conditions of the granulated material are important factors.
【0010】[0010]
【課題を解決するための手段】本発明のリチウムイオン
二次電池用リチウムコバルト複酸化物は、(イ)六方晶
系における(101)面のX線回折図形の強度I(101)
と、同(003)面のX線回折図形の強度I(003)との
比I(101)/I(003)が0.200〜0.350、(ロ)
格子定数aおよびcがそれぞれ2.8130〜2.81
60オングストローム、14.040〜14.060オ
ングストローム、(ハ)該(003)面のX線回折図形
の半値幅が0.160°以下、並びに(ニ)該(00
3)面のX線回折図形より求めた結晶子径が700.0
オングストローム以上である。The lithium-cobalt double oxide for a lithium ion secondary battery according to the present invention comprises (a) the intensity I (101) of the X-ray diffraction pattern of the (101) plane in the hexagonal system.
And the ratio I (101) / I (003) of the intensity (I) of the X-ray diffraction pattern of the (003) plane is 0.200 to 0.350.
Lattice constants a and c are respectively 2.8130 to 2.81
(C) the half-width of the X-ray diffraction pattern of the (003) plane is 0.160 ° or less, and (d) the (00)
3) The crystallite diameter determined from the X-ray diffraction pattern of the plane is 700.0
Angstrom or more.
【0011】また、本発明のリチウムイオン二次電池用
リチウムコバルト複酸化物の製造方法は、上記本発明の
リチウムイオン二次電池用リチウムコバルト複酸化物の
製造方法であり、前記従来の方法において、(1)該炭
酸リチウム粉末を、平均粒径が10μm以下で、かつ比
表面積が1.0m2/g以上のものとし、(2)該酸化
コバルト粉末を、比表面積が1.0〜3.5m2/gの
ものとし、(3)該炭酸リチウム粉末および該酸化コバ
ルト粉末を、Li/Coモル比が0.980〜1.00
5となるように秤取し、(4)焼成を、850〜100
0℃で、5〜20時間の条件で行うことを特徴とする。The method for producing a lithium-cobalt double oxide for a lithium-ion secondary battery according to the present invention is a method for producing the lithium-cobalt double oxide for a lithium-ion secondary battery according to the present invention. (1) The lithium carbonate powder has an average particle size of 10 μm or less and a specific surface area of 1.0 m 2 / g or more. (2) The cobalt oxide powder has a specific surface area of 1.0 to 3 μm. assume the .5m 2 / g, (3) lithium carbonate acid powder and oxidizing the cobalt powder, Li / Co molar ratio of from 0.980 to 1.00
5 and weighed (4)
It is carried out at 0 ° C. for 5 to 20 hours.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施の形態を説明
する。Embodiments of the present invention will be described below.
【0013】(1)リチウムイオン二次電池用リチウム
コバルト複酸化物 リチウムイオン二次電池用リチウムコバルト複酸化物の
結晶構造を表す特性として、本発明では、(イ)六方晶
系における(101)面のX線回折図形の強度I(101)
と、同(003)面のX線回折図形の強度I(003)との
比I(101)/I(003)、(ロ)格子定数aおよびc、
(ハ)該(003)面のX線回折図形の半値幅、並びに
(ニ)該(003)面のX線回折図形より求めた結晶子
径を取り上げた。リチウムコバルト複酸化物が上記特性
値の範囲をいずれも満足しないと、容量劣化率の優れた
電池が得られない。(1) Lithium Cobalt Double Oxide for Lithium Ion Secondary Battery As a characteristic representing the crystal structure of lithium cobalt double oxide for a lithium ion secondary battery, in the present invention, (a) (101) in hexagonal system X-ray diffraction pattern intensity I (101)
And the intensity I (003) of the X-ray diffraction pattern of the (003) plane, I (101) / I (003), (b) lattice constants a and c,
(C) The half width of the X-ray diffraction pattern of the (003) plane and (d) the crystallite diameter determined from the X-ray diffraction pattern of the (003) plane were taken up. If the lithium-cobalt double oxide does not satisfy any of the above characteristic value ranges, a battery having an excellent capacity deterioration rate cannot be obtained.
【0014】なお、本発明のリチウムコバルト複酸化物
の結晶系は、六方晶系である。六方晶系の面指数は、4
本の軸により一般に(hkil)と書く。しかし、h+
k=−iなる関係があるので、本明細書においては、
(hkl)と書く。The crystal system of the lithium-cobalt double oxide of the present invention is a hexagonal system. The hexagonal plane index is 4
Generally written as (hkil) by book axis. However, h +
Since there is a relationship k = −i, in this specification,
Write (hkl).
