JP3489391B2 - Positive active material for lithium ion secondary battery and method for producing the same - Google Patents

Positive active material for lithium ion secondary battery and method for producing the same

Info

Publication number
JP3489391B2
JP3489391B2 JP12361497A JP12361497A JP3489391B2 JP 3489391 B2 JP3489391 B2 JP 3489391B2 JP 12361497 A JP12361497 A JP 12361497A JP 12361497 A JP12361497 A JP 12361497A JP 3489391 B2 JP3489391 B2 JP 3489391B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12361497A
Other languages
Japanese (ja)
Other versions
JPH10312805A (en
Inventor
武志 高橋
賢治 藤野
弘康 江藤
敬治 一ノ宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP12361497A priority Critical patent/JP3489391B2/en
Publication of JPH10312805A publication Critical patent/JPH10312805A/en
Application granted granted Critical
Publication of JP3489391B2 publication Critical patent/JP3489391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池の正極活物質
に係り、特に、サイクル特性を向上できる非水系のリチ
ウムイオン二次電池用正極活物質及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a secondary battery, and more particularly to a non-aqueous positive electrode active material for a lithium ion secondary battery which can improve cycle characteristics and a method for producing the same.

【0002】[0002]

【従来の技術】近年、カメラ一体形VTR、オーディオ
・ビデオ機器、ノート型パソコン、携帯電話などの新し
いコードレス型電子機器が次々と出現し、短期間で急速
に広く普及した。これら機器の小型・軽量化には、携帯
用電源である二次電池の高性能化は不可欠である。
2. Description of the Related Art In recent years, new cordless electronic devices such as VTRs with built-in cameras, audio / video devices, notebook computers, and mobile phones have appeared one after another, and have spread rapidly and widely in a short period of time. In order to reduce the size and weight of these devices, it is essential to improve the performance of secondary batteries, which are portable power sources.

【0003】非水系リチウムイオン二次電池は、電池電
圧が高く、高放電容量、及びサイクル特性などに優れ、
このような用途に合致し最近盛んに研究されている。こ
の電池正極活物質にはコバルト酸リチウム(LiCoO
2)が使用されている。
The non-aqueous lithium ion secondary battery has a high battery voltage, a high discharge capacity, and excellent cycle characteristics.
It has been actively researched recently to meet such applications. The positive electrode active material for this battery is lithium cobalt oxide (LiCoO 2).
2) is used.

【0004】従来、LiCoO2を正極活物質に用いた
非水系二次電池では、充放電サイクルを繰り返し行うこ
とにより、その電池放電容量が徐々に減少するというサ
イクル特性の劣化の問題があった。この原因は、LiC
oO2の結晶が崩れることによると考えられていた。特
に、充放電を繰り返すことにより、正極活物質を構成す
る微小粒子のc軸方向への膨張、収縮が起こり、多結晶
体等の場合は結晶子の界面が多いので、そこから結晶が
崩れ、正極の集電体からの正極活物質の剥離が起こるこ
とがサイクル特性を劣化する原因とされていた。これに
対し、サイクル特性の改善のために、結晶を単結晶化さ
せ、かつc軸に垂直な方向((003)面)に配向する
扁平粒子を成長させる方法が特開平9−22693号公
報に提案されている。
Conventionally, a non-aqueous secondary battery using LiCoO 2 as a positive electrode active material has a problem of deterioration in cycle characteristics that the discharge capacity of the battery is gradually reduced by repeating charge and discharge cycles. The cause is LiC
It was believed that the crystals of oO2 collapsed. In particular, by repeating charge and discharge, the fine particles constituting the positive electrode active material expand and contract in the c-axis direction, and in the case of a polycrystalline body or the like, there are many crystallite interfaces, and the crystal collapses from there. It has been considered that the peeling of the positive electrode active material from the current collector of the positive electrode causes deterioration of cycle characteristics. On the other hand, in order to improve the cycle characteristics, Japanese Patent Laid-Open No. 9-22693 discloses a method in which a crystal is made into a single crystal and flat particles oriented in a direction ((003) plane) perpendicular to the c-axis are grown. Proposed.

