JPH0935712A - Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it - Google Patents

Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it

Info

Publication number
JPH0935712A
JPH0935712A JP7189305A JP18930595A JPH0935712A JP H0935712 A JPH0935712 A JP H0935712A JP 7189305 A JP7189305 A JP 7189305A JP 18930595 A JP18930595 A JP 18930595A JP H0935712 A JPH0935712 A JP H0935712A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
manganese oxide
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7189305A
Other languages
Japanese (ja)
Inventor
Naoyuki Sugano
直之 菅野
Katsumi Mori
勝美 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7189305A priority Critical patent/JPH0935712A/en
Publication of JPH0935712A publication Critical patent/JPH0935712A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which the lowering of cycle capacity is small at a high temperature and which has excellent storage performance by replacing Mn with transition metals selected from Co, Ni, Fe, V, Cr and Ti in the surface of a positive electrode active material. SOLUTION: A positive electrode active material used for a nonaqueous electrolyte secondary battery, in the surface, is a spinel lithium manganese oxide in which Mn is replaced with at least either one transition metal selected from Co, Ni, Fe, V, Cr and Ti. Almost all parts except the surface are formed of LiMn2 O4 . It is preferable that the molar fraction of Mn and transition metals is 0.99:0.01 to 0.8:0.2. The positive electrode active material is obtained by dispersing a manganese dioxide into an aqueous solution in which the salt of transition metals is dissolved and adjusting it to the alkaline side by a lithium hydroxide aqueous solution and after that, drying and solidifying it to make it into a powder in which transition metals are made to adhere to manganese dioxide and mixing lithium carbonate with it and heat-treating its mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
等において用いられる正極活物質及びその製造方法、こ
れを用いた非水電解液二次電池に関する。
TECHNICAL FIELD The present invention relates to a positive electrode active material used in a non-aqueous electrolyte secondary battery and the like, a method for producing the same, and a non-aqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】近年、電子機器の発達はめざましく、小
型軽量で携帯用として用いられる、ビデオカメラやコン
パクトディスクプレーヤー、携帯用ヘッドホーンステレ
オ、携帯電話、トランシーバー等の機器が急速に開発な
らびに実用化されている。これらの携帯用機器に対して
は、特に、小型化が強く望まれ、それと同時に電源の小
型化も要望されている。
2. Description of the Related Art In recent years, the development of electronic devices has been remarkable, and devices such as video cameras, compact disc players, portable headphone stereos, mobile phones, and transceivers, which are small and lightweight and are used for portable use, have been rapidly developed and put into practical use. Has been done. Especially for these portable devices, miniaturization is strongly desired, and at the same time, miniaturization of the power supply is also desired.

【0003】従来よりこれら電子機器の電源に使用され
る二次電池としては、鉛電池やNiCd電池等が挙げら
れる。しかし、鉛電池やNiCd電池は、体積当たり,
重量当たりのエネルギー密度が小さく、小型化を図ると
十分な容量が得られない。また、充放電時の使用負荷に
対するサイクル性能も不十分であるため、使用電源の他
に予備の電源を持ち歩く必要があるといった不便さがあ
る。さらに、これら電池は、重量当たりのエネルギー密
度が小さいため、電池重量も重くなり、携帯に適すると
は言えない。
As a secondary battery conventionally used as a power source for these electronic devices, a lead battery, a NiCd battery and the like can be cited. However, for lead batteries and NiCd batteries,
The energy density per weight is small, and sufficient capacity cannot be obtained when the size is reduced. In addition, since the cycle performance with respect to the load used during charging / discharging is insufficient, there is the inconvenience of having to carry a spare power supply in addition to the power supply used. Furthermore, since these batteries have a low energy density per weight, the battery weight is also heavy, and it cannot be said that they are suitable for carrying.

【0004】そこで、高いエネルギー密度が得られる二
次電池として、リチウムやリチウム合金もしくはリチウ
ムイオンをドープ・脱ドープすることが可能な炭素材料
等を負極材料として用い、コバルト酸リチウムやニッケ
ル酸リチウム等を正極材料として用いる非水電解液二次
電池の研究、開発が活発に行われている。
Therefore, as a secondary battery having a high energy density, lithium, a lithium alloy, or a carbon material capable of doping / dedoping lithium ions is used as a negative electrode material, and lithium cobalt oxide, lithium nickel oxide, etc. The research and development of non-aqueous electrolyte secondary batteries using as a positive electrode material have been actively conducted.

【0005】この非水電解液二次電池は、作動電圧が3
〜4Vと高く、高エネルギー密度化が可能であるととも
に、自己放電も少なく、またサイクル性能も従来の電池
に対して格段に向上している。
This non-aqueous electrolyte secondary battery has an operating voltage of 3
It is as high as ˜4 V, can achieve high energy density, has less self-discharge, and has significantly improved cycle performance as compared with conventional batteries.

【0006】ところで非水電解液二次電池では、コバル
ト酸リチウムやニッケル酸リチウムが正極材料として主
に使用されているが、コバルトやニッケルを含む化合物
は、比較的高価であり、工業レベルで用いるには適して
いない。
By the way, in non-aqueous electrolyte secondary batteries, lithium cobalt oxide and lithium nickel oxide are mainly used as positive electrode materials, but compounds containing cobalt and nickel are relatively expensive and are used on an industrial level. Not suitable for.

【0007】このような状況から、低価格な正極材料の
開発研究が進められ、中でもマンガン酸化物が注目され
ている。
Under these circumstances, research and development of low-priced positive electrode materials have been promoted, and manganese oxide has attracted attention.

【0008】マンガン酸化物は、従来より一次電池仕様
のコイン型非水電解液電池(Li/MnO2電池)にお
いて正極材料として使用されているが、充電が可能で、
二次電池の材料として可逆性を示す。このマンガン酸化
物を例えば3V級の二次電池に用いると、電池容量は初
期放電の1/2程度が確保でき、高いエネルギー密度が
得られ、また自己放電も小さく抑えられ、優れた性能が
得られる。
Manganese oxide has been conventionally used as a positive electrode material in a coin type non-aqueous electrolyte battery (Li / MnO 2 battery) for primary battery specifications.
Reversible as a material for secondary batteries. When this manganese oxide is used in, for example, a 3V-class secondary battery, the battery capacity can be secured at about 1/2 of the initial discharge, a high energy density can be obtained, and self-discharge can be suppressed to a small level, resulting in excellent performance To be

【0009】[0009]

