JP2006261127A - Positive electrode active material for lithium ion nonaqueous electrolyte secondary battery and its manufacturing method - Google Patents

Positive electrode active material for lithium ion nonaqueous electrolyte secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2006261127A
JP2006261127A JP2006106028A JP2006106028A JP2006261127A JP 2006261127 A JP2006261127 A JP 2006261127A JP 2006106028 A JP2006106028 A JP 2006106028A JP 2006106028 A JP2006106028 A JP 2006106028A JP 2006261127 A JP2006261127 A JP 2006261127A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006106028A
Other languages
Japanese (ja)
Other versions
JP4197002B2 (en
Inventor
Tsutomu Miyasaka
力 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006106028A priority Critical patent/JP4197002B2/en
Publication of JP2006261127A publication Critical patent/JP2006261127A/en
Application granted granted Critical
Publication of JP4197002B2 publication Critical patent/JP4197002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium ion nonaqueous electrolyte secondary battery having an excellent charge-discharge cycle characteristic and capable of providing a high-capacity lithium ion nonaqueous electrolyte secondary battery, and to provide its manufacturing method. <P>SOLUTION: This positive electrode active material for a lithium ion nonaqueous electrolyte secondary battery is formed of a nickel-containing lithium composite oxide represented by a composition of Li<SB>x</SB>Ni<SB>1-y</SB>Co<SB>y-z</SB>M<SB>z</SB>O<SB>2-a</SB>X<SB>b</SB>. In the formula, M is one or more kinds of elements selected from elements of the thirteenth group and the fourteenth group of the periodic table comprising Mn, Fe, Ti, Zr, Nd, La, Cu, V, Sm, W, Zn, Y, Mg, Sr, Ca, Ba, Cs, Na and P; X is a halogen element; x, y, z, a and b are numeric values in ranges of 0.2<x≤1.2, 0<y≤0.5, z<y, 0<z<0.5, 0.01≤a≤0.5, and 0.01≤b≤2a. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ニッケル含有リチウム複合酸化物からなるリチウムイオン非水電解質二次電池用正極活物質、及びその製造方法に関する。   The present invention relates to a positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery comprising a nickel-containing lithium composite oxide, and a method for producing the same.

現在、汎用のリチウムイオン二次電池は、負極に、リチウムをイオン状態で可逆的にインターカレートする材料として各種の炭素質材料を用い、正極には同じくリチウムイオンの可逆的な挿入放出が可能なリチウム含有金属複合酸化物を用いて、これらのリチウム吸蔵/放出材料を組み合わせたいわゆるロッキングチェア型のリチウムイオン二次電池として使用されている。
正極活物質としては、LiCoO2、LiCo1-xNix2、LiNiO2、LiMn24等が広く用いられ、これらのなかでも特に特許文献1で開示されるLiCoO2は3.5Vvs.Li以上の高い充放電電位を与え、且つ高容量を有する点で有利である。また、Co系に比べて供給量が多く低コストであるメリットからLiMn24を正極材料に用いた二次電池が、特許文献2、特許文献3等に提案されている。
Currently, general-purpose lithium-ion secondary batteries use various carbonaceous materials as the negative electrode that reversibly intercalate lithium in the ionic state, and the positive electrode can also reversibly insert and release lithium ions. The lithium-containing metal composite oxide is used as a so-called rocking chair type lithium ion secondary battery in which these lithium storage / release materials are combined.
As the positive electrode active material, LiCoO 2 , LiCo 1-x Ni x O 2 , LiNiO 2 , LiMn 2 O 4 and the like are widely used, and among these, LiCoO 2 disclosed in Patent Document 1 is particularly 3.5 Vvs. This is advantageous in that it provides a charge / discharge potential higher than that of Li and has a high capacity. In addition, secondary batteries using LiMn 2 O 4 as a positive electrode material have been proposed in Patent Document 2, Patent Document 3, and the like because of the merit of a large supply amount and low cost compared to Co-based.

負極活物質として用いられる炭素質材料には、黒鉛質炭素材料、ピッチコークス、繊維状カーボン、低温で焼成される高容量型のソフトカーボンなどがあるが、炭素材料は嵩密度が通常2.20以下と比較的小さいため、化学量論限界までのリチウム挿入容量(372mAh/g)で用いると、電池の実質容量を高く設計することが難しい。そこで炭素質材料を越える高容量密度を有するリチウム挿入可能な負極活物質として、特許文献4、特許文献5、特許文献6、特許文献7、および特許文献8には金属酸化物を主体とする非晶質型の活物質が開示されている。
これらの非晶質酸化物の負極は、電位、容量ともに高レベルであるコバルト酸化物系の正極と組み合わせたときに最も高いエネルギー密度の電池を提供でき、一方、マンガン酸化物系の正極材料と組み合わせたときはエネルギー密度が目減りするもののコスト効率の高い電池を提供することができる。しかしながら、非晶質酸化物系負極材料の特長である高容量を維持しながら合成原料コストの点でも優れた二次電池を提供するためには容量とコスト効率の両面において有利なニッケル酸化物系の正極を利用することが重要である。
Examples of the carbonaceous material used as the negative electrode active material include graphitic carbon material, pitch coke, fibrous carbon, and high-capacity soft carbon fired at a low temperature. The carbon material usually has a bulk density of 2.20. Since it is relatively small as described below, it is difficult to design a battery with a high effective capacity when used at a lithium insertion capacity (372 mAh / g) up to the stoichiometric limit. Therefore, as a negative electrode active material capable of inserting lithium having a high capacity density exceeding that of the carbonaceous material, Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, and Patent Document 8 include non-metal oxides. A crystalline type active material is disclosed.
These amorphous oxide negative electrodes can provide the battery with the highest energy density when combined with a cobalt oxide positive electrode having a high potential and capacity, while the manganese oxide positive electrode When combined, the energy density is reduced, but a cost-effective battery can be provided. However, in order to provide a secondary battery that is superior in terms of synthetic raw material cost while maintaining the high capacity that is a feature of the amorphous oxide-based negative electrode material, it is advantageous in terms of both capacity and cost efficiency. It is important to use the positive electrode.

特開昭55−136131号公報JP-A-55-136131 特開平3−147276号公報Japanese Patent Laid-Open No. 3-147276 特開平4−123769号公報JP-A-4-123769 特開平6−60867号公報JP-A-6-60867 特開平7−220721号公報Japanese Patent Laid-Open No. 7-220721 特開平7−122274号公報JP-A-7-122274 特開平7−288123号公報JP 7-288123 A 国際公開第96/33519号パンフレトInternational Publication No. 96/33519 Pamphlet

しかしながらニッケル酸化物系正極の基本組成物であるLiNiO2は、放電平均電圧がLiCoO2に比べて0.2V以上低く、充放電のサイクル寿命も一般に悪い。平均電圧が低いために、二次電池の放電の使用電圧範囲と放電終止電圧の条件によってはLiNiO2が低電圧部で担う容量を有効に発揮できなくなり、電池容量の増加を押さえてしまうことにつながる。
本発明の課題は上述のような問題を解決し、良好な充放電サイクル特性を有し、特に酸化物非晶質の負極ととともに正極として用いて二次電池としたとき、二次電池の放電容量を高め、コスト面でも優れたリチウムイオン非水電解質二次電池を得るためのリチウムイオン非水電解質二次電池用正極活物質、及びその製造方法を提供することである。
However, LiNiO 2 , which is a basic composition of a nickel oxide-based positive electrode, has a discharge average voltage lower by 0.2 V or more than LiCoO 2 and generally has a poor charge / discharge cycle life. Because the average voltage is low, depending on the operating voltage range of the secondary battery discharge and the condition of the discharge end voltage, the capacity of LiNiO 2 in the low voltage part cannot be effectively exhibited, and the increase in battery capacity is suppressed. Connected.
The object of the present invention is to solve the above-mentioned problems and to have good charge / discharge cycle characteristics, and particularly when used as a positive electrode together with an oxide amorphous negative electrode to form a secondary battery. The object is to provide a positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery for obtaining a lithium ion non-aqueous electrolyte secondary battery having an increased capacity and excellent cost, and a method for producing the same.

本発明の以上の課題は、下記の(1)〜(8)の構成を採用することにより解決を可能にした。
(1)LixNi1-yCoy-zz2-abの組成で示されるニッケル含有リチウム複合酸化物からなることを特徴とするリチウムイオン非水電解質二次電池用正極活物質。
(ただし、前記式中のMは周期率表の第13族、第14族の元素、Mn,Fe,Ti,Zr,Nd,La,Cu,V,Sm,W,Zn,Y,Mg,Sr,Ca,Ba,Cs,Na及びPから選ばれる1種以上の元素であり、Xはハロゲン元素であり、x、y、z、a及びbは、それぞれ0.2<x≦1.2,0<y≦0.5,z<y,0<z<0.5,0.01≦a≦0.5,0.01≦b≦2aなる範囲の数値である)。
The above-described problems of the present invention can be solved by adopting the following configurations (1) to (8).
(1) Li x Ni 1- y Co yz M z O 2-a X b positive electrode active material for a lithium ion nonaqueous electrolyte secondary battery characterized in that a nickel-containing lithium composite oxide represented by the composition of the.
(In the above formula, M is an element belonging to Group 13 and Group 14 of the periodic table, Mn, Fe, Ti, Zr, Nd, La, Cu, V, Sm, W, Zn, Y, Mg, Sr. , Ca, Ba, Cs, Na, and P, X is a halogen element, and x, y, z, a, and b are 0.2 <x ≦ 1.2, 0 <y ≦ 0.5, z <y, 0 <z <0.5, 0.01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 2a.

(2)前記式中のXがフッ素(F)であることを特徴とする前記(1)に記載のリチウムイオン非水電解質二次電池用正極活物質。
(3)前記式中のMがMn,Fe,T,B,Al,Sn,Si,Ga,Mgから選ばれる1種以上の元素であることを特徴とする前記(1)又は(2)に記載のリチウムイオン非水電解質二次電池用正極活物質。
(2) The positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery according to (1), wherein X in the formula is fluorine (F).
(3) In the above (1) or (2), M in the above formula is one or more elements selected from Mn, Fe, T, B, Al, Sn, Si, Ga, and Mg. The positive electrode active material for lithium ion nonaqueous electrolyte secondary batteries as described.

(4)リチウム(Li)を含む化合物、ニッケル(Ni)を含む化合物、コバルト(Co)を含む化合物、Mを含む化合物、及びハロゲン(X)を含む化合物を化学量論的にLixNi1-yCoy-zMzz2-abとなる割合で混合してなる原料混合物を、400〜1000℃で焼成することを特徴とするリチウムイオン非水電解質二次電池用正極活物質の製造方法。
(ただし、前記式中のMは周期率表の第13族、第14族の元素、Mn,Fe,Ti,Zr,Nd,La,Cu,V,Sm,W,Zn,Y,Mg,Sr,Ca,Ba,Cs,Na及びPから選ばれる1種以上の元素であり、Xはハロゲン元素であり、x、y、z、a及びbは、それぞれ0.2<x≦1.2,0<y≦0.5,z<y,0<z<0.5,0.01≦a≦0.5,0.01≦b≦2aなる範囲の数値である)。
(4) A compound containing lithium (Li), a compound containing nickel (Ni), a compound containing cobalt (Co), a compound containing M, and a compound containing halogen (X) are stoichiometrically Li x Ni 1. the -y Co yz Mz z O 2- a X b to become weight ratio to form a raw material mixture, the production of positive active material for a lithium ion nonaqueous electrolyte secondary battery and firing at 400 to 1000 ° C. Method.
(In the above formula, M is an element belonging to Group 13 and Group 14 of the periodic table, Mn, Fe, Ti, Zr, Nd, La, Cu, V, Sm, W, Zn, Y, Mg, Sr. , Ca, Ba, Cs, Na, and P, X is a halogen element, and x, y, z, a, and b are 0.2 <x ≦ 1.2, 0 <y ≦ 0.5, z <y, 0 <z <0.5, 0.01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 2a.

(5)前記ハロゲン(X)化合物がリチウム(Li)、ニッケル(Ni)、コバルト(Co)及びMから選ばれる1種のハロゲン化物であることを特徴とする前記(4)に記載のリチウムイオン非水電解質二次電池用正極活物質の製造方法。
(6)前記ハロゲン(X)を含む化合物がLiF,NiCl2,CoCl2,SnCl2,MgCl2,BaCl2,SnCl2,FeCl3,AlCl3及びLaCl3からから選ばれる1種以上の化合物であることを特徴とする前記(5)に記載のリチウムイオン非水電解質二次電池用正極活物質の製造方法。
(5) The lithium ion according to (4), wherein the halogen (X) compound is one kind of halide selected from lithium (Li), nickel (Ni), cobalt (Co) and M A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
(6) The compound containing halogen (X) is at least one compound selected from LiF, NiCl 2 , CoCl 2 , SnCl 2 , MgCl 2 , BaCl 2 , SnCl 2 , FeCl 3 , AlCl 3 and LaCl 3. The manufacturing method of the positive electrode active material for lithium ion nonaqueous electrolyte secondary batteries as described in said (5) characterized by the above-mentioned.

