JPH1079250A - Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it - Google Patents

Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it

Info

Publication number
JPH1079250A
JPH1079250A JP8184700A JP18470096A JPH1079250A JP H1079250 A JPH1079250 A JP H1079250A JP 8184700 A JP8184700 A JP 8184700A JP 18470096 A JP18470096 A JP 18470096A JP H1079250 A JPH1079250 A JP H1079250A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8184700A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuda
良夫 松田
Keijiro Takanishi
慶次郎 高西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8184700A priority Critical patent/JPH1079250A/en
Publication of JPH1079250A publication Critical patent/JPH1079250A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material with high performance and high capacity excellent in the charging/discharging cycle and accomplish a secondary battery incorporating this positive electrode active material. SOLUTION: This positive electrode active material comprises a compound expressed by the chemical equation Li1- X-a AXNi1- Y-b BYO2 , where A is strontium or barium, B is at least one of transition metal elements, and X and Y should meet the conditions 0<X<=0.10 and 0<Y<=0.30 while a and b should meet the conditions -0.10<=a<=0.10 and -0.15<=b<=0.15, provided that X represents the total mol number of strontium or barium while Y represents the total mol number of all transition metal elements other than Ni in case B comprises two or more sorts of transition metal elements, wherein the positive electrode active material forms secondary particles as a coagulation of primary particles having mean particle size between 0.01 and 5.0μm, and the mean particle size of the secondary particles ranges from 5.0 to 50μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高容量かつサイク
ル特性良好な正極活物質およびかかる正極活物質を用い
た高性能の非水溶媒系二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material having a high capacity and good cycle characteristics, and a high-performance non-aqueous solvent secondary battery using such a positive electrode active material.

【0002】[0002]

【従来の技術】近年、ビデオカメラやノ−ト型パソコン
等のポ−タブル機器の普及に伴い、小型高容量の二次電
池に対する需要が高まっている。現在使用されている二
次電池のほとんどはアルカリ電解液を用いたニッケル−
カドミウム電池であるが、電池電圧が約1.2Vと低
く、エネルギ−密度の向上は困難である。そのため、比
重が0.534と固体の単体中最も軽いうえ、電位が極
めて卑であり、単位重量当たりの電流容量も金属負極材
料中最大であるリチウム金属を使用するリチウム二次電
池が検討された。
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras and notebook personal computers, demand for small and high capacity secondary batteries has been increasing. Most of the secondary batteries currently used are nickel-based using alkaline electrolyte.
A cadmium battery has a low battery voltage of about 1.2 V, and it is difficult to improve the energy density. Therefore, a lithium secondary battery using lithium metal, which has a specific gravity of 0.534, which is the lightest among solid solids, has a very low potential, and has the largest current capacity per unit weight among metal negative electrode materials, has been studied. .

【0003】しかし、リチウム金属を負極に使用する二
次電池では、放電時に負極の表面に樹枝状のリチウム
(デンドライト)が再結晶し、充放電サイクルによって
これが成長する。このデンドライトの成長は、二次電池
のサイクル特性を劣化させるばかりではなく、最悪の場
合には正極と負極が接触しないように配置された隔膜
(セパレータ)を突き破って、正極と電気的に短絡、発
火して電池を破壊してしまう。そこで、例えば、特開昭
62−90863号公報に示されているように、コ−ク
ス等の炭素質材料を負極とし、アルカリ金属イオンをド
−ピング、脱ド−ピングすることにより充放電を繰り返
す二次電池が提案された。これによって、上述したよう
な充放電の繰り返しにおける負極の劣化問題を回避でき
ることが分かった。また、このような各種炭素質材料
は、アニオンをドーピングして正極として用いることも
可能である。上記の炭素質材料へのリチウムイオンある
いはアニオンのドーピングを基本原理とする電極を利用
した二次電池としては、特開昭57−208079号公
報、特開昭58−93176号公報、特開昭58−19
2266号公報、特開昭62−90863号公報、特開
昭62−122066号公報、特開平3−66856号
公報等が公知である。
However, in a secondary battery using lithium metal for the negative electrode, dendritic lithium (dendrites) is recrystallized on the surface of the negative electrode at the time of discharging, and grows by a charge / discharge cycle. This dendrite growth not only degrades the cycle characteristics of the secondary battery, but in the worst case, breaks through a separator (separator) arranged so that the positive electrode and the negative electrode do not come into contact with each other, and electrically short-circuits with the positive electrode. Ignite and destroy battery. Thus, for example, as disclosed in Japanese Patent Application Laid-Open No. 62-90863, charge and discharge are performed by using a carbonaceous material such as coke as a negative electrode and doping and undoping alkali metal ions. A repetitive secondary battery has been proposed. As a result, it was found that the problem of deterioration of the negative electrode due to the repetition of charge and discharge as described above can be avoided. Further, such various carbonaceous materials can be used as a positive electrode by doping with an anion. As secondary batteries using electrodes based on the above-described principle of doping lithium ions or anions into carbonaceous materials, JP-A-57-20807, JP-A-58-93176, JP-A-58-93176, and -19
No. 2,266, Japanese Patent Application Laid-Open No. 62-90863, Japanese Patent Application Laid-Open No. 62-122066, Japanese Patent Application Laid-Open No. 3-66656, and the like are known.

【0004】更に、最近では、高エネルギー密度化の要
求に応えるべく、電池電圧が4V前後を示すものが現
れ、注目を浴びている。電池電圧の高電圧化は、正極に
高電位を示す活物質の探索、開発によって進められ、ア
ルカリ金属を含む遷移金属酸化物や遷移金属カルコゲン
などの無機化合物が知られている。なかでも、LiX
oO2 (0<x≦1.0)、LiX NiO2 (0<x≦
1.0)などが、高電位、安定性、長寿命という点から
最も有望であると考えている。このなかでも、LiNi
2 は、LiCoO2 に比べて、原料がコスト安であ
り、かつ、供給が安定していること、さらには、4V級
の活物質ではあるが、充電電位が幾分低いことから電解
液の分解が抑制されるなどという利点から、特に精力的
に研究が進められている。
Further, recently, in order to meet the demand for higher energy density, a battery having a battery voltage of around 4 V has appeared and has been receiving attention. Increasing the battery voltage has been promoted by searching for and developing an active material exhibiting a high potential at the positive electrode, and inorganic compounds such as transition metal oxides and transition metal chalcogens containing alkali metals are known. Above all, Li X C
oO 2 (0 <x ≦ 1.0), Li x NiO 2 (0 <x ≦
1.0) are considered most promising in terms of high potential, stability, and long life. Among them, LiNi
O 2 is a raw material that is less expensive and has a more stable supply than LiCoO 2 , and is a 4V-class active material. Research has been particularly vigorously pursued because of its advantages such as suppression of decomposition.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、LiN
iO2 は、100mAh/g程度の比較的低い放電容量
で充放電を繰り返した場合は、サイクル寿命特性には特
に問題がないが、100mAh/g程度以上の放電容量
で充放電を繰り返した場合は、著しい容量劣化を起こ
し、実用上使用不可能であるという課題があった。
However, LiN
In the case where iO 2 is repeatedly charged and discharged at a relatively low discharge capacity of about 100 mAh / g, there is no particular problem in the cycle life characteristics. However, when the charge and discharge are repeatedly performed at a discharge capacity of about 100 mAh / g or more, However, there has been a problem that the capacity is remarkably deteriorated and cannot be used practically.

【0006】また、正極活物質の粒径と放電容量との関
係については、特開平1−304664、特開平4−3
3260、特開平6−325791および特開平7−1
83047などにおいて記載されている。
The relationship between the particle size of the positive electrode active material and the discharge capacity is described in JP-A-1-304664 and JP-A-4-3.
3260, JP-A-6-325991 and JP-A-7-1
83047.