【発明が解決しようとする課題】しかしながら、マンガ
ン酸化物をそのまま正極材料として用いた場合、電池の
放電電位は3V程度が限度であり、4V級の電池を実現
することはできない。すなわち正極材料の安定性はひと
えに電圧に依存している。ここで、コバルト酸リチウム
やニッケル酸リチウム等は比較的電圧に対して安定であ
り、これらを正極材料に使用する非水電解液二次電池で
は4Vを越える充電電圧で使用される。これに対して、
マンガン酸化物,例えばスピネル型リチウムマンガン酸
化物を正極材料とする電池では、コバルト酸リチウム等
を用いる非水電解液二次電池と同様の使用条件で連続使
用した場合、特に高温環境下において、サイクル性能や
保存性能が急激に劣化する。このため、使用に際して
は、使用温度条件が厳しく制限され、また電圧と時間を
十分に制御することが必要である。
However, when manganese oxide is used as it is as a positive electrode material, the discharge potential of the battery is limited to about 3V, and a 4V class battery cannot be realized. That is, the stability of the positive electrode material depends solely on the voltage. Here, lithium cobalt oxide, lithium nickel oxide, and the like are relatively stable against voltage, and a non-aqueous electrolyte secondary battery using them as a positive electrode material is used at a charging voltage exceeding 4V. On the contrary,
A battery using a manganese oxide, for example, spinel type lithium manganese oxide as a positive electrode material, when continuously used under the same use conditions as a non-aqueous electrolyte secondary battery using lithium cobalt oxide, etc. Performance and storage performance deteriorate rapidly. Therefore, in use, operating temperature conditions are severely limited, and it is necessary to sufficiently control voltage and time.

【0010】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、高温環境下、4V以上の
充電電圧で連続使用した場合でも良好な正極性能が維持
される正極活物質及びその製造方法を提供することを目
的とする。また、そのような正極活物質を用いること
で、高温環境下、4V以上の充電電圧で連続使用した場
合でもサイクル容量の低下が小さく抑えられ、また良好
な保存性能が得られる非水電解液二次電池を提供するこ
とを目的とする。
Therefore, the present invention has been proposed in view of such conventional circumstances, and a positive electrode active material that maintains good positive electrode performance even when continuously used at a charging voltage of 4 V or more under a high temperature environment. And its manufacturing method. Further, by using such a positive electrode active material, even when continuously used at a charging voltage of 4 V or more in a high temperature environment, a decrease in cycle capacity can be suppressed to a small level, and good storage performance can be obtained. The purpose is to provide a secondary battery.

【0011】[0011]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の正極活物質は、表面において、Co,N
i,Fe,V,Cr,Tiより選ばれる少なくともいず
れか一種の遷移金属によってMnが置換されているスピ
ネル型リチウムマンガン酸化物であることを特徴とする
ものである。Mnが置換される遷移金属としては、N
i,Co,Feが好適である。
In order to achieve the above object, the positive electrode active material of the present invention has Co, N
It is characterized in that it is a spinel type lithium manganese oxide in which Mn is substituted by at least one kind of transition metal selected from i, Fe, V, Cr and Ti. The transition metal with which Mn is substituted includes N
i, Co and Fe are preferable.

【0012】このように、表面においてMnが遷移金属
によって置換されたスピネル型リチウムマンガン酸化物
を製造するには、二酸化マンガンを、Co,Ni,F
e,V,Cr,Tiより選ばれる少なくともいずれか一
種の遷移金属の塩が溶解された水溶液に分散させ、水酸
化リチウム水溶液によってその液性をアルカリ側に調整
した後、この水溶液を乾燥・固化することでマンガン酸
化物に遷移金属が付着した粉末を生成する。そして、こ
の粉末と炭酸リチウムを混合し、熱処理することでリチ
ウムマンガン酸化物を合成する。
As described above, in order to produce a spinel type lithium manganese oxide in which Mn is replaced with a transition metal on the surface, manganese dioxide is added to Co, Ni and F.
After being dispersed in an aqueous solution in which a salt of at least one kind of transition metal selected from e, V, Cr and Ti is dissolved, and the liquidity thereof is adjusted to an alkaline side with an aqueous solution of lithium hydroxide, the aqueous solution is dried and solidified. This produces a powder in which a transition metal is attached to manganese oxide. Then, this powder and lithium carbonate are mixed and heat-treated to synthesize lithium manganese oxide.

【0013】このとき、各材料の使用量は、Mnと遷移
金属のモル分率が0.99:0.01〜0.8:0.2
となるように設定するのが望ましい。
At this time, the amount of each material used is such that the molar fraction of Mn and the transition metal is 0.99: 0.01 to 0.8: 0.2.
It is desirable to set so that

【0014】[0014]

【発明の実施の形態】本発明の具体的な実施の形態につ
いて以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments of the present invention will be described below.

【0015】本発明の正極活物質は、表面において、C
o,Ni,Fe,V,Cr,Tiより選ばれる少なくと
もいずれかの遷移金属によってMnが置換されたスピネ
ル型リチウムマンガン酸化物である。すなわち、この正
極活物質では、表面がLiMn2-yMey2(但し、M
eはCo,Ni,Fe,V,Cr,Tiより選ばれる少
なくともいずれか一種の遷移金属である)の組成となっ
ており、表面以外の大部分がLiMn24で構成されて
いる。
The positive electrode active material of the present invention has C on the surface.
It is a spinel type lithium manganese oxide in which Mn is substituted with at least one transition metal selected from o, Ni, Fe, V, Cr and Ti. That is, in this positive electrode active material, the surface is LiMn 2-y Me y O 2 (however, M
e is a composition of at least one kind of transition metal selected from Co, Ni, Fe, V, Cr, and Ti), and most of it except for the surface is composed of LiMn 2 O 4 .

【0016】このように表面のMnが遷移金属によって
置換されたスピネル型リチウムマンガン酸化物は、純粋
なスピネル型リチウムマンガン酸化物と同等の容量を有
するとともに、電圧に対する安定性が非常に優れてい
る。したがって、この酸化物を正極活物質として使用す
る電池では、高温環境下、4V以上の充電電圧で連続使
用した場合でも、サイクル容量の低下が小さく抑えら
れ、また良好な保存性能が得られる。さらに、この場
合、置換元素として例えばCo,Ni等の高価な遷移金
属を選択したとしても、使用量は極僅かで済むので、電
池の低コスト化に有利である。
Thus, the spinel type lithium manganese oxide in which Mn on the surface is replaced by a transition metal has a capacity equivalent to that of pure spinel type lithium manganese oxide and is very excellent in stability against voltage. . Therefore, in a battery using this oxide as a positive electrode active material, even when it is continuously used at a charging voltage of 4 V or higher under a high temperature environment, the decrease in cycle capacity is suppressed to a small level, and good storage performance is obtained. Furthermore, in this case, even if an expensive transition metal such as Co or Ni is selected as the substitution element, the amount used is extremely small, which is advantageous in reducing the cost of the battery.

【0017】なお、このスピネル型リチウムマンガン酸
化物において、Mnを置換させる遷移金属としては、N
i,Co,Feが好適である。
In this spinel type lithium manganese oxide, the transition metal for substituting Mn is N.
i, Co and Fe are preferable.