(7)前記ハロゲン(X)を含む化合物がLiFであることを特徴とする前記(5)又は(6)に記載のリチウムイオン非水電解質二次電池用正極活物質の製造方法。
(8)前記焼成を酸素分圧が0.2気圧以上の雰囲気下で行うことを特徴とする前記(4)〜(7)のいずれかに記載のリチウムイオン非水電解質二次電池用正極活物質の製造方法。
(7) The method for producing a positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery according to (5) or (6), wherein the compound containing halogen (X) is LiF.
(8) The positive electrode active for lithium ion non-aqueous electrolyte secondary battery according to any one of (4) to (7), wherein the firing is performed in an atmosphere having an oxygen partial pressure of 0.2 atm or more. A method for producing a substance.

本発明の製造方法により製造された正極活物質は、その組成が他元素ドープ型リチウムニッケルコバルト複合酸化物を主体とする複合酸化物であり、特にこれを非晶質構造の錫酸化物を主体とする複合酸化物の負極活物質からなる負極とともにリチウムイオン非水電解質二次電池用正極として用いることにより、
得られる二次電池の放電容量を高め、特に炭素材料負極を用いる従来型のリチウム電池に比べて高容量でコスト面でも優れたリチウムイオン非水電解質二次電池を得ることができる。
また、本発明の正極活物質合剤層上に保護層が塗設された正極からなる非水電解質二次電池を用いることにより、従来のリチウムニッケルコバルト酸化物系活物質を正極に用いた二次電池に比べてサイクル性能と安全性能に優れたリチウムイオン二次電池を提供することができる。
The positive electrode active material produced by the production method of the present invention is a composite oxide whose composition is mainly composed of another element-doped lithium nickel cobalt composite oxide, and in particular, this is mainly composed of an amorphous tin oxide. By using it as a positive electrode for a lithium ion non-aqueous electrolyte secondary battery together with a negative electrode comprising a negative electrode active material of a composite oxide
The discharge capacity of the obtained secondary battery can be increased, and in particular, a lithium ion nonaqueous electrolyte secondary battery having a high capacity and excellent cost can be obtained as compared with a conventional lithium battery using a carbon material negative electrode.
Further, by using a non-aqueous electrolyte secondary battery comprising a positive electrode in which a protective layer is coated on the positive electrode active material mixture layer of the present invention, a conventional lithium nickel cobalt oxide based active material is used for the positive electrode. A lithium ion secondary battery that is superior in cycle performance and safety performance compared to a secondary battery can be provided.

本発明のリチウムイオン非水電解質二次電池用正極活物質は、組成式がLixNi1-yCoy-zz2-abで表されるニッケル含有リチウム複合酸化物からなる。(ただし、前記式中のMは周期率表の第13族、第14族の元素、Mn,Fe,Ti,Zr,Nd,La,Cu,V,Sm,W,Zn,Y,Mg,Sr,Ca,Ba,Cs,Na及びPから選ばれる1種以上の元素であり、Xはハロゲン元素であり、x、y、z、a及びbは、それぞれ0.2<x≦1.2,0<y≦0.5,z<y,0<z<0.5,0.01≦a≦0.5,0.01≦b≦2aなる範囲の数値である。以下、同様である)。
ここで、MはLiNiO2の骨格構造のなかでNiもしくはLiの一部を置換する金属もしくは半金属元素であり、LiNiO2正極の充放電性能において放電平均電圧の増加やサイクル寿命の改善といった電池性能の改良に寄与する要素である。
The positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery of the present invention comprises a nickel-containing lithium composite oxide whose composition formula is represented by Li x Ni 1-y Co yz M z O 2 -a X b . (In the above formula, M is an element belonging to Group 13 and Group 14 of the periodic table, Mn, Fe, Ti, Zr, Nd, La, Cu, V, Sm, W, Zn, Y, Mg, Sr. , Ca, Ba, Cs, Na, and P, X is a halogen element, and x, y, z, a, and b are 0.2 <x ≦ 1.2, (0 <y ≦ 0.5, z <y, 0 <z <0.5, 0.01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 2a. The same applies hereinafter) .
Here, M is a metal or semimetal element substituting a part of Ni or Li among the skeletal structure of LiNiO 2, batteries such as the improvement of growth and cycle life of the average discharge voltage in the charge and discharge performance of LiNiO 2 positive It is an element that contributes to improved performance.

さらに好ましい組成は、Xとしてフッ素(F)が置換された、組成式がLixNi1-yCoy-zz2-abで表されるニッケル含有リチウム複合酸化物組成であり、組成中のMとしては、Mn,Fe,Ti,B,Al,Sn,Si,Ga,Mgから選ばれる1種以上の元素が用いられることが好ましく、Mの好ましい含量は0.01≦z≦0.5の範囲である。また、Mとして特に好ましいのは、Mn,B,Al,Siから選ばれる1種以上の元素であり、このときに好ましい含量は、0.01≦z≦0.3の範囲である。 A more preferable composition is a nickel-containing lithium composite oxide composition in which fluorine (F) is substituted as X and the composition formula is represented by Li x Ni 1 -y Co yz M z O 2 -a F b. As M, one or more elements selected from Mn, Fe, Ti, B, Al, Sn, Si, Ga, and Mg are preferably used, and a preferable content of M is 0.01 ≦ z ≦ 0. .5 range. Particularly preferable as M is one or more elements selected from Mn, B, Al, and Si, and a preferable content at this time is in a range of 0.01 ≦ z ≦ 0.3.

本発明の前記組成のリチウムイオン非水電解質二次電池用正極活物質を正極として用いることにより、該二次電池の放電容量をより高めることができるが、高容量を担う要素の1つは正極活物質として用いるリチウムニッケル複合酸化物である。本発明の正極活物質は、層状構造のLiNiO2 を基本骨格としこれに性能改良のための他種元素が固溶化された構造からなっており、正極活物質は電池外でリチウム化合物として合成される。 By using the positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery of the present invention as a positive electrode, the discharge capacity of the secondary battery can be further increased, but one element responsible for high capacity is the positive electrode It is a lithium nickel composite oxide used as an active material. The positive electrode active material of the present invention has a layered structure of LiNiO 2 as a basic skeleton, and has a structure in which other elements for improving performance are solidified, and the positive electrode active material is synthesized as a lithium compound outside the battery. The

本発明のリチウムイオン非水電解質二次電池用正極活物質(以下、本発明の正極活物質ともいう)は、リチウム(Li)原料であるリチウム化合物とニッケル(Ni)原料であるニッケル化合物と、コバルト(Co)原料であるコバルト化合物と、そしてさらに、Mn,B,Al,Sn,Si,Mg,Fe,Tiなどに代表される他元素Mを含む化合物と、ハロゲン(X)原料であるハロゲン化物とを化学量論的にLixNi1-yCoy-zMzz2-ab(ただし、前記式中のMは周期率表の第13族、第14族の元素、Mn,Fe,Ti,Zr,Nd,La,Cu,V,Sm,W,Zn,Y,Mg,Sr,Ca,Ba,Cs,Na及びPから選ばれる1種以上の元素であり、Xはハロゲン元素であり、x、y、z、a及びbは、それぞれ0.2<x≦1.2,0<y≦0.5,z<y,0<z<0.5,0.01≦a≦0.5,0.01≦b≦2aなる範囲の数値である)となる割合に混合して得た原料混合物からなる高温乾燥状態での原料粉末を、耐熱性の容器に充填して焼成するか、あるいは前記原料混合物をゾルーゲル法などに代表される溶液状態による化学反応によっても製造することができる。 The positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery of the present invention (hereinafter also referred to as the positive electrode active material of the present invention) includes a lithium compound that is a lithium (Li) raw material and a nickel compound that is a nickel (Ni) raw material, A cobalt compound as a cobalt (Co) raw material, a compound containing another element M represented by Mn, B, Al, Sn, Si, Mg, Fe, Ti and the like, and a halogen as a halogen (X) raw material The compound is stoichiometrically Li x Ni 1-y Co yz M z O 2 -a X b (where M in the above formula is an element of Groups 13 and 14 of the periodic table, Mn, Fe , Ti, Zr, Nd, La, Cu, V, Sm, W, Zn, Y, Mg, Sr, Ca, Ba, Cs, Na, and P. X is a halogen element. Yes, x, y, z, a and b are each 0 2 <x ≦ 1.2, 0 <y ≦ 0.5, z <y, 0 <z <0.5, 0.01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 2a The raw material powder in a high-temperature dry state made of the raw material mixture obtained by mixing in a ratio to be) is filled in a heat-resistant container and fired, or the raw material mixture is in a solution state typified by a sol-gel method It can also be produced by a chemical reaction.

前記原料混合物の中、リチウム原料としては、LiOH,Li2CO3,Li2O,LiNO3,Li2SO4,LiHCO3,Li(CH3COO),アルキルリチウムなどが用いられ、Ni原料には、NiO,NiCO3,Ni(NO3)2,Ni粉末、NiCl2,NiSO4,Ni3(PO4)2,Li(CH3COO)2,Ni(OH)2,NiOOH,Niアルコキシドなどが有用である。
そして、コバルト原料としてCo23,Co34,CoCO3,Co(NO32,CoCl2,他元素Mの原料としては、MnCO3,MnO2,Mn(NO)3,B23,B(OH)3,Al23,Al(NO3 3,Al(OH)3、SnO2,SnO,SnCl2,Snアルコキシド、SiO2,SiO,アルコキシシラン、Mg(OH)2,MgCO3,MgCl2,Fe23,FeCl3,FeOOH,Fe(NO33,TiO2,GeO2,ZrO2,Nd23,La23,BaO,SrCO3,La23,Zn(NO3 2,WO3,Ga(NO3 2,CuO,V25,Sm23,Y23,AlF3,BaF2,LiF,LaF3,SnF2,Li3PO4,AlPO4,Cs2CO3,Ca(OH)2,Na2CO3などを用いることができる。
In the raw material mixture, LiOH, Li 2 CO 3 , Li 2 O, LiNO 3 , Li 2 SO 4 , LiHCO 3 , Li (CH 3 COO), alkyl lithium, etc. are used as the lithium raw material. NiO, NiCO 3 , Ni (NO 3 ) 2 , Ni powder, NiCl 2 , NiSO 4 , Ni 3 (PO 4 ) 2 , Li (CH 3 COO) 2 , Ni (OH) 2 , NiOOH, Ni alkoxide, etc. Is useful.
Co 2 O 3 , Co 3 O 4 , CoCO 3 , Co (NO 3 ) 2 , CoCl 2 , and other elements M as raw materials for cobalt are MnCO 3 , MnO 2 , Mn (NO) 3 , B 2. O 3 , B (OH) 3 , Al 2 O 3 , Al (NO 3 ) 3 , Al (OH) 3 , SnO 2 , SnO, SnCl 2 , Sn alkoxide, SiO 2 , SiO, alkoxysilane, Mg (OH) 2 , MgCO 3 , MgCl 2 , Fe 2 O 3 , FeCl 3 , FeOOH, Fe (NO 3 ) 3 , TiO 2 , GeO 2 , ZrO 2 , Nd 2 O 3 , La 2 O 3 , BaO, SrCO 3 , La 2 O 3 , Zn (NO 3 ) 2 , WO 3 , Ga (NO 3 ) 2 , CuO, V 2 O 5 , Sm 2 O 3 , Y 2 O 3 , AlF 3 , BaF 2 , LiF, LaF 3 , SnF 2, Li 3 PO 4, AlPO 4, Cs 2 CO 3, Ca ( H) or the like can be used 2, Na 2 CO 3.

また、ハロゲン原料としてはフッ素(F)、塩素(Cl)、臭素(Br)及び沃素(I)の各元素の少なくとも1種のハロゲン元素を含む化合物で有れば特に制限はないが、リチウム(Li)、ニッケル(Ni)、コバルト(Co)、及び他元素Mから選ばれる1種以上の元素のハロゲン化物を用いることができるが、これらのハロゲンか物の中でもLiF,NiCl2,CoCl2,SnCl2,MgCl2,BaCl2,SnCl2,FeCl3,AlCl3及びLaCl3からから選ばれる1種以上のハロゲンン化物を用いるのが好ましく、特にLiFを用いるのがより好ましい。
これらの原料の混合は、固体粉末のまま混合してもよいし、複数の原料を溶媒に溶かして混合溶液としこれを乾燥固化あるいはスラリ−状として混合物としても良い。
The halogen raw material is not particularly limited as long as it is a compound containing at least one halogen element of each element of fluorine (F), chlorine (Cl), bromine (Br) and iodine (I). A halide of one or more elements selected from Li), nickel (Ni), cobalt (Co), and other elements M can be used. Among these halogen compounds, LiF, NiCl 2 , CoCl 2 , It is preferable to use one or more halides selected from SnCl 2 , MgCl 2 , BaCl 2 , SnCl 2 , FeCl 3 , AlCl 3 and LaCl 3, and it is particularly preferable to use LiF.
These raw materials may be mixed as a solid powder, or a plurality of raw materials may be dissolved in a solvent to form a mixed solution, which may be dried, solidified, or made into a mixture.