【0015】(イ)X線回折図形の強度比I(101)/I
(003) (101)面のX線回折図形と、(003)面のX線回
折図形との強度比(I(101)/I(003))は、0.200
〜0.350、好ましくは、0.220から0.300
である。これは、上記強度比が上記範囲にあるとき、a
軸およびc軸方向への結晶成長により有する結晶構造
が、充電時(Liが脱離状態)でより安定しているため
と思われる。上記強度比が0.200未満または0.3
50を超えると、高温時の容量劣化が大きくなる。(A) X-ray diffraction pattern intensity ratio I (101) / I
(003) The intensity ratio (I (101) / I (003)) between the (101) plane X-ray diffraction pattern and the (003) plane X-ray diffraction pattern is 0.200.
0.30.350, preferably 0.220 to 0.300
It is. This is because when the intensity ratio is in the above range, a
This is probably because the crystal structure formed by crystal growth in the axial and c-axis directions is more stable at the time of charging (Li is desorbed). The intensity ratio is less than 0.200 or 0.3
If it exceeds 50, the capacity degradation at high temperatures becomes large.
【0016】(ロ)格子定数a、c 格子定数aが2.8130〜2.8160オングストロ
ーム、および格子定数cが14.040〜14.060
オングストロームである場合には、容量劣化率が低い。
これらの範囲を外れた場合には、容量劣化率が悪化す
る。(B) Lattice constants a and c The lattice constant a is 2.8130 to 2.8160 angstroms, and the lattice constant c is 14.40 to 14.060.
In the case of angstrom, the capacity deterioration rate is low.
Outside of these ranges, the capacity deterioration rate deteriorates.
【0017】(ハ)(003)面のX線回折図形の半値
幅 (003)面のX線回折図形の半値幅が0.160°以
下である場合には、容量劣化率が低い。0.160°を
超えた場合には、容量劣化率が悪化する。(C) Half-width of X-ray diffraction pattern of (003) plane When the half-width of X-ray diffraction pattern of (003) plane is 0.160 ° or less, the capacity deterioration rate is low. If it exceeds 0.160 °, the capacity deterioration rate will deteriorate.
【0018】(ニ)(003)面のX線回折図形より求
めた結晶子径 (003)面のX線回折図形より求めた結晶子径が70
0.0オングストローム以上である場合には、容量劣化
率が低い。上記結晶子径が700.0オングストローム
未満で、c軸方向への結晶成長が乏しい場合には、容量
劣化率が悪化するとともに、良好なサイクル特性が得ら
れない。(D) The crystallite diameter determined from the X-ray diffraction pattern of the (003) plane The crystallite diameter determined from the X-ray diffraction pattern of the (003) plane is 70
When it is 0.0 Å or more, the capacity deterioration rate is low. If the crystallite diameter is less than 700.0 angstroms and the crystal growth in the c-axis direction is poor, the capacity deterioration rate will deteriorate and good cycle characteristics will not be obtained.
【0019】なお、結晶子径(ε)は[数1]により求
めた。Incidentally, the crystallite diameter (ε) was determined by [Equation 1].
【0020】[0020]
【数1】 (Equation 1)
【0021】ただし、λはCuKα線の波長(オングス
トローム)、βは(003)面の(積分強度)/(ピー
ク強度)、θは回折線のブラッグ角(°)である。Here, λ is the wavelength (angstrom) of the CuKα ray, β is (integrated intensity) / (peak intensity) of the (003) plane, and θ is the Bragg angle (°) of the diffraction line.
【0022】(ホ)単位胞の体積 リチウムコバルト複酸化物の単位胞の体積が0.096
00〜0.09650nm3であることが好ましい。こ
の理由は、はっきりしないが、上記体積の範囲にある
と、充放電時の結晶構造の変化においてその可逆性が良
くなるためサイクル特性が向上するものと思われる。(E) Volume of the unit cell The volume of the unit cell of the lithium-cobalt double oxide is 0.096.
It is preferable that the 00~0.09650nm 3. Although the reason for this is not clear, it is considered that when the volume is within the above range, the reversibility of the crystal structure during charge / discharge is improved, and the cycle characteristics are improved.
【0023】なお、単位胞体積(V)は[数2]により
求めた。The unit cell volume (V) was determined by [Equation 2].
【0024】[0024]
【数2】 (Equation 2)
【0025】ただし、aおよびcは格子定数(オングス
トローム)である。Here, a and c are lattice constants (angstrom).
【0026】以上のような本発明のリチウムコバルト複
酸化物により、リチウム二次電池の活物質として用いた
場合、高い高温保存性能を有する電池が得られる。When the lithium-cobalt double oxide of the present invention is used as an active material of a lithium secondary battery, a battery having high high-temperature storage performance can be obtained.
【0027】(2)リチウムイオン二次電池用リチウム
コバルト複酸化物の製造方法 (イ)原料 本発明による製造方法では、平均粒径が10μm以下
で、かつ比表面積が1.0m2/g以上の炭酸リチウム
粉末を使用する。原料炭酸リチウム粒子が粗い場合、リ
チウムコバルト複酸化物のLi/Coモル比のバラツキ
(組成のバラツキ)が生じるため容量劣化率が悪化す
る。(2) Method for producing lithium-cobalt double oxide for lithium ion secondary battery (a) Raw material In the production method according to the present invention, the average particle diameter is 10 μm or less and the specific surface area is 1.0 m 2 / g or more. Use lithium carbonate powder. When the raw material lithium carbonate particles are coarse, variation in the Li / Co molar ratio (variation in composition) of the lithium-cobalt double oxide occurs, so that the capacity deterioration rate deteriorates.