【0018】このような表面のMnが遷移金属によって
置換されたスピネル型リチウムマンガン酸化物を製造す
るには、二酸化マンガンを、Co,Ni,Fe,V,C
r,Tiより選ばれる少なくともいずれかの遷移金属の
塩が溶解された水溶液に分散させ、水酸化リチウム水溶
液によってその液性をアルカリ側に調整した後、この水
溶液を乾燥・固化することでマンガン酸化物に遷移金属
が付着した粉末を生成する。そして、この粉末と炭酸リ
チウムを混合し、熱処理することでリチウムマンガン酸
化物を合成する。
In order to produce a spinel type lithium manganese oxide in which Mn on the surface is replaced by a transition metal, manganese dioxide is added to Co, Ni, Fe, V, C.
Manganese oxidation by dispersing in an aqueous solution in which a salt of at least one transition metal selected from r and Ti is dissolved, adjusting the liquidity to the alkaline side with an aqueous lithium hydroxide solution, and drying and solidifying this aqueous solution. A powder with a transition metal attached to the object is produced. Then, this powder and lithium carbonate are mixed and heat-treated to synthesize lithium manganese oxide.

【0019】このとき各材料の使用量は、Mnと遷移金
属のモル分率が0.99:0.01〜0.8:0.2と
なるように設定するのが望ましい。遷移金属のモル分率
が0.01よりも小さい場合には、電圧に対して十分に
安定なリチウムマンガン酸化物が得られない。また、遷
移金属のモル分率が0.2を越えるような条件で合成さ
れたリチウムマンガン酸化物は、純粋なスピネル型リチ
ウムマンガン酸化物よりも初期容量が低くなり、電圧に
対する安定性も不十分である。
At this time, the amount of each material used is preferably set so that the mole fraction of Mn and the transition metal is 0.99: 0.01 to 0.8: 0.2. If the transition metal mole fraction is less than 0.01, a sufficiently stable lithium manganese oxide with respect to voltage cannot be obtained. In addition, the lithium manganese oxide synthesized under the condition that the transition metal molar fraction exceeds 0.2 has a lower initial capacity than pure spinel-type lithium manganese oxide and has insufficient voltage stability. Is.

【0020】本発明の非水電解液二次電池では、以上の
ように表面のMnが遷移金属によって置換されたスピネ
ル型リチウムマンガン酸化物を正極活物質として使用す
るが、負極活物質や電解液としてはこの種の電池で通常
用いられているものがいずれも使用可能である。
In the non-aqueous electrolyte secondary battery of the present invention, spinel-type lithium manganese oxide in which Mn on the surface is replaced with a transition metal as described above is used as a positive electrode active material. Any of those normally used in this type of battery can be used.

【0021】負極活物質としては、リチウム金属やリチ
ウム合金の他、リチウムをドープ・脱ドープすることが
可能な炭素材料が用いられる。この炭素材料としては、
2000℃以下の比較的低い温度で焼成して得られる低
結晶性炭素材料、あるいは結晶化しやすい原料を300
0℃近くの高温で熱処理することで得られる人造黒鉛や
天然黒鉛等の高結晶性炭素材料が用いられる。具体的に
は、熱分解炭素類、コークス類(ピッチコークス、ニー
ドルコークス、石油コークス等)、黒鉛類、ガラス状炭
素類、有機高分子化合物焼成体(フラン樹脂などを適当
な温度で焼成し炭素化したもの)、炭素繊維、活性炭等
が挙げられる。
As the negative electrode active material, in addition to lithium metal and lithium alloy, a carbon material capable of doping and dedoping lithium is used. As this carbon material,
A low crystalline carbon material obtained by firing at a relatively low temperature of 2000 ° C. or lower, or a raw material that easily crystallizes is 300
A highly crystalline carbon material such as artificial graphite or natural graphite obtained by heat treatment at a high temperature near 0 ° C. is used. Specifically, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired bodies (furan resin, etc. are fired at an appropriate temperature to produce carbon. ), Carbon fiber, activated carbon and the like.

【0022】また、電解液としては、リチウム塩を支持
電解質とし、これを有機溶媒に溶解させた電解液が用い
られる。
Further, as the electrolytic solution, an electrolytic solution in which a lithium salt is used as a supporting electrolyte and this is dissolved in an organic solvent is used.

【0023】有機溶媒としては、プロピレンカーボネー
ト、エチレンカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、γ−ブチロラクトン、
テトラヒドロフラン、2−メチルテトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、スルホラン、メチルスルホラン、ジメチルカーボ
ネート、ジエチルカーボネート、メチルエチルカーボネ
ート、メチルプロピルカーボネート等が使用可能であ
る。
As the organic solvent, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone,
Tetrahydrofuran, 2-methyltetrahydrofuran,
1,3-dioxolane, 4-methyl-1,3-dioxolane, sulfolane, methylsulfolane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate and the like can be used.

【0024】支持電解質としては、LiClO4、Li
AsF6、LiPF6、LiBF4、LiB(C654
CH3SO3Li、CF3SO3Li、LiN(CF3
22、LiC(CF3SO23、LiCl、LiBr
等が挙げられる。
As the supporting electrolyte, LiClO 4 , Li
AsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 ,
CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (CF 3 S
O 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCl, LiBr
And the like.

【0025】[0025]

【実施例】本発明の実施例について実験結果に基づいて
説明する。
EXAMPLES Examples of the present invention will be described based on experimental results.

【0026】実施例1 まず、以下のようにして正極活物質を合成した。 Example 1 First, a positive electrode active material was synthesized as follows.

【0027】平均粒径25μmの電解二酸化マンガン
8.27gを、水200mlに硝酸コバルト6水和物
1.45gを溶解させた水溶液に分散させた。これを攪
はんしながら、水酸化リチウム1%水溶液を徐々に滴下
し、溶液のpH値を9.0に調整した。そして、この状
態で1時間攪はんを続けた。その結果、マンガン酸化物
にコバルトが付着した状態になる。
8.27 g of electrolytic manganese dioxide having an average particle size of 25 μm was dispersed in an aqueous solution prepared by dissolving 1.45 g of cobalt nitrate hexahydrate in 200 ml of water. While stirring this, a 1% aqueous solution of lithium hydroxide was gradually added dropwise to adjust the pH value of the solution to 9.0. Then, stirring was continued for 1 hour in this state. As a result, cobalt is attached to the manganese oxide.