焼成によって製造する場合は、上記の原料混合物の粉末あるいはスラリー状の混合物を、400℃〜1000℃、好ましくは600℃〜900℃の温度で、酸素存在下あるいは酸素分圧が0.2気圧以上、好ましくは酸素分圧が0.5以上の雰囲気下で、4時間〜48時間反応させて合成を実施する。焼成は必要に応じて同条件下、あるいは条件を変えて複数回行って良い。原料混合物はあらかじめペレット状に充填し成型したものを用いても良い。
焼成の方法は、たとえば特開昭62−264560、特開平2−40861、同6−267538、同6−231767に記載の粉末混合法、特開平4−237953、同5−325966、同6−203834に記載の溶液混合法、特開昭63−211565に記載の共沈による合成法、特開平5−198301、同5−205741に記載の焼成物の急冷を行う方法、特開平5−283076、同6−310145に記載のペレット成型による焼成方法、特開平5−325969に記載のLiOH水和物を原料として溶融状態で焼成する方法、特開平6−60887に記載の酸素分圧制御下で合成する方法、特開平6−243871に記載のフッ素ドープ法、特開平8−138670に記載の粒子の内部と表面の組成の異なる活物質を合成する方法などが有効である。
In the case of producing by firing, the above raw material mixture powder or slurry mixture is heated to 400 ° C. to 1000 ° C., preferably 600 ° C. to 900 ° C. in the presence of oxygen or oxygen partial pressure is 0.2 atm or more. The synthesis is preferably carried out by reacting for 4 to 48 hours in an atmosphere having an oxygen partial pressure of 0.5 or more. Firing may be performed a plurality of times under the same conditions or under different conditions as necessary. The raw material mixture may be previously filled in a pellet and molded.
The firing method is, for example, the powder mixing method described in JP-A-62-264560, JP-A-2-40861, JP-A-6-267538, and JP-A-6-231767, JP-A-4-237793, JP-A-5-325966, and JP-A-6-208334. The solution mixing method described in JP-A-62-211565, the synthesis method by coprecipitation described in JP-A-62-211565, the method of quenching the fired product described in JP-A-5-198301 and JP-A-5-205741, JP-A-5-283076, A method of firing by pellet molding described in JP-A-6-310145, a method of firing in a molten state using LiOH hydrate described in JP-A-5-325969, and synthesis under oxygen partial pressure control described in JP-A-6-60887 Method, a fluorine doping method described in JP-A-6-243871, and active materials having different internal and surface compositions of particles described in JP-A-8-138670. And a method in which it is effective.

本発明の正極活物質が不純物として含む組成式中の元素(Li,Ni,Coおよび他元素M)以外の元素の含量は、重量濃度としてたとえばFeが0.01%以下、Cuが0.01%以下、Ca、Mg、Naおよび硫酸根(SO4)がそれぞれ0.05%以下の濃度であることが好ましい。また活物質中の水分の含量は0.1%以下であることが好ましい。 The content of elements other than the elements (Li, Ni, Co and other elements M) in the composition formula included as impurities in the positive electrode active material of the present invention is, for example, 0.01% or less for Fe and 0.01% for Cu. %, Ca, Mg, Na and sulfate radicals (SO 4 ) are each preferably at a concentration of 0.05% or less. The water content in the active material is preferably 0.1% or less.

本発明の正極活物質の好ましい粒径は、二次粒子の粒径が1〜30μm、一次粒子の粒径が0.1〜1μmであり、さらに好ましくは二次粒子の粒径が3〜15μm、一次粒子の粒径が0.1〜0.5μmである。ここで二次粒子とは微小な一次粒子が凝集して作る粒子を意味し、通常レーザー散乱式粒度分布測定などで測定される粒子サイズに相当し、通常定義される粒子サイズに相当する。粒子の形状は、特に二次粒子が球状であることが好ましい。また二次粒子の表面が多孔性であることが好ましい。   The preferable particle size of the positive electrode active material of the present invention is that the particle size of the secondary particles is 1 to 30 μm, the particle size of the primary particles is 0.1 to 1 μm, more preferably the particle size of the secondary particles is 3 to 15 μm. The particle size of the primary particles is 0.1 to 0.5 μm. Here, the secondary particle means a particle formed by agglomeration of fine primary particles, and corresponds to a particle size usually measured by a laser scattering particle size distribution measurement or the like, and corresponds to a normally defined particle size. As for the shape of the particles, the secondary particles are particularly preferably spherical. Moreover, it is preferable that the surface of the secondary particle is porous.

本発明の正極活物質はリチウムイオン非水電解質二次電池用正極活物質はリチウムイオン非水電解質二次電池用正極活物質は、リチウムニッケル複合酸化物の比表面積は、BET法による測定で0.1〜10m2/gの範囲であることが好ましく、0.3〜3m2/gの範囲であることがより好ましい。また、正極活物質のタップ密度は2.3〜2.9の範囲が好ましく、2.5〜2.8の範囲がさらに好ましい。 The positive electrode active material of the present invention is a positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery, the positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery is 0, and the specific surface area of the lithium nickel composite oxide is 0 as measured by the BET method. it is preferably in the range of .1~10m 2 / g, and more preferably in the range of 0.3~3m 2 / g. Moreover, the tap density of the positive electrode active material is preferably in the range of 2.3 to 2.9, and more preferably in the range of 2.5 to 2.8.

本発明の正極活物質粒子は結晶性であっても、非晶質構造を粒子の内部あるいは表面に含むものであってもよいが、結晶性であることが好ましい。結晶性の正極活物質粒子を用いる場合は、X線回折により測定されたa軸の格子定数が2.81〜2.91の範囲で、13.7〜14.4の範囲であることが好ましい。また、(104)面の回折ピーク強度の(003)面のピーク強度に対する比が、0.1〜0.9の範囲であり、0.3〜0.8の範囲であることが好ましい。また結晶回折スペクトルにおいて炭酸リチウムやニッケル酸化物などの焼成原料あるいは副反応に由来する不純物のピークが認められないことが好ましい。   The positive electrode active material particles of the present invention may be crystalline or may contain an amorphous structure inside or on the surface, but are preferably crystalline. When crystalline positive electrode active material particles are used, the a-axis lattice constant measured by X-ray diffraction is preferably in the range of 2.81 to 2.91 and preferably in the range of 13.7 to 14.4. . Further, the ratio of the diffraction peak intensity on the (104) plane to the peak intensity on the (003) plane is in the range of 0.1 to 0.9, and preferably in the range of 0.3 to 0.8. In addition, it is preferable that no peak of impurities derived from firing raw materials or side reactions such as lithium carbonate and nickel oxide is observed in the crystal diffraction spectrum.

以下に、本発明の正極活物質の好ましい組成の例を示すが、本発明の正極活物質の組成範囲はこれらに限定されるものではない。
LiNi0.7Co0.260.041.90.2
LiNi0.7Co0.26Al0.041.90.2
Li1.03Ni0.67Co0.26Al0.041.90.2
LiNi0.8Co0.10Mn0.070.031.950.05
Li1.03Ni0.8Co0.10Mn0.070.031.950.05
Li1.03Ni0.77Co0.150.03Al0.021.90.19
Although the example of the preferable composition of the positive electrode active material of this invention is shown below, the composition range of the positive electrode active material of this invention is not limited to these.
LiNi 0.7 Co 0.26 B 0.04 O 1.9 F 0.2
LiNi 0.7 Co 0.26 Al 0.04 O 1.9 F 0.2
Li 1.03 Ni 0.67 Co 0.26 Al 0.04 O 1.9 F 0.2
LiNi 0.8 Co 0.10 Mn 0.07 B 0.03 O 1.95 F 0.05
Li 1.03 Ni 0.8 Co 0.10 Mn 0.07 B 0.03 O 1.95 F 0.05
Li 1.03 Ni 0.77 Co 0.15 B 0.03 Al 0.02 O 1.9 F 0.19

本発明の正極活物質は、負極材料として例えば、下記の非晶質構造を含む複合酸化物とともに用いてリチウムイオン非水電解質二次電池とすることによって、その二次電池の放電容量をより高めることができる。
以下、本発明の正極活物質を用いたリチウムイオン非水電解質二次電池について詳述する。
本発明の正極活物質と組み合わせてリチウムイオン非水電解質二次電池用負極活物質として用いることのできる、特に好ましい負極材料の一例としては下記の非晶質の複合酸化物からなる負極活性物質が挙げられる。
The positive electrode active material of the present invention is used as a negative electrode material, for example, with a composite oxide containing the following amorphous structure to form a lithium ion non-aqueous electrolyte secondary battery, thereby further increasing the discharge capacity of the secondary battery. be able to.
Hereinafter, the lithium ion nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention will be described in detail.
An example of a particularly preferable negative electrode material that can be used as a negative electrode active material for a lithium ion non-aqueous electrolyte secondary battery in combination with the positive electrode active material of the present invention is a negative electrode active material composed of the following amorphous composite oxide. Can be mentioned.

非晶質の複合酸化物負極は高容量のリチウム吸蔵を特長とすることから、高容量である上記の本発明の正極活物質からなる正極とバランスよく組み合わせることにより、ロッキングチェア型二次電池の高容量化を効率良く図ることができる。負極の活物質は、好ましくは錫酸化物を主体とし周期率表第1族、第2族、第13族、第14族、第15族、遷移金属、ハロゲン元素から選ばれる一種以上を含む材料である。
より具体的には、負極活物質は、錫を主体として含む非晶質の複合酸化物であり、下記一般式で示される負極活物質の前駆体に電気化学的にリチウムイオンが挿入されることによって得られる。
Since the amorphous composite oxide negative electrode is characterized by high capacity lithium occlusion, it can be combined with a positive electrode made of the positive electrode active material of the present invention having a high capacity in a well-balanced manner. High capacity can be efficiently achieved. The active material of the negative electrode is preferably a material mainly containing tin oxide and containing at least one selected from Group 1, Group 2, Group 13, Group 14, Group 15, transition metal, and halogen element in the periodic table It is.
More specifically, the negative electrode active material is an amorphous composite oxide mainly containing tin, and lithium ions are electrochemically inserted into the precursor of the negative electrode active material represented by the following general formula. Obtained by.

Snx1 1-x2 yz
ここで、M1はMn,Fe,Pb,Geから選ばれる1種以上を、M2はAl,B,P,Si,周期率表第1族、第2族、第3族、ハロゲン元素から選ばれる2種以上の元素を示し、0<x≦1,0.1≦y≦3,1≦z≦8。
上記の構造式に従ったさらに好ましい組成を述べると、M1はPb,Geから選ばれる元素であり、M2はB,P,Si,周期率表第1族、第2族から選ばれる2種以上の元素であり、M2はとくにAl以外の元素であることが好ましい。
Sn x M 1 1-x M 2 y O z
Here, M 1 is one or more selected from Mn, Fe, Pb, and Ge, and M 2 is Al, B, P, Si, Periodic Table 1st, 2nd, 3rd, and halogen elements 2 or more kinds of elements to be selected are shown, and 0 <x ≦ 1, 0.1 ≦ y ≦ 3, 1 ≦ z ≦ 8.
To describe a more preferable composition according to the above structural formula, M 1 is an element selected from Pb and Ge, and M 2 is selected from B, P, Si, periodic table group 1 and group 2 It is an element of seeds or more, and M 2 is particularly preferably an element other than Al.

上記の活物質前駆体へのリチウムイオンの挿入は、電池内において負極をリチウムイオンの存在下でカソード分極し、リチウムイオンを上記構造中に電気化学的に挿入することによって実施される。本発明の上記の前駆体たる複合酸化物は構造中に非晶質構造を含むか、もしくは非晶質であることを特徴とする。
本発明の複合酸化物が非晶質構造を含むとは、具体的にはCuKα線を用いたX線回折法で2θ値で20°から40°にかけて強度が弱くブロードな頂点を有する回折散乱帯を与える状態を意味し、このブロードな散乱帯中に結晶性の回折線を有してもよい。この結晶性の回折線は非晶質構造中にわずかに秩序性を持った構造部分が反映されたものである。
The insertion of lithium ions into the active material precursor is carried out by cathodic polarization of the negative electrode in the presence of lithium ions in the battery and electrochemical insertion of the lithium ions into the structure. The composite oxide as the precursor of the present invention is characterized in that the structure contains an amorphous structure or is amorphous.
The complex oxide of the present invention includes an amorphous structure, specifically, a diffraction scattering band having a broad apex with a weak intensity from 20 ° to 40 ° as a 2θ value by an X-ray diffraction method using CuKα rays. In this broad scattering band, a crystalline diffraction line may be included. This crystalline diffraction line is a reflection of a slightly ordered structure in the amorphous structure.