【0007】まず、特開平1−304664には、Li
X MO2 (ただし、Mは1以上の遷移金属を表し、0.
05≦x≦1.10である。)を主体とする正極と負極
と非水電解液二次電池において、前記LiX MO2 の平
均粒径が10〜150μmであることが好ましいと記載
されている。ここで、彼等が言うところの平均粒径と
は、その測定がレーザー光の散乱を利用したマイクロト
ラック粒度分析計で行われていることから、いわゆる一
次粒子が凝集した二次粒子の平均粒子径のことであると
考えられる。しかしながら、塗布性、サイクル特性は満
足できるレベルではなかった。
First, Japanese Patent Application Laid-Open No. 1-304664 discloses that Li
X MO 2 (where M represents one or more transition metals;
05 ≦ x ≦ 1.10. It is described that in the positive electrode, the negative electrode, and the non-aqueous electrolyte secondary battery mainly composed of), the average particle size of the Li X MO 2 is preferably 10 to 150 μm. Here, what they mean is the average particle size of secondary particles in which so-called primary particles are agglomerated because the measurement is performed with a Microtrac particle size analyzer using scattering of laser light. It is considered to be the diameter. However, coatability and cycle characteristics were not at satisfactory levels.

【0008】特開平6−325791には、正極活物質
として、LiMNO(MはCo、Niなど、NはNi、
V、Feなど)などを用い、平均粒径0.01〜5.0
μmの一次粒子が凝集してなる平均粒径0.1〜15μ
mの一次粒子凝集体(二次粒子)からなることを特徴と
する非水二次電池が好ましいと記載されているが、20
0〜300回程度の充放電サイクルで初期の60%まで
容量が減少しており、サイクル特性は満足できるレベル
とはいえない。
Japanese Patent Application Laid-Open No. 6-325791 discloses that LiMNO (M is Co, Ni, etc., N is Ni,
V, Fe, etc.) and an average particle size of 0.01 to 5.0.
Average particle size of 0.1 to 15 μm in which primary particles aggregate
It is described that a non-aqueous secondary battery comprising a primary particle aggregate (secondary particle) is preferable.
The capacity is reduced to 60% of the initial value in about 0 to 300 charge / discharge cycles, and the cycle characteristics are not at a satisfactory level.

【0009】特開平7−183047には、リチウムと
ニッケルの複合酸化物の粒径が0.1〜3μmであり、
その二次粒子の粒径が5〜50μmである非水電解液二
次電池が好ましいと記載されているが、自己放電率に関
する記載のみでサイクル特性には言及していない。
Japanese Patent Application Laid-Open No. 7-183047 discloses that a composite oxide of lithium and nickel has a particle size of 0.1 to 3 μm,
It is described that a non-aqueous electrolyte secondary battery in which the secondary particles have a particle size of 5 to 50 μm is preferable, but does not refer to the cycle characteristics but only to the self-discharge rate.

【0010】本発明は、かかる従来技術の欠点を解消し
ようとするものであり、高容量で充放電サイクルに優れ
た高性能の正極活物質およびそれを用いた二次電池を提
供することを目的とする。
An object of the present invention is to solve the drawbacks of the prior art and to provide a high-performance positive electrode active material having a high capacity and an excellent charge / discharge cycle, and a secondary battery using the same. And

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するために以下の構成を有するものである。
SUMMARY OF THE INVENTION The present invention has the following arrangement to solve the above-mentioned problems.

【0012】「(1) 化学式Li1-X-a X Ni1-Y-b
Y 2 (但し、Aはストロンチウムまたはバリウムであ
り、Bは少なくとも1種の遷移金属元素からなり、式中
X 、Yは、0<X ≦0.10、0<Y ≦0.30、a、
bは、−0.10≦a≦0.10、−0.15≦b≦
0.15;但し、X はストロンチウムまたはバリウムの
総モル数であり、Bが2種以上の遷移金属元素からなる
場合は、Y はNi以外の全遷移金属元素の総モル数であ
る)で表される化合物からなる正極活物質であり、か
つ、該正極活物質が平均粒径0.01μm以上、5.0
μm以下である一次粒子の凝集体である二次粒子を形成
しており、該凝集体の平均粒径が5.0μm以上、50
μm以下であることを特徴とする正極活物質。
"(1) Chemical formula Li 1-Xa A X Ni 1-Yb B
Y O 2 (where A is strontium or barium, B is at least one transition metal element,
X and Y are 0 <X ≦ 0.10, 0 <Y ≦ 0.30, a,
b is -0.10≤a≤0.10, -0.15≤b≤
0.15; where X is the total number of moles of strontium or barium, and when B is composed of two or more transition metal elements, Y is the total number of moles of all transition metal elements other than Ni). And the average particle diameter of the positive electrode active material is not less than 0.01 μm and 5.0.
secondary particles that are aggregates of primary particles having a particle size of 5.0 μm or more and 50 μm or less.
A positive electrode active material having a size of not more than μm.

【0013】(2) 化学式Li1-X-a X Ni1-Y-b Y
2 (但し、Aは少なくとも2種以上のアルカリ土類金
属元素であり、Bは少なくとも1種の遷移金属元素から
なり、式中X 、Y は、0<X ≦0.10、0<Y ≦0.
30、a、bは、−0.10≦a≦0.10、−0.1
5≦b≦0.15;但し、X はアルカリ土類金属元素の
総モル数であり、Bが2種以上の遷移金属元素からなる
場合は、Y はNi以外の全遷移金属元素の総モル数であ
る)で表される化合物であることを特徴とする正極活物
質であり、かつ、該正極活物質が平均粒径0.01μm
以上、5.0μm以下である一次粒子の凝集体を形成し
ており、該凝集体の平均粒径が5.0μm以上、50μ
m以下であることを特徴とする正極活物質。
(2) Chemical formula Li 1-Xa A X Ni 1-Yb BY
O 2 (where A is at least two or more kinds of alkaline earth metal elements, B is at least one kind of transition metal element, and X and Y are 0 <X ≦ 0.10, 0 <Y ≦ 0.
30, a and b are -0.10≤a≤0.10, -0.1
5 ≦ b ≦ 0.15; where X is the total number of moles of alkaline earth metal elements, and when B is composed of two or more transition metal elements, Y is the total mole number of all transition metal elements other than Ni. Which is a compound represented by the following formula: wherein the positive electrode active material has an average particle diameter of 0.01 μm
As described above, an aggregate of primary particles having a size of 5.0 μm or less is formed, and the average particle size of the aggregate is 5.0 μm or more and 50 μm or less.
m or less.

【0014】(3) リチウムおよびAを含む出発原料を、
ニッケルおよびBを含む出発原料に対して化学量論比で
0.90以上、1.00未満の割合で調合し、酸化雰囲
気中で焼成することを特徴とする上記(1) または(2) に
記載の正極活物質の製造方法。」
(3) The starting material containing lithium and A is
The above (1) or (2), wherein the stoichiometric ratio of the starting materials containing nickel and B is 0.90 or more and less than 1.00, and the mixture is fired in an oxidizing atmosphere. The production method of the positive electrode active material according to the above. "

【0015】[0015]

【発明の実施の形態】本発明の正極活物質は、二次電池
の正極に好ましく用いられる。特に好ましい二次電池と
しては、上述のようにアルカリ金属塩を含む非水電解液
を用いた二次電池を挙げることができる。そこで、以
下、リチウム二次電池を例に取り挙げ、具体例を挙げな
がら詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode active material of the present invention is preferably used for a positive electrode of a secondary battery. As a particularly preferred secondary battery, a secondary battery using a non-aqueous electrolyte containing an alkali metal salt as described above can be mentioned. Therefore, a lithium secondary battery will be described below as an example, and a detailed example will be described.