【0028】また、比表面積が1.0〜3.5m2/g
の酸化コバルト粉末を使用する。原料酸化コバルト粉末
の比表面積が1.0m2/gより小さくてその粒子が粗
いと、後の混合・造粒工程で、攪拌羽根やボールミルの
ボールなどの摩耗が起き易くなる。一方、3.5m2/
gより大きくてその粒子が細かいと、粒径が大きく、ハ
ンドリング性が良好で、電池の容量劣化率を低く安定さ
せるリチウムコバルト複酸化物が得られない。Also, the specific surface area is 1.0 to 3.5 m 2 / g
Using cobalt oxide powder. If the specific surface area of the raw material cobalt oxide powder is smaller than 1.0 m 2 / g and the particles are coarse, abrasion of stirring blades and balls of a ball mill is likely to occur in the subsequent mixing / granulation process. On the other hand, 3.5 m 2 /
If the particle size is larger than g and the particles are fine, a lithium-cobalt double oxide which has a large particle size, has good handling properties, and stabilizes the capacity deterioration rate of the battery at a low level cannot be obtained.
【0029】(ロ)秤取 炭酸リチウムと酸化コバルトを、Li/Coモル比が
0.980〜1.005となるように秤取する。この範
囲を外れると、リチウムコバルト複酸化物のLi/Co
モル比の所望値(化学量論的にいえば、1)からのずれ
(組成のずれ)が生じ易いため容量劣化率が悪化する。(B) Weighing Lithium carbonate and cobalt oxide are weighed such that the Li / Co molar ratio is 0.980 to 1.005. Outside this range, the lithium / cobalt double oxide Li / Co
A deviation (composition deviation) from the desired value of the molar ratio (stoichiometrically, 1) is likely to occur, so that the capacity deterioration rate is deteriorated.
【0030】(ハ)造粒 バインダーは、ビニルアルコール水溶液など通常のもの
でよい。ビニルアルコール水溶液の添加量は、炭酸リチ
ウム粉末および酸化コバルト粉末の合計量100重量部
に対して20〜30重量部とするのが好ましい。造粒に
より、直径1〜3mm程度の造粒物を得る。(C) Granulation The binder may be a conventional binder such as an aqueous vinyl alcohol solution. The amount of the vinyl alcohol aqueous solution to be added is preferably 20 to 30 parts by weight based on 100 parts by weight of the total amount of the lithium carbonate powder and the cobalt oxide powder. By granulation, a granulated product having a diameter of about 1 to 3 mm is obtained.
【0031】(ニ)焼成 焼成条件は、雰囲気を酸素含有雰囲気、温度を850〜
1000℃、時間を5〜20時間とする。焼成温度が8
50〜1000℃である場合には、容量劣化率が低い。
この範囲を外れた場合には、容量劣化率が悪化する。焼
成時間は、上記温度での焼成を効率よく行うため、5〜
20時間とする。(D) Firing The firing conditions were an oxygen-containing atmosphere and a temperature of 850-850.
1000 ° C., the time is 5 to 20 hours. Firing temperature 8
When the temperature is 50 to 1000 ° C., the capacity deterioration rate is low.
When the ratio is out of this range, the capacity deterioration rate is deteriorated. The firing time is from 5 to 5 in order to efficiently perform firing at the above temperature.
20 hours.
【0032】なお、以上の方法により得られたリチウム
コバルト複酸化物は、解砕して、平均粒径を30μm以
下として使用することが好ましい。It is preferable that the lithium-cobalt double oxide obtained by the above-mentioned method is pulverized and used so that the average particle size is 30 μm or less.
【0033】[0033]
[実施例1] (活物質の合成)活物質の合成は、以下のように行っ
た。[Example 1] (Synthesis of active material) Synthesis of an active material was performed as follows.
【0034】Li/Coモル比が1.000となるよう
に、炭酸リチウム(Li2CO3、純度:99重量%、平
均粒径:10μm以下、比表面積:1.3m2/g)
3.788kgと、酸化コバルト(Co3O4、Co含有
量:73.3重量%、比表面積:3.4m2/g)8.
261kgを精秤した。Lithium carbonate (Li 2 CO 3 , purity: 99% by weight, average particle size: 10 μm or less, specific surface area: 1.3 m 2 / g) so that the Li / Co molar ratio becomes 1.000.
3.788 kg, cobalt oxide (Co 3 O 4 , Co content: 73.3% by weight, specific surface area: 3.4 m 2 / g)
261 kg was precisely weighed.