さらに好ましくは、2θ値で40°以上70°以下に結晶性の回折線が見られる場合、この結晶性の回折線のうち最も強い強度が、2θ値で20°以上40°以下に見られる上記のブロードな散乱帯の頂点の回折線の強度の500倍以下であることが好ましく、さらに好ましくは100倍以下、特に好ましくは5倍以下、最も好ましくは結晶性の回折線を有しないことである。
負極活物質前駆体は、錫原料である錫化合物、錫以外の元素を含む化合物の粉末を混合し、混合物を800℃〜1500℃好ましくは900℃〜1200℃の高温で溶融し、4時間〜48時間反応させて合成する。合成の雰囲気は窒素、アルゴンなどの不活性ガス雰囲気を用いることが好ましい。とくに酸素分圧が10-1以下、好ましくは10-2以下の条件下で反応を行うことが好ましい。非晶質化を促進するために、反応物を50℃〜500℃/分の速度で急冷してもよい。また逆に非晶質構造の密度を高め強度を高める目的で徐冷をすることもできる。これらの方法で得られたガラス状の負極材料は、粒径分布を得るように粉砕処理して負極用粒子として用いる。
負極粒子の好ましい範囲は、平均粒径として0.5〜20μmであり、さらに好ましくは1〜10μmである。溶融法のほかに、溶液反応を利用した合成法、たとえばゾル−ゲル法による合成を用いることができる。ソル−ゲル法で合成される粒子の好ましい平均粒径の範囲は、二次粒子の粒径として0.1〜10μmさらに好ましくは0.2〜5μmである。
More preferably, when a crystalline diffraction line is observed at a 2θ value of 40 ° or more and 70 ° or less, the strongest intensity of the crystalline diffraction lines is observed at a 2θ value of 20 ° or more and 40 ° or less. The intensity of the diffraction line at the apex of the broad scattering band is preferably 500 times or less, more preferably 100 times or less, particularly preferably 5 times or less, and most preferably no crystalline diffraction line. .
The negative electrode active material precursor is prepared by mixing a tin compound, which is a tin raw material, and a powder of a compound containing an element other than tin, and melting the mixture at a high temperature of 800 ° C. to 1500 ° C., preferably 900 ° C. to 1200 ° C. for 4 hours to Synthesize by reacting for 48 hours. The synthesis atmosphere is preferably an inert gas atmosphere such as nitrogen or argon. In particular, the reaction is preferably carried out under conditions where the oxygen partial pressure is 10 −1 or less, preferably 10 −2 or less. The reaction may be quenched at a rate of 50 ° C. to 500 ° C./min to promote amorphization. Conversely, slow cooling can be performed for the purpose of increasing the density of the amorphous structure and increasing the strength. The glassy negative electrode material obtained by these methods is pulverized to obtain a particle size distribution and used as negative electrode particles.
A preferable range of the negative electrode particles is 0.5 to 20 μm as an average particle diameter, and more preferably 1 to 10 μm. In addition to the melting method, a synthesis method using a solution reaction, for example, a synthesis by a sol-gel method can be used. The range of the preferable average particle diameter of the particle | grains synthesize | combined by a sol-gel method is 0.1-10 micrometers as a particle diameter of a secondary particle, More preferably, it is 0.2-5 micrometers.

以下に、本発明の正極活物質と組み合わせてリチウムイオン非水電解質二次電池用負極活物質として用いることのできる好ましい負極活物質前駆体の好ましい例を示す。
SnSi0.80.23.1
SnSi0.50.20.21.85
SnSi0.80.22.9
SnSi0.8Al0.22.9
SnSi0.6Al0.10.21.65
SnSi0.3Al0.10.62.25
SnSi0.40.20.42.1
SnSi0.6Al0.10.52.1
SnB0.50.53
SnK0.2PO3.6
SnRb0.20.83.2
SnBa0.11.454.5
SnLa0.10.93.4
SnNa0.10.451.75
SnLi0.20.50.53.1
SnCs0.10.40.42.65
SnBa0.10.40.42.7
SnCa0.1Al0.150.450.553.9
SnY0.10.60.63.55
SnRb0.20.30.42.55
SnCs0.20.30.42.55
SnCs0.10.40.42.65
SnK0.1Cs0.10.40.42.7
SnBa0.1Cs0.10.40.42.75
SnMg0.10.10.40.42.75
SnCa0.10.10.40.53
SnBa0.10.1Al0.10.30.42.75
SnMg0.1Cs0.1Al0.10.30.42.75
SnCa0.10.1Al0.10.30.42.75
SnMg0.1Rb0.1Al0.10.30.42.75
SnCa0.10.20.20.22.6
SnMg0.1Cs0.10.40.40.23.3
Sn0.5Mn0.5Mg0.10.92.45
Sn0.5Mn0.5Ca0.10.93.35
Sn0.5Ge0.5Mg0.10.93.35
Sn0.5Fe0.5Ba0.10.93.35
Sn0.8Fe0.2Ca0.10.93.35
Sn0.3Fe0.7Ba0.10.93.35
Sn0.9Mn0.1Mg0.10.93.35
Sn0.2Mn0.8Mg0.10.93.35
Sn0.7Pb0.3Ca0.10.93.35
Sn0.2Ge0.8Ba0.10.93.35
SnAl0.10.50.53.15
SnCs0.1Al0.40.50.53.65
SnCs0.10.50.53.05
SnCs0.1Ge0.050.50.53.15
SnCs0.1Ge0.05Al0.30.50.53.6
Below, the preferable example of the preferable negative electrode active material precursor which can be used as a negative electrode active material for lithium ion nonaqueous electrolyte secondary batteries in combination with the positive electrode active material of this invention is shown.
SnSi 0.8 P 0.2 O 3.1
SnSi 0.5 B 0.2 P 0.2 O 1.85
SnSi 0.8 B 0.2 O 2.9
SnSi 0.8 Al 0.2 O 2.9
SnSi 0.6 Al 0.1 B 0.2 O 1.65
SnSi 0.3 Al 0.1 P 0.6 O 2.25
SnSi 0.4 B 0.2 P 0.4 O 2.1
SnSi 0.6 Al 0.1 B 0.5 O 2.1
SnB 0.5 P 0.5 O 3
SnK 0.2 PO 3.6
SnRb 0.2 P 0.8 O 3.2
SnBa 0.1 P 1.45 O 4.5
SnLa 0.1 P 0.9 O 3.4
SnNa 0.1 B 0.45 O 1.75
SnLi 0.2 B 0.5 P 0.5 O 3.1
SnCs 0.1 B 0.4 P 0.4 O 2.65
SnBa 0.1 B 0.4 P 0.4 O 2.7
SnCa 0.1 Al 0.15 B 0.45 P 0.55 O 3.9
SnY 0.1 B 0.6 P 0.6 O 3.55
SnRb 0.2 B 0.3 P 0.4 O 2.55
SnCs 0.2 B 0.3 P 0.4 O 2.55
SnCs 0.1 B 0.4 P 0.4 O 2.65
SnK 0.1 Cs 0.1 B 0.4 P 0.4 O 2.7
SnBa 0.1 Cs 0.1 B 0.4 P 0.4 O 2.75
SnMg 0.1 K 0.1 B 0.4 P 0.4 O 2.75
SnCa 0.1 K 0.1 B 0.4 P 0.5 O 3
SnBa 0.1 K 0.1 Al 0.1 B 0.3 P 0.4 O 2.75
SnMg 0.1 Cs 0.1 Al 0.1 B 0.3 P 0.4 O 2.75
SnCa 0.1 K 0.1 Al 0.1 B 0.3 P 0.4 O 2.75
SnMg 0.1 Rb 0.1 Al 0.1 B 0.3 P 0.4 O 2.75
SnCa 0.1 B 0.2 P 0.2 F 0.2 O 2.6
SnMg 0.1 Cs 0.1 B 0.4 P 0.4 F 0.2 O 3.3
Sn 0.5 Mn 0.5 Mg 0.1 B 0.9 O 2.45
Sn 0.5 Mn 0.5 Ca 0.1 P 0.9 O 3.35
Sn 0.5 Ge 0.5 Mg 0.1 P 0.9 O 3.35
Sn 0.5 Fe 0.5 Ba 0.1 P 0.9 O 3.35
Sn 0.8 Fe 0.2 Ca 0.1 P 0.9 O 3.35
Sn 0.3 Fe 0.7 Ba 0.1 P 0.9 O 3.35
Sn 0.9 Mn 0.1 Mg 0.1 P 0.9 O 3.35
Sn 0.2 Mn 0.8 Mg 0.1 P 0.9 O 3.35
Sn 0.7 Pb 0.3 Ca 0.1 P 0.9 O 3.35
Sn 0.2 Ge 0.8 Ba 0.1 P 0.9 O 3.35
SnAl 0.1 B 0.5 P 0.5 O 3.15
SnCs 0.1 Al 0.4 B 0.5 P 0.5 O 3.65
SnCs 0.1 B 0.5 P 0.5 O 3.05
SnCs 0.1 Ge 0.05 B 0.5 P 0.5 O 3.15
SnCs 0.1 Ge 0.05 Al 0.3 B 0.5 P 0.5 O 3.6

発明の正極活物質と組み合わせてリチウムイオン非水電解質二次電池用負極活物質として用いる場合、上記の前駆体から作られる負極活物質と共に用いることができる負極活物質としては、リチウム金属、上記のリチウム合金などやリチウムイオンまたはリチウム金属を吸蔵・放出できる炭素質化合物(例えば、特開昭58−209、864、同61−214,417、同62−88,269、同62−216,170、同63−13,282、同63−24,555、同63−121,247、 同63−121,257、同63−155,568、同63−276,873、 同63−314,821、特開平1−204,361、同1−221,859、 同1−274,360など)があげられる。上記リチウム金属やリチウム合金の併用目的は、リチウムイオンを電池内で挿入させるためのものであり、電池反応としてリチウム金属などの溶解析出反応を利用するものではない   When used as a negative electrode active material for a lithium ion non-aqueous electrolyte secondary battery in combination with the positive electrode active material of the invention, the negative electrode active material that can be used together with the negative electrode active material made from the above precursor includes lithium metal, Carbonaceous compounds that can occlude and release lithium alloys and the like or lithium ions or lithium metals (for example, JP-A-58-209,864, 61-214,417, 62-88,269, 62-216,170, 63-13,282, 63-24,555,63-121,247,63-121,257,63-155,568,63-276,873, 63-314,821, Kaihei 1-204, 361, 1-221, 859, 1-274, 360, etc.). The combined use of the lithium metal and lithium alloy is for inserting lithium ions in the battery, and does not utilize a dissolution and precipitation reaction such as lithium metal as the battery reaction.

本発明の正極活物質、及び前記の負極活物質とを組み合わせてリチウムイオン非水電解質二次電池とする場合、二次電池の安全性を確保するためにその正極と負極の活物質合剤層のいずれか一方の表面を、合剤層と連続して塗設された保護層によって覆っておくことが好ましい。ニッケル系活物質を使用する本発明の二次電池は高容量であるが、ニッケル酸化物が高温下で化学的に不安定性である性質が高容量電池の安全性、特に過充電下での安全性に悪い影響を及ぼすが一般的に指摘されている。本発明の正極活物質からなる正極を用いた二次電池の正極及び負極で用いる保護層はこのような観点で高容量電池の安全性を保証する目的から塗設されるものである。   When combining the positive electrode active material of the present invention and the negative electrode active material into a lithium ion non-aqueous electrolyte secondary battery, the positive electrode and negative electrode active material mixture layer is used to ensure the safety of the secondary battery. It is preferable to cover one of the surfaces with a protective layer coated continuously with the mixture layer. Although the secondary battery of the present invention using a nickel-based active material has a high capacity, the property that nickel oxide is chemically unstable at high temperatures is the safety of high-capacity batteries, especially under overcharge. It is generally pointed out that it adversely affects sex. The protective layer used in the positive electrode and the negative electrode of the secondary battery using the positive electrode made of the positive electrode active material of the present invention is applied for the purpose of ensuring the safety of the high capacity battery from such a viewpoint.

前記の保護層は、活物質と導電材、バインダー材料などを含む活物質合剤層と非水電解液との界面に設置され、電気的絶縁性の無機物を主体として含む、実質的に電子伝導性をもたない保護層として設置されることを特徴とする。保護層は活物質合剤層の表面層として該合剤層と連続して塗設され、合剤層と保護層は一続きになっている。したがって、正極と負極の少なくとも一方は活物質合剤層と表面保護層を含めて少なくとも2層以上で構成される。保護層は正極と負極の間に挿入されるセパレータ(通常フィルム状の多孔性ポリマー樹脂)とは異なるもので、これとは別に設置される。
保護層は好ましくは電気的絶縁性の無機化合物あるいはセラミクスの粒子を主体とする塗布物である。また、ポリマーラテックスなどの有機物の粒子も加えて含有されていてもよい。
The protective layer is disposed at the interface between the active material mixture layer containing an active material, a conductive material, a binder material, and the like and a non-aqueous electrolyte, and substantially includes an electrically insulating inorganic substance as a main component. It is characterized by being installed as a protective layer that has no properties. The protective layer is continuously applied as a surface layer of the active material mixture layer with the mixture layer, and the mixture layer and the protective layer are continuous. Therefore, at least one of the positive electrode and the negative electrode is composed of at least two layers including the active material mixture layer and the surface protective layer. The protective layer is different from a separator (usually a film-like porous polymer resin) inserted between the positive electrode and the negative electrode, and is provided separately.
The protective layer is preferably a coating mainly composed of electrically insulating inorganic compound or ceramic particles. Further, organic particles such as polymer latex may also be included.