【0016】本発明者らは、放電容量と充放電サイクル
に伴う放電容量の減少に着目して、サイクル寿命特性の
改善を鋭意検討した結果、高容量を示す特定の化合物の
粒径が特定の範囲である場合に、高容量かつサイクル特
性が良好であることを見出した。すなわち、化学式Li
1-X-a X Ni1-Y-b Y 2 (但し、Aはストロンチ
ウムまたはバリウムであり、Bは少なくとも1種の遷移
金属元素からなり、式中X 、Y は、0<X ≦0.10、
0<Y ≦0.30、a、bは、−0.10≦a≦0.1
0、−0.15≦b≦0.15;但し、X はストロンチ
ウムまたはバリウムの総モル数であり、Bが2種以上の
遷移金属元素からなる場合は、Y はNi以外の全遷移金
属元素の総モル数である)で表される化合物であること
を特徴とする正極活物質であり、かつ、該正極活物質が
平均粒径0.01μm以上、5.0μm以下である一次
粒子の凝集体を形成しており、該凝集体の平均粒径が
5.0μm以上、50μm以下であることを特徴とする
の正極活物質、そして、化学式Li1-X-a X Ni
1-Y-b Y 2 (但し、Aは少なくとも2種以上のアル
カリ土類金属元素であり、Bは少なくとも1種以上の遷
移金属元素からなり、式中X 、Y は、0<X ≦0.1
0、0<Y ≦0.30、a、bは、−0.10≦a≦
0.10、−0.15≦b≦0.15;但し、X はアル
カリ土類金属元素の総モル数であり、Bが2種以上の遷
移金属元素からなる場合は、Y はNi以外の全遷移金属
元素の総モル数である)で表される化合物であることを
特徴とする正極活物質であり、かつ、該正極活物質が平
均粒径0.01μm以上、5.0μm以下である一次粒
子の凝集体を形成しており、該凝集体の平均粒径が5.
0μm以上、50μm以下であることを特徴とする正極
活物質、である。
The inventors of the present invention have focused on the discharge capacity and the decrease in the discharge capacity associated with the charge / discharge cycle, and have intensively studied the improvement of the cycle life characteristics. It was found that when it was within the range, the capacity was high and the cycle characteristics were good. That is, the chemical formula Li
1-Xa A X Ni 1- Yb B Y O 2 ( where, A is strontium or barium, B is composed of at least one transition metal element, wherein X, Y are, 0 <X ≦ 0.10 ,
0 <Y ≦ 0.30, a and b are −0.10 ≦ a ≦ 0.1
0, -0.15≤b≤0.15; where X is the total number of moles of strontium or barium, and when B is composed of two or more transition metal elements, Y is all transition metal elements other than Ni Is a compound represented by the following general formula: wherein the positive electrode active material has an average particle diameter of 0.01 μm or more and 5.0 μm or less. forms a Atsumaritai, average particle size of the aggregate is more than 5.0 .mu.m, the positive electrode active material to wherein a is 50μm or less, and the chemical formula Li 1-Xa a X Ni
1-Yb B Y O 2 (where, A is at least two or more alkaline earth metal elements, B comprises at least one or more transition metal elements, wherein X, Y are, 0 <X ≦ 0 .1
0, 0 <Y ≦ 0.30, a and b are −0.10 ≦ a ≦
0.10, -0.15 ≦ b ≦ 0.15; where X is the total number of moles of the alkaline earth metal element, and when B is composed of two or more transition metal elements, Y is other than Ni. Which is the total number of moles of all transition metal elements), and the positive electrode active material has an average particle size of 0.01 μm or more and 5.0 μm or less. An aggregate of primary particles is formed, and the average particle size of the aggregate is 5.
A positive electrode active material having a size of 0 μm or more and 50 μm or less.

【0017】ここで、遷移金属元素としては、限定され
るものではないが、マンガン、スカンジウム、チタン、
バナジウム、クロム、鉄、コバルト等が好ましく用いら
れ、それぞれ同様の効果を示した。
Here, the transition metal element is not limited, but may be manganese, scandium, titanium,
Vanadium, chromium, iron, cobalt and the like are preferably used, and each has the same effect.

【0018】本願発明においては、リチウムと置換する
1種以上のアルカリ土類金属元素の量をリチウムの10
%以内と小さくすることによって、容量の低下を押さえ
つつサイクル寿命特性の改善を達成することができ、か
つ、ニッケルと遷移金属元素を置換することによって、
層状構造を維持し、かつ、電子伝導性を付与することが
可能になり、アルカリ土類金属元素の効果と相乗的に作
用しあって、良好なサイクル寿命特性が得られたものと
推測される。
In the present invention, the amount of one or more alkaline earth metal elements to be replaced with lithium is set at 10
%, It is possible to achieve an improvement in cycle life characteristics while suppressing a decrease in capacity, and by replacing nickel with a transition metal element,
It is presumed that it became possible to maintain the layered structure, and to impart electron conductivity, to act synergistically with the effect of the alkaline earth metal element, and to obtain good cycle life characteristics. .

【0019】X が0.10よりも大きくなると、前述の
とおりリチウムと置換したアルカリ土類金属元素がリチ
ウムイオンの拡散を阻害してしまい、逆に抵抗成分にな
って放電容量を大きく低下させてしまう。放電容量の低
下を抑えるにはX は0.08よりも小さい方がより好ま
しく、さらに好ましくは0.05より小さい方がよい。
また、Y が0.3よりも大きくなると結晶構造が不安定
になりサイクル寿命特性が悪くなってしまう。好ましく
は、Y は0.25よりも小さい方が、さらに好ましくは
Y は0.2よりも小さい方がよい。さらに、aとbは、
化学量論性からのずれを表す。aが−0.10よりも小
さくなると、正極ペーストが混練中にゲル化してしま
い、逆に0.10よりも大きくなると、放電容量が減少
してしまう。この点から、−0.05≦a≦0.05が
より好ましく、さらに好ましくは−0.02≦a≦0.
02である。また、bが−0.15より小さくなると、
放電容量が減少してしまい、逆に0.15よりも大きく
なると、正極ペーストが混練中にゲル化してしまう。こ
のことから、−0.08≦b≦0.08がより好まし
く、さらに好ましくは−0.04≦b≦0.04であ
る。
If X is larger than 0.10, the alkaline earth metal element substituted for lithium inhibits the diffusion of lithium ions as described above, and conversely becomes a resistance component, which greatly reduces the discharge capacity. I will. In order to suppress a decrease in discharge capacity, X is preferably smaller than 0.08, and more preferably smaller than 0.05.
On the other hand, when Y exceeds 0.3, the crystal structure becomes unstable and the cycle life characteristics deteriorate. Preferably, Y is less than 0.25, more preferably
Y is preferably smaller than 0.2. Further, a and b are
Indicates deviation from stoichiometry. If a is smaller than -0.10, the positive electrode paste gels during kneading, and if it is larger than 0.10, the discharge capacity decreases. In this respect, −0.05 ≦ a ≦ 0.05 is more preferable, and still more preferably −0.02 ≦ a ≦ 0.
02. When b is smaller than -0.15,
If the discharge capacity decreases, and if it exceeds 0.15, the positive electrode paste will gel during kneading. From this, −0.08 ≦ b ≦ 0.08 is more preferable, and further preferably −0.04 ≦ b ≦ 0.04.

【0020】一次粒子について、一次粒子の粒径が0.
01μm未満の粒子は合成が困難であり、また、セパレ
ータの目詰まりの原因となり、5.0μmを越える粒子
は凝集しにくく、かつ、充放電時に生じる活物質の膨脹
・収縮が大きくなり、活物質と導電剤、集電体との密着
性が悪くなってしまったり、活物質中のイオン移動特性
が阻害され、電池の容量が減少するので不都合である。
Regarding the primary particles, the particle size of the primary particles is 0.1.
Particles smaller than 01 μm are difficult to synthesize, and cause clogging of the separator. Particles larger than 5.0 μm are hard to aggregate, and the expansion and contraction of the active material at the time of charging and discharging increases. This is inconvenient because the adhesion between the active material and the current collector is deteriorated, the ion transfer characteristics in the active material are inhibited, and the capacity of the battery is reduced.

【0021】また、二次粒子の粒径が5.0μm未満で
あると、正極作製時にプレスする時に剥離してしまい、
また、活物質の表面積が増えるために、導電剤や結着剤
の添加量を増やさねばならず、単位重量当たりのエネル
ギー密度が小さくなってしまい、さらには、含有水分量
が多くなることによって、一般的に水分に対して不安定
なLiNiO2 系活物質が変質してしまい、電池の容量
が減少するので不都合である。また、50μmを越える
と、粒子がセパレータを貫通し、短絡を引き起こす場合
があるので、安全上または歩留まりの点からも不都合で
ある。
Further, if the particle size of the secondary particles is less than 5.0 μm, the secondary particles are peeled off during pressing at the time of producing the positive electrode,
In addition, in order to increase the surface area of the active material, the amount of the conductive agent or the binder must be increased, the energy density per unit weight is reduced, and further, by increasing the water content, In general, the LiNiO 2 -based active material which is unstable with respect to moisture is deteriorated, which is disadvantageous because the capacity of the battery is reduced. On the other hand, if it exceeds 50 μm, particles may penetrate the separator and cause a short circuit, which is inconvenient in terms of safety and yield.

【0022】次に本発明の正極活物質の製造方法につい
て述べる。原料のリチウム化合物としては、一般的な炭
酸リチウム、硝酸リチウム、硫酸リチウム、水酸化リチ
ウムなどの塩またはその水和物、または酸化リチウム、
過酸化リチウムなどの酸化物やヨウ化リチウムなどが挙
げられる。ニッケルについても同様の塩またはその水和
物、酸化物が挙げられ、他のアルカリ土類金属および遷
移金属についても同様の出発原料が用いられる。
Next, a method for producing the positive electrode active material of the present invention will be described. As the lithium compound as a raw material, general salts such as lithium carbonate, lithium nitrate, lithium sulfate and lithium hydroxide or hydrates thereof, or lithium oxide,
Examples thereof include oxides such as lithium peroxide and lithium iodide. Similar salts or hydrates and oxides of nickel can be mentioned, and similar starting materials can be used for other alkaline earth metals and transition metals.

【0023】製造方法の一例として、次の方法が挙げら
れる。リチウムおよび添加元素であるアルカリ土類金属
元素を目的の化学量論比よりも0.1〜10モル%程度
不足になるように出発原料を調合する。即ち、リチウム
およびAを含む出発原料を、ニッケルおよびBを含む出
発原料に対して化学量論比で0.90以上、1.00未
満の割合で調合する。こうして調合した原料を十分に混
合した後、必要があれば成型して固相反応を起こしやす
くした後、空気や純酸素などの酸化雰囲気中で、300
〜800℃で予備焼成する。そして、ボールミルや擂潰
機などを用いて二次粒子を解砕した後、再び酸化雰囲気
中で、500〜900℃で本焼成後、粉砕や分級操作な
どによって、粒度調整して正極活物質とした。この操作
によって、より均質かつ再現性のある組成が得られるこ
とを組成分析によって確認している。
As an example of the manufacturing method, the following method can be mentioned. The starting materials are prepared so that lithium and the alkaline earth metal element which is an additive element are insufficient by about 0.1 to 10 mol% with respect to a target stoichiometric ratio. That is, a starting material containing lithium and A is prepared at a stoichiometric ratio of 0.90 or more to less than 1.00 with respect to a starting material containing nickel and B. After the raw materials thus mixed are sufficiently mixed, if necessary, they are molded to facilitate a solid-phase reaction.
Pre-fire at ~ 800 ° C. Then, after the secondary particles are crushed using a ball mill or a crusher, the main particles are baked again at 500 to 900 ° C. in an oxidizing atmosphere, and the particle size is adjusted by a pulverization or classification operation to form a positive electrode active material. did. It has been confirmed by composition analysis that a more homogeneous and reproducible composition can be obtained by this operation.

【0024】ここで、一次粒子の平均粒径の調整は主に
出発原料の一次粒子の平均粒径や焼成条件で決定され、
二次粒子の平均粒径は主に出発原料の二次粒子の平均粒
径や粉砕条件で決定される。また、本発明において、平
均一次粒径は、SEM観察で粒子形態を写真撮影し、合
計30個の一次粒子の縦および横方向の粒径を測定し
て、その平均値として求めた。平均二次粒子径平均粒径
とは、レーザー光の散乱を利用したマイクロトラック粒
度分析計で測定して得られたモード径である。
Here, the adjustment of the average particle size of the primary particles is mainly determined by the average particle size of the primary particles of the starting material and the firing conditions.
The average particle size of the secondary particles is determined mainly by the average particle size of the secondary particles of the starting material and the grinding conditions. In the present invention, the average primary particle size was determined by taking a photograph of the particle morphology by SEM observation, measuring the particle size in the vertical and horizontal directions of a total of 30 primary particles, and determining the average value. Average secondary particle diameter The average particle diameter is a mode diameter obtained by measurement with a Microtrac particle size analyzer utilizing scattering of laser light.

【0025】強アルカリ性物質除去操作を行わない方法
も挙げられる。まず、リチウムおよび添加元素であるア
ルカリ土類金属元素を全遷移金属元素よりも0.9〜
1.00倍のモル比になるように出発原料を調合し、以
下前記と同様に焼成、次いで粉砕や分級操作を施し正極
活物質とすることができる。また、本発明の正極活物質
に電極性能を損ねることなく、さらに添加元素を加えて
もよい。
There is also a method in which the operation of removing the strongly alkaline substance is not performed. First, lithium and the alkaline earth metal element, which is an additive element, are 0.9 to 0.9% less than all the transition metal elements.
The starting materials are prepared so as to have a molar ratio of 1.00, and then calcined in the same manner as described above, and then subjected to pulverization and classification operations to obtain a positive electrode active material. Further, an additional element may be added to the positive electrode active material of the present invention without impairing the electrode performance.

【0026】本発明においては、負極材料は特に限定さ
れるものではないが、炭素質材料、合金(Li-Al な
ど)、金属酸化物(SnO など) 、金属窒化物(Li3 Nな
ど)等が用いられる。炭素質材材料としては、特に限定
されるものではなく、一般に有機物を焼成したものが用
いられる。炭素質材料の電子伝導性が集電の目的に対し
て充分でない場合、導電剤を添加することも好ましい。
In the present invention, the material of the negative electrode is not particularly limited, but includes carbonaceous materials, alloys (eg, Li—Al), metal oxides (eg, SnO), metal nitrides (eg, Li 3 N), and the like. Is used. The carbonaceous material is not particularly limited, and generally, a material obtained by firing an organic substance is used. When the electron conductivity of the carbonaceous material is not sufficient for the purpose of current collection, it is also preferable to add a conductive agent.

【0027】また、炭素質材料が炭素繊維の場合、用い
られる炭素繊維としては、特に限定されるものではな
く、一般に有機物を焼成したものが用いられる。具体的
には、ポリアクリロニトリル(PAN)から得られるP
AN系炭素繊維、石炭もしくは石油などのピッチから得
られるピッチ系炭素繊維、セルロースから得られるセル
ロース系炭素繊維、低分子量有機物の気体から得られる
気相成長炭素繊維などが挙げられるが、そのほかに、ポ
リビニルアルコール、リグニン、ポリ塩化ビニル、ポリ
アミド、ポリイミド、フェノール樹脂、フルフリルアル
コールなどを焼成して得られる炭素繊維でも構わない。
これらの炭素繊維の中で、炭素繊維が用いられる電極お
よび電池の特性に応じて、その特性を満たす炭素繊維が
適宜選択される。上記炭素繊維の中で、アルカリ金属塩
を含む非水電解液を用いた二次電池の負極に使用する場
合には、PAN系炭素繊維、ピッチ系炭素繊維、気相成
長炭素繊維が好ましい。特に、アルカリ金属イオン、特
にリチウムイオンのドーピングが良好であるという点
で、PAN系炭素繊維やピッチ系炭素繊維が好ましく、
この中でも、東レ(株)製の”トレカ”Tシリーズ、ま
たは、”トレカ”MシリーズなどのPAN系炭素繊維、
メゾフェーズピッチコークスを焼成して得られるピッチ
系炭素繊維がさらに好ましく用いられる。
When the carbonaceous material is carbon fiber, the carbon fiber to be used is not particularly limited, and is generally obtained by firing an organic substance. Specifically, P obtained from polyacrylonitrile (PAN)
AN-based carbon fiber, pitch-based carbon fiber obtained from pitch such as coal or petroleum, cellulose-based carbon fiber obtained from cellulose, vapor-grown carbon fiber obtained from gas of low-molecular-weight organic substances, and the like, Carbon fibers obtained by firing polyvinyl alcohol, lignin, polyvinyl chloride, polyamide, polyimide, phenolic resin, furfuryl alcohol, and the like may be used.
Among these carbon fibers, carbon fibers satisfying the characteristics are appropriately selected according to the characteristics of the electrode and the battery in which the carbon fibers are used. When the carbon fiber is used for a negative electrode of a secondary battery using a non-aqueous electrolyte containing an alkali metal salt, a PAN-based carbon fiber, a pitch-based carbon fiber, and a vapor-grown carbon fiber are preferable. In particular, PAN-based carbon fibers and pitch-based carbon fibers are preferable in that doping of alkali metal ions, particularly lithium ions, is favorable,
Among them, PAN-based carbon fibers such as “Torayca” T series or “Torayca” M series manufactured by Toray Industries,
Pitch-based carbon fibers obtained by firing mesophase pitch coke are more preferably used.

【0028】炭素繊維を電極にする際には、どのような
形態をとっても構わないが、一軸方向に配置したり、も
しくは布帛状やフェルト状の構造体にするなどが、好ま
しい形態となる。布帛状あるいはフェルト状などの構造
体としては、織物、編物、組物、レース、網、フェル
ト、紙、不織布、マットなどが挙げられるが、炭素繊維
の性質や電極特性などの点から、織物やフェルトなどが
好ましい。また、炭素繊維を銅箔などの集電体に結着剤
などで貼り付けて使用してもよく、さらに炭素粉末など
の導電剤を添加してもよい。操作性、生産性を考慮する
と、さらに好ましくは短繊維状の炭素繊維である。通常
の炭素粉末同様、導電剤、結着剤とともに電極化して用
いることができ、さらに炭素繊維特有の構造特性も有し
ている。平均長30μm 以下が取り扱いやすく、高嵩密
度化が可能なのでより好ましい。
When the carbon fiber is used as the electrode, any form may be used, but it is preferable to arrange the carbon fiber uniaxially, or to form a fabric-like or felt-like structure. Examples of the structure such as a fabric or a felt include a woven fabric, a knitted fabric, a braid, a lace, a net, a felt, a paper, a nonwoven fabric, a mat, and the like. Felt and the like are preferred. Further, the carbon fiber may be used by attaching it to a current collector such as a copper foil with a binder or the like, and a conductive agent such as carbon powder may be added. In view of operability and productivity, short fiber carbon fibers are more preferable. Like ordinary carbon powder, it can be used in the form of an electrode together with a conductive agent and a binder, and has structural characteristics unique to carbon fibers. An average length of 30 μm or less is more preferable because of easy handling and high bulk density.

【0029】本発明の電極を用いた二次電池の電解液と
しては、特に限定されることなく従来の非水溶媒系電解
液が用いられる。この中で、上述のアルカリ金属塩を含
む非水電解液からなる二次電池の電解液としては、プロ
ピレンカーボネート、エチレンカーボネート、γ- ブチ
ロラクトン、N- メチルピロリドン、アセトニトリル、
N,N−ジメチルホルムアミド、ジメチルスルフォキシ
ド、テトラヒドロフラン、1,3−ジオキソラン、ギ酸
メチル、スルホラン、オキサゾリドン、塩化チオニル、
1,2−ジメトキシエタン、ジエチレンカーボネート
や、これらの誘導体や混合物などが好ましく用いられ
る。電解液に含まれる電解質としては、アルカリ金属、
特にリチウムのハロゲン化物、過塩素酸塩、チオシアン
塩、ホウフッ化塩、リンフッ化塩、砒素フッ化塩、アル
ミニウムフッ化塩、トリフルオロメチル硫酸塩などが好
ましく用いられる。本発明の電極を用いた二次電池の用
途としては、軽量かつ高容量で高エネルギー密度の特徴
を利用して、ビデオカメラ、ノートパソコン、ワープ
ロ、ラジカセ、携帯電話などの携帯用小型電子機器に広
く利用可能である。
The electrolyte of a secondary battery using the electrode of the present invention is not particularly limited, and a conventional non-aqueous solvent electrolyte can be used. Among these, propylene carbonate, ethylene carbonate, γ-butyrolactone, N-methylpyrrolidone, acetonitrile, and the like for the secondary battery electrolyte comprising the non-aqueous electrolyte containing the alkali metal salt described above.
N, N-dimethylformamide, dimethylsulfoxide, tetrahydrofuran, 1,3-dioxolan, methyl formate, sulfolane, oxazolidone, thionyl chloride,
1,2-dimethoxyethane, diethylene carbonate, derivatives and mixtures thereof, and the like are preferably used. As the electrolyte contained in the electrolytic solution, an alkali metal,
In particular, lithium halide, perchlorate, thiocyanate, borofluoride, phosphorus fluoride, arsenic fluoride, aluminum fluoride, trifluoromethyl sulfate, and the like are preferably used. Applications of the secondary battery using the electrode of the present invention include, for example, video cameras, notebook computers, word processors, radio-cassettes, and portable small electronic devices such as mobile phones, utilizing the features of light weight, high capacity, and high energy density. Widely available.

【0030】[0030]

【実施例】本発明の具体的実施態様を以下に実施例をも
って述べるが、本発明はこれに限定されるものではな
い。
EXAMPLES Specific embodiments of the present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0031】実施例1 市販の高純度試薬の水酸化リチウム(Li(OH))、
水酸化ニッケル(Ni(OH)2 )、水酸化ストロンチ
ウム・8水塩(Sr(OH)2 ・8H2 O)、水酸化コ
バルト(Co(OH)2 )を酸化物換算でLi0.99Sr
0.02Ni0.90Co0.102 となるように秤量し、自動乳
鉢で十分に混合した後、アルミナ製るつぼ内に充填し
て、雰囲気焼成炉を用いて純酸素気流中(流量1リット
ル/分)、650℃で16時間保持し予備焼成した。室
温まで冷却した後、再び自動乳鉢で30分間粉砕し、二
次粒子の凝集を解砕した。そして、予備焼成と同様の雰
囲気下で、750℃で8時間保持して本焼成し、室温ま
で冷却した後、再度自動乳鉢で粉砕して本発明の正極活
物質粉末とした。この時の粉砕時間を変えることによっ
て、二次粒子の平均粒径5μm、22μm、47μmの
3種類の粉末を得た。二次粒子の平均粒径は、島津製作
所製のレーザー回折式粒度分布測定装置(湿式)SAL
D−2000Aを用いて、水で分散して測定した。得ら
れた粒度分布データのモード径を平均粒子径とした。な
お、SEM 観察によって測定された一次粒子径は、0.1
μmであった。また、得られた粉末について、アルカリ
金属元素についてはフレーム原子吸光法で、その他の金
属元素についてはICP発光分光分析法を用い、定量組
成分析したところ、Li1.02Sr0.0019Ni0.89Co
0.112 の組成であることを確認した。次に充放電特性
評価用セルの作製方法について述べる。正極合剤は、結
着剤であるポリフッ化ビニリデン活物質を10wt%に
なるように調合したN−メチルピロリドン(NMP)溶
液に、上記活物質:導電剤(アセチレンブラック):結
着剤が89重量部:4重量部:7重量部となるように混
合し、窒素気流中自動乳鉢で30分間混合して作製し
た。これを厚さ13μmのアルミ箔上に塗布し、乾燥器
内90℃で乾燥後、裏面にも塗布、乾燥して両面に正極
を形成した後、プレスして厚さ180μm、正極材塗布
部の幅10mm,長さ20mmの正極を作製した。
Example 1 Commercially available high purity reagent lithium hydroxide (Li (OH)),
Nickel hydroxide (Ni (OH) 2 ), strontium hydroxide octahydrate (Sr (OH) 2 .8H 2 O) and cobalt hydroxide (Co (OH) 2 ) were converted to Li 0.99 Sr in terms of oxide.
After being weighed to 0.02 Ni 0.90 Co 0.10 O 2 and sufficiently mixed in an automatic mortar, the mixture was filled in an alumina crucible, and was placed in a pure oxygen gas stream (flow rate 1 liter / min) using an atmosphere firing furnace. It was kept at 650 ° C. for 16 hours and pre-baked. After cooling to room temperature, the mixture was pulverized again in an automatic mortar for 30 minutes to break up aggregation of secondary particles. Then, in the same atmosphere as in the preliminary firing, main firing was performed at 750 ° C. for 8 hours, cooled to room temperature, and then pulverized again with an automatic mortar to obtain a positive electrode active material powder of the present invention. By changing the pulverization time at this time, three types of powder having an average secondary particle size of 5 μm, 22 μm, and 47 μm were obtained. The average particle size of the secondary particles is measured by a laser diffraction type particle size distribution analyzer (wet type) SAL manufactured by Shimadzu Corporation.
It was measured by dispersing in water using D-2000A. The mode diameter of the obtained particle size distribution data was defined as the average particle diameter. The primary particle diameter measured by SEM observation was 0.1
μm. The obtained powder was analyzed by flame atomic absorption spectrometry for the alkali metal element and by ICP emission spectroscopy for the other metal elements, and was subjected to quantitative composition analysis to find that Li 1.02 Sr 0.0019 Ni 0.89 Co
It was confirmed that the composition was 0.11 O 2 . Next, a method for manufacturing a cell for evaluating charge and discharge characteristics will be described. The positive electrode mixture was prepared by mixing a polyvinylidene fluoride active material as a binder in an N-methylpyrrolidone (NMP) solution prepared so as to have a concentration of 10 wt%, and the above active material: conductive agent (acetylene black): binder was 89%. Parts by weight: 4 parts by weight: 7 parts by weight, and mixed in an automatic mortar for 30 minutes in a nitrogen stream. This was applied on an aluminum foil having a thickness of 13 μm, dried at 90 ° C. in a drier, applied on the back side, dried to form positive electrodes on both sides, and then pressed to obtain a 180 μm thick positive electrode material coated portion. A positive electrode having a width of 10 mm and a length of 20 mm was produced.

【0032】次に、このようにして作製した正極の放電
容量の評価を行った。電解液は1MLiBF4 を含むプ
ロピレンカーボネート、ジメチルカーボネート(各々体
積比で1:1)で、対極および参照極には金属リチウム
箔を用いた3極式セルで評価した。活物質当たりの電流
密度は130mA/gの定電流で、4.2V(vs.Li+/L
i) まで充電し,4.2Vで定電位充電を行い、総充電
時間が5時間になるまで充電を続けた。充電後に、電流
密度30mA/gで3.0V(vs.Li+ /Li) まで放電して
初期容量を求めた。さらに、充電時間を3時間として同
様の充電を行い、充電後に充電と同じ電流密度で3.0
V(vs.Li+ /Li) まで定電流放電する充放電サイクルを
繰り返し、電流密度130mA/gで充放電サイクルし
た300回目の放電容量と同1回目の放電容量を比較し
て、次式で表される容量保持率を求めた結果を表1に示
した。
Next, the discharge capacity of the positive electrode manufactured as described above was evaluated. The electrolytic solution was propylene carbonate and dimethyl carbonate (each having a volume ratio of 1: 1) containing 1 M LiBF 4 , and the evaluation was performed using a three-electrode cell using a lithium metal foil as a counter electrode and a reference electrode. The current density per active material was 4.2 V (vs. Li + / L) at a constant current of 130 mA / g.
i), a constant potential charge was performed at 4.2 V, and the charge was continued until the total charge time reached 5 hours. After charging, the battery was discharged at a current density of 30 mA / g to 3.0 V (vs. Li + / Li) to determine an initial capacity. Further, the same charging was performed with the charging time being 3 hours, and after charging, the charging was performed at the same current density as the charging, and the charging time was changed to 3.0.
The charge / discharge cycle of discharging at a constant current up to V (vs. Li + / Li) is repeated, and the discharge capacity at the 300th charge and discharge cycle at a current density of 130 mA / g is compared with the first discharge capacity. Table 1 shows the results of the obtained capacity retention rates.

【0033】容量保持率(%)={( 300回目の放電容
量)/( 1回目の放電容量)}×100比較例1 粉砕時間を変えて、二次粒子の平均粒子径を3μm、6
1μmとした以外は実施例1と同様にして正極活物質粉
末2種類を作製し、初期容量と容量保持率を求めた結果
を表1に示した。
Capacity retention (%) = {(300th discharge capacity) / (1st discharge capacity)} × 100 Comparative Example 1 The average particle diameter of the secondary particles was changed to 3 μm, 6
Two kinds of positive electrode active material powders were prepared in the same manner as in Example 1 except that the thickness was set to 1 μm, and the results of initial capacity and capacity retention were shown in Table 1.

【0034】比較例2 ニッケルの原料塩を炭酸ニッケル(Ni(CO3 2
とし、焼成温度を900℃とした以外は実施例1と同様
にして、一次粒子の平均粒子径10μm、二次粒子の平
均粒子径28μm、45μmの正極活物質粉末2種類を
作製し、初期容量と容量保持率を求めた結果を表1に示
した。
Comparative Example 2 Nickel carbonate (Ni (CO 3 ) 2 )
In the same manner as in Example 1 except that the sintering temperature was set to 900 ° C., two kinds of positive electrode active material powders having an average primary particle diameter of 10 μm, an average secondary particle diameter of 28 μm, and 45 μm were prepared, and an initial capacity was set. Table 1 shows the results of determining the capacity retention rate.

【0035】実施例2 ストロンチウムの代わりにバリウムを用いた以外は実施
例1と同様にして、一次粒子径0.2μm、二次粒子の
平均粒子径6μm、24μm、44μmの正極活物質粉
末3種類を作製し、初期容量と容量保持率を求めた結果
を表1に示した。なお、定量分析で求めた組成は、Li
1.01Ba0.02Ni0.90Co0.102 であった。
Example 2 Three kinds of positive electrode active material powders having a primary particle diameter of 0.2 μm and an average secondary particle diameter of 6 μm, 24 μm and 44 μm were prepared in the same manner as in Example 1 except that barium was used instead of strontium. Table 1 shows the results of measuring the initial capacity and the capacity retention. The composition determined by the quantitative analysis was Li
1.01 Ba 0.02 Ni 0.90 Co 0.10 O 2 .

【0036】比較例3 粉砕時間を変えて、二次粒子の平均粒子径を4μm、6
5μmとした以外は実施例2と同様にして正極活物質粉
末2種類を作製し、初期容量と容量保持率を求めた結果
を表1に示した。
Comparative Example 3 The average particle size of the secondary particles was changed to 4 μm and 6
Two kinds of positive electrode active material powders were prepared in the same manner as in Example 2 except that the thickness was 5 μm, and the results of obtaining the initial capacity and the capacity retention were shown in Table 1.

【0037】比較例4 ニッケルの原料塩を炭酸ニッケル(Ni(CO3 2
とし、焼成温度を900℃とした以外は実施例1と同様
にして、一次粒子の平均粒子径11μm、二次粒子の平
均粒子径25、43μmの正極活物質粉末2種類を作製
し、初期容量と容量保持率を求めた結果を表1に示し
た。
Comparative Example 4 Nickel carbonate (Ni (CO 3 ) 2 )
In the same manner as in Example 1 except that the sintering temperature was set to 900 ° C., two kinds of positive electrode active material powders having an average primary particle diameter of 11 μm, an average secondary particle diameter of 25, and 43 μm were prepared, and an initial capacity was set. Table 1 shows the results of determining the capacity retention rate.

【0038】実施例3 市販の高純度試薬の水酸化リチウム(Li(OH))、
水酸化ニッケル(Ni(OH)2 )、水酸化ストロンチ
ウム・8水塩(Sr(OH)2 ・8H2 O)、水酸化バ
リウム・8水塩(Ba(OH)2 ・8H2 O)、水酸化
コバルト(Co(OH)2 )を酸化物換算でLi0.99
0.01Ba0.01Ni0.90Co0.102 となるように秤量
した以外は実施例1と同様にして、一次粒子の平均粒子
径0.1μm、二次粒子の平均粒子径5μm、24μ
m、45μmの正極活物質粉末3種類を作製し、初期容
量と容量保持率を求めた結果を表1に示した。なお、定
量分析で求めた組成は、Li1.01Sr0.01Ba0.01Ni
0.90Co0.102 であった。比較例5粉砕時間を変え
て、二次粒子の平均粒子径を4μm、67μmとした以
外は実施例3と同様にして正極活物質粉末2種類を作製
し、初期容量と容量保持率を求めた結果を表1に示し
た。
Example 3 Commercially available high purity reagent lithium hydroxide (Li (OH)),
Nickel hydroxide (Ni (OH) 2), strontium hydroxide octahydrate (Sr (OH) 2 · 8H 2 O), barium hydroxide octahydrate (Ba (OH) 2 · 8H 2 O), water Li 0.99 S in terms of oxide as cobalt oxide (Co (OH) 2 )
r 0.01 Ba 0.01 Ni 0.90 Co 0.10 O 2 In the same manner as in Example 1 except for weighing the primary particles, the average particle diameter of the primary particles was 0.1 μm, and the average particle diameter of the secondary particles was 5 μm and 24 μm.
Table 1 shows the results obtained by preparing three types of positive electrode active material powders of m and 45 μm, and determining the initial capacity and capacity retention. The composition determined by the quantitative analysis was Li 1.01 Sr 0.01 Ba 0.01 Ni
0.90 Co 0.10 O 2 . Comparative Example 5 Two kinds of positive electrode active material powders were produced in the same manner as in Example 3 except that the average particle diameter of the secondary particles was changed to 4 μm and 67 μm by changing the pulverization time, and the initial capacity and the capacity retention were determined. The results are shown in Table 1.

【0039】比較例6 ニッケルの原料塩を炭酸ニッケル(Ni(CO3 2
とし、焼成温度を900℃とした以外は実施例3と同様
にして、一次粒子の平均粒子径11μm、二次粒子の平
均粒子径27μm、44μmの正極活物質粉末2種類を
作製し、初期容量と容量保持率を求めた結果を表1に示
した。さらに、本発明の正極活物質と炭素繊維を組み合
わせて作製した二次電池についても実施例4に示す。
Comparative Example 6 Nickel carbonate (Ni (CO 3 ) 2 )
In the same manner as in Example 3 except that the sintering temperature was set to 900 ° C., two kinds of positive electrode active material powders having an average primary particle diameter of 11 μm, an average secondary particle diameter of 27 μm, and 44 μm were prepared, and an initial capacity was set. Table 1 shows the results of determining the capacity retention rate. Further, Example 4 also shows a secondary battery manufactured by combining the positive electrode active material of the present invention and carbon fiber.

【0040】[0040]

【表1】 実施例4 市販のPAN系炭素繊維(“トレカ”T−300、東レ
(株)製)を平均長15μmになるようにハンマーミル
とローラーミルで粉砕し、窒素気流中で1200℃で4
時間熱処理したミルド繊維を負極活物質とした。負極合
剤は、結着剤であるポリフッ化ビニリデン活物質を10
wt%になるように調合したN−メチルピロリドン(N
MP)溶液に、上記活物質:導電剤(アセチレンブラッ
ク):結着剤が80重量部:5重量部:15重量部とな
るように混合し、窒素気流中自動乳鉢で30分間混合し
て作製した。これを厚さ10μmの銅箔上に塗布し、乾
燥器内90℃で乾燥後、裏面にも塗布、乾燥して両面に
銅極を形成した後、プレスして厚さ180μmの負極を
作製した。この負極に、実施例1にて作製したのと同様
の方法で作製した電池用正極(正極活物質の二次粒子の
平均粒子径22μm)を、多孔質ポリエチレンフィルム
(25S、三菱化学(株)製)のセパレータを介して重
ね合わせて電池缶に収納した後、電解液を注入、封口し
て、18650サイズの円筒型二次電池を作製した。電
解液は、1MLiPF6を含むプロピレンカーボネー
ト、ジメチルカーボネート(各々体積比で1:1)を用
いた。このようにして作製した二次電池を用いて、電流
1A、充電カットオフ電圧4.10Vで、定電流/ 定電
位充電(総充電時間3時間)した後、1Aの定電流で放
電カットオフ電圧2.5Vで放電させた。この時の初期
容量と容量保持率を求めた結果を表2に示した。
[Table 1] Example 4 A commercially available PAN-based carbon fiber ("Treca" T-300, manufactured by Toray Industries, Inc.) was pulverized with a hammer mill and a roller mill so as to have an average length of 15 μm.
Milled fibers heat-treated for a period of time were used as negative electrode active materials. For the negative electrode mixture, 10 parts of polyvinylidene fluoride active material
wt-% N-methylpyrrolidone (N
MP) solution, the active material: a conductive agent (acetylene black): a binder was mixed in a proportion of 80 parts by weight: 5 parts by weight: 15 parts by weight, and mixed in an automatic mortar for 30 minutes in a nitrogen stream. did. This was applied on a copper foil having a thickness of 10 μm, dried at 90 ° C. in a dryer, applied to the back side, dried to form copper electrodes on both sides, and then pressed to produce a 180 μm thick negative electrode. . A battery positive electrode (average particle diameter of secondary particles of the positive electrode active material: 22 μm) prepared in the same manner as in Example 1 was applied to this negative electrode by a porous polyethylene film (25S, Mitsubishi Chemical Corporation). Was placed in a battery can with a separator interposed therebetween, and the electrolytic solution was injected and sealed to produce a 18650-size cylindrical secondary battery. As the electrolyte, propylene carbonate and dimethyl carbonate (each at a volume ratio of 1: 1) containing 1M LiPF6 were used. Using the secondary battery thus manufactured, the battery was charged at a constant current / constant potential (total charge time: 3 hours) at a current of 1 A and a charge cut-off voltage of 4.10 V, and then discharged at a constant current of 1 A. Discharged at 2.5V. Table 2 shows the results obtained for the initial capacity and capacity retention at this time.

【0041】比較例7 正極活物質として比較例1で作製した二次粒子の平均粒
子径3μmの活物質を用いた以外は実施例4と同様に二
次電池の作製、評価を求めた結果を表2に示した。
Comparative Example 7 A secondary battery was prepared and evaluated in the same manner as in Example 4 except that the active material having an average particle diameter of 3 μm of the secondary particles prepared in Comparative Example 1 was used as the positive electrode active material. The results are shown in Table 2.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明により、高容量で充放電サイクル
に優れた正極活物質およびそれを用いた高性能の二次電
池を提供することができる。
According to the present invention, it is possible to provide a positive electrode active material having a high capacity and an excellent charge / discharge cycle and a high-performance secondary battery using the same.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】化学式Li1-X-a X Ni1-Y-b Y 2
(但し、Aはストロンチウムまたはバリウムであり、B
は少なくとも1種の遷移金属元素からなり、式中X 、Y
は、0<X ≦0.10、0<Y ≦0.30、a、bは、
−0.10≦a≦0.10、−0.15≦b≦0.1
5;但し、X はストロンチウムまたはバリウムの総モル
数であり、Bが2種以上の遷移金属元素からなる場合
は、Y はNi以外の全遷移金属元素の総モル数である)
で表される化合物からなる正極活物質であり、かつ、該
正極活物質が平均粒径0.01μm以上、5.0μm以
下である一次粒子の凝集体である二次粒子を形成してお
り、該二次粒子の平均粒径が5.0μm以上、50μm
以下であることを特徴とする正極活物質。
1. A chemical formula Li 1-Xa A X Ni 1 -Yb B Y O 2
(Where A is strontium or barium and B is
Is composed of at least one transition metal element, wherein X, Y
Are 0 <X ≦ 0.10, 0 <Y ≦ 0.30, a and b are
-0.10≤a≤0.10, -0.15≤b≤0.1
5; However, X is the total number of moles of strontium or barium, and when B is composed of two or more transition metal elements, Y is the total number of moles of all transition metal elements other than Ni.)
And forming secondary particles that are aggregates of primary particles having an average particle diameter of 0.01 μm or more and 5.0 μm or less, The average particle size of the secondary particles is 5.0 μm or more and 50 μm or more.
A positive electrode active material characterized by the following.
【請求項2】請求項1記載の正極活物質を用いることを
特徴とする非水溶媒系二次電池。
2. A non-aqueous solvent secondary battery using the positive electrode active material according to claim 1.
【請求項3】負極活物質に炭素質材料を用いることを特
徴とする請求項2記載の非水溶媒系二次電池。
3. The non-aqueous solvent secondary battery according to claim 2, wherein a carbonaceous material is used as the negative electrode active material.
【請求項4】該炭素質材料が、炭素繊維であることを特
徴とする請求項3記載の非水溶媒系二次電池。
4. The non-aqueous solvent secondary battery according to claim 3, wherein said carbonaceous material is carbon fiber.
【請求項5】該炭素繊維が平均長30μm 以下の短繊維
状であることを特徴とする請求項4記載の非水溶媒系二
次電池。
5. The non-aqueous solvent secondary battery according to claim 4, wherein said carbon fibers are in the form of short fibers having an average length of 30 μm or less.
【請求項6】リチウムおよびAを含む出発原料を、ニッ
ケルおよびBを含む出発原料に対して化学量論比で0.
90以上、1.00未満の割合で調合し、酸化雰囲気中
で焼成することを特徴とする請求項1に記載の正極活物
質の製造方法。
6. A starting material containing lithium and A is added in a stoichiometric ratio of 0.1 to a starting material containing nickel and B.
The method for producing a positive electrode active material according to claim 1, wherein the mixture is prepared at a ratio of 90 or more and less than 1.00 and fired in an oxidizing atmosphere.
【請求項7】化学式Li1-X-a X Ni1-Y-b Y 2
(但し、Aは少なくとも2種以上のアルカリ土類金属元
素であり、Bは少なくとも1種の遷移金属元素からな
り、式中X 、Y は、0<X ≦0.10、0<Y ≦0.3
0、a、bは、−0.10≦a≦0.10、−0.15
≦b≦0.15;但し、X はアルカリ土類金属元素の総
モル数であり、Bが2種以上の遷移金属元素からなる場
合は、Y はNi以外の全遷移金属元素の総モル数であ
る)で表される化合物であることを特徴とする正極活物
質であり、かつ、該正極活物質が平均粒径0.01μm
以上、5.0μm以下である一次粒子の凝集体を形成し
ており、該凝集体の平均粒径が5.0μm以上、50μ
m以下であることを特徴とする正極活物質。
7. A chemical formula Li 1-Xa A X Ni 1 -Yb B Y O 2
(Where A is at least two or more alkaline earth metal elements, B is at least one transition metal element, and X and Y are 0 <X ≦ 0.10 and 0 <Y ≦ 0 .3
0, a, and b are -0.10≤a≤0.10, -0.15
≦ b ≦ 0.15; where X is the total number of moles of alkaline earth metal elements, and when B is composed of two or more transition metal elements, Y is the total number of moles of all transition metal elements other than Ni. Is a compound represented by the formula: wherein the positive electrode active material has an average particle diameter of 0.01 μm
As described above, an aggregate of primary particles having a size of 5.0 μm or less is formed, and the average particle size of the aggregate is 5.0 μm or more and 50 μm or less.
m or less.
【請求項8】請求項7記載の正極活物質を用いることを
特徴とする非水溶媒系二次電池。
8. A non-aqueous solvent secondary battery using the positive electrode active material according to claim 7.
【請求項9】負極活物質に炭素質材料を用いることを特
徴とする請求項8記載の非水溶媒系二次電池。
9. The non-aqueous solvent secondary battery according to claim 8, wherein a carbonaceous material is used as the negative electrode active material.
【請求項10】該炭素質材料が、炭素繊維であることを
特徴とする請求項9記載の非水溶媒系二次電池。
10. The non-aqueous solvent secondary battery according to claim 9, wherein said carbonaceous material is carbon fiber.
【請求項11】該炭素繊維が平均長30μm 以下の短繊
維状であることを特徴とする請求項10記載の非水溶媒
系二次電池。
11. The non-aqueous solvent secondary battery according to claim 10, wherein said carbon fibers are in the form of short fibers having an average length of 30 μm or less.
【請求項12】リチウムおよびAを含む出発原料を、ニ
ッケルおよびBを含む出発原料に対して化学量論比で
0.90以上、1.00未満の割合で調合し、酸化雰囲
気中で焼成することを特徴とする請求項7に記載の正極
活物質の製造方法。
12. A starting material containing lithium and A is blended with a starting material containing nickel and B at a stoichiometric ratio of 0.90 or more and less than 1.00, and fired in an oxidizing atmosphere. The method for producing a positive electrode active material according to claim 7, wherein:
JP8184700A 1996-07-10 1996-07-15 Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it Pending JPH1079250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8184700A JPH1079250A (en) 1996-07-10 1996-07-15 Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18083896 1996-07-10
JP8-180838 1996-07-10
JP8184700A JPH1079250A (en) 1996-07-10 1996-07-15 Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it

Publications (1)

Publication Number Publication Date
JPH1079250A true JPH1079250A (en) 1998-03-24

Family

ID=26500214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8184700A Pending JPH1079250A (en) 1996-07-10 1996-07-15 Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it

Country Status (1)

Country Link
JP (1) JPH1079250A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223118A (en) * 1999-01-28 2000-08-11 Hitachi Metals Ltd Positive electrode material for lithium secondary battery and its manufacture
JP2003346820A (en) * 2002-05-30 2003-12-05 Sulzer Hexis Ag Ink manufacturing method
KR100488226B1 (en) * 1996-09-12 2005-06-16 도와 고교 가부시키가이샤 Positive electrode active material for nonaqueous secondary cells and a process for producing said active material
EP1492177A3 (en) * 2003-06-26 2006-02-15 Toyota Jidosha Kabushiki Kaisha Positive electrode active material and use thereof
US7749657B2 (en) 2002-12-06 2010-07-06 Jfe Mineral Company Ltd. Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
US8029930B2 (en) 2002-12-06 2011-10-04 Kawatetsu Mining Co., Ltd. Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2020175360A1 (en) 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte rechargeable battery
WO2021152996A1 (en) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2021152997A1 (en) * 2020-01-27 2021-08-05 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN114342139A (en) * 2019-09-09 2022-04-12 松下电器产业株式会社 Nonaqueous electrolyte secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488226B1 (en) * 1996-09-12 2005-06-16 도와 고교 가부시키가이샤 Positive electrode active material for nonaqueous secondary cells and a process for producing said active material
JP2000223118A (en) * 1999-01-28 2000-08-11 Hitachi Metals Ltd Positive electrode material for lithium secondary battery and its manufacture
US7138355B2 (en) 2002-05-30 2006-11-21 Sulzer Hexis Ag Method of preparing an ink
EP1420470A3 (en) * 2002-05-30 2004-08-04 Sulzer Hexis AG Process for the preparation of a coating paste
EP1420470A2 (en) * 2002-05-30 2004-05-19 Sulzer Hexis AG Process for the preparation of a coating paste
JP2003346820A (en) * 2002-05-30 2003-12-05 Sulzer Hexis Ag Ink manufacturing method
JP4603773B2 (en) * 2002-05-30 2010-12-22 ヘクシス アクチェンゲゼルシャフト Ink production method
US7749657B2 (en) 2002-12-06 2010-07-06 Jfe Mineral Company Ltd. Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
US8029930B2 (en) 2002-12-06 2011-10-04 Kawatetsu Mining Co., Ltd. Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
EP1492177A3 (en) * 2003-06-26 2006-02-15 Toyota Jidosha Kabushiki Kaisha Positive electrode active material and use thereof
WO2020175360A1 (en) 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte rechargeable battery
CN114342139A (en) * 2019-09-09 2022-04-12 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
WO2021152997A1 (en) * 2020-01-27 2021-08-05 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2021152996A1 (en) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR100389052B1 (en) Positive electrode active material, preparation method thereof and nonaqueous solvent secondary battery using the same
US7025907B2 (en) Carbon-containing lithium-iron composite phosphorus oxide for lithium secondary battery positive electrode active material and process for producing the same
JP3918311B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
JP5115697B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JPH08138669A (en) Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same
US20090104530A1 (en) Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2003221236A (en) Composite oxide containing lithium and nonaqueous secondary battery using it
JP3460413B2 (en) Positive electrode active material, method for producing the same, and non-aqueous solvent-based secondary battery using the same
JP2002063940A (en) Nonaqueous electrolyte secondary battery
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2006344509A (en) Lithium secondary battery
JP7029680B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP2006219323A (en) Lithium-manganese-nickel-aluminum complex oxide and its production method
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP4156358B2 (en) Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery
JP2001283845A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP3687106B2 (en) Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JPH11312522A (en) Positive electrode material for lithium secondary battery and the lithium secondary battery
JPH0521067A (en) Nonaqueous electrolytic battery