【0005】また、正極活物質のLiCoO2のX線回
折線の(003)面と(104)面のピーク強度比を特
定の範囲に限定することにより、サイクル特性は向上す
ることが特開平5−258751号公報、特開平9−2
2692号公報、特開平9−22693号公報、及び特
開平8−55624号公報に記載されている。
Further, it is possible to improve cycle characteristics by limiting the peak intensity ratio of the (003) plane and the (104) plane of the X-ray diffraction line of LiCoO 2 as the positive electrode active material to a specific range. No. 258751, Japanese Patent Laid-Open No. 9-2
2692, JP-A-9-22693, and JP-A-8-55624.

【0006】ところが、X線回折線の(003)面と
(104)面のピーク強度比が特定の範囲に存在するも
のであっても、100サイクル以上の高サイクルでは早
く劣化するものもある。そこでこのような高サイクルで
あってもサイクル特性の優れた正極活物質が望まれる。
However, even if the peak intensity ratios of the (003) plane and the (104) plane of the X-ray diffraction line exist in a specific range, there are some that deteriorate rapidly at a high cycle of 100 cycles or more. Therefore, a positive electrode active material having excellent cycle characteristics even with such a high cycle is desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は上述した事情
に鑑みなされ、充放電サイクル特性の良好なリチウムイ
オン二次電池の正極活物質を提供することを目的とし、
特に100サイクル以上の高サイクル時のサイクル特性
(容量維持率)を向上できる正極活物質を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a positive electrode active material for a lithium ion secondary battery having good charge / discharge cycle characteristics.
In particular, it is an object of the present invention to provide a positive electrode active material capable of improving cycle characteristics (capacity retention rate) at high cycles of 100 cycles or more.

【0008】[0008]

【課題を解決するための手段】本発明者は正極活物質の
結晶構造について、精密な解析を試み鋭意検討した結
果、その結晶構造自体がリチウムイオン電池の充放電サ
イクル特性に密接に関係することを新たに見出し、この
結晶構造を制御することで充放電特性を改善することに
成功した。
Means for Solving the Problems The inventors of the present invention have made an intensive study on the crystal structure of the positive electrode active material, and as a result, have found that the crystal structure itself is closely related to the charge / discharge cycle characteristics of a lithium ion battery. We have succeeded in improving charge / discharge characteristics by controlling the crystal structure.

【0009】すなわち、本発明のリチウムイオン二次電
池用正極活物質は、一般式LiCoO2で表現されその
結晶構造は六方晶系であるリチウムイオン二次電池用正
極活物質であって、その格子定数のc軸長は14.05
1オングストローム以下であることを特徴とする。
That is, the positive electrode active material for a lithium ion secondary battery of the present invention is a positive electrode active material for a lithium ion secondary battery represented by the general formula LiCoO2 and having a hexagonal crystal structure, and its lattice constant is C-axis length is 14.05
It is characterized in that it is 1 angstrom or less.

【0010】また、正極活物質の結晶子の(110)ベ
クトル方向の結晶子径は450〜1000オングストロ
ームの範囲であることが好ましい。この範囲の結晶子径
を有する正極活物質はc軸長を目標範囲に設定するのが
より容易となる。
The crystallite diameter of the crystallite of the positive electrode active material in the (110) vector direction is preferably in the range of 450 to 1000 angstroms. For a positive electrode active material having a crystallite size in this range, it is easier to set the c-axis length in the target range.

【0011】本発明のリチウムイオン二次電池用正極活
物質を製造するには、原料の重金属酸化物とリチウム塩
をLi/Co比が0.98〜1.01の範囲となるよう
に混合し、原料の重金属酸化物の(222)ベクトル方
向の結晶子径は50〜400オングストロームの範囲の
ものを使用することを特徴とする。
In order to produce the positive electrode active material for a lithium ion secondary battery of the present invention, the heavy metal oxide and the lithium salt as raw materials are mixed so that the Li / Co ratio is in the range of 0.98 to 1.01. The raw material heavy metal oxide having a crystallite diameter in the (222) vector direction in the range of 50 to 400 angstroms is used.

【0012】原料の重金属酸化物の中心粒径は、電気抵
抗法の粒度分布測定装置を用いて測定される値であり、
ここではCoulter Multisizer2を用
いて測定した中心粒径である。これは測定原理から分散
状態にあるか凝集状態にあるかの知見を含んだ粒径とい
うことができる。
The center particle diameter of the heavy metal oxide as a raw material is a value measured by using a particle size distribution measuring device of electric resistance method,
Here, the median particle diameter is measured using a Coulter Multisizer 2. It can be said that this is a particle size that includes the knowledge of whether it is in a dispersed state or an aggregated state from the measurement principle.