保護層を構成する好ましい主成分としては、アルミナ、酸化ホウ素、酸化カルシウム、酸化チタン、酸化ジルコニウム、酸化バリウム、酸化珪素、などの無機酸化物があげられる。なかでも電気化学的安定性と塗布適性の点で好ましい主成分は、アルミナ、酸化珪素、酸化チタン、酸化ジルコニウムである。これら酸化物粒子の好ましい粒径は、平均粒径として、0.01〜10μmの範囲である。
これらの主成分に通常、塗布用助剤としてCMCなどの増粘剤、テフロン系樹脂に代表されるポリマーバインダーや後述する結着剤などが添加される。保護層の厚みは、2〜50μmの範囲であり、好ましくは20μm以下、さらに好ましくは10μm以下である。
Preferable main components constituting the protective layer include inorganic oxides such as alumina, boron oxide, calcium oxide, titanium oxide, zirconium oxide, barium oxide, and silicon oxide. Of these, preferred main components in terms of electrochemical stability and coating suitability are alumina, silicon oxide, titanium oxide, and zirconium oxide. The preferable particle diameter of these oxide particles is in the range of 0.01 to 10 μm as the average particle diameter.
Usually, a thickener such as CMC, a polymer binder typified by a Teflon resin, a binder described later, and the like are added to these main components as a coating aid. The thickness of the protective layer is in the range of 2 to 50 μm, preferably 20 μm or less, more preferably 10 μm or less.

保護層は正極合剤層上に塗設されてもよいし、負極合剤層上に塗設されてもよい。また、両方に塗設されてもよい。保護層は、これらの合剤を集電体シート上に塗布し、乾燥した後に、その表面に続いて逐次塗布されるか、あるいは合剤層と同時に重層構造をとりながら塗布される。   The protective layer may be applied on the positive electrode mixture layer, or may be applied on the negative electrode mixture layer. Moreover, you may coat on both. The protective layer is applied to the current collector sheet after these mixtures are dried and then sequentially applied to the surface thereof, or is applied while taking a multilayer structure simultaneously with the mixture layer.

電極合剤には、導電剤や結着剤やフィラーなどを添加することができる。導電剤は、構成された電池において、化学変化を起こさない電子伝導性材料であれば何でもよい。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属(銅、ニッケル、アルミニウム、銀(特開昭63−148,554)など)粉、金属繊維あるいはポリフェニレン誘導体(特開昭59−20,971)などの導電性材料を1種またはこれらの混合物として含ませることができる。黒鉛とアセチレンブラックの併用がとくに好ましい。その添加量は、特に限定されないが、1〜50重量%が好ましく、特に2〜30重量%が好ましい。カーボンや黒鉛では、2〜15重量%が特に好ましい。   A conductive agent, a binder, a filler, or the like can be added to the electrode mixture. The conductive agent may be anything as long as it is an electron conductive material that does not cause a chemical change in the constructed battery. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and metal (copper, nickel, aluminum, silver (JP-A-63-148)) , 554) etc.) Conductive materials such as powder, metal fibers or polyphenylene derivatives (Japanese Patent Laid-Open No. 59-20,971) can be included as one kind or a mixture thereof. The combined use of graphite and acetylene black is particularly preferred. The addition amount is not particularly limited, but is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight. In the case of carbon or graphite, 2 to 15% by weight is particularly preferable.

結着剤には、通常、でんぷん、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルクロリド、ポリビニルピロリドン、テトラフルオロエチレン、ポリ弗化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、 ポリブタジエン、フッ素ゴム、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマーなどが1種またはこれらの混合物として用いられる。結着剤の添加量は、2〜30重量%が好ましい。フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0〜30重量%が好ましい。   The binder is usually starch, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, polyvinyl chloride, polyvinylpyrrolidone, tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene-di. Enter polymers (EPDM), sulfonated EPDM, styrene butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and other polysaccharides, thermoplastic resins, rubber elastic polymers and the like are used as one kind or a mixture thereof. The addition amount of the binder is preferably 2 to 30% by weight. Any filler can be used as long as it is a fibrous material that does not cause a chemical change in the constructed battery. Usually, olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0 to 30 weight% is preferable.

二次電池の製造に用いられる非水電解液としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、 γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、リン酸トリエステル(特開昭60−23,973)、トリメトキシメタン(特開昭61−4,170)、ジオキソラン誘導体(特開昭62−15,771、同62−22,372、同62−108,474)、スルホラン(特開昭62−31,959)、3−メチル−2−オキサゾリジノン(特開昭62−44,961)、プロピレンカーボネート誘導体(特開昭62−290,069、同62−290,071)、テトラヒドロフラン誘導体(特開昭63−32,872)、ジエチルエーテル(特開昭63−62,166)、1,3−プロパンサルトン(特開昭63−102,173)などの非プロトン性有機溶媒の少なくとも1種以上を混合した溶媒とその溶媒に溶けるリチウム塩、例えば、LiClO4、LiBF6、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10(特開昭57−74,974)、低級脂肪族カルボン酸リチウム(特開昭60−41,773)、LiAlCl4、LiCl、LiBr、LiI(特開昭60−247265)、クロロボランリチウム(特開昭61−165,957)、四フェニルホウ酸リチウム(特開昭61−214,376)などの1種以上の塩から構成されている。
なかでも、プロピレンカーボネートあるいはエチレンカーボネートと1,2−ジメトキシエタンおよび/あるいはジエチルカーボネートの混合液にLiCF3SO3,LiClOV4、LiBF4および/あるいはLiPF6を含む電解質が好ましいこれら電解質を電池内に添加する量は、特に限定されないが、正極活物質や負極活物質の量や電池のサイズによって必要量用いることができる。
Non-aqueous electrolytes used for the production of secondary batteries include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfate. Foxoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester (JP 60-23973), trimethoxymethane (JP 61- 4,170), dioxolane derivatives (Japanese Patent Laid-Open Nos. 62-15771, 62-22,372, 62-108,474), sulfolane (Japanese Patent Laid-Open No. 62-31,959), 3-methyl-2- Oxazolidinone ( No. 62-44,961), propylene carbonate derivatives (JP-A 62-290,069, 62-290,071), tetrahydrofuran derivatives (JP-A 63-32,872), diethyl ether (JP-A 63) -62,166), 1,3-propane sultone (Japanese Patent Laid-Open No. Sho 63-102,173) and a mixture of at least one aprotic organic solvent and a lithium salt soluble in the solvent, such as LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10 ( JP-57-74,974), lithium lower aliphatic carboxylic acid (JP-60 -41,773), LiAlCl 4 , LiCl, LiBr, LiI (JP 60-247265), lithium chloroborane (JP Sho 61-165,957), lithium tetraphenylborate (Japanese Patent Laid-Open No. Sho 61-214,376) and the like.
Among them, electrolytes containing LiCF 3 SO 3 , LiClOV 4 , LiBF 4 and / or LiPF 6 in a mixed liquid of propylene carbonate or ethylene carbonate and 1,2-dimethoxyethane and / or diethyl carbonate are preferable in the battery. Although the amount to be added is not particularly limited, a necessary amount can be used depending on the amount of the positive electrode active material and the negative electrode active material and the size of the battery.

溶媒の体積比率は、特に限定されないが、プロピレンカーボネートあるいはエチレンカーボネート対1,2−ジメトキシエタンおよび/あるいはジエチルカーボネートの混合液の場合、0.4/0.6〜0.6/0.4(1,2−ジメトキシエタンとジエチルカボネートを両用するときの混合比率は0.4/0.6〜0.6/04)が好ましい。支持電解質の濃度は、特に限定されないが、電解液1リットル当たり0.2〜3モルが好ましい。
以上の電解液のなかで、二次電池の充放電のサイクル寿命を良化する効果の点で、本発明の電解液組成として特に好ましいものは、少なくともエチレンカーボネートを溶媒、少なくともLiPF6をリチウム塩として含む組成であり、もう1つの好ましい組成は、少なくともエチレンカーボネートとジエチルカーボネートを共に溶媒として、少なくともLiPF6をリチウム塩として含む組成であり、別の好ましい組成は、少なくともエチレンカーボネートとジメチルカーボネートを共に溶媒として、少なくともLiPF6をリチウム塩として含む組成である。
The volume ratio of the solvent is not particularly limited, but in the case of a mixed liquid of propylene carbonate or ethylene carbonate to 1,2-dimethoxyethane and / or diethyl carbonate, 0.4 / 0.6 to 0.6 / 0.4 ( The mixing ratio when both 1,2-dimethoxyethane and diethyl carbonate are used is preferably 0.4 / 0.6 to 0.6 / 04). The concentration of the supporting electrolyte is not particularly limited, but is preferably 0.2 to 3 mol per liter of the electrolytic solution.
Among the above electrolytic solutions, particularly preferable as the electrolytic solution composition of the present invention in terms of the effect of improving the charge / discharge cycle life of the secondary battery, at least ethylene carbonate is the solvent, and at least LiPF 6 is the lithium salt. Another preferred composition is a composition containing at least ethylene carbonate and diethyl carbonate as a solvent and at least LiPF 6 as a lithium salt, and another preferred composition is at least both ethylene carbonate and dimethyl carbonate. It is a composition containing at least LiPF 6 as a lithium salt as a solvent.

また、電解液の他に次の様な有機固体電解質も用いることができる。たとえばポリエチレンオキサイド誘導体か該誘導体を含むポリマー(特開昭63−135447)、ポリプロピレンオキサイド誘導体か該誘導体を含むポリマー、イオン解離基を含むポリマー(特開昭62−254,302、同62−254,303同63−193,954)、イオン解離基を含むポリマーと上記非プロトン性電解液の混合物(米国特許第4,792,504、同4,830,939、特開昭62−22,375、同62−22,376、同63−22,375、同63−22,776、特開平1−95,117)、リン酸エステルポリマー(特開昭61−256,573)が有効である。さらに、ポリアクリロニトリルを電解液に添加する方法もある(特開昭62−278,774)。また、無機と有機固体電解質を併用する方法(特開昭60−1,768)も知られている。   In addition to the electrolytic solution, the following organic solid electrolyte can also be used. For example, a polyethylene oxide derivative or a polymer containing the derivative (Japanese Patent Laid-Open No. 63-135447), a polypropylene oxide derivative or a polymer containing the derivative, a polymer containing an ionic dissociation group (Japanese Patent Laid-Open Nos. 62-254,302 and 62-254, 303, 63-193, 954), a mixture of an ion-dissociable group-containing polymer and the above aprotic electrolyte (US Pat. Nos. 4,792,504, 4,830,939, JP-A-62-222,375, 62-22,376, 63-22,375, 63-22,776, JP-A-1-95,117), and phosphate polymer (JP-A-61-256,573) are effective. Furthermore, there is a method of adding polyacrylonitrile to the electrolytic solution (Japanese Patent Laid-Open No. 62-278,774). In addition, a method using an inorganic and organic solid electrolyte in combination (Japanese Patent Laid-Open No. 60-1,768) is also known.

二次電池に用いるセパレーターとしては、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性からポリプレピレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンなどからつくられたシートや不織布が用いられる。セパレーターの孔径は、一般に電池用として有用な範囲が用いられる。例えば、0.01〜10μmが用いられる。セパレターの厚みは、一般に電池用の範囲で用いられる。例えば、5〜300μmが用いられる。電解質にポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレーターを兼ねる場合がある。   As a separator used for the secondary battery, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. Sheets and non-woven fabrics made from olefin polymers such as polypropylene, glass fibers or polyethylene are used because of their organic solvent resistance and hydrophobicity. A range useful for batteries is generally used as the pore diameter of the separator. For example, 0.01 to 10 μm is used. The thickness of the separator is generally used in the battery range. For example, 5 to 300 μm is used. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.

放電や充放電特性を改良する目的で、以下で示す化合物を電解質に添加することが知られている。例えば、ピリジン(特開昭49−108,525)、トリエチルフォスファイト(特開昭47−4,376)、トリエタノールアミン(特開昭52−72,425)、環状エーテル(特開昭57−152,684)、エチレンジアミン(特開昭58−87,777)、n−グライム(特開昭58−87,778)、ヘキサリン酸トリアミド(特開昭58−87,779)、ニトロベンゼン誘導体(特開昭58−214,281)、硫黄(特開昭59−8,280)、キノンイミン染料(特開昭59−68,184)、N−置換オキサゾリジノンとN,N'−置換イミダゾリジノン(特開昭59−154,778)、エチレングリコールジアルキルエーテル(特開昭59−205,167)、四級アンモニウム塩(特開昭60−30,065)、ポリエチレングリコール(特開昭60−41,773)、ピロール(特開昭60−79,677)、2−メトキシエタノール(特開昭60−89,075)、三塩化アルミニウム(特開昭61−88,466)、導電性ポリマー電極活物質のモノマー(特開昭61−161,673)、トリエチレンホスホンアミド(特開昭61−208,758)、トリアルキルホスフィン(特開昭62−80,976)、モルフォリン(特開昭62−80,977)、カルボニル基を持つアリール化合物(特開昭62−86,673),ヘキサメチルホスホリックトリアミドと4−アルキルモルフォリン(特開昭62−217,575)、二環性の三級アミン(特開昭62−217,578)、オイル(特開昭62−287,580)、四級ホスホニウム塩(特開昭63−121,268)、三級スルホニウム塩(特開昭63−121,269)などが挙げられる。   In order to improve discharge and charge / discharge characteristics, it is known to add the following compounds to the electrolyte. For example, pyridine (JP 49-108,525), triethyl phosphite (JP 47-4,376), triethanolamine (JP 52-72,425), cyclic ether (JP 57-57). 152, 684), ethylenediamine (JP 58-87,777), n-glyme (JP 58-87,778), hexaphosphoric triamide (JP 58-87,779), nitrobenzene derivatives (JP 58-214,281), sulfur (JP 59-8,280), quinoneimine dyes (JP 59-68,184), N-substituted oxazolidinones and N, N'-substituted imidazolidinones (JP No. 59-154,778), ethylene glycol dialkyl ether (JP 59-205,167), quaternary ammonium salt (JP 60-30,065), Polyethylene glycol (JP 60-41,773), pyrrole (JP 60-79,677), 2-methoxyethanol (JP 60-89,075), aluminum trichloride (JP 61-88) , 466), monomers of conductive polymer electrode active materials (JP 61-161,673), triethylenephosphonamide (JP 61-208,758), trialkylphosphine (JP 62-80,976). ), Morpholine (JP 62-80,977), aryl compounds having a carbonyl group (JP 62-86,673), hexamethylphosphoric triamide and 4-alkylmorpholine (JP 62-62). 217,575), bicyclic tertiary amine (JP 62-217,578), oil (JP 62-287,580), quaternary phosphonium (JP 63-121,268), and a tertiary sulfonium salt (JP 63-121,269).