【0028】次いで、この溶液を加熱し、乾燥・固化す
ることでマンガン酸化物にコバルトが付着した粉末を回
収し、さらに300℃の条件で加熱乾燥処理を行った。
次に、この粉末8.72gと炭酸リチウム1.85gを
乳鉢で混合した後、アルミナ製ルツボに投入した。そし
て、電気炉を用いて、空気中、温度400℃で3時間熱
処理を行った後、さらに温度800℃で12時間熱処理
を行い、室温まで冷却した。得られたリチウムマンガン
酸化物を、X線回折装置で分析したところスピネル型リ
チウムマンガン酸化物の場合とピーク位置が一致するス
ペクトルが観測された。
Next, this solution was heated, dried and solidified to recover the powder in which cobalt was adhered to the manganese oxide, and further heat-dried at 300 ° C.
Next, 8.72 g of this powder and 1.85 g of lithium carbonate were mixed in a mortar and then put into an alumina crucible. Then, using an electric furnace, heat treatment was performed in air at a temperature of 400 ° C. for 3 hours, and then heat treatment was further performed at a temperature of 800 ° C. for 12 hours, and cooled to room temperature. When the obtained lithium manganese oxide was analyzed by an X-ray diffractometer, a spectrum whose peak position coincided with that of the spinel type lithium manganese oxide was observed.

【0029】また、このリチウムマンガン酸化物の、S
EM EMAX分析法で観測したスペクトルを図1に示
す。なお、SEM EMAX分析法とは、試料表面に電
子線を照射したときに発生する特性X線を検出し、この
特性X線のピーク位置から試料に含まれる元素を分析す
る方法である。図1のスペクトルを見ると、Coに由来
するピークが出現しており、これにより合成されたリチ
ウムマンガン酸化物にCoが導入されていることが確認
される。
Further, S of the lithium manganese oxide is
The spectrum observed by the EM EMAX analysis method is shown in FIG. The SEM EMAX analysis method is a method of detecting a characteristic X-ray generated when the sample surface is irradiated with an electron beam and analyzing the element contained in the sample from the peak position of the characteristic X-ray. From the spectrum of FIG. 1, a peak derived from Co appears, and it is confirmed that Co is introduced into the synthesized lithium manganese oxide.

【0030】次に、得られたリチウムマンガン酸化物を
正極活物質として正極を作製した。
Next, a positive electrode was prepared by using the obtained lithium manganese oxide as a positive electrode active material.

【0031】上記リチウムマンガン酸化物85重量%
と、導電剤としてグラファイト10重量%、結着材とし
てポリ4フッ化エチレン5重量%を混合し、加圧プレス
機を用いて直径15mmのペレット状(ディスク型)に
成型した。そして、このリチウムマンガン酸化物のペレ
ットをNi製網(孔径0.05mm)とともに、真空
下、温度250℃で8時間乾燥させることで正極ペレッ
トを作製した。
85% by weight of the lithium manganese oxide
10% by weight of graphite as a conductive agent and 5% by weight of polytetrafluoroethylene as a binder were mixed and molded into a pellet shape (disk type) having a diameter of 15 mm using a pressure press. Then, the lithium manganese oxide pellets were dried together with a Ni net (pore diameter 0.05 mm) under vacuum at a temperature of 250 ° C. for 8 hours to prepare positive electrode pellets.

【0032】一方、負極は、石油ピッチに、酸素を含む
官能基を導入(酸素架橋)した後、熱処理することで得
られた炭素材料を負極活物質として作製した。
On the other hand, for the negative electrode, a carbon material obtained by introducing a functional group containing oxygen (oxygen cross-linking) into petroleum pitch and then heat-treating it was prepared as a negative electrode active material.

【0033】上記炭素材料90重量%と、結着材として
ポリフッ化ビニリデン10重量%を混合し、N−メチル
−2ピロリドン(NMP)に分散させ、120℃で乾燥
させた。そして、この合剤を、加圧成型機で、直径16
mmのペレット状に成型し、真空下、温度120℃で8
時間乾燥させることで負極ペレットを作製した。
90% by weight of the above carbon material and 10% by weight of polyvinylidene fluoride as a binder were mixed, dispersed in N-methyl-2pyrrolidone (NMP), and dried at 120 ° C. Then, this mixture is pressed with a pressure molding machine to give a diameter of 16
mm pellets, 8 at 120 ° C under vacuum
The negative electrode pellet was produced by drying for a time.

【0034】得られた正極ペレット及び負極ペレットを
用いて、図2に示されるようなコイン型電池を作製し
た。
A coin type battery as shown in FIG. 2 was produced using the obtained positive electrode pellets and negative electrode pellets.

【0035】まず、ステンレス製の正極缶5に正極ペレ
ット1を入れ、その上にポリプロピレン製のセパレータ
3(商品名セルガード#2502)を重ね、ポリプロピ
レン製の絶縁ガスケット6を正極缶5の外縁部に取付け
た。次に、炭酸プロピレンと炭酸ジメチルの等容量混合
物にLiPF6を1mol/l溶解させた電解液を、正
極ペレット1及び負極ペレット2に注入した。そして、
負極ペレット2をセパレータ3上に載置し、その上に負
極缶4を載せ、缶をかしめることで直径20mm,高さ
1.6mmのコイン型電池を作製した。
First, the positive electrode pellets 1 are put in a positive electrode can 5 made of stainless steel, a polypropylene separator 3 (trade name Celgard # 2502) is laid on the positive electrode can 1, and an insulating gasket 6 made of polypropylene is attached to the outer edge of the positive electrode can 5. I installed it. Next, an electrolyte solution in which 1 mol / l of LiPF 6 was dissolved in an equal volume mixture of propylene carbonate and dimethyl carbonate was injected into the positive electrode pellet 1 and the negative electrode pellet 2. And
The negative electrode pellet 2 was placed on the separator 3, the negative electrode can 4 was placed thereon, and the can was caulked to manufacture a coin-type battery having a diameter of 20 mm and a height of 1.6 mm.

【0036】実施例2 以下のようにして正極活物質を合成した。 Example 2 A positive electrode active material was synthesized as follows.

【0037】平均粒径25μmの電解二酸化マンガン
8.27gを、水200mlに硝酸ニッケル6水和物
1.45gを溶解させた水溶液に分散させた。これを攪
はんしながら、水酸化リチウム1%水溶液を徐々に滴下
し、溶液のpH値を9.0に調整した。そして、この状
態で1時間攪はんを続けた。
8.27 g of electrolytic manganese dioxide having an average particle size of 25 μm was dispersed in an aqueous solution prepared by dissolving 1.45 g of nickel nitrate hexahydrate in 200 ml of water. While stirring this, a 1% aqueous solution of lithium hydroxide was gradually added dropwise to adjust the pH value of the solution to 9.0. Then, stirring was continued for 1 hour in this state.