【0013】[0013]

【発明の実施の形態】リチウムイオン電池用正極活物質
であるLiCoO2は図1に示す六方晶系に属し、充電
を行うと、正極活物質中の結晶からLiを離脱し、格子
定数のc軸長が一次関数的に増加することが知られてい
る。充電が進行し、そしてある一定の大きさ(14.4
オングストローム)に達すると、それ以上格子定数は大
きくならず、六方晶系から単斜晶系へと結晶構造が変化
し結晶は崩れると記載されている。(J.N.Reimers and
J.R.Dahn:J.Electrochem.Soc.,139,No.8,2091(1992))
BEST MODE FOR CARRYING OUT THE INVENTION LiCoO2, which is a positive electrode active material for a lithium-ion battery, belongs to the hexagonal system shown in FIG. 1, and when charged, Li is released from the crystal in the positive electrode active material, and the c-axis of the lattice constant. It is known that the length increases linearly. Charging progresses and reaches a certain size (14.4
It is described that when it reaches angstrom), the lattice constant does not increase further, the crystal structure changes from the hexagonal system to the monoclinic system, and the crystal collapses. (JNReimers and
JRDahn: J.Electrochem.Soc., 139, No.8,2091 (1992))

【0014】図2は正極活物質のLixCoO2のx値と
c軸長の関係について、本発明(図中a)と従来品(図
中b)をプロットしたものである。本発明品はLiを脱
離していないx=1.0の状態でc軸長は14.048
オングストロームであり、従来品1のそれは14.10
オングストロームである。また、これらの正極活物質に
ついて、x=0.5まで充電した正極活物質についても
再びX線回折をとり、c軸長を求めた。これには正極活
物質のペーストを正極板とし、Li金属を負極として、
一定量の電流負荷を流し、その後ペースト電極を溶媒に
溶かして洗浄することで正極活物質を分離して行った。
FIG. 2 is a plot of the present invention (a in the figure) and the conventional product (b in the figure) with respect to the relationship between the x value and the c-axis length of LixCoO2 as the positive electrode active material. The product of the present invention has a c-axis length of 14.048 in the state of x = 1.0 where Li is not desorbed.
It is Angstrom and that of the conventional product 1 is 14.10.
Angstrom. Further, with respect to these positive electrode active materials, X-ray diffraction was performed again on the positive electrode active materials charged to x = 0.5 to determine the c-axis length. For this, the positive electrode active material paste is used as the positive electrode plate, the Li metal is used as the negative electrode,
A positive electrode active material was separated by applying a fixed amount of current load, and then dissolving and cleaning the paste electrode in a solvent.

【0015】従来品(直線b)がx=0.5の時に、c
軸長が14.40オングストロームであるのに対し、本
発明品(直線a)はx=0.425でc軸長は14.4
0オングストロームとなる。すなわち、実施例の方が、
Liのより少ない組成で14.40オングストロームの
結晶構造転移の変換点をむかえる。言い換えれば、本発
明品は、より多く充電しても結晶が崩壊しない。これは
サイクル特性にとっても有利である。
When x = 0.5 in the conventional product (straight line b), c
While the axial length is 14.40 angstrom, the product of the present invention (straight line a) has x = 0.425 and the c-axis length is 14.4.
It will be 0 angstrom. That is, the embodiment is
A conversion point of a crystal structure transition of 14.40 angstrom is achieved with a composition containing less Li. In other words, in the product of the present invention, the crystal does not collapse even if it is charged more. This is also advantageous for cycle characteristics.

【0016】<格子定数の精密化> 本発明品と、従来品のc軸長の差は0.1オングストロ
ーム以下の僅かな差であるが、格子定数の精密化処理を
することでさらに0.01オングストローム以下の差ま
で識別可能となる。ここで、格子定数の精密化は、Cu
Kα1を線源とするX線回折において、面指数(00
3)、(102)、(104)、(105)、(11
0)、(113)、(204)、(208)、(001
5)を半値幅法により、面間隔dを求め、最小二乗法に
より計算を行った。面間隔を求める際に、NIST製S
iにより角度補正を行った。またc軸長はこれ以外にR
ietveld法でも、WPPD法でも同様の数値が得
らる。
<Refinement of Lattice Constant> The difference in the c-axis length between the present invention product and the conventional product is a slight difference of 0.1 angstrom or less. It is possible to identify a difference of 01 angstrom or less. Here, the refinement of the lattice constant is Cu
In X-ray diffraction using Kα1 as the radiation source, the surface index (00
3), (102), (104), (105), (11
0), (113), (204), (208), (001
In 5), the surface spacing d was obtained by the half-width method, and the calculation was performed by the least squares method. NIST S when determining the surface spacing
The angle was corrected by i. In addition to this, the c-axis length is R
Similar values can be obtained by the ietveld method and the WPPD method.

【0017】<容量維持率> 図3に、本発明の正極活物質と比較品についてのサイク
ル特性(容量維持率(%)200サイクル)と、c軸長
の関係を示す。この図に示すように、c軸長が短くなる
と容量維持率は95%程度まで改善されている。図中に
示す比較例のc軸長は14.0576(5)オングスト
ロームであり、本発明品は14.0474(4)オング
ストロームである。この差はわずか0.01オングスト
ローム程度であるが、結晶構造上のこの差は格子定数の
精密化処理を行うことで明らかな有意差として識別され
る。
<Capacity Retention Ratio> FIG. 3 shows the relationship between the cycle characteristics (capacity retention ratio (%) of 200 cycles) and the c-axis length of the positive electrode active material of the present invention and a comparative product. As shown in this figure, when the c-axis length becomes shorter, the capacity retention rate is improved to about 95%. The c-axis length of the comparative example shown in the figure is 14.0576 (5) angstrom, and the product of the present invention is 14.0474 (4) angstrom. This difference is only about 0.01 angstrom, but this difference in crystal structure is identified as a significant difference by performing refinement processing of the lattice constant.

【0018】正極活物質の結晶について、(110)ベ
クトル方向への結晶子径が1000オングストロームム
以上に成長し過ぎないことが必要である。これは、(1
10)ベクトル方向に結晶が成長し過ぎると、正極活物
質にLiを挿入(放電)する際、層に対して平行な方向
しかLiイオンが挿入できないため、相対的にLiイオ
ン挿入可能な面が減少し、粒子界面でのLiイオンの拡
散が悪化するためである。特に、高い電流密度で放電さ
せた場合、この傾向が顕著になる。
Regarding the crystal of the positive electrode active material, it is necessary that the crystallite diameter in the (110) vector direction does not grow excessively to 1000 angstroms or more. This is (1
10) When the crystal grows too much in the vector direction, when Li is inserted (discharged) in the positive electrode active material, Li ions can be inserted only in a direction parallel to the layer, so that a surface on which Li ions can be relatively inserted is formed. This is because the amount of the Li ions decreases, and the diffusion of Li ions at the grain interface deteriorates. This tendency becomes particularly noticeable when discharged at a high current density.

【0019】結晶子径が500からおよそ1000オン
グストロームの範囲では充放電特性はほぼ変化しない
が、およそ1000オングストロームを超えると充放電
特性は低下する。
The charge / discharge characteristics do not substantially change in the crystallite diameter range of 500 to about 1000 Å, but the charge / discharge characteristics deteriorate when the crystallite diameter exceeds about 1000 Å.

【0020】<結晶子径の測定> 結晶子とは、単結晶と考えられる最大限の集合を示し、
XRD(X-ray diffraction)測定より、次のシェラーの
式を用いることにより計算できる。 結晶子の大きさD(オングストローム)=Kλ/(βco
sθ) K:シェラー定数 (βを積分幅より算出した場合K=
1.05) λ:使用X線管球の波長(CuKα1=1.54056
2オングストローム) β:結晶子の大きさによる回折線の広がりの幅(rad
ian) θ:回折角2θ/2(degree)
<Measurement of Crystallite Diameter> A crystallite indicates the maximum set considered to be a single crystal,
It can be calculated from the XRD (X-ray diffraction) measurement by using the following Scherrer's formula. Crystallite size D (Angstrom) = Kλ / (βco
sθ) K: Scherrer constant (when β is calculated from the integration width, K =
1.05) λ: wavelength of X-ray tube used (CuKα1 = 1.54056)
2 angstrom) β: Width of spread of diffraction line due to crystallite size (rad
ian) θ: Diffraction angle 2θ / 2 (degree)

【0021】ここでいう粒子とはSEMで結像する最小
の粒子を指し、粒子が1つの単結晶で構成されている場
合は結晶子径と粒子径は同じ大きさである。一つの粒子
に複数の単結晶を包含する場合、当然その大きさは一致
しない。
The term "particle" as used herein refers to the smallest particle imaged by SEM, and when the particle is composed of one single crystal, the crystallite diameter and the particle diameter are the same. When a plurality of single crystals are included in one particle, the sizes do not match.

【0022】また、重金属酸化物の中心粒径は1.0〜
10.0μmの範囲が好ましい。ここで中心粒径はCo
ulter Multisizer2で測定した値であ
る。重金属酸化物がこの範囲より小さいと、粒子が凝集
して扱いにくくなり、またこの範囲より大きいと、結晶
子の成長度が大きく、c軸長が大きくなる傾向にあり、
好ましくない。
The center particle size of the heavy metal oxide is 1.0 to
The range of 10.0 μm is preferable. Here, the central particle size is Co
It is the value measured by ultra Multisizer2. If the heavy metal oxide is smaller than this range, the particles agglomerate and become difficult to handle, and if it is larger than this range, the degree of crystallite growth is large and the c-axis length tends to be large.
Not preferable.

【0023】<重金属酸化物原料> 本発明のリチウムイオン二次電池用正極活物質はc軸長
が従来品に比べ短いことが大きな特徴であるが、例えば
LiCoO2を得る場合、原料の四三酸化コバルト(C
o3O4)の結晶の成長度の小さいものを使用することが
鍵となる。つまり、リチウム塩との反応性を高めるため
に、結晶の成長度の小さなCo3O4が必要となる。結晶
度の小さい結晶とは、具体的には結晶子の大きさが小さ
い結晶のことであり、原料のCo3O4の結晶子の大きさ
はC軸長が14.051オングストローム以下となる5
0〜400オングストロームが好ましい。
<Heavy Metal Oxide Raw Material> The positive electrode active material for a lithium ion secondary battery of the present invention is characterized by a shorter c-axis length than conventional products. Cobalt (C
The key is to use a crystal having a small degree of crystal growth of o3O4). That is, Co3O4 having a small crystal growth rate is required to increase the reactivity with the lithium salt. A crystal with a low crystallinity is a crystal with a small crystallite size, and the crystallite size of the raw material Co3O4 has a C-axis length of 14.051 angstroms or less.
0-400 Angstroms is preferred.

【0024】原料のCo3O4の(222)ベクトル方向
の結晶子長が50オングストロームよりも小さくなる
と、LiCoO2の(110)ベクトル方向に結晶が異
常成長する問題が生じ、逆に、400オングストローム
より大きくなると、Liとの反応性が低下し、結晶が成
長しにくくなり、その結果C軸長が14.051オング
ストロームより大きくなる。
When the crystallite length of the raw material Co3O4 in the (222) vector direction is smaller than 50 angstroms, there occurs a problem that crystals grow abnormally in the (110) vector direction of LiCoO2. The reactivity with Li is lowered, and it becomes difficult for the crystal to grow. As a result, the C-axis length becomes larger than 14.051 angstrom.

【0025】<リチウム原料> 本発明においてリチウム二次電池に使用する原料のLi
塩としては、種々検討した結果、融点が比較的高いLi
2CO3、Li2(COO)2又はLiOHが好ましく使用
できる。
<Lithium Raw Material> Li as a raw material used for the lithium secondary battery in the present invention.
As a salt, as a result of various studies, Li having a relatively high melting point was used.
2CO3, Li2 (COO) 2 or LiOH can be preferably used.

【0026】<重金属原料とリチウムの混合> 本発明において、Co3O4とリチウム塩をLi/Co比
が0.98〜1.01の範囲となるように混合する。そ
れはLi/Co比がこの範囲から逸脱すると、過剰分が
融剤として作用することで粒子が異常成長し、粒子径及
び粒子形状を制御困難となるからである。
<Mixing of Heavy Metal Raw Material and Lithium> In the present invention, Co3O4 and lithium salt are mixed so that the Li / Co ratio is in the range of 0.98 to 1.01. This is because if the Li / Co ratio deviates from this range, the excess acts as a flux to cause abnormal growth of particles, making it difficult to control the particle diameter and particle shape.

【0027】<焼成> 得られた混合原料を大気雰囲気下で、750〜1100
℃で焼成する。融剤として、アルカリ金属塩類や、Bさ
らには、Bi、Pb等を加える場合、もしくは、造粒す
る場合は、c軸長の成長を促進しやすくなり、サイクル
特性を低下するので好ましくない。
<Firing> The obtained mixed raw material is placed in an atmosphere of 750 to 1100.
Bake at ° C. When an alkali metal salt, B, further Bi, Pb, or the like is added as a flux, or when granulating, the growth of the c-axis length is easily promoted and the cycle characteristics are deteriorated, which is not preferable.

【0028】[0028]

【実施例】[実施例1] <原料仕込み> ・四三酸化コバルト(Co3O4)・・・・・ 3.11
0kg ・炭酸リチウム(Li2CO3)・・・・・・ 1.38
0kg 四三酸化コバルトは(222)ベクトル方向の結晶子径
が200オングストロームであり、二次粒子の形状がほ
ぼ球状の多結晶の粒子である。二次粒子径について、C
oulter Multisizer2を用いて測定し
たところ中心粒径は5.0μmであった。上記原料のL
i/Coの仕込み比率は1.00である。これら原料を
セラミックポットに仕込み、ボールミルを行い正極活物
質の混合原料を得る。
[Examples] [Example 1] <Preparation of raw materials> -Cobalt trioxide (Co3O4) ... 3.11
0kg ・ Lithium carbonate (Li2CO3) ・ ・ ・ ・ ・ 1.38
0 kg of cobalt trioxide is a polycrystalline particle having a crystallite diameter in the (222) vector direction of 200 angstroms and a secondary particle having a substantially spherical shape. Regarding the secondary particle size, C
The median particle size was 5.0 μm as measured with an ulter Multisizer 2. L of the above raw materials
The charging ratio of i / Co is 1.00. These raw materials are placed in a ceramic pot and ball-milled to obtain a mixed raw material for the positive electrode active material.

【0029】得られた混合原料を空気中900℃で10
時間焼成し、粉砕し、目的とするLiCoO2を合成し
た。
The obtained mixed raw material was heated in air at 900 ° C. for 10 minutes.
It was calcined for hours and pulverized to synthesize the desired LiCoO2.

【0030】得られたLiCoO2をCuKαを線源と
する粉末X線回折を測定し、格子定数の精密化を行った
ところ、c軸長は14.0474(4)オングストロー
ム、a軸長は2.81447(3)オングストロームで
あった。また、(110)ベクトル方向の結晶子系は8
15オングストロームであった。前記した方法で200
サイクルの容量維持率を測定したところ95%であっ
た。
The obtained LiCoO 2 was measured by powder X-ray diffraction using CuKα as a radiation source to refine the lattice constant. The c-axis length was 14.474 (4) angstrom and the a-axis length was 2. 81447 (3) angstroms. Also, the crystallite system in the (110) vector direction is 8
It was 15 Å. 200 by the method described above
The capacity retention of the cycle was measured and found to be 95%.

【0031】[比較例1] 四三酸化コバルト粒子の(222)ベクトル方向の結晶
子径が578オングストロームであるものを使用する以
外実施例1と同じ条件で原料を混合し、焼成することで
LiCoO2を合成した。得られたLiCoO2を実施例
1と同様にして格子定数の精密化を行ったところ、a軸
長=2.8143(2)オングストローム、c軸長=1
4.0576(5)オングストロームであった。また、
(110)ベクトル方向の結晶子径は520オングスト
ロームであった。得られた正極活物質を使用する以外実
施例1と同様にして二次電池を作製し、200サイクル
の充放電による容量維持率は87.8%であった。
Comparative Example 1 Cobalt tetraoxide particles having a crystallite size in the (222) vector direction of 578 angstroms were used under the same conditions as in Example 1 except that the raw materials were mixed and fired to obtain LiCoO2. Was synthesized. When the obtained LiCoO2 was refined in lattice constant in the same manner as in Example 1, a-axis length = 2.8143 (2) angstrom, c-axis length = 1.
It was 4.0576 (5) angstroms. Also,
The crystallite diameter in the (110) vector direction was 520 Å. A secondary battery was made in the same manner as in Example 1 except that the obtained positive electrode active material was used, and the capacity retention rate after 200 cycles of charging and discharging was 87.8%.

【0032】[0032]

【発明の効果】以上説明したように、本発明の正極物質
のLiCoO2(重金属酸リチウム)は、格子定数のc
軸長を従来品より短くすることで、充放電によるLiイ
オンの正極活物質結晶からの脱離或いは結晶への浸入の
際に起きる結晶の崩壊を少なく保つことができ、その結
果、結晶構造が安定化し、高サイクル下においてサイク
ル特性を向上し、電池の寿命を改善することができる。
As described above, LiCoO2 (lithium heavy metal oxide) of the positive electrode material of the present invention has a lattice constant c
By making the axial length shorter than that of the conventional product, it is possible to keep the crystal collapse that occurs when Li ions are desorbed from the positive electrode active material crystal or enter the crystal by charge / discharge, and as a result, the crystal structure is improved. It is possible to stabilize, improve cycle characteristics under high cycle, and improve battery life.

【0033】本発明はこのc軸長が一次関数的に増加す
る性質に着目し、充放電によるLiの正極活物質結晶か
らの脱離或いは結晶への浸入の際に起きる結晶の崩壊を
少なく保つことに目的とし、未充電のLiを脱離してい
ない正極活物質のc軸長を小さくすることにより、この
結晶の崩壊は起こりにくくなり、サイクル特性は向上す
る。
In the present invention, attention is paid to the property that the c-axis length increases in a linear function, and crystal collapse that occurs when Li is desorbed from the positive electrode active material crystal or enters the crystal by charge / discharge is kept small. For this purpose, by decreasing the c-axis length of the positive electrode active material in which uncharged Li is not desorbed, the crystal collapse is less likely to occur and the cycle characteristics are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】六方晶系の基本格子を示す模式図FIG. 1 is a schematic diagram showing a hexagonal basic lattice.

【図2】本発明の正極活物質と比較品について、Lix
CoO2のx値とc軸長の関係についてプロットした特
性図
FIG. 2 shows Lix of a positive electrode active material of the present invention and a comparative product.
Characteristic diagram plotting the relationship between x-value of CoO2 and c-axis length

【図3】本発明品と比較品の容量維持率(200サイク
ル)と、c軸長の関係を示特性図
FIG. 3 is a characteristic diagram showing the relationship between the capacity retention rate (200 cycles) and the c-axis length of the product of the present invention and the comparative product.

【符号の説明】[Explanation of symbols]

a・・・・・・・本発明品 b・・・・・・・比較品 a ... The present invention b ・ ・ ・ ・ Comparison product

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−181062(JP,A) 特開 平7−192719(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/04 H01M 4/36 - 4/62 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-181062 (JP, A) JP-A-7-192719 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/04 H01M 4/36-4/62 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料であるCo3O4の結晶子径が(2
22)ベクトル方向に50〜400オングストロームの
範囲である、一般式LixCoO2で表現されその結晶
構造は六方晶系であるリチウムイオン二次電池用正極活
物質であって、 前記x=1.0の状態で、格子定数のc軸長は14.0
48オングストローム以下であり、 前記x=0.425以下の状態で、格子定数のc軸長は
14.40オングストロームの結晶構造転移の変換点を
むかえ、 結晶子の(110)ベクトル方向の結晶子径は500〜
1000オングストロームの範囲である、リチウムイオ
ン二次電池用正極活物質。
1. A crystallite diameter of Co3O4 as a raw material is (2
22) 50 to 400 angstroms in the vector direction
A positive electrode active material for a lithium-ion secondary battery, which is represented by the general formula LixCoO2 and has a hexagonal crystal structure, and has a c-axis length of a lattice constant of 14 when x = 1.0. .0
48 angstroms or less, and in the state of x = 0.425 or less, the c-axis length of the lattice constant is 14.40 angstroms, with the conversion point of the crystal structure transition, and the crystallite diameter of the crystallite in the (110) vector direction. Is 500 ~
A positive electrode active material for a lithium ion secondary battery in the range of 1000 Å.
【請求項2】 原料のCo3O4とリチウム塩をLi/
Co比が0.98〜1.01の範囲となるように混合し
て焼成する結晶構造が六方晶系であるコバルト酸リチウ
ムからなるリチウムイオン二次電池用正極活物質の製造
方法であって、 該Co3O4の結晶子径は(222)ベクトル方向に5
0〜400オングストロームの範囲である、リチウムイ
オン二次電池用正極活物質の製造方法。
2. Co / O4 as a raw material and a lithium salt are used as Li /
A method for producing a positive electrode active material for a lithium ion secondary battery, which comprises a lithium cobalt oxide having a hexagonal crystal structure and is mixed and fired so that the Co ratio is in the range of 0.98 to 1.01. The crystallite diameter of the Co3O4 is 5 in the (222) vector direction.
A method for producing a positive electrode active material for a lithium ion secondary battery, which is in the range of 0 to 400 angstroms.
JP12361497A 1997-05-14 1997-05-14 Positive active material for lithium ion secondary battery and method for producing the same Expired - Lifetime JP3489391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12361497A JP3489391B2 (en) 1997-05-14 1997-05-14 Positive active material for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12361497A JP3489391B2 (en) 1997-05-14 1997-05-14 Positive active material for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10312805A JPH10312805A (en) 1998-11-24
JP3489391B2 true JP3489391B2 (en) 2004-01-19

Family

ID=14864962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12361497A Expired - Lifetime JP3489391B2 (en) 1997-05-14 1997-05-14 Positive active material for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3489391B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4209646B2 (en) * 2002-09-03 2009-01-14 Agcセイミケミカル株式会社 Method for producing lithium cobalt composite oxide for positive electrode of secondary battery
TWI274433B (en) * 2002-09-03 2007-02-21 Seimi Chem Kk Process for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
TW200423458A (en) 2002-11-29 2004-11-01 Seimi Chem Kk Method for preparing positive electrode active material for lithium secondary cell
WO2005020354A1 (en) 2003-08-21 2005-03-03 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
CN101320804A (en) 2004-04-30 2008-12-10 清美化学股份有限公司 Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
WO2007015473A1 (en) * 2005-08-01 2007-02-08 Santoku Corporation Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5061437B2 (en) * 2005-08-26 2012-10-31 ソニー株式会社 Lithium ion secondary battery
CN101111457B (en) 2005-09-27 2012-11-28 Agc清美化学股份有限公司 Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP4979319B2 (en) * 2005-09-29 2012-07-18 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
JP5015543B2 (en) * 2005-10-31 2012-08-29 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
JP4896034B2 (en) 2005-11-02 2012-03-14 Agcセイミケミカル株式会社 Lithium-containing composite oxide and method for producing the same
JP5398050B2 (en) * 2008-03-26 2014-01-29 株式会社Gsユアサ Cobalt compound, alkaline battery, and method for producing positive electrode for alkaline storage battery

Also Published As

Publication number Publication date
JPH10312805A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
JP4644895B2 (en) Lithium secondary battery
JP3591195B2 (en) Cathode active material for lithium ion secondary batteries
JP4702510B2 (en) Lithium-containing silicon oxide powder and method for producing the same
JP4353808B2 (en) Particulate cathode active material for lithium secondary battery
CA2336460C (en) Non-aqueous electrolyte secondary cell
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP3033899B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
EP0929111B1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
JP2013144639A (en) Dense powdery compound of mixed titanium lithium oxide, method for manufacturing the compound, and electrode containing the compound
JP2000113889A (en) Lithium secondary battery
JPH1116573A (en) Lithium cobalt double oxide for lithium ion secondary battery and its manufacture
JP3489391B2 (en) Positive active material for lithium ion secondary battery and method for producing the same
JP3460413B2 (en) Positive electrode active material, method for producing the same, and non-aqueous solvent-based secondary battery using the same
US9786914B2 (en) Spinel-type lithium cobalt manganese-containing complex oxide
JP2001080920A (en) Aggregated granular lithium multiple oxide, its production and lithium secondary battery
JP2000228195A (en) Lithium secondary battery
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2001206722A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode, lithium secondary cell, and manufacturing method of lithium manganese multiple oxide
JP2002326818A (en) Production method of slurry and production method of lithium transition metal compound oxide
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term