また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを電解液に含ませることができる(特開昭48−36,632)。また、高温保存に適性をもたせるために電解液に炭酸ガスを含ませることができる(特開昭59−134,567)。   In order to make the electrolyte nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride chloride can be contained in the electrolyte (Japanese Patent Laid-Open No. 48-36,632). In addition, carbon dioxide gas can be included in the electrolytic solution to make it suitable for high-temperature storage (Japanese Patent Laid-Open No. 59-134,567).

正極や負極の合剤には電解液あるいは支持塩を含ませてもよい。例えば、前記イオン導電性ポリマーやニトロメタン(特開昭48−36,633)、電解液(特開昭57−124,870)を含ませる方法が知られている。また、正極活物質の表面を改質することができる。例えば、金属酸化物の表面をエステル化剤(特開昭55−163,779)やキレート化剤(特開昭55−163,780)で処理したり、導電性高分子(特開昭58−163,188、同59−14,274)、ポリエチレンオキサイドなど(特開昭60−97,561)の表面層の被覆によって改質する方法が挙げられる。また、同様に負極活物質の表面を改質することもできる。例えば、イオン導電性ポリマーやポリアセチレン層を被覆したり(特開昭58−111,276)、Li塩により表面処理する(特開昭58−142,771)ことが挙げられる。   The mixture of the positive electrode and the negative electrode may contain an electrolytic solution or a supporting salt. For example, a method is known in which the ion conductive polymer, nitromethane (Japanese Patent Laid-Open No. 48-36,633), and electrolytic solution (Japanese Patent Laid-Open No. 57-124,870) are included. In addition, the surface of the positive electrode active material can be modified. For example, the surface of a metal oxide is treated with an esterifying agent (Japanese Patent Laid-Open No. 55-163,779) or a chelating agent (Japanese Patent Laid-Open No. 55-163,780), or a conductive polymer (Japanese Patent Laid-Open No. 163, 188, 59-14, 274), and a method of modification by covering with a surface layer of polyethylene oxide or the like (JP-A-60-97,561). Similarly, the surface of the negative electrode active material can be modified. For example, an ion conductive polymer or a polyacetylene layer can be coated (Japanese Patent Laid-Open No. 58-111,276), or surface treatment can be performed with a Li salt (Japanese Patent Laid-Open No. 58-142,771).

電極活物質の集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば何でもよい。例えば、正極には、材料としてステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素などの他に、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの、負極には、材料としてステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素などの他に、銅やステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの)、Al−Cd合金などが用いられる。これらの材料の表面を酸化することも用いられる。形状は、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが用いられる。厚みは、特に限定されないが、5〜100μmのものが用いられる。   The current collector of the electrode active material may be anything as long as it is an electronic conductor that does not cause a chemical change in the constructed battery. For example, in addition to stainless steel, nickel, aluminum, titanium, calcined carbon, etc. as materials for the positive electrode, the surface of aluminum or stainless steel is treated with carbon, nickel, titanium, or silver. In addition to stainless steel, nickel, copper, titanium, aluminum, calcined carbon, etc., the surface of copper or stainless steel treated with carbon, nickel, titanium or silver), Al—Cd alloy, or the like is used. Oxidizing the surface of these materials is also used. As the shape, a film, a sheet, a net, a punched product, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like are used in addition to the foil. The thickness is not particularly limited, but a thickness of 5 to 100 μm is used.

[実施例、参考例]
〔負極活物質前駆体の合成例,溶融法〕
SnO 67.4g、B2317.4g、及びSn22 7102.8gを混合し、自動乳鉢で十分に粉砕、混合した後、アルミナ製るつぼにセットしてアルゴンガス雰囲気下で1000℃で10時間焼成を行った。焼成後、100℃/分の速度で急冷し、黄色透明ガラス状の負極活物質前駆体SnB0.50.53を得た(化合物A−1)。
活物質のX線回折を測定したところ、Cu−α線の照射下で2θ=20−35°の領域にブロードな回折のバンドを示したが、結晶構造に帰属するシャープな回折線は検出されず、活物質構造がアモルファス(非晶質)であることが判明した。
同様な方法で、下記の負極活物質前駆体を合成した。
Sn1.50.2PO3.5(化合物A−2)
Sn1.5Cs0.1Ge0.05Al0.10.50.53.30(化合物A−3)
A−1〜A−3はともに平均粒径7μmに粉砕し、BET法による比表面積は0.7〜1.2m2/gの範囲であった。
[Examples and Reference Examples]
[Synthesis example of negative electrode active material precursor, melting method]
67.4 g of SnO, 17.4 g of B 2 O 3 , and 102.8 g of Sn 2 P 2 O 7 were mixed and thoroughly pulverized and mixed in an automatic mortar, then set in an alumina crucible and placed under an argon gas atmosphere. Firing was performed at 1000 ° C. for 10 hours. After firing, it was rapidly cooled at a rate of 100 ° C./min to obtain a yellow transparent glassy negative electrode active material precursor SnB 0.5 P 0.5 O 3 (compound A-1).
When X-ray diffraction of the active material was measured, it showed a broad diffraction band in the region of 2θ = 20-35 ° under the irradiation of Cu-α ray, but a sharp diffraction line attributed to the crystal structure was detected. Thus, the active material structure was found to be amorphous (amorphous).
In the same manner, the following negative electrode active material precursor was synthesized.
Sn 1.5 K 0.2 PO 3.5 (Compound A-2)
Sn 1.5 Cs 0.1 Ge 0.05 Al 0.1 B 0.5 P 0.5 O 3.30 (Compound A-3)
All of A-1 to A-3 were pulverized to an average particle diameter of 7 μm, and the specific surface area by the BET method was in the range of 0.7 to 1.2 m 2 / g.

〔負極活物質前駆体の合成例,ゾルゲル法〕
Sn0.8Si0.50.30.2Al0.13.70(化合物A−1)を下記のゾル−ゲル法で合成した。
ジエトキシ錫212gをDMF100gに溶解し、これに燐トリエトキシド34g、トリエトキシアルミニウム51g、トリエトキシ硼素36g、テトラエトキシシラン134g、を添加し、さらに硫酸を添加混合して、第1液とした。トルエン1700ccにソルビタンモノオレート4.25gを溶解し第2液とした。この第2液に、第1液を滴下しながら10000回転で激しく攪拌し、同時にトリエチルアミン45gを5回に分けて反応液に添加した。
反応液を40℃に保ちながら攪拌を2時間続け、その後40℃で24時間保持した後、溶媒のトルエンを減圧下で除去した。得られた固形分を250℃で48時間乾燥し、白色の粉末を得た。収率95%。
本ゾル−ゲル法粒子は平均粒径が0.1μmの多孔性の球状粒子であり、BET比表面積は8m2/gであった。
[Synthesis of negative electrode active material precursor, sol-gel method]
Sn 0.8 Si 0.5 B 0.3 P 0.2 Al 0.1 O 3.70 (Compound A-1) was synthesized by the following sol-gel method.
212 g of diethoxytin was dissolved in 100 g of DMF, and 34 g of phosphorous triethoxide, 51 g of triethoxyaluminum, 36 g of triethoxyboron, and 134 g of tetraethoxysilane were added thereto, and sulfuric acid was further added and mixed to obtain a first liquid. 4.25 g of sorbitan monooleate was dissolved in 1700 cc of toluene to make a second solution. While dripping the first liquid into the second liquid, the mixture was vigorously stirred at 10000 rpm, and 45 g of triethylamine was added to the reaction liquid in 5 portions.
Stirring was continued for 2 hours while maintaining the reaction solution at 40 ° C., and then maintained at 40 ° C. for 24 hours, after which the solvent toluene was removed under reduced pressure. The obtained solid was dried at 250 ° C. for 48 hours to obtain a white powder. Yield 95%.
The present sol-gel particles were porous spherical particles having an average particle diameter of 0.1 μm, and the BET specific surface area was 8 m 2 / g.

〔正極活物質の調製の例〕
LiNi0.8Co0.160.042(化合物C−1)を以下の方法で合成した。
LiOH・H2O、Ni(OH)2、Co(OH)2、およびB23の粉末をモル比1:0.8:0.16:0.02の化学量論比で乾燥空気下乳鉢中で十分に混合し、酸素雰囲気下で650℃で6時間焼成を行った後、750℃で8時間焼成を行い、上記組成の(化合物C−1)を合成した。
得られた粒子は、球状に近い形をもち、1次粒子の平均粒径が0.3μmであり、2次粒子の平均粒径が7μmであった。またBET法による比表面積は0.7m2/gであった。X線回折によって得られた(104)面/(003)面のピーク比は0.6であり、a軸の格子定数は2.83、c軸格子定数は13.90であった。
活物質は1gを10ccの純水に分散したとき、pH10.5を与えた。また、同じ組成の活物質は、リチウム原料としてLiOH・H2Oに替えてLiNO3あるいはLiCO3、また、Ni原料としてNi(OH)2に替えてNiCO3を用いても合成することができた。また、上記の水酸化物の原料に、B23に換えて、Al(OH)3を化学量論比で添加し、酸素雰囲気下で650℃で6時間焼成を行った後、800℃で12時間焼成を行い、LiNi0.8Co0.16Al0.042(化合物C−2)を合成した。
また、(化合物C−2)の焼成方法にしたがって、原料を適宜選択し、下記の正極活物質を合成した。これら活物質の組成は、ICPにより検定した。
LiNi0.8Co0.1Mn0.12(化合物C−3)
LiNi0.8Co0.1Mn0.070.032(化合物C−4)
LiNi0.8Co0.15Sn0.052(化合物C−5)
LiNi0.8Co0.15Si0.052(化合物C−6)
LiNi0.8Co0.15Mg0.052(化合物C−7)
LiNi0.8Co0.15Fe0.052(化合物C−8)
LiNi0.8Co0.15Ti0.052(化合物C−9)
また、フッ素原料としてLiFを用いて、650℃で24時間、酸素分圧0.5気圧の条件で焼成を実施し下記の化合物を合成した。
LiNi0.8Co0.150.051.90.1(化合物C−10)
LiNi0.8Co0.15Al0.051.90.1(化合物C−11)
[Example of preparation of positive electrode active material]
LiNi 0.8 Co 0.16 B 0.04 O 2 (Compound C-1) was synthesized by the following method.
LiOH.H 2 O, Ni (OH) 2 , Co (OH) 2 , and B 2 O 3 powders in a stoichiometric ratio of 1: 0.8: 0.16: 0.02 in dry air After thoroughly mixing in a mortar and baking at 650 ° C. for 6 hours in an oxygen atmosphere, baking was performed at 750 ° C. for 8 hours to synthesize (Compound C-1) having the above composition.
The obtained particles had a shape close to a sphere, and the average particle size of primary particles was 0.3 μm, and the average particle size of secondary particles was 7 μm. The specific surface area by the BET method was 0.7 m 2 / g. The peak ratio of (104) plane / (003) plane obtained by X-ray diffraction was 0.6, the a-axis lattice constant was 2.83, and the c-axis lattice constant was 13.90.
The active material gave a pH of 10.5 when 1 g was dispersed in 10 cc of pure water. An active material having the same composition can also be synthesized by using LiNO 3 or LiCO 3 instead of LiOH · H 2 O as a lithium raw material, and NiCO 3 instead of Ni (OH) 2 as a Ni raw material. It was. Further, instead of B 2 O 3 , Al (OH) 3 was added in a stoichiometric ratio to the above-mentioned hydroxide raw material, and calcination was performed at 650 ° C. for 6 hours in an oxygen atmosphere. Was baked for 12 hours to synthesize LiNi 0.8 Co 0.16 Al 0.04 O 2 (compound C-2).
Moreover, according to the baking method of (compound C-2), the raw material was selected suitably and the following positive electrode active material was synthesize | combined. The composition of these active materials was tested by ICP.
LiNi 0.8 Co 0.1 Mn 0.1 O 2 (Compound C-3)
LiNi 0.8 Co 0.1 Mn 0.07 B 0.03 O 2 (Compound C-4)
LiNi 0.8 Co 0.15 Sn 0.05 O 2 (Compound C-5)
LiNi 0.8 Co 0.15 Si 0.05 O 2 (Compound C-6)
LiNi 0.8 Co 0.15 Mg 0.05 O 2 (Compound C-7)
LiNi 0.8 Co 0.15 Fe 0.05 O 2 (Compound C-8)
LiNi 0.8 Co 0.15 Ti 0.05 O 2 (Compound C-9)
Further, using the LiF as a fluorine raw material, firing was performed at 650 ° C. for 24 hours under an oxygen partial pressure of 0.5 atm to synthesize the following compounds.
LiNi 0.8 Co 0.15 B 0.05 O 1.9 F 0.1 (Compound C-10)
LiNi 0.8 Co 0.15 Al 0.05 O 1.9 F 0.1 (Compound C-11)

正極の比較用活物質としてLiNi0.8Co0.22(比較1)をCo34,Co23の混合物とNiCO3および炭酸リチウムを化学量論比で混合し、酸素雰囲気下で650℃で4時間、さらに800℃で8時間焼成を行って合成した。 As a comparative active material for the positive electrode, LiNi 0.8 Co 0.2 O 2 (Comparative 1) was mixed with a mixture of Co 3 O 4 , Co 2 O 3 and NiCO 3 and lithium carbonate in a stoichiometric ratio, and 650 ° C. in an oxygen atmosphere. And then baked at 800 ° C. for 8 hours for synthesis.