【0035】上記精秤した炭酸リチウムと酸化コバルト
を混合造粒機(深江工業(株)製ハイスピードミキサ
ー)を用いて5分間予備混合を行った後、4重量%のP
VA(ポリビニルアルコール)水溶液を3.012kg
加えて15分間造粒して、1〜3mmの造粒物を作製し
た。After preliminarily mixing the precisely weighed lithium carbonate and cobalt oxide for 5 minutes using a mixing granulator (high speed mixer manufactured by Fukae Kogyo KK), 4% by weight of P
3.012 kg of VA (polyvinyl alcohol) aqueous solution
In addition, granulation was performed for 15 minutes to produce a granulated product of 1 to 3 mm.
【0036】この造粒物を100℃で2時間乾燥した
後、次のようにして焼成した。すなわち、マグネシアセ
ッターを用いて、酸素流量3リットル/分(炉内容積:
0.5m3)、加熱速度5℃/分で900℃まで昇温
し、20時間保持した。After the granules were dried at 100 ° C. for 2 hours, they were fired as follows. That is, using a magnesia setter, an oxygen flow rate of 3 liter / min (furnace volume:
0.5 m 3 ), the temperature was raised to 900 ° C. at a heating rate of 5 ° C./min, and held for 20 hours.
【0037】このように焼成したリチウムコバルト複酸
化物を解砕し、粒度を30μm以下とした。The thus-burned lithium-cobalt double oxide was pulverized to a particle size of 30 μm or less.
【0038】製造したリチウムコバルト複酸化物からX
RD用試料を調製して、(イ)(101)面のX線回折
図形の強度I(101)と、(003)面のX線回折図形の
強度I(003)との比I(101)/I(003)、(ロ)格子定数
a、c、(ハ)(003)面のX線回折図形の半値幅、
(ニ)(003)面のX線回折図形より求めた結晶子
径、および(ホ)単位胞の体積を測定した。From the produced lithium cobalt double oxide, X
A sample for RD was prepared, and (a) the ratio I (101) of the intensity I (101) of the X-ray diffraction pattern of the (101) plane to the intensity I (003) of the X-ray diffraction pattern of the (003) plane. / I (003), (b) lattice constants a and c, (c) half-width of X-ray diffraction pattern of (003) plane,
(D) The crystallite diameter determined from the X-ray diffraction pattern of the (003) plane and (e) the volume of the unit cell were measured.
【0039】(電池評価)得られた活物質を用いて以下
のように電池を作製し、充放電容量を測定した。すなわ
ち、活物質粉末87重量%に、アセチレンブラック5重
量%およびPVDF(ポリフッ化ビニリデン)8重量%
を混合し、NMP(n−メチルピロリドン)を加えて、
ペースト化した。次に、アルミ製のエキスパンドメタル
メッシュに、乾燥後の活物質重量が0.07g/cm2
になるように上記ペーストを塗布し、乾燥した。さらに
120℃で真空乾燥を行い、正極とした。(Evaluation of Battery) Using the obtained active material, a battery was prepared as follows, and the charge / discharge capacity was measured. That is, 5% by weight of acetylene black and 8% by weight of PVDF (polyvinylidene fluoride) were added to 87% by weight of the active material powder.
And NMP (n-methylpyrrolidone) is added,
Pasted. Next, the weight of the active material after drying was 0.07 g / cm 2 on an expanded metal mesh made of aluminum.
Was applied and dried. Further, vacuum drying was performed at 120 ° C. to obtain a positive electrode.
【0040】負極としてLiメタルを用いた。A Li metal was used as a negative electrode.
【0041】電解液には、1モルのLiPF6を支持塩
とするエチレンカーボネート(EC)とジエチルカーボ
ネート(DEC)の等量混合溶液を用いた。As the electrolytic solution, a mixed solution of equivalent amounts of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1 mol of LiPF 6 as a supporting salt was used.
【0042】セパレータは、膜厚25μmのポリエチレ
ン多孔膜を3枚重ねて用いた。As the separator, three polyethylene porous films each having a thickness of 25 μm were used in a stacked state.
【0043】図1は、組み立てた電池の縦断面図であ
る。リード線1を取り付けた正極2と、リード線3を取
り付けた負極4との間にセパレータ5を介在させ、正極
2と負極4を板ガラス(図示せず)で挟みこみ、クリッ
プ(図示せず)で固定した。この固定物を、ビーカー6
に収容した電解液7中に浸漬した後、ビーカー6内をテ
フロン栓8で密封した。なお、充放電時の確認のため正
極2の電位を測定することができるように、リード線9
を取り付けた参照極(Liメタル)10も浸漬した。ま
た、リード線1、3、9は、テフロン栓8の中を通し、
ビーカー6の外に引き出した。そして、以上の組み立て
は、Ar雰囲気のグローブボックス中で行った。FIG. 1 is a longitudinal sectional view of the assembled battery. A separator 5 is interposed between a positive electrode 2 to which a lead wire 1 is attached and a negative electrode 4 to which a lead wire 3 is attached. Fixed. This fixed material is placed in a beaker 6
After being immersed in the electrolyte solution 7 accommodated in the beaker 6, the inside of the beaker 6 was sealed with a Teflon stopper 8. In addition, the lead wire 9 is used so that the potential of the positive electrode 2 can be measured for confirmation at the time of charging and discharging.
The reference electrode (Li metal) 10 provided with was also immersed. The lead wires 1, 3, and 9 pass through the Teflon stopper 8,
Pulled out of the beaker 6. The above assembly was performed in a glove box in an Ar atmosphere.
【0044】作製した電池は10時間程放置し、OCV
が安定した後、正極に対する電流密度を1.0mA/c
m2とし、カットオフ4.3−3.0Vで充放電試験を
行った。このときの放電容量を初期容量とする。The fabricated battery was left for about 10 hours,
Is stabilized, the current density with respect to the positive electrode is increased to 1.0 mA / c.
m 2, and a charge / discharge test was performed at a cutoff of 4.3 to 3.0 V. The discharge capacity at this time is defined as the initial capacity.
【0045】さらに、正極に対する電流密度を1.0m
A/cm2として4.3Vまで充電を行った後、60℃
に保持した環境試験機(タバイエスペック(株)製、P
L−2SPH)に3日間保存し、エージング処理をし
た。その後、一度放電させ、エージング処理後の放電容
量を初期容量と同一の条件で測定した。Further, the current density with respect to the positive electrode was 1.0 m
After charging to 4.3 V as A / cm 2 ,
Environmental tester (Tabayespec Co., Ltd., P
L-2SPH) for 3 days and subjected to aging treatment. Thereafter, the battery was discharged once, and the discharge capacity after the aging treatment was measured under the same conditions as the initial capacity.
【0046】得られた容量からエージングの効果(容量
劣化率)を[数3]により求めた。From the obtained capacity, the aging effect (capacity deterioration rate) was obtained by [Equation 3].
【0047】[0047]
【数3】 (Equation 3)
【0048】[実施例2]焼成温度および保持時間を、
925℃、15時間とした以外は、実施例1と同様に試
験した。Example 2 The firing temperature and the holding time were
The test was performed in the same manner as in Example 1 except that the temperature was changed to 925 ° C. for 15 hours.
【0049】[実施例3]保持時間を15時間とした以
外は、実施例1と同様に試験した。Example 3 A test was conducted in the same manner as in Example 1 except that the holding time was changed to 15 hours.
【0050】[比較例1]焼成温度を800℃とした以
外は、実施例1と同様に試験した。Comparative Example 1 A test was conducted in the same manner as in Example 1 except that the sintering temperature was 800 ° C.
【0051】[比較例2]リチウム/コバルト比を1.
100となるように混合を行い、焼成温度を1050℃
とした以外は、実施例1と同様に試験した。[Comparative Example 2] The lithium / cobalt ratio was 1.
Mixing was performed to 100, and the firing temperature was 1050 ° C.
The test was conducted in the same manner as in Example 1 except that the test was performed.
【0052】[比較例3]リチウム/コバルト比を1.
050となるように混合を行った以外は、実施例1と同
様に試験した。Comparative Example 3 When the lithium / cobalt ratio was 1.
The test was performed in the same manner as in Example 1 except that the mixing was performed so as to reach 050.
【0053】[実施例4]リチウム/コバルト比を1.
005となるように混合を行った以外は、実施例1と同
様に試験した。Example 4 The lithium / cobalt ratio was set to 1.
The test was performed in the same manner as in Example 1 except that mixing was performed so as to obtain 005.
【0054】[実施例5]焼成温度を950℃とした以
外は、実施例1と同様に試験した。Example 5 A test was performed in the same manner as in Example 1 except that the firing temperature was 950 ° C.
【0055】[比較例4]リチウム/コバルト比を1.
010となるように混合を行った後、造粒し、焼成温度
を800℃とした以外は、実施例1と同様に試験した。Comparative Example 4 The lithium / cobalt ratio was set to 1.
After performing mixing so as to be 010, granulation was performed, and a test was performed in the same manner as in Example 1 except that the firing temperature was set to 800 ° C.
【0056】[比較例5]焼成温度を1050℃とした
以外は、実施例1と同様に試験した。Comparative Example 5 A test was conducted in the same manner as in Example 1 except that the firing temperature was changed to 1050 ° C.
【0057】[比較例6]リチウム/コバルト比を1.
080となるように混合を行った後、造粒し、焼成温度
を950℃とした以外は、実施例1と同様に試験した。Comparative Example 6 A lithium / cobalt ratio of 1.
After performing mixing so as to be 080, the mixture was granulated, and a test was performed in the same manner as in Example 1 except that the firing temperature was set to 950 ° C.
【0058】以上の実施例および比較例におけるリチウ
ムコバルト複酸化物の主な製造条件を表1に、測定結果
を表2および表3に示す。Table 1 shows the main production conditions of the lithium-cobalt double oxide in the above Examples and Comparative Examples, and Tables 2 and 3 show the measurement results.
【0059】[0059]
【表1】 [Table 1]
【0060】[0060]
【表2】 [Table 2]
【0061】[0061]
【表3】 [Table 3]
【0062】以上のように本発明によるリチウムコバル
ト複酸化物は、リチウム二次電池の活物質として用いた
場合、高い高温保存性能を有する電池が得られることが
わかる。As described above, it can be seen that when the lithium-cobalt double oxide according to the present invention is used as an active material of a lithium secondary battery, a battery having high high-temperature storage performance can be obtained.
【0063】[0063]
【発明の効果】本発明のリチウムコバルト複酸化物およ
びその製造方法により、高温時の容量維持性能が優れた
非水系二次電池の正極活物質を提供することができる。According to the lithium-cobalt double oxide and the method for producing the same of the present invention, it is possible to provide a positive electrode active material for a non-aqueous secondary battery having excellent capacity retention at high temperatures.
【図1】実施例および比較例に用いたビーカー電池の縦
断面図である。FIG. 1 is a vertical sectional view of a beaker battery used in Examples and Comparative Examples.
1、3、9 リード線 2 正極 4 負極 5 セパレータ 6 ビーカー 7 電解液 8 テフロン栓 10 参照極 1, 3, 9 Lead wire 2 Positive electrode 4 Negative electrode 5 Separator 6 Beaker 7 Electrolyte 8 Teflon stopper 10 Reference electrode
Claims (5)
X線回折図形の強度I(101)と、同(003)面のX線
回折図形の強度I(003)との比I(101)/I(003)が0.
200〜0.350、(ロ)格子定数aおよびcがそれ
ぞれ2.8130〜2.8160オングストローム、1
4.040〜14.060オングストローム、(ハ)該
(003)面のX線回折図形の半値幅が0.160°以
下、並びに(ニ)該(003)面のX線回折図形より求
めた結晶子径が700.0オングストローム以上である
リチウムイオン二次電池用リチウムコバルト複酸化物。(1) The ratio I (101) of the intensity I (101) of the X-ray diffraction pattern of the (101) plane and the intensity I (003) of the X-ray diffraction pattern of the (003) plane in the hexagonal system. 101) / I (003) is 0.
(B) lattice constants a and c are 2.8130 to 2.8160 Å, respectively;
4.040 to 14.060 angstroms, (c) a crystal whose half-width of the (003) plane X-ray diffraction pattern is 0.160 ° or less, and (d) a crystal obtained from the (003) plane X-ray diffraction pattern Lithium-cobalt double oxide for lithium ion secondary batteries having a diameter of 700.0 angstroms or more.
9650nm3である請求項1に記載のリチウムイオン
二次電池用リチウムコバルト複酸化物。2. The unit cell volume is 0.09600 to 0.09.
9650Nm 3 a lithium ion secondary battery for a lithium cobalt complex oxide according to claim 1.
酸化コバルト(Co3O4)粉末を秤取し、混合造粒機
で、該炭酸リチウム粉末および該酸化コバルト粉末にバ
インダーを添加して造粒物を作製した後、該造粒物を酸
素含有雰囲気で焼成する方法において、(1)該炭酸リ
チウム粉末を、平均粒径が10μm以下で、かつ比表面
積が1.0m2/g以上のものとし、(2)該酸化コバ
ルト粉末を、比表面積が1.0〜3.5m2/gのもの
とし、(3)該炭酸リチウム粉末および該酸化コバルト
粉末を、Li/Coモル比が0.980〜1.005と
なるように秤取し、(4)焼成を、850〜1000℃
で、5〜20時間の条件で行うことを特徴とするリチウ
ムイオン二次電池用リチウムコバルト複酸化物の製造方
法。3. A lithium carbonate (Li 2 CO 3 ) powder and a cobalt oxide (Co 3 O 4 ) powder are weighed, and a binder is added to the lithium carbonate powder and the cobalt oxide powder by a mixing granulator. After producing the granulated material, the method of firing the granulated material in an oxygen-containing atmosphere includes the following steps: (1) The lithium carbonate powder has an average particle diameter of 10 μm or less and a specific surface area of 1.0 m 2 / g or more. (2) the cobalt oxide powder has a specific surface area of 1.0 to 3.5 m 2 / g, and (3) the lithium carbonate powder and the cobalt oxide powder have a Li / Co molar ratio of It is weighed so as to be 0.980 to 1.005, and (4) firing is performed at 850 to 1000 ° C.
A method for producing a lithium-cobalt double oxide for a lithium ion secondary battery, wherein the method is performed under conditions of 5 to 20 hours.
である請求項3に記載のリチウムイオン二次電池用リチ
ウムコバルト複酸化物の製造方法。4. The method for producing a lithium-cobalt double oxide for a lithium ion secondary battery according to claim 3, wherein the binder is an aqueous vinyl alcohol solution.
酸リチウム粉末および酸化コバルト粉末の合計量100
重量部に対して20〜30重量部である請求項4に記載
のリチウムイオン二次電池用リチウムコバルト複酸化物
の製造方法。5. The vinyl alcohol aqueous solution is added in a total amount of lithium carbonate powder and cobalt oxide powder of 100.
The method for producing a lithium-cobalt double oxide for a lithium ion secondary battery according to claim 4, wherein the amount is 20 to 30 parts by weight with respect to part by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9170603A JPH1116573A (en) | 1997-06-26 | 1997-06-26 | Lithium cobalt double oxide for lithium ion secondary battery and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9170603A JPH1116573A (en) | 1997-06-26 | 1997-06-26 | Lithium cobalt double oxide for lithium ion secondary battery and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1116573A true JPH1116573A (en) | 1999-01-22 |
Family
ID=15907922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9170603A Pending JPH1116573A (en) | 1997-06-26 | 1997-06-26 | Lithium cobalt double oxide for lithium ion secondary battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1116573A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000029331A1 (en) * | 1998-11-13 | 2000-05-25 | Fmc Corporation | Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same |
WO2001091211A1 (en) * | 2000-05-24 | 2001-11-29 | Mitsubishi Cable Industries, Ltd. | Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them |
JP2002063941A (en) * | 2000-08-17 | 2002-02-28 | Mitsubishi Cable Ind Ltd | Lithium ion secondary battery |
WO2002019449A1 (en) * | 2000-08-29 | 2002-03-07 | Santoku Corporation | Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell |
US6361756B1 (en) | 1998-11-20 | 2002-03-26 | Fmc Corporation | Doped lithium manganese oxide compounds and methods of preparing same |
US6579475B2 (en) * | 1999-12-10 | 2003-06-17 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
JP2004002066A (en) * | 2002-05-29 | 2004-01-08 | Toda Kogyo Corp | Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process |
JP2005353522A (en) * | 2004-06-14 | 2005-12-22 | Nichia Chem Ind Ltd | Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2008305638A (en) * | 2007-06-06 | 2008-12-18 | Gs Yuasa Corporation:Kk | Alkaline storage battery |
JP2009176644A (en) * | 2008-01-28 | 2009-08-06 | Sumitomo Electric Ind Ltd | Lithium cell |
WO2014051148A1 (en) * | 2012-09-28 | 2014-04-03 | Jx日鉱日石金属株式会社 | Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell |
US9090481B2 (en) | 2010-03-04 | 2015-07-28 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery |
US9118076B2 (en) | 2010-02-05 | 2015-08-25 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery |
US9214676B2 (en) | 2011-03-31 | 2015-12-15 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9216913B2 (en) | 2010-03-04 | 2015-12-22 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9225020B2 (en) | 2010-03-04 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9221693B2 (en) | 2011-03-29 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries |
US9224515B2 (en) | 2012-01-26 | 2015-12-29 | Jx Nippon Mining & Metals Coporation | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery |
US9224514B2 (en) | 2012-01-26 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery |
US9231249B2 (en) | 2010-02-05 | 2016-01-05 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US9240594B2 (en) | 2010-03-04 | 2016-01-19 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9263732B2 (en) | 2009-12-22 | 2016-02-16 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery |
US9327996B2 (en) | 2011-01-21 | 2016-05-03 | Jx Nippon Mining & Metals Corporation | Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery |
US10122012B2 (en) | 2010-12-03 | 2018-11-06 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery |
US11611068B2 (en) * | 2019-03-19 | 2023-03-21 | Ningde Amperex Technology Limited | Cathode material and electrochemical device comprising the same |
-
1997
- 1997-06-26 JP JP9170603A patent/JPH1116573A/en active Pending
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7074382B2 (en) | 1998-11-13 | 2006-07-11 | Fmc Corporation | Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same |
US6589499B2 (en) | 1998-11-13 | 2003-07-08 | Fmc Corporation | Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same |
US6620400B2 (en) | 1998-11-13 | 2003-09-16 | Fmc Corporation | Method of producing layered lithium metal oxides free of localized cubic spinel-like structural phases |
WO2000029331A1 (en) * | 1998-11-13 | 2000-05-25 | Fmc Corporation | Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same |
US6361756B1 (en) | 1998-11-20 | 2002-03-26 | Fmc Corporation | Doped lithium manganese oxide compounds and methods of preparing same |
US6579475B2 (en) * | 1999-12-10 | 2003-06-17 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
US6932922B2 (en) | 1999-12-10 | 2005-08-23 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
WO2001091211A1 (en) * | 2000-05-24 | 2001-11-29 | Mitsubishi Cable Industries, Ltd. | Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them |
CN1310357C (en) * | 2000-05-24 | 2007-04-11 | 三菱电线工业株式会社 | Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them |
JP2002063941A (en) * | 2000-08-17 | 2002-02-28 | Mitsubishi Cable Ind Ltd | Lithium ion secondary battery |
WO2002019449A1 (en) * | 2000-08-29 | 2002-03-07 | Santoku Corporation | Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell |
JP2002151081A (en) * | 2000-08-29 | 2002-05-24 | Santoku Corp | Positive pole active material for non-aqueous electrolytic liquid secondary battery, its manufacturing method, and non-aqueous electrolytic liquid secondary battery |
JP4553095B2 (en) * | 2002-05-29 | 2010-09-29 | 戸田工業株式会社 | Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery |
JP2004002066A (en) * | 2002-05-29 | 2004-01-08 | Toda Kogyo Corp | Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process |
JP2005353522A (en) * | 2004-06-14 | 2005-12-22 | Nichia Chem Ind Ltd | Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2008305638A (en) * | 2007-06-06 | 2008-12-18 | Gs Yuasa Corporation:Kk | Alkaline storage battery |
JP2009176644A (en) * | 2008-01-28 | 2009-08-06 | Sumitomo Electric Ind Ltd | Lithium cell |
US9263732B2 (en) | 2009-12-22 | 2016-02-16 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery |
US9231249B2 (en) | 2010-02-05 | 2016-01-05 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US9118076B2 (en) | 2010-02-05 | 2015-08-25 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery |
US9090481B2 (en) | 2010-03-04 | 2015-07-28 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery |
US9225020B2 (en) | 2010-03-04 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9216913B2 (en) | 2010-03-04 | 2015-12-22 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9240594B2 (en) | 2010-03-04 | 2016-01-19 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US10122012B2 (en) | 2010-12-03 | 2018-11-06 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery |
US9327996B2 (en) | 2011-01-21 | 2016-05-03 | Jx Nippon Mining & Metals Corporation | Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery |
US9221693B2 (en) | 2011-03-29 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries |
US9214676B2 (en) | 2011-03-31 | 2015-12-15 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9224515B2 (en) | 2012-01-26 | 2015-12-29 | Jx Nippon Mining & Metals Coporation | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery |
US9224514B2 (en) | 2012-01-26 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery |
WO2014051148A1 (en) * | 2012-09-28 | 2014-04-03 | Jx日鉱日石金属株式会社 | Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell |
JP5916876B2 (en) * | 2012-09-28 | 2016-05-11 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
JPWO2014051148A1 (en) * | 2012-09-28 | 2016-08-25 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US9911518B2 (en) | 2012-09-28 | 2018-03-06 | Jx Nippon Mining & Metals Corporation | Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery |
US11611068B2 (en) * | 2019-03-19 | 2023-03-21 | Ningde Amperex Technology Limited | Cathode material and electrochemical device comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1116573A (en) | Lithium cobalt double oxide for lithium ion secondary battery and its manufacture | |
JP3591195B2 (en) | Cathode active material for lithium ion secondary batteries | |
JP4216669B2 (en) | Lithium / nickel / manganese / cobalt composite oxide and lithium ion secondary battery using the same as positive electrode active material | |
JP3024636B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3033899B1 (en) | Positive electrode active material for lithium secondary battery, method for producing the same and use thereof | |
EP3930052A1 (en) | Low gas-producing high capacity ternary positive electrode material | |
US20050220700A1 (en) | Positive electrode active material powder for lithium secondary battery | |
JP3141858B2 (en) | Lithium transition metal halide oxide, method for producing the same and use thereof | |
EP1497876A1 (en) | Complex lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof | |
US7507501B2 (en) | Positive active material composition for rechargeable lithium batteries | |
JP3031546B1 (en) | Lithium transition metal halide oxide, method for producing the same and use thereof | |
JP4919147B2 (en) | Method for producing positive electrode active material for non-aqueous lithium secondary battery | |
JP2004253174A (en) | Positive pole active material for nonaqueous electrolytic secondary battery | |
US7306779B2 (en) | Lithium-cobalt composite oxide, process for its production, positive electrode for lithium secondary cell employing it, and lithium secondary cell | |
JPWO2003069702A1 (en) | Particulate cathode active material for lithium secondary battery | |
CA2976022A1 (en) | Positive electrode active substance comprising lithium nickel-cobalt-manganese-based composite transition metal layered oxide for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery | |
JP4172024B2 (en) | Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery | |
JP2006318928A (en) | Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery | |
JP2004323284A (en) | Silicon composite and method of manufacturing the same, and negative electrode material for non-aqueous electrolyte secondary battery | |
JP3489391B2 (en) | Positive active material for lithium ion secondary battery and method for producing the same | |
JPWO2014077231A1 (en) | Non-aqueous electrolyte secondary battery lithium manganate particle powder, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP2006196293A (en) | Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP2001297761A (en) | Positive electrode activator for nonaqueous electrolyte secondary cell | |
JPH10324521A (en) | Lithium-manganese multiple oxide, its production and its use | |
JP2000077097A (en) | Nonaqueous electrolyte secondary battery |