【0038】次いで、この溶液を加熱し、乾燥・固化す
ることでマンガン酸化物にニッケルが付着した粉末を回
収し、さらに300℃の条件で加熱乾燥処理を行った。
次に、この粉末8.30gと炭酸リチウム1.20gを
乳鉢で混合した後、アルミナ製ルツボに投入した。そし
て、電気炉を用いて、空気中、温度400℃で3時間熱
処理を行った後、さらに温度800℃で12時間熱処理
を行い、室温まで冷却した。得られたリチウムマンガン
酸化物を、X線回折装置で分析したところスピネル型リ
チウムマンガン酸化物の場合とピーク位置が一致するス
ペクトルが観測された。
Next, this solution was heated, dried and solidified to recover the powder in which nickel was attached to the manganese oxide, and further heat-dried at 300 ° C.
Next, 8.30 g of this powder and 1.20 g of lithium carbonate were mixed in a mortar and then put into an alumina crucible. Then, using an electric furnace, heat treatment was performed in air at a temperature of 400 ° C. for 3 hours, and then heat treatment was further performed at a temperature of 800 ° C. for 12 hours, and cooled to room temperature. When the obtained lithium manganese oxide was analyzed by an X-ray diffractometer, a spectrum whose peak position coincided with that of the spinel type lithium manganese oxide was observed.

【0039】このようにして合成されたリチウムマンガ
ン酸化物を正極活物質として用いること以外は実施例1
と同様にしてコイン型電池を作製した。
Example 1 except that the lithium manganese oxide thus synthesized was used as the positive electrode active material.
A coin-type battery was manufactured in the same manner as in.

【0040】実施例3 以下のようにして正極活物質を合成した。 Example 3 A positive electrode active material was synthesized as follows.

【0041】平均粒径25μmの電解二酸化マンガン
8.27gを、水200mlに硝酸鉄6水和物2.0g
を溶解させた水溶液に分散させた。これを攪はんしなが
ら、水酸化リチウム1%水溶液を徐々に滴下し、溶液の
pH値を9.0に調整した。そして、この状態で1時間
攪はんを続けた。
8.27 g of electrolytic manganese dioxide having an average particle size of 25 μm was added to 200 ml of water and 2.0 g of iron nitrate hexahydrate.
Was dispersed in the dissolved aqueous solution. While stirring this, a 1% aqueous solution of lithium hydroxide was gradually added dropwise to adjust the pH value of the solution to 9.0. Then, stirring was continued for 1 hour in this state.

【0042】次いで、この溶液を加熱し、乾燥・固化す
ることでマンガン酸化物に鉄が付着した粉末を回収し、
さらに300℃の条件で加熱乾燥処理を行った。次に、
この粉末8.63gと炭酸リチウム1.85gを乳鉢で
混合した後、アルミナ製ルツボに投入した。そして、電
気炉を用いて、空気中、温度400℃で3時間熱処理を
行った後、さらに温度800℃で12時間熱処理を行
い、室温まで冷却した。得られたリチウムマンガン酸化
物を、X線回折装置で分析したところスピネル型リチウ
ムマンガン酸化物の場合とピーク位置が一致するスペク
トルが観測された。
Then, the solution is heated, dried and solidified to recover the powder in which iron is attached to the manganese oxide,
Further, heat drying treatment was performed under the condition of 300 ° C. next,
This powder (8.63 g) and lithium carbonate (1.85 g) were mixed in a mortar and then put into an alumina crucible. Then, using an electric furnace, heat treatment was performed in air at a temperature of 400 ° C. for 3 hours, and then heat treatment was further performed at a temperature of 800 ° C. for 12 hours, and cooled to room temperature. When the obtained lithium manganese oxide was analyzed by an X-ray diffractometer, a spectrum whose peak position coincided with that of the spinel type lithium manganese oxide was observed.

【0043】このようにして合成されたリチウムマンガ
ン酸化物を正極活物質として用いること以外は実施例1
と同様にしてコイン型電池を作製した。
Example 1 except that the lithium manganese oxide thus synthesized was used as the positive electrode active material.
A coin-type battery was manufactured in the same manner as in.

【0044】比較例1 以下のようにして正極活物質を合成した。 Comparative Example 1 A positive electrode active material was synthesized as follows.

【0045】平均粒径25μmの電解二酸化マンガン
8.7gと炭酸リチウム1.85gを乳鉢で混合した
後、アルミナ製ルツボに投入した。そして、電気炉を用
いて、空気中、温度400℃で3時間熱処理を行った
後、さらに温度800℃で12時間熱処理を行い、室温
まで冷却した。得られたリチウムマンガン酸化物を、X
線回折装置で分析したところスピネル型リチウムマンガ
ン酸化物の場合とピーク位置が一致するスペクトルが観
測された。
8.7 g of electrolytic manganese dioxide having an average particle diameter of 25 μm and 1.85 g of lithium carbonate were mixed in a mortar and then charged into an alumina crucible. Then, using an electric furnace, heat treatment was performed in air at a temperature of 400 ° C. for 3 hours, and then heat treatment was further performed at a temperature of 800 ° C. for 12 hours, and cooled to room temperature. The obtained lithium manganese oxide is
When analyzed by a line diffractometer, a spectrum having the same peak position as that of the spinel type lithium manganese oxide was observed.

【0046】このようにして合成されたリチウムマンガ
ン酸化物を正極活物質として用いること以外は実施例1
と同様にしてコイン型電池を作製した。
Example 1 except that the lithium manganese oxide thus synthesized was used as the positive electrode active material.
A coin-type battery was manufactured in the same manner as in.

【0047】以上のようにして作製された電池につい
て、先ず、電流1mA,上限電圧4.2Vで30時間充
電を行い、電流1mA,終止電圧2.5Vで放電を行っ
た。次に、電流2.5mA,上限電圧4.2V,充電時
間10時間,下限電圧2.5Vの条件で充放電を繰り返
し行い、5サイクル目容量と20サイクル目容量を測定
した。
The battery manufactured as described above was first charged for 30 hours at a current of 1 mA and an upper limit voltage of 4.2 V, and then discharged at a current of 1 mA and a final voltage of 2.5 V. Next, charging / discharging was repeated under conditions of a current of 2.5 mA, an upper limit voltage of 4.2 V, a charging time of 10 hours, and a lower limit voltage of 2.5 V, and the fifth cycle capacity and the 20th cycle capacity were measured.

【0048】また、この測定に用いた電池とは別の電池
について、先に示した条件のうち後者の充放電条件で5
サイクル充放電行った後、充電状態で60℃の温度で1
0日間保存した。そして、同じ条件で放電を行った。そ
して、保存前後での容量を測定した。
Regarding the battery different from the battery used for this measurement, the latter 5 of the above-mentioned conditions were used.
After performing cycle charge / discharge, 1 at a temperature of 60 ° C in the charged state
It was stored for 0 days. Then, discharge was performed under the same conditions. Then, the capacity before and after storage was measured.

【0049】5サイクル目容量と20サイクル目容量、
保存前後での容量の測定結果を、正極活物質の合成に際
するMnと遷移金属のモル分率と併せて表1に示す。
5th cycle capacity and 20th cycle capacity,
The measurement results of the capacity before and after storage are shown in Table 1 together with the molar fractions of Mn and transition metal in the synthesis of the positive electrode active material.

【0050】[0050]

【表1】 [Table 1]

【0051】表1からわかるように、5サイクル目容量
については、実施例1〜実施例3の電池では、比較例1
の電池と同等あるいはそれ以上の容量が得られている。
また、20サイクル目容量については、実施例1〜実施
例3の電池の方が比較例1の電池よりも高い容量になっ
ており、サイクルに伴う容量低下が1/2以下に抑えら
れている。また、保存後容量も、実施例1〜実施例3の
電池の方が比較例1の電池よりも高い。
As can be seen from Table 1, regarding the capacity at the fifth cycle, in the batteries of Examples 1 to 3, Comparative Example 1
It has a capacity equal to or higher than that of the battery.
Regarding the capacity at the 20th cycle, the batteries of Examples 1 to 3 have higher capacities than the battery of Comparative Example 1, and the capacity decrease due to the cycle is suppressed to 1/2 or less. . The storage capacities of the batteries of Examples 1 to 3 are also higher than that of the battery of Comparative Example 1 after storage.

【0052】このことから、4V級電池に用いる正極活
物質としては、純粋なリチウムマンガン酸化物よりも遷
移金属を導入して作製されたリチウムマンガン酸化物の
方がはるかに優れていることがわかった。
From this, it is found that the lithium manganese oxide prepared by introducing the transition metal is far superior to the pure lithium manganese oxide as the positive electrode active material used in the 4V class battery. It was

【0053】次に、リチウムマンガン酸化物に導入する
遷移金属の割合について検討した。
Next, the proportion of transition metal introduced into the lithium manganese oxide was examined.

【0054】実験例1 電解二酸化マンガンの使用量を8.67g、水溶液に溶
解させた硝酸コバルトの量を0.15gとしてコバルト
を付着させたマンガン酸化物の粉末を生成し、さらにこ
の粉末8.64gと炭酸リチウム1.85gを混合して
熱処理を行ったこと以外は実施例1と同様にして正極活
物質を合成し、コイン型電池を作製した。
Experimental Example 1 The amount of electrolytic manganese dioxide used was 8.67 g, and the amount of cobalt nitrate dissolved in an aqueous solution was 0.15 g to produce a manganese oxide powder to which cobalt was adhered. A positive electrode active material was synthesized in the same manner as in Example 1 except that 64 g and 1.85 g of lithium carbonate were mixed and heat-treated to prepare a coin-type battery.

【0055】実験例2 電解二酸化マンガンの使用量を8.66g、水溶液に溶
解させた硝酸コバルトの量を0.30gとしてコバルト
を付着させたマンガン酸化物の粉末を生成し、さらにこ
の粉末8.57gと炭酸リチウム1.85gを混合して
熱処理を行ったこと以外は実施例1と同様にして正極活
物質を合成し、コイン型電池を作製した。
Experimental Example 2 The amount of electrolytic manganese dioxide used was 8.66 g, and the amount of cobalt nitrate dissolved in an aqueous solution was 0.30 g to produce a manganese oxide powder to which cobalt was adhered. A positive electrode active material was synthesized in the same manner as in Example 1 except that 57 g and 1.85 g of lithium carbonate were mixed and subjected to heat treatment to prepare a coin-type battery.

【0056】実験例3 電解二酸化マンガンの使用量を8.27g、水溶液に溶
解させた硝酸コバルトの量を1.45gとしてコバルト
を付着させたマンガン酸化物の粉末を生成し、さらにこ
の粉末8.72gと炭酸リチウム1.85gを混合して
熱処理を行ったこと以外は実施例1と同様にして正極活
物質を合成し、コイン型電池を作製した。
Experimental Example 3 The amount of electrolytic manganese dioxide used was 8.27 g, and the amount of cobalt nitrate dissolved in the aqueous solution was 1.45 g to produce a manganese oxide powder to which cobalt was adhered. A positive electrode active material was synthesized in the same manner as in Example 1 except that 72 g and 1.85 g of lithium carbonate were mixed and heat-treated to prepare a coin-type battery.

【0057】実験例4 電解二酸化マンガンの使用量を7.83g、水溶液に溶
解させた硝酸コバルトの量を2.9gとしてコバルトを
付着させたマンガン酸化物の粉末を生成し、さらにこの
粉末8.55gと炭酸リチウム1.85gを混合して熱
処理を行ったこと以外は実施例1と同様にして正極活物
質を合成し、コイン型電池を作製した。
Experimental Example 4 The amount of electrolytic manganese dioxide used was 7.83 g and the amount of cobalt nitrate dissolved in the aqueous solution was 2.9 g to produce a manganese oxide powder to which cobalt was adhered. A positive electrode active material was synthesized in the same manner as in Example 1 except that 55 g and lithium carbonate 1.85 g were mixed and heat-treated to prepare a coin-type battery.

【0058】実験例5 電解二酸化マンガンの使用量を6.96g、水溶液に溶
解させた硝酸コバルトの量を5.8gとしてコバルトを
付着させたマンガン酸化物の粉末を生成し、さらにこの
粉末8.78gと炭酸リチウム1.85gを混合して熱
処理を行ったこと以外は実施例1と同様にして正極活物
質を合成し、コイン型電池を作製した。
Experimental Example 5 The amount of electrolytic manganese dioxide used was 6.96 g, and the amount of cobalt nitrate dissolved in an aqueous solution was 5.8 g to produce a manganese oxide powder to which cobalt was adhered. A positive electrode active material was synthesized in the same manner as in Example 1 except that 78 g and 1.85 g of lithium carbonate were mixed and subjected to heat treatment, to produce a coin-type battery.

【0059】実験例6 電解二酸化マンガンの使用量を6.09g、水溶液に溶
解させた硝酸コバルトの量を8.7gとしてコバルトを
付着させたマンガン酸化物の粉末を生成し、さらにこの
粉末8.82gと炭酸リチウム1.85gを混合して熱
処理を行ったこと以外は実施例1と同様にして正極活物
質を合成し、コイン型電池を作製した。
Experimental Example 6 The amount of electrolytic manganese dioxide used was 6.09 g, and the amount of cobalt nitrate dissolved in an aqueous solution was 8.7 g to produce a powder of manganese oxide to which cobalt was adhered. A positive electrode active material was synthesized in the same manner as in Example 1 except that 82 g and lithium carbonate 1.85 g were mixed and subjected to heat treatment, to produce a coin-type battery.

【0060】実験例7 電解二酸化マンガンの使用量を6.53g、水溶液に溶
解させた硝酸ニッケル6水和物の量を7.25gとして
ニッケルを付着させたマンガン酸化物の粉末を生成し、
さらにこの粉末8.41gと炭酸リチウム1.20gを
混合して熱処理を行ったこと以外は実施例2と同様にし
て正極活物質を合成し、コイン型電池を作製した。
Experimental Example 7 The amount of electrolytic manganese dioxide used was 6.53 g, and the amount of nickel nitrate hexahydrate dissolved in an aqueous solution was 7.25 g to produce a manganese oxide powder to which nickel was adhered,
Further, a positive electrode active material was synthesized in the same manner as in Example 2 except that 8.41 g of this powder and 1.20 g of lithium carbonate were mixed and heat-treated to prepare a coin-type battery.

【0061】そして、作製された電池について、上述と
同様にして5サイクル目容量と20サイクル目容量、保
存前後での容量を測定した。その測定結果を、正極活物
質の合成に際するMnと遷移金属のモル分率と併せて表
2に示す。また、比較例1及び実験例1〜実験例6の電
池で測定された容量維持率(20サイクル目容量/5サ
イクル目容量),容量保存率(保存後容量/保存前容
量)について、Coのモル分率を横軸にプロットした結
果を図3に併せて示す。
Then, the 5th cycle capacity, the 20th cycle capacity, and the capacity before and after storage of the manufactured battery were measured in the same manner as described above. The measurement results are shown in Table 2 together with the mole fractions of Mn and transition metal in the synthesis of the positive electrode active material. Regarding the capacity retention rate (20th cycle capacity / 5th cycle capacity) and capacity retention rate (post-storage capacity / pre-storage capacity) measured with the batteries of Comparative Example 1 and Experimental Examples 1 to 6, The results of plotting the mole fraction on the horizontal axis are also shown in FIG.

【0062】[0062]

【表2】 [Table 2]

【0063】図中、まず、容量維持率は、Coのモル分
率が0.1までの範囲ではこのモル分率に依存して徐々
に増加する。そして、Coのモル分率が0.2を越える
と減少変化を示すようになる。
In the figure, first, the capacity retention rate gradually increases depending on the mole fraction of Co in the range up to 0.1. Then, when the molar fraction of Co exceeds 0.2, it shows a decreasing change.

【0064】一方、容量保存率は、Coのモル分率が
0.01までの範囲ではこのモル分率に依存して急激の
増加する。そして、Coのモル分率が0.01〜0.2
の範囲ではほぼ一定の値となり、それ以降は徐々に減少
する。
On the other hand, the capacity retention rate increases rapidly depending on the molar fraction of Co up to 0.01. And, the molar fraction of Co is 0.01 to 0.2.
The value becomes almost constant in the range of, and gradually decreases thereafter.

【0065】この結果から、容量維持率と容量保存率を
ともに高い値とするには、リチウムマンガン酸化物に導
入するCo等の遷移金属は、Mnと遷移金属のモル分率
が0.99:0.01〜0.8:0.2となるように設
定するのが望ましいことがわかる。なお、実験例7とし
て、Niを遷移金属として用いる系について、このNi
のモル分率が0.2を越える場合の検討を行ったが、同
様に容量維持率、容量保存率が低い値になっている。こ
のことから、このモル分率の範囲は他の遷移金属を用い
る場合にも当てはまるものと推定される、以上、本実施
例では正極活物質をコイン型電池に適用した場合を例に
して説明したが、電池形状はこれに限定されるものでは
ない。円筒型電池、積層型電池に適用した場合でも本発
明の正極活物質を用いることで同様の効果が得られるの
は勿論である。
From these results, in order to make both the capacity retention rate and the capacity retention rate high, the transition metal such as Co introduced into the lithium manganese oxide has a molar fraction of Mn and the transition metal of 0.99: It can be seen that it is desirable to set so as to be 0.01 to 0.8: 0.2. As Experimental Example 7, a system using Ni as a transition metal was used.
When the mole fraction of was over 0.2, the investigation was carried out, and similarly, the capacity retention rate and the capacity storage rate were low. From this, it is estimated that the range of this mole fraction is also applicable to the case of using other transition metals. In the above, the case where the positive electrode active material was applied to the coin-type battery was described as an example in this example. However, the shape of the battery is not limited to this. It is needless to say that the same effect can be obtained by using the positive electrode active material of the present invention even when applied to a cylindrical battery or a laminated battery.

【0066】[0066]

【発明の効果】以上の説明からも明らかなように、本発
明の正極活物質は、表面において、Co,Ni,Fe,
V,Cr,Tiより選ばれる少なくともいずれか一種の
遷移金属によってMnが置換されているスピネル型リチ
ウムマンガン酸化物であるので、高容量であるとともに
電圧に対する安定性が非常に優れている。したがって、
このようなリチウムマンガン酸化物を正極活物質として
用いる非水電解液二次電池は、高温環境下、4V以上の
充電電圧で連続使用した場合でも、サイクル容量の低下
が小さく抑えられ、また良好な保存性能が得られる。さ
らに、この場合、置換元素として例えばCo,Ni等の
高価な遷移金属を選択したとしても、使用量は極僅かで
済むので、電池の低コスト化に有利である。
As is apparent from the above description, the positive electrode active material of the present invention has Co, Ni, Fe,
Since it is a spinel type lithium manganese oxide in which Mn is substituted by at least one kind of transition metal selected from V, Cr and Ti, it has a high capacity and is very excellent in stability against voltage. Therefore,
A non-aqueous electrolyte secondary battery using such a lithium manganese oxide as a positive electrode active material can suppress a decrease in cycle capacity to a small extent even when continuously used at a charging voltage of 4 V or more in a high temperature environment, and is excellent. Storage performance is obtained. Furthermore, in this case, even if an expensive transition metal such as Co or Ni is selected as the substitution element, the amount used is extremely small, which is advantageous in reducing the cost of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面のMnがCoによって置換されたスピネル
型リチウムマンガン酸化物について、SEM EMAX
分析法で観測したスペクトルを示す特性図である。
FIG. 1 is a SEM EMAX of a spinel type lithium manganese oxide in which Mn on the surface is replaced by Co.
It is a characteristic view which shows the spectrum observed by the analysis method.

【図2】本発明を適用した非水電解液二次電池の1構成
例を示す断面図である。
FIG. 2 is a cross-sectional view showing one structural example of a non-aqueous electrolyte secondary battery to which the present invention is applied.

【図3】リチウムマンガン酸化物に導入するCoのモル
分率と、容量維持率および容量保存率の関係を示す特性
図である。
FIG. 3 is a characteristic diagram showing the relationship between the molar fraction of Co introduced into lithium manganese oxide and the capacity retention rate and capacity retention rate.

【符号の説明】 1 正極 2 負極[Explanation of symbols] 1 positive electrode 2 negative electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面において、Co,Ni,Fe,V,
Cr,Tiより選ばれる少なくともいずれか一種の遷移
金属によってMnが置換されているスピネル型リチウム
マンガン酸化物であることを特徴とする正極活物質。
1. On the surface, Co, Ni, Fe, V,
A positive electrode active material, which is a spinel-type lithium manganese oxide in which Mn is substituted with at least one transition metal selected from Cr and Ti.
【請求項2】 Mnが置換される遷移金属がNi,C
o,Feの少なくともいずれかであることを特徴とする
請求項1記載の正極活物質。
2. The transition metal with which Mn is substituted is Ni, C.
The positive electrode active material according to claim 1, which is at least one of o and Fe.
【請求項3】 二酸化マンガンを、Co,Ni,Fe,
V,Cr,Tiより選ばれる少なくともいずれか一種の
遷移金属の塩が溶解された水溶液に分散させ、水酸化リ
チウム水溶液によってその液性をアルカリ側に調整した
後、この水溶液を乾燥・固化することで二酸化マンガン
に遷移金属が付着した粉末を生成し、 この粉末と炭酸リチウムを混合し、熱処理することでリ
チウムマンガン酸化物を合成する正極活物質の製造方
法。
3. Manganese dioxide is added to Co, Ni, Fe,
Dispersing in an aqueous solution in which a salt of at least one transition metal selected from V, Cr and Ti is dissolved, adjusting the liquidity to an alkaline side with an aqueous lithium hydroxide solution, and then drying and solidifying this aqueous solution. A method for producing a positive electrode active material, in which a powder in which a transition metal is attached to manganese dioxide is generated in, a powder of lithium carbonate is mixed with the powder, and a heat treatment is performed to synthesize lithium manganese oxide.
【請求項4】 Mnと遷移金属のモル分率を、0.9
9:0.01〜0.8:0.2とすることを特徴とする
請求項3記載の正極活物質の製造方法。
4. The molar fraction of Mn and transition metal is 0.9
The method for producing a positive electrode active material according to claim 3, wherein the ratio is 9: 0.01 to 0.8: 0.2.
【請求項5】 表面において、Co,Ni,Fe,V,
Cr,Tiより選ばれる少なくともいずれか一種の遷移
金属によってMnが置換されているスピネル型リチウム
マンガン酸化物を正極活物質とする非水電解液二次電
池。
5. On the surface, Co, Ni, Fe, V,
A non-aqueous electrolyte secondary battery using, as a positive electrode active material, a spinel-type lithium manganese oxide in which Mn is substituted with at least one transition metal selected from Cr and Ti.
JP7189305A 1995-07-25 1995-07-25 Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it Withdrawn JPH0935712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7189305A JPH0935712A (en) 1995-07-25 1995-07-25 Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7189305A JPH0935712A (en) 1995-07-25 1995-07-25 Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it

Publications (1)

Publication Number Publication Date
JPH0935712A true JPH0935712A (en) 1997-02-07

Family

ID=16239119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7189305A Withdrawn JPH0935712A (en) 1995-07-25 1995-07-25 Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it

Country Status (1)

Country Link
JP (1) JPH0935712A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050136A1 (en) * 1996-06-25 1997-12-31 Valence Technology, Inc. Lithium manganese oxide cathodes with high capacity and stability
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
JP2000090933A (en) * 1998-07-13 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
US6103422A (en) * 1995-12-26 2000-08-15 Kao Corporation Cathode active material and nonaqueous secondary battery containing the same
JP2003243029A (en) * 2002-02-18 2003-08-29 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2005129492A (en) * 2003-09-29 2005-05-19 Sanyo Electric Co Ltd Charge/discharge control method of nonaqueous electrolyte secondary battery
JP2008288213A (en) * 2008-07-14 2008-11-27 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2009021046A (en) * 2007-07-10 2009-01-29 Panasonic Corp Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte secondary battery
KR100969674B1 (en) * 2005-08-09 2010-07-14 주식회사 엘지화학 Lithium Manganese-based Oxide for Cathode Active Material of Secondary Battery and Method for Preparation of the Same
KR20130004491A (en) 2010-03-31 2013-01-10 가부시키가이샤 히타치세이사쿠쇼 Positive electrode active material
CN104241632A (en) * 2014-09-11 2014-12-24 李梦思 Li-Mn-Cr ternary composite battery positive electrode material and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103422A (en) * 1995-12-26 2000-08-15 Kao Corporation Cathode active material and nonaqueous secondary battery containing the same
WO1997050136A1 (en) * 1996-06-25 1997-12-31 Valence Technology, Inc. Lithium manganese oxide cathodes with high capacity and stability
JP2000090933A (en) * 1998-07-13 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
US6368750B1 (en) 1998-07-13 2002-04-09 Ngk Insulators, Ltd. Lithium secondary battery
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
JP2003243029A (en) * 2002-02-18 2003-08-29 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2005129492A (en) * 2003-09-29 2005-05-19 Sanyo Electric Co Ltd Charge/discharge control method of nonaqueous electrolyte secondary battery
KR100969674B1 (en) * 2005-08-09 2010-07-14 주식회사 엘지화학 Lithium Manganese-based Oxide for Cathode Active Material of Secondary Battery and Method for Preparation of the Same
JP2009021046A (en) * 2007-07-10 2009-01-29 Panasonic Corp Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP2008288213A (en) * 2008-07-14 2008-11-27 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
KR20130004491A (en) 2010-03-31 2013-01-10 가부시키가이샤 히타치세이사쿠쇼 Positive electrode active material
US8951436B2 (en) 2010-03-31 2015-02-10 Hitachi, Ltd. Positive electrode active material
CN104241632A (en) * 2014-09-11 2014-12-24 李梦思 Li-Mn-Cr ternary composite battery positive electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4022937B2 (en) Lithium ion non-aqueous electrolyte secondary battery
US6037095A (en) Non-aqueous lithium ion secondary battery
JP4171848B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
JP4784608B2 (en) Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same
KR101309150B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2006278341A (en) Lithium ion nonaqueous electrolyte secondary cell
JP2015015244A (en) Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery
JP2006261127A (en) Positive electrode active material for lithium ion nonaqueous electrolyte secondary battery and its manufacturing method
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
KR101992760B1 (en) Positive electrode active material for lithium secondary battery and positive electrode comprising the same
KR101802517B1 (en) Cathod active material, method for preparing the same, lithium secondary battery comprising the same
KR102228750B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
KR101115416B1 (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery including same
JP2006318926A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
KR20190076774A (en) Positive electrode active material precursor for rechargable lithium battery and manufacturing method of the same, positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
KR20110136000A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20210088494A (en) Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR20150133552A (en) Composite precursor and preparing method thereof
KR20130022018A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2002151065A (en) Negative electrode active material and non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001