〔電極合剤シートの作製〕
正極合剤として、正極活物質の(化合物C−1)を90重量%、アセチレンブラック6重量%、そして結着剤としてポリテトラフルオロエチレンの水分散物3重量%とポリアクリル酸ナトリウム1重量%からなる混合物に水を加えて混練し、得られたスラリーを厚さ30μmのアルミニウムフィルムの両面に塗布して、正極シートを作製した。
次に、上記正極シートの活物質合剤層の表面に、鱗片状黒鉛と酸化アルミニウム(平均粒径2μm)の1:4(重量比)の混合物からなる保護層(平均厚さ5μm)を塗設した。塗布シートを乾燥、プレスした結果、乾膜の塗布量は240g/m2、塗布膜の厚みはおよそ95μmであった。また、比較として、上記の保護層を塗設しない正極シートを作製した。
[Production of electrode mixture sheet]
As a positive electrode mixture, 90% by weight of (compound C-1) of the positive electrode active material, 6% by weight of acetylene black, and 3% by weight of an aqueous dispersion of polytetrafluoroethylene and 1% by weight of sodium polyacrylate as a binder Water was added to the mixture consisting of knead and kneaded, and the resulting slurry was applied to both sides of an aluminum film having a thickness of 30 μm to produce a positive electrode sheet.
Next, a protective layer (average thickness 5 μm) made of a 1: 4 (weight ratio) mixture of scaly graphite and aluminum oxide (average particle size 2 μm) is applied to the surface of the active material mixture layer of the positive electrode sheet. Set up. As a result of drying and pressing the coating sheet, the coating amount of the dry film was 240 g / m 2 and the thickness of the coating film was about 95 μm. For comparison, a positive electrode sheet without the protective layer was prepared.

負極活物質前駆体として(化合物A−1)を86重量%、鱗片状黒鉛を3重量%、アセチレンブラック6重量%、結着剤としてポリテトラフルオロエチレンの水分散物4重量%およびカルボキシメチルセルロース1重量%からなる混合物に水を加えてホモジナーザーで10000回転で10分以上混練し、負極合剤スラリーを調製した。得られたスラリーを厚さ18μmの銅フィルムの両面に塗布して、負極シートを作製した。塗布シートを乾燥、プレスした結果、乾膜の塗布量はおよそ70g/m2、塗布膜の厚みはおよそ30μmであった。
次に、得られた負極シートの活物質層の表面に、鱗片状黒鉛と酸化アルミニウム(平均粒径2μm)の1:4(重量比)の混合物からなる保護層(平均厚さ5μm)を塗設し、活物質前駆体を塗設した表面保護層付きの負極シートを作製した。
同様な方法で、負極活物質前駆体として(化合物A−1)にかえて(化合物A−2)、(化合物A−3)及び(化合物A−4)を塗布して作った活物質前駆体層の表面に上記の保護層を塗設し、各種活物質前駆体を塗設した表面保護層付きの負極シートを作製した。
86% by weight of (Compound A-1) as a negative electrode active material precursor, 3% by weight of flaky graphite, 6% by weight of acetylene black, 4% by weight of an aqueous dispersion of polytetrafluoroethylene as a binder, and carboxymethylcellulose 1 Water was added to the mixture consisting of% by weight and kneaded with a homogenizer at 10,000 rpm for 10 minutes or more to prepare a negative electrode mixture slurry. The obtained slurry was applied to both sides of a 18 μm thick copper film to prepare a negative electrode sheet. As a result of drying and pressing the coated sheet, the coating amount of the dry film was about 70 g / m 2 , and the thickness of the coated film was about 30 μm.
Next, a protective layer (average thickness of 5 μm) made of a 1: 4 (weight ratio) mixture of flake graphite and aluminum oxide (average particle size of 2 μm) is applied to the surface of the active material layer of the obtained negative electrode sheet. And a negative electrode sheet with a surface protective layer coated with an active material precursor was prepared.
In the same manner, an active material precursor prepared by applying (Compound A-2), (Compound A-3) and (Compound A-4) instead of (Compound A-1) as a negative electrode active material precursor The protective layer was coated on the surface of the layer, and a negative electrode sheet with a surface protective layer in which various active material precursors were coated was produced.

〔シリンダー型電池の作製例〕
厚さ35μmの金属Li箔を幅5mm長さ37mmの断片に裁断し、露点−60℃の乾燥空気中で、上記の負極活物質(前駆体A−1)を塗布した負極シートの両面の表面保護層の上に、2mmの規則的間隔を置いて圧着ローラーを用いて付着させた。負極シートへのLi付着量は重量としておよそ110mgであった。このリチウムは、負極活物質前駆体中へ電池内でリチウムを電解挿入し、負極活物質前駆体を活物質に転換するために用いられる。
上記の正極シートを35mmの幅に裁断し、負極シートを37mmの幅に裁断して、シートの末端にそれぞれアルミニウム、ニッケルのリード板をスポット溶接した後、露点−40℃の乾燥空気中で150℃で2時間脱水乾燥した。
次に、脱水乾燥済みの正極シート、セパレーターとして多孔性プロピレンフィルム(セルガード2400)、脱水乾燥済みの負極シート、そしてセパレーターの順でこれらを積層し、巻き込み機で渦巻き状に巻回した。この巻回体をニッケルメッキを施した鉄製の有底円筒型電池缶(負極端子を兼ねる)に収納した。この電池缶の中に電解質として1mol/リットルLiPF6(エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネートの2:2:6(体積比)混合液)を注入した。
正極端子を有する電池蓋(12)をガスケット(13)を介してかしめて直径14mm高さ50mmの円筒型電池を作製した。なお、正極端子(12)は正極シート(8)と、電池缶(11)は負極シート(9)とあらかじめリード端子により接続した。なお、(14)は安全弁である。
[Production example of cylinder type battery]
The surfaces of both sides of the negative electrode sheet obtained by cutting a metal Li foil having a thickness of 35 μm into pieces having a width of 5 mm and a length of 37 mm and applying the negative electrode active material (precursor A-1) in dry air at a dew point of −60 ° C. It was adhered on the protective layer using a pressure roller at regular intervals of 2 mm. The amount of Li attached to the negative electrode sheet was approximately 110 mg by weight. This lithium is used for electrolytically inserting lithium into the negative electrode active material precursor in the battery and converting the negative electrode active material precursor into an active material.
The positive electrode sheet was cut to a width of 35 mm, the negative electrode sheet was cut to a width of 37 mm, and aluminum and nickel lead plates were spot welded to the ends of the sheet, respectively. Dehydrated and dried at 2 ° C. for 2 hours.
Next, the positive electrode sheet that had been dehydrated and dried, the porous propylene film (Celgard 2400) as the separator, the negative electrode sheet that had been dehydrated and dried, and the separator were laminated in this order, and were wound in a spiral shape with a winding machine. This wound body was stored in a nickel-plated iron-bottomed cylindrical battery can (also serving as a negative electrode terminal). 1 mol / liter LiPF 6 (2: 2: 6 (volume ratio) mixture of ethylene carbonate, butylene carbonate, dimethyl carbonate) was injected as an electrolyte into the battery can.
A battery lid (12) having a positive electrode terminal was caulked through a gasket (13) to produce a cylindrical battery having a diameter of 14 mm and a height of 50 mm. The positive electrode terminal (12) was connected to the positive electrode sheet (8) and the battery can (11) was previously connected to the negative electrode sheet (9) by a lead terminal. (14) is a safety valve.

この方法に従い、正極活物質としてC−1〜11、負極活物質としてA−1〜A−4をそれぞれ選択して組み合わせ、各種電池を作製した。   According to this method, C-1 to 11 as the positive electrode active material and A-1 to A-4 as the negative electrode active material were selected and combined to prepare various batteries.

上記のように作製した電池は負極活物質前駆体に塗布シート保護層上のリチウムが電気化学的に挿入されるプロセスが完成されていない電池前駆体である。そこで、負極活物質前駆体にリチウムを挿入させて負極活物質に変換し、電池前駆体を充放電サイクル可能な二次電池とするための操作を、以下のように実施した。電池前駆体を、室温で12時間放置後、0.1Aの一定電流のもとで1時間予備充電を行い、次いで50℃のもとで10日間エージングを実施した。
このエージングの工程で、負極上に担持したLiは溶解し、負極活物質前駆体の中に挿入されたことを確認した。
この電池を活性化のために、2mA/cm2で室温下で4.2Vまで充電を行った。さらに、充電状態で電池を55℃に保持し、3日間エージングを実施した。以上の電池を、充電終止電圧4.2V(開回路電圧(OCV))、放電終止電圧2.8V(回路電圧)、10mA/cm2(1C相当)の電流密度の条件で繰り返し充放電させて、100サイクル終了後に2mA/cm2(0.2C相当)放電の放電容量を測定し、初期放電容量に対する維持率を測定し、電池のサイクル寿命を評価した。また、電池の安全性を評価する試験として、充電状態の電池の本体にサーミスタを固定し、室温下で電池に釘を刺して内部を急短絡させた場合の発熱の程度を評価した。本試験は各々の電池について5回実施した。
The battery produced as described above is a battery precursor in which the process of electrochemically inserting lithium on the coating sheet protective layer into the negative electrode active material precursor is not completed. Therefore, an operation for converting the battery precursor into a negative electrode active material by inserting lithium into the negative electrode active material precursor and making the battery precursor a chargeable / discharge cycleable secondary battery was performed as follows. The battery precursor was allowed to stand at room temperature for 12 hours, precharged for 1 hour under a constant current of 0.1 A, and then aged at 50 ° C. for 10 days.
In this aging step, it was confirmed that Li supported on the negative electrode was dissolved and inserted into the negative electrode active material precursor.
In order to activate this battery, it was charged to 4.2 V at room temperature at 2 mA / cm 2 . Further, the battery was kept at 55 ° C. in a charged state, and aging was performed for 3 days. The above batteries were repeatedly charged and discharged under the conditions of a charge end voltage of 4.2 V (open circuit voltage (OCV)), a discharge end voltage of 2.8 V (circuit voltage), and a current density of 10 mA / cm 2 (equivalent to 1 C). After the end of 100 cycles, the discharge capacity of 2 mA / cm 2 (equivalent to 0.2 C) was measured, the maintenance rate relative to the initial discharge capacity was measured, and the cycle life of the battery was evaluated. In addition, as a test for evaluating the safety of the battery, the degree of heat generation was evaluated when a thermistor was fixed to the main body of the battery in a charged state, and a nail was pierced into the battery at room temperature to short-circuit the inside. This test was conducted five times for each battery.

上記の電池について、放電容量と安全性評価の評価の結果を表1に整理した。ここで安全性評価結果は、レベルAが発熱温度の最大が100℃以下、レベルBが100℃を越える発熱に分類した。   The results of evaluation of discharge capacity and safety evaluation for the above batteries are summarized in Table 1. Here, the safety evaluation results were classified as heat generation in which level A had a maximum exothermic temperature of 100 ° C. or less and level B exceeded 100 ° C.

Figure 2006261127
Figure 2006261127

表1の比較から、本発明の正極活物質を用いた二次電池(電池番号:20、21)はその放電容量維持率が正極にコバルトニッケル酸化物系活物質用いた二次電池(電池番号:比較1〜4)に比較して、電池性能の寿命と安全性能の点で優れていることがわかる。   From the comparison of Table 1, the secondary battery (battery number: 20, 21) using the positive electrode active material of the present invention has a discharge capacity retention rate of the secondary battery (battery number) using a cobalt nickel oxide based active material for the positive electrode. : Compared with comparisons 1-4), it can be seen that the battery performance is superior in terms of life and safety performance.

実施例に使用したシリンダー型電池の断面図を示す。Sectional drawing of the cylinder type battery used for the Example is shown.

符号の説明Explanation of symbols

8正極シート
9負極シート
10 セパレーター
11 円筒型電池缶
12 正極端子を兼ねる電池蓋
13 ガスケット
14 安全弁

8 Positive electrode sheet 9 Negative electrode sheet
10 Separator
11 Cylindrical battery can
12 Battery cover that also serves as the positive terminal
13 Gasket
14 Safety valve

Claims (8)

LixNi1-yCoy-zz2-abの組成で示されるニッケル含有リチウム複合酸化物からなることを特徴とするリチウムイオン非水電解質二次電池用正極活物質。
(ただし、前記式中のMは周期率表の第13族、第14族の元素、Mn,Fe,Ti,Zr,Nd,La,Cu,V,Sm,W,Zn,Y,Mg,Sr,Ca,Ba,Cs,Na及びPから選ばれる1種以上の元素であり、Xはハロゲン元素であり、x、y、z、a及びbは、それぞれ0.2<x≦1.2,0<y≦0.5,z<y,0<z<0.5,0.01≦a≦0.5,0.01≦b≦2aなる範囲の数値である)。
Li x Ni 1-y Co yz M z O 2-a X b positive electrode active material for a lithium ion nonaqueous electrolyte secondary battery characterized in that a nickel-containing lithium composite oxide represented by the composition of the.
(In the above formula, M is an element belonging to Group 13 and Group 14 of the periodic table, Mn, Fe, Ti, Zr, Nd, La, Cu, V, Sm, W, Zn, Y, Mg, Sr. , Ca, Ba, Cs, Na, and P, X is a halogen element, and x, y, z, a, and b are 0.2 <x ≦ 1.2, 0 <y ≦ 0.5, z <y, 0 <z <0.5, 0.01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 2a.
前記式中のXがフッ素(F)であることを特徴とする請求項1に記載のリチウムイオン非水電解質二次電池用正極活物質。 The positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery according to claim 1, wherein X in the formula is fluorine (F). 前記式中のMがMn,Fe,T,B,Al,Sn,Si,Ga,Mgから選ばれる1種以上の元素であることを特徴とする請求項1又は2に記載のリチウムイオン非水電解質二次電池用正極活物質。 3. The lithium ion non-aqueous solution according to claim 1, wherein M in the formula is one or more elements selected from Mn, Fe, T, B, Al, Sn, Si, Ga, and Mg. Positive electrode active material for electrolyte secondary battery. リチウム(Li)化合物、ニッケル(Ni)化合物、コバルト(Co)化合物、M化合物、及びハロゲン(X)化合物を化学量論的にLixNi1-yCoy-zMzz2-abとなる割合で混合してなる原料混合物を、400〜1000℃で焼成することを特徴とするリチウムイオン非水電解質二次電池用正極活物質の製造方法。
(ただし、前記式中のMは周期率表の第13族、第14族の元素、Mn,Fe,Ti,Zr,Nd,La,Cu,V,Sm,W,Zn,Y,Mg,Sr,Ca,Ba,Cs,Na及びPから選ばれる1種以上の元素であり、Xはハロゲン元素であり、x、y、z、a及びbは、それぞれ0.2<x≦1.2,0<y≦0.5,z<y,0<z<0.5,0.01≦a≦0.5,0.01≦b≦2aなる範囲の数値である)。
Lithium (Li) compound, a nickel (Ni) compound, a cobalt (Co) compound, M compounds, and halogen (X) compounds stoichiometrically and Li x Ni 1-y Co yz Mz z O 2-a X b The manufacturing method of the positive electrode active material for lithium ion non-aqueous electrolyte secondary batteries characterized by baking the raw material mixture formed by mixing in the ratio which becomes at 400-1000 degreeC.
(In the above formula, M is an element belonging to Group 13 and Group 14 of the periodic table, Mn, Fe, Ti, Zr, Nd, La, Cu, V, Sm, W, Zn, Y, Mg, Sr. , Ca, Ba, Cs, Na, and P, X is a halogen element, and x, y, z, a, and b are 0.2 <x ≦ 1.2, 0 <y ≦ 0.5, z <y, 0 <z <0.5, 0.01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 2a.
前記ハロゲン(X)化合物がリチウム(Li)、ニッケル(Ni)、コバルト(Co)及びMから選ばれる1種以上のハロゲン化物であることを特徴とする請求項4に記載のリチウムイオン非水電解質二次電池用正極活物質の製造方法。 The lithium ion nonaqueous electrolyte according to claim 4, wherein the halogen (X) compound is one or more halides selected from lithium (Li), nickel (Ni), cobalt (Co), and M. A method for producing a positive electrode active material for a secondary battery. 前記ハロゲン(X)を含む化合物がLiF,NiCl2,CoCl2,SnCl2,MgCl2,BaCl2,SnCl2,FeCl3,AlCl3及びLaCl3からから選ばれる1種以上の化合物であることを特徴とする請求項5に記載のリチウムイオン非水電解質二次電池用正極活物質の製造方法。 The compound containing halogen (X) is at least one compound selected from LiF, NiCl 2 , CoCl 2 , SnCl 2 , MgCl 2 , BaCl 2 , SnCl 2 , FeCl 3 , AlCl 3 and LaCl 3. The method for producing a positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery according to claim 5. 前記ハロゲン(X)を含む化合物がLiFであることを特徴とする請求項5又は6に記載のリチウムイオン非水電解質二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery according to claim 5 or 6, wherein the compound containing halogen (X) is LiF. 前記焼成を酸素分圧が0.2気圧以上の雰囲気下で行うことを特徴とする請求項4〜7のいずれか1項に記載のリチウムイオン非水電解質二次電池用正極活物質の製造方法。

The method for producing a positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery according to any one of claims 4 to 7, wherein the firing is performed in an atmosphere having an oxygen partial pressure of 0.2 atm or more. .

JP2006106028A 2006-04-07 2006-04-07 Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same Expired - Fee Related JP4197002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106028A JP4197002B2 (en) 2006-04-07 2006-04-07 Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106028A JP4197002B2 (en) 2006-04-07 2006-04-07 Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10364297A Division JP4061668B2 (en) 1997-04-21 1997-04-21 Lithium ion non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006261127A true JP2006261127A (en) 2006-09-28
JP4197002B2 JP4197002B2 (en) 2008-12-17

Family

ID=37100089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106028A Expired - Fee Related JP4197002B2 (en) 2006-04-07 2006-04-07 Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4197002B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123311A1 (en) * 2007-03-27 2008-10-16 Tokyo Institute Of Technology Method for producing positive electrode material for secondary battery
JP2010225545A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012039893A3 (en) * 2010-09-22 2012-06-14 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
JP5584302B2 (en) * 2010-09-17 2014-09-03 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
TWI578598B (en) * 2014-02-28 2017-04-11 Lg化學股份有限公司 Lithium-nickel based positive electrode active material, method of preparing the same, and lithium secondary battery including the same
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US9960424B2 (en) 2008-12-11 2018-05-01 Zenlabs Energy, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
WO2018100792A1 (en) * 2016-12-02 2018-06-07 パナソニックIpマネジメント株式会社 Positive electrode active material and battery using positive electrode active material
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US10193135B2 (en) 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
CN110165170A (en) * 2019-05-15 2019-08-23 深圳大学 A kind of cathode material of lithium ion battery and preparation method thereof
CN110476291A (en) * 2017-04-28 2019-11-19 株式会社钟化 Non-aqueous electrolyte secondary battery and its manufacturing method
US10727532B2 (en) 2015-12-15 2020-07-28 Gs Yuasa International Ltd. Positive active material for lithium secondary battery, method for producing precursor of positive active material, method for producing positive active material, positive electrode for lithium secondary battery, and lithium secondary battery
US10811672B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811671B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10811673B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818911B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818910B2 (en) 2015-07-23 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818912B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833317B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10833322B2 (en) 2017-01-19 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
US10833316B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833315B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10840499B2 (en) 2016-11-15 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US10854876B2 (en) 2016-11-15 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US11043661B2 (en) 2017-01-19 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxyfluoride and organosilicon compound, and battery including positive electrode containing the positive electrode active material
CN115000429A (en) * 2022-04-07 2022-09-02 湖北大学 LNCAF electrode material, fuel cell and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240021813A1 (en) 2020-12-24 2024-01-18 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
EP4299529A1 (en) 2021-02-26 2024-01-03 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008123311A1 (en) * 2007-03-27 2010-07-15 国立大学法人東京工業大学 Method for producing positive electrode material for secondary battery
WO2008123311A1 (en) * 2007-03-27 2008-10-16 Tokyo Institute Of Technology Method for producing positive electrode material for secondary battery
US8349217B2 (en) 2007-03-27 2013-01-08 Tokyo Institute Of Technology Method for producing positive electrode material for secondary battery
US9960424B2 (en) 2008-12-11 2018-05-01 Zenlabs Energy, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
JP2010225545A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
JP5584302B2 (en) * 2010-09-17 2014-09-03 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
WO2012039893A3 (en) * 2010-09-22 2012-06-14 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
TWI578598B (en) * 2014-02-28 2017-04-11 Lg化學股份有限公司 Lithium-nickel based positive electrode active material, method of preparing the same, and lithium secondary battery including the same
US10608251B2 (en) 2014-02-28 2020-03-31 Lg Chem, Ltd. Lithium-nickel based positive electrode active material, method of preparing the same, and lithium secondary battery including the same
US10193135B2 (en) 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
US10818910B2 (en) 2015-07-23 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11637277B2 (en) 2015-07-23 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11588143B2 (en) 2015-09-16 2023-02-21 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811673B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US11799067B2 (en) 2015-09-16 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833315B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US11569492B2 (en) 2015-09-16 2023-01-31 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10811671B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11710816B2 (en) 2015-09-16 2023-07-25 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818911B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10811672B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818912B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833317B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11721800B2 (en) 2015-09-16 2023-08-08 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833316B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10727532B2 (en) 2015-12-15 2020-07-28 Gs Yuasa International Ltd. Positive active material for lithium secondary battery, method for producing precursor of positive active material, method for producing positive active material, positive electrode for lithium secondary battery, and lithium secondary battery
US10840499B2 (en) 2016-11-15 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US10854876B2 (en) 2016-11-15 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
WO2018100792A1 (en) * 2016-12-02 2018-06-07 パナソニックIpマネジメント株式会社 Positive electrode active material and battery using positive electrode active material
US11081687B2 (en) 2016-12-02 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery including positive-electrode active material
CN109565046B (en) * 2016-12-02 2022-07-12 松下知识产权经营株式会社 Positive electrode active material and battery using same
JPWO2018100792A1 (en) * 2016-12-02 2019-10-17 パナソニックIpマネジメント株式会社 Positive electrode active material and battery using positive electrode active material
CN109565046A (en) * 2016-12-02 2019-04-02 松下知识产权经营株式会社 Positive active material and the battery for using positive active material
US11043661B2 (en) 2017-01-19 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxyfluoride and organosilicon compound, and battery including positive electrode containing the positive electrode active material
US10833322B2 (en) 2017-01-19 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
CN110476291A (en) * 2017-04-28 2019-11-19 株式会社钟化 Non-aqueous electrolyte secondary battery and its manufacturing method
CN110165170B (en) * 2019-05-15 2021-08-31 深圳大学 Negative electrode material for lithium ion battery and preparation method thereof
CN110165170A (en) * 2019-05-15 2019-08-23 深圳大学 A kind of cathode material of lithium ion battery and preparation method thereof
CN115000429A (en) * 2022-04-07 2022-09-02 湖北大学 LNCAF electrode material, fuel cell and preparation method thereof
CN115000429B (en) * 2022-04-07 2024-01-16 湖北大学 LNCAF electrode material, fuel cell and preparation method thereof

Also Published As

Publication number Publication date
JP4197002B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP4197002B2 (en) Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same
JP4061668B2 (en) Lithium ion non-aqueous electrolyte secondary battery
US6037095A (en) Non-aqueous lithium ion secondary battery
JP4171848B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP4022937B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP4200539B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP4784608B2 (en) Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same
KR102202822B1 (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
JP4080337B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery including the same
JP5100024B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5897356B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2006278341A (en) Lithium ion nonaqueous electrolyte secondary cell
JP5078113B2 (en) Lithium manganate for positive electrode secondary active material for lithium secondary battery, method for producing lithium manganate for positive electrode secondary active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
KR101216886B1 (en) Lithium Manganese Nickel Composite Oxide, Method For Preparing The Same and Lithium Secondary Battery Using The Same
KR20190042102A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
KR102420738B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using this positive electrode active material
KR20090092729A (en) Lithium nickel manganese cobalt composite oxide for positive electrode active material of lithium secondary batteries, method of producing thereof, and lithium secondary batteries
KR102201686B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102289691B1 (en) Positive active material, method of manufacturing the same, and positive electrode and rechargeable lithium battery including the same
JP5103923B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2015503181A (en) Positive electrode active material, lithium secondary battery for controlling impurities or swelling, and method for producing positive electrode active material with improved productivity
JP4235702B2 (en) Positive electrode active material, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
JP7336648B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
KR102420737B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using this positive electrode active material
KR101392525B1 (en) Positive active material, method of preparing the same, and lithium battery using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees