JP2001297761A - Positive electrode activator for nonaqueous electrolyte secondary cell - Google Patents

Positive electrode activator for nonaqueous electrolyte secondary cell

Info

Publication number
JP2001297761A
JP2001297761A JP2000110251A JP2000110251A JP2001297761A JP 2001297761 A JP2001297761 A JP 2001297761A JP 2000110251 A JP2000110251 A JP 2000110251A JP 2000110251 A JP2000110251 A JP 2000110251A JP 2001297761 A JP2001297761 A JP 2001297761A
Authority
JP
Japan
Prior art keywords
lithium
cobalt
positive electrode
ratio
double oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000110251A
Other languages
Japanese (ja)
Inventor
Junya Tada
準也 多田
Shigeki Kubo
茂喜 久保
Hayami Sogabe
速美 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000110251A priority Critical patent/JP2001297761A/en
Publication of JP2001297761A publication Critical patent/JP2001297761A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode activator which enables to manufacture a nonaqueous electrolyte secondary cell with good cycle characteristics, durability, and large discharging capacity at high efficiency discharging. SOLUTION: The crystal system of a double oxide of lithium and cobalt, synthesized by granulating and burning the mixed powder of lithium compound and cobalt compound with molar ratio Li/Co ranging from 0.98 to 1.005, is hexagonal. At the X-ray diffraction pattern of powder method by CuKα-ray, diffraction strength of crystal face (003) I(003) and that of crystal face (104) I(104) are in the ratio of 2.0<=I(003)/I(104)<=4.0, or preferably 2.5<=I(003)/I(104)<=3.5. For the above double oxide of lithium and cobalt, dispersion of molar ratio Li/Co is made less than 0.04 or preferably less than 0.03.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極にリチウム、
リチウム合金またはカーボンを用いる非水系電解質二次
電池の正極活物質に関し、特に、高率放電特性を向上さ
せることを目的とした正極活物質の改良に関する。
TECHNICAL FIELD The present invention relates to a method for producing a negative electrode comprising lithium,
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery using a lithium alloy or carbon, and more particularly to an improvement in a positive electrode active material for the purpose of improving high-rate discharge characteristics.

【0002】[0002]

【従来の技術】近年、携帯電話やノート型パソコンなど
の携帯機器の普及にともない、高いエネルギー密度を有
し、小型、軽量で、高い容量を持つ二次電池の開発が行
われてきている。このような二次電池として、リチウ
ム、リチウム合金またはカーボンを負極として用いるリ
チウムイオン二次電池があり、研究開発が盛んに行われ
ている。
2. Description of the Related Art In recent years, with the spread of portable devices such as mobile phones and notebook computers, secondary batteries having a high energy density, small size, light weight and high capacity have been developed. As such a secondary battery, there is a lithium ion secondary battery using lithium, a lithium alloy or carbon as a negative electrode, and research and development have been actively conducted.

【0003】特に、リチウムコバルト複酸化物(LiC
oO2)を正極活物質に用いたリチウムイオン二次電池
は、4V級の高い電圧が得られるため、高エネルギー密
度を持つ二次電池として期待され、実用化が進んでい
る。
[0003] In particular, lithium cobalt double oxide (LiC
Lithium-ion secondary batteries using oO 2 ) as a positive electrode active material are expected to be secondary batteries having a high energy density because a high voltage of 4 V class can be obtained, and their practical use is progressing.

【0004】したがって、リチウムコバルト複酸化物を
用いた二次電池では、優れたサイクル特性および高率充
放電特性、保存特性(自己放電や保存による放電容量の
低下に関する特性)を得るための開発が、これまで数多
く行われてきており、すでに多くの成果が報告されてい
る。
Therefore, in a secondary battery using a lithium-cobalt double oxide, development for obtaining excellent cycle characteristics, high-rate charge / discharge characteristics, and storage characteristics (characteristics relating to self-discharge and reduction in discharge capacity due to storage) has been developed. Many have been performed so far, and many results have already been reported.

【0005】たとえば、特公昭63−59507号公報
で、層状結晶構造を有するLixCoO2が開示され、特
開昭62−90863号公報では、LixCoO2中のC
o元素の一部をAl、In、Sn、W、Mn、Ta、T
i、Nb等の異種金属で置換して、保存特性を改善する
試みがなされている。
[0005] For example, in Japanese Patent Publication No. Sho 63-59507, discloses Li x CoO 2 having a layered crystal structure, in JP-A-62-90863, C in Li x CoO 2
Part of the element o is Al, In, Sn, W, Mn, Ta, T
Attempts have been made to improve storage characteristics by substituting with different metals such as i and Nb.

【0006】また、特開平7−335200号公報にあ
るように、LixyCoO2(但し、xは1.00≦x
≦1.10、yは0.01≦y≦0.04である)で、
粉末X線回折図形において、(003)結晶面の回折強
度I(003)と、(104)結晶面の回折強度I(1
04)との比が、 4≦I(003)/I(104)≦25 である正極活物質で構成した二次電池で、優れた保存特
性が得られるとの提案がなされている。I(003)/
I(104)は、層状結晶構造の指標となるものであ
り、この値が大きいもの程、層状結晶構造が高度に発達
していることを意味する。
As disclosed in Japanese Patent Application Laid-Open No. 7-335200, Li x V y CoO 2 (where x is 1.00 ≦ x
≦ 1.10, y is 0.01 ≦ y ≦ 0.04)
In the powder X-ray diffraction pattern, the (003) crystal plane diffraction intensity I (003) and the (104) crystal plane diffraction intensity I (1
It has been proposed that a secondary battery composed of a positive electrode active material having a ratio of 4 ≦ I (003) / I (104) ≦ 25 has excellent storage characteristics. I (003) /
I (104) is an index of the layered crystal structure, and a larger value indicates that the layered crystal structure is more highly developed.

【0007】また、特開平5−258751号公報で
は、LixCoOz(但し、0<x≦1.3、1.8<z
<2.2)において、X線回折強度で、 0.4≦I(104)/I(003)≦0.75 (書き換えると、約1.33≦I(003)/I(10
4)≦2.5)の範囲にある正極活物質で、高率放電容
量の大きな二次電池が得られるとの提案がなされてい
る。
In Japanese Patent Application Laid-Open No. Hei 5-258751, Li x CoO z (where 0 <x ≦ 1.3, 1.8 <z
In <2.2), in the X-ray diffraction intensity, 0.4 ≦ I (104) / I (003) ≦ 0.75 (When rewritten, about 1.33 ≦ I (003) / I (10
It has been proposed that a secondary battery having a large high-rate discharge capacity can be obtained with the positive electrode active material in the range of 4) ≦ 2.5).

【0008】しかしながら、特公昭63−59507号
公報、特開昭62−90863号公報の発明では、まだ
二次電池の放電容量は十分ではなく、特開平7−335
200号公報のように、X線回折強度比で、 4≦I(003)/I(104)≦25 の範囲になっていると、層状結晶構造を有していて保存
特性は優れたものとなるが、LiCoO2の粗大な板状
結晶が増えることとなり、サイクル特性が悪くなり、高
率放電容量も大きくならないことがわかってきた。
However, in the inventions of JP-B-63-59507 and JP-A-62-90863, the discharge capacity of the secondary battery is not yet sufficient, and
If the X-ray diffraction intensity ratio is in the range of 4 ≦ I (003) / I (104) ≦ 25 as in JP-A-200, it is considered that the compound has a layered crystal structure and has excellent storage characteristics. However, it has been found that the number of coarse plate-like crystals of LiCoO 2 increases, the cycle characteristics deteriorate, and the high-rate discharge capacity does not increase.

【0009】また、特開平5−258751号公報にあ
るように、X線回折強度比で、 0.4≦I(104)/I(003)≦0.75 (書き換えると、約1.33≦I(003)/I(10
4)≦2.5)の範囲になっていると、層状結晶構造を
持つ粒子が減少しており、保存特性が劣化し、充放電容
量そのものが低くなることがわかってきた。
Further, as disclosed in Japanese Patent Application Laid-Open No. 5-258751, the X-ray diffraction intensity ratio is 0.4 ≦ I (104) / I (003) ≦ 0.75 (in the case of rewriting, about 1.33 ≦ I (003) / I (10
It has been found that when the content is in the range of 4) ≦ 2.5), particles having a layered crystal structure are reduced, storage characteristics are deteriorated, and the charge / discharge capacity itself is reduced.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明の目的
は、サイクル特性、保存特性、および高率放電を行なっ
た場合の放電容量が優れた非水電解質二次電池の製造が
可能な正極活物質を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a positive electrode active material capable of producing a non-aqueous electrolyte secondary battery having excellent cycle characteristics, storage characteristics, and excellent discharge capacity when high-rate discharge is performed. To provide a substance.

【0011】[0011]

【課題を解決するための手段】この問題を解消するため
に、粉末X線回折法を用いて種々のリチウムコバルト複
酸化物の結晶形態を検討した結果、本発明者らは、特定
の2個の格子面の回折強度(なお、本明細書において
は、回折線のピーク高さを回折強度とする)の比の値
と、サイクル特性、保存特性および高率放電容量との間
に、密接な相関関係が存在することを見出した。
Means for Solving the Problems In order to solve this problem, the inventors examined the crystal morphology of various lithium-cobalt double oxides by using the powder X-ray diffraction method. Between the value of the ratio of the diffraction intensity of the lattice plane (the peak height of the diffraction line is defined as the diffraction intensity in this specification) and the cycle characteristics, storage characteristics, and high-rate discharge capacity. We found that a correlation exists.

【0012】すなわち、本発明の非水系電解質二次電池
用正極活物質は、リチウム化合物とコバルト化合物を、
Li/Coモル比で0.98から1.005の範囲で混
合した混合粉を、造粒成形し、焼成することにより、合
成されたリチウムコバルト複酸化物であって、六方晶型
を有し、CuKα線による粉末X線回折図形において、
(003)結晶面の回折強度I(003)と、(10
4)結晶面の回折強度I(104)との比が、 2.0≦I(003)/I(104)≦4.0 である。
That is, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention comprises a lithium compound and a cobalt compound,
A lithium-cobalt double oxide synthesized by granulating and firing a mixed powder mixed in a Li / Co molar ratio of 0.98 to 1.005, and having a hexagonal type. In the powder X-ray diffraction pattern by CuKα ray,
(003) The diffraction intensity I (003) of the crystal plane and (10
4) The ratio of the crystal plane to the diffraction intensity I (104) is 2.0 ≦ I (003) / I (104) ≦ 4.0.

【0013】さらに好ましくは、 2.5≦I(003)/I(104)≦3.5 である。More preferably, 2.5 ≦ I (003) / I (104) ≦ 3.5.

【0014】上記リチウムコバルト複酸化物としては、
リチウム化合物とコバルト化合物を混合した混合粉の各
部のLi/Coモル比のばらつき幅が、0.04以下で
あり、さらに好ましくは0.03以下である。
As the lithium cobalt double oxide,
The variation width of the Li / Co molar ratio of each part of the mixed powder obtained by mixing the lithium compound and the cobalt compound is 0.04 or less, more preferably 0.03 or less.

【0015】[0015]

【発明の実施の形態】本発明における上記特定のリチウ
ムコバルト複酸化物は、たとえば炭酸リチウム等のリチ
ウム塩、水酸化リチウム、酸化リチウムなどのリチウム
化合物と、炭酸コバルト等のコバルト塩、酸化コバル
ト、オキシ水酸化コバルト、水酸化コバルトなどのコバ
ルト化合物とからなる混合物を空気中において800℃
〜1000℃程度の温度範囲で焼成することにより得ら
れる。
BEST MODE FOR CARRYING OUT THE INVENTION The above specific lithium-cobalt double oxide in the present invention is, for example, a lithium salt such as lithium carbonate, a lithium compound such as lithium hydroxide or lithium oxide, a cobalt salt such as cobalt carbonate, a cobalt oxide or the like. A mixture comprising a cobalt compound such as cobalt oxyhydroxide and cobalt hydroxide is heated at 800 ° C. in air.
It is obtained by firing in a temperature range of about 1000 ° C.

【0016】しかし、X線回折強度比で、 2.0≦I(003)/I(104)≦4.0 の範囲内にあるものを得るためには、リチウム化合物と
コバルト化合物の混合状態を高めておく必要があり、両
化合物を混合した状態で各所からサンプリングを行な
い、各混合粉のLiとCoの分析を行ない、Li/Co
モル比のばらつき幅が0.04以下であることが必要で
ある。
However, in order to obtain an X-ray diffraction intensity ratio in the range of 2.0 ≦ I (003) / I (104) ≦ 4.0, the mixed state of the lithium compound and the cobalt compound must be changed. It is necessary to raise the level, and sampling is performed from various places in a state where both compounds are mixed, and Li and Co of each mixed powder are analyzed, and Li / Co
The variation width of the molar ratio needs to be 0.04 or less.

【0017】Li/Coモル比のばらつき幅が0.04
を越えると、混合粉の中で局所的にLiが多い部分がで
き、その部分では、同条件で焼成しても1次粒子の結晶
成長が早まり、結果として粗大化した板状の層状結晶構
造を持つリチウムコバルト複酸化物ができやすいためと
推定される。
The variation width of the Li / Co molar ratio is 0.04
Is exceeded, there is a locally high Li portion in the mixed powder, and in that portion, even if fired under the same conditions, the crystal growth of the primary particles is accelerated, and as a result, the plate-shaped layered crystal structure which is coarsened It is estimated that a lithium-cobalt double oxide having

【0018】本発明におけるリチウムコバルト複酸化物
は、一般に行われているように、これをアセチレンブラ
ック、カーボンブラック等の導電材およびポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PFV)等の結着剤と混練し正極合剤とする。
As is generally practiced, the lithium-cobalt double oxide of the present invention is formed from a conductive material such as acetylene black and carbon black and a binder such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PFV). Knead with the adhesive to form a positive electrode mixture.

【0019】負極材料としては、リチウムやリチウム合
金、リチウムを吸蔵放出可能な炭素材料を用いる。炭素
材料を用いる場合は、これをポリテトラフルオロエチレ
ン(PTFE)、ポリフッ化ビニリデン(PFV)等の
結着剤と混練し負極合剤とする。
As the negative electrode material, lithium, a lithium alloy, or a carbon material capable of inserting and extracting lithium is used. When a carbon material is used, it is kneaded with a binder such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PFV) to form a negative electrode mixture.

【0020】セパレータとしては、イオン導電性に優れ
たポリエチレンまたはポリプロピレン製の微孔性薄膜な
どが用いられ、電解液としては、プロピレンカーボネー
トとジメトキシエタンとの混合溶媒に過塩素酸リチウム
を溶かしたものなど従来非水系電池用として使用されて
いる種々のものを用いることができる。
As the separator, a microporous thin film made of polyethylene or polypropylene having excellent ionic conductivity is used. As the electrolytic solution, a solution obtained by dissolving lithium perchlorate in a mixed solvent of propylene carbonate and dimethoxyethane is used. For example, various ones conventionally used for non-aqueous batteries can be used.

【0021】[0021]

【実施例】以下、本発明を実施例に基づき詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments.

【0022】(実施例1)リチウム/コバルト比が1.
0となるように、炭酸リチウム(Li2CO3;純度99
%)3.788kg、酸化コバルト(Co34;Co含
有量73.3重量%)8.261kgを、V型混合機で
7分間予備混合を行ない、混合造粒機を用いて10分間
混合を行った。
(Example 1) The lithium / cobalt ratio was 1.
Lithium carbonate (Li 2 CO 3 ; purity 99)
%) And 7.261 kg of cobalt oxide (Co 3 O 4 ; Co content: 73.3% by weight) were premixed for 7 minutes with a V-type mixer and mixed for 10 minutes using a mixing granulator. Was done.

【0023】混合状態においてサンプリング(n=1
0)を行ない、混合粉の各部のLi/Coモル比のばら
つき幅を見ると、0.03であった。
In the mixed state, sampling (n = 1)
0), and the variation width of the Li / Co molar ratio in each part of the mixed powder was 0.03.

【0024】4wt%のPVA(ポリビニルアルコー
ル)水溶液3012gを加えて、15分間造粒し、3〜
5mmの造粒物を作製した。この造粒物を100℃で2
時間乾燥し、さらにマグネシアセッターを用いて、酸素
流量3リットル/minで、加熱速度5℃/minによ
り950℃まで昇温し、15時間保持した。このように
焼成したリチウムコバルト複酸化物を解砕し、粒度を4
0μm以下にした。
312 g of a 4 wt% PVA (polyvinyl alcohol) aqueous solution is added, and the mixture is granulated for 15 minutes.
A 5 mm granulated product was produced. This granulated product is heated at 100 ° C. for 2 hours.
After drying for an hour, the temperature was further increased to 950 ° C. at a heating rate of 5 ° C./min at an oxygen flow rate of 3 liter / min using a magnesia setter and maintained for 15 hours. The lithium-cobalt double oxide calcined in this manner is crushed to a particle size of 4
The thickness was set to 0 μm or less.

【0025】X線回折 Cu管球を用いて、40kV、150mAを印加し、サ
ンプリング幅を0.02°、走査速度を4.0°/mi
n、発散スリット1.00°、散乱スリット1.00
°、受光スリット0.3mmとして測定した。得られた
回折図形より、該リチウムコバルト複酸化物は、六方晶
型の結晶であり、LiCoO2の(003)面および
(104)面のピーク強度を求め、X線強度比を求めた
ところ、 I(003)/I(104)=2.8 であった。
Using an X-ray diffraction Cu tube, a voltage of 40 kV and 150 mA is applied, a sampling width is 0.02 °, and a scanning speed is 4.0 ° / mi.
n, divergence slit 1.00 °, scattering slit 1.00
°, the light receiving slit was measured as 0.3 mm. From the obtained diffraction pattern, the lithium-cobalt double oxide was a hexagonal crystal, and the peak intensities of the (003) plane and the (104) plane of LiCoO 2 were determined, and the X-ray intensity ratio was determined. I (003) / I (104) = 2.8.

【0026】CuKα線を用いた粉末X線回折による生
成相の同定では、JCPDSのファイル番号16−42
7番のLiCoO2以外の相としては、Li2CO3とC
3 4の相が痕跡程度検出された以外は、認められなか
った。
Raw material by powder X-ray diffraction using CuKα ray
For identification of the phase, JCPDS file number 16-42
7th LiCoOTwoThe other phase is LiTwoCOThreeAnd C
oThreeO FourIs not recognized, except for the presence of traces of
Was.

【0027】電池評価 さらに、得られたコバルト酸リチウムを、活物質として
用いて電池を組み、充放電容量を測定した。
Battery Evaluation Further, a battery was assembled using the obtained lithium cobaltate as an active material, and the charge / discharge capacity was measured.

【0028】図1は、本発明の実施例の正極活物質を組
み込んだ二次電池の一部破断斜視図である。
FIG. 1 is a partially cutaway perspective view of a secondary battery incorporating a positive electrode active material according to an embodiment of the present invention.

【0029】前記コバルト酸リチウムの正極活物質と、
アセチレンブラックと、ポリテトラフッ化エチレン樹脂
(PTFE)とを、80:15:5の重量比で混合して
合剤を作製し、前記合剤から50mgをはかり取って、
200MPaの圧力で、直径10mmφのディスクにプ
レス成型した。前記ディスクを、真空乾燥機中120℃
で1晩乾燥して正極5とした。
The lithium cobaltate positive electrode active material,
Acetylene black and polytetrafluoroethylene resin (PTFE) were mixed at a weight ratio of 80: 15: 5 to prepare a mixture, and 50 mg was weighed out of the mixture,
It was press-molded at a pressure of 200 MPa into a disk having a diameter of 10 mmφ. The disc was placed in a vacuum dryer at 120 ° C.
And dried overnight to form a positive electrode 5.

【0030】該正極5を、Ar雰囲気で露点が−80℃
に制御されたグローブボックス中で、2032型コイン
電池(ボタン型電池とも呼ぶ)に組み立てた。負極2に
は、直径16mmφ、厚さ1mmのLi金属を用い、電
解液には、1MのLiPF6を支持塩とするエチレンカ
ーボネート(EC)と、1,2ジメトキシエタン(DM
E)の等量混合溶液を用いた。セパレータ3には、膜厚
25μmのポリエチレン多孔膜を用いた。図中に電解液
を示していないが、電解液は電池内部の空隙に存在す
る。
The positive electrode 5 was heated at a dew point of -80 ° C. in an Ar atmosphere.
Was assembled into a 2032 type coin battery (also called a button type battery) in a controlled glove box. For the negative electrode 2, Li metal having a diameter of 16 mmφ and a thickness of 1 mm was used. For the electrolytic solution, ethylene carbonate (EC) using 1 M LiPF 6 as a supporting salt, and 1,2-dimethoxyethane (DM)
The mixed solution of an equal amount of E) was used. As the separator 3, a 25 μm-thick polyethylene porous film was used. Although the electrolytic solution is not shown in the figure, the electrolytic solution exists in a void inside the battery.

【0031】組み立てられた2032型コイン電池は、
組立後10時間程、放置し、OCVが安定した後、充電
電流密度1.0mA/cm2で、カットオフ電圧4.3
Vまで充電したのち、2時間放置し、放電電流密度1.
0mA/cm2で、3.0Vまで放電試験を行った。こ
の初回の放電容量を測定したところ、147mAh/g
であった。
The assembled 2032 type coin battery is
After assembling for about 10 hours, after the OCV was stabilized, the charge current density was 1.0 mA / cm 2 and the cutoff voltage was 4.3.
After charging the battery to V, the battery was left for 2 hours, and the discharge current density was 1.
A discharge test was performed at 0 mA / cm 2 up to 3.0 V. When this initial discharge capacity was measured, it was 147 mAh / g.
Met.

【0032】さらに、前記と同じ条件で充放電試験を繰
り返して、100回目の放電容量を測定した。容量維持
率は、次式により求めた。
Further, the charge / discharge test was repeated under the same conditions as above, and the 100th discharge capacity was measured. The capacity retention rate was determined by the following equation.

【0033】容量維持率(%)=100回目の放電容量
/初回の放電容量×100 容量維持率は83%であった。
Capacity retention rate (%) = 100th discharge capacity / initial discharge capacity × 100 The capacity retention rate was 83%.

【0034】放電電流密度依存性 新たに前記と同様にして、2032型コイン電池を組立
後、10時間程、放置し、OCVが安定した後、充電電
流密度1.0mA/cm2で、カットオフ電圧4.3V
まで充電した後、2時間放置し、放電電流密度1.0m
A/cm2で、カットオフ電圧3.0Vまで放電試験を
行い、放電容量(1)を求めた。
Dependency on Discharge Current Density After assembling a 2032 type coin battery, the OCV was allowed to stand for about 10 hours and the cut-off was performed at a charge current density of 1.0 mA / cm 2. 4.3V voltage
After charging the battery for 2 hours, the discharge current density was 1.0 m
A discharge test was performed at A / cm 2 up to a cutoff voltage of 3.0 V, and a discharge capacity (1) was obtained.

【0035】放電試験終了後、2時間放置した後、再度
充電電流密度1.0mA/cm2で、カットオフ電圧
4.3Vまで充電したのち、2時間放置し、放電電流密
度を8.0mA/cm2にして、カットオフ電圧3.0
Vまで放電試験を行い、放電容量(8)を求めた。放電
電流密度依存性は、次式により求めた。
After the discharge test was completed, the device was left for 2 hours, charged again at a charge current density of 1.0 mA / cm 2 to a cutoff voltage of 4.3 V, and then left for 2 hours to increase the discharge current density to 8.0 mA / cm. cm 2 and cutoff voltage of 3.0
A discharge test was performed up to V to determine a discharge capacity (8). The discharge current density dependency was determined by the following equation.

【0036】放電電流密度依存性=放電容量(8)/放
電容量(1)×100 放電電流密度依存性は、70%であった。
Discharge current density dependency = discharge capacity (8) / discharge capacity (1) × 100 The discharge current density dependency was 70%.

【0037】これらの結果を表2に示す。Table 2 shows the results.

【0038】(実施例2)リチウム/コバルト比が1.
0となるように、炭酸リチウム(Li2CO3;純度99
%)3.788kg、酸化コバルト(Co34;Co含
有量73.3重量%)8.261kgを、V型混合機で
7分間予備混合を行ない、混合造粒機を用いて15分間
混合を行った。
Example 2 When the lithium / cobalt ratio was 1.
Lithium carbonate (Li 2 CO 3 ; purity 99)
%) And 7.261 kg of cobalt oxide (Co 3 O 4 ; Co content: 73.3% by weight) were premixed for 7 minutes with a V-type mixer and mixed for 15 minutes using a mixing granulator. Was done.

【0039】混合状態においてサンプリング(n=1
0)を行ない、混合粉の各部のLi/Coモル比のばら
つき幅を見ると、0.03であった。
In the mixed state, sampling (n = 1)
0), and the variation width of the Li / Co molar ratio in each part of the mixed powder was 0.03.

【0040】4wt%のPVA(ポリビニルアルコー
ル)水溶液3012gを加えて、15分間造粒し、3〜
5mmの造粒物を作製した。この造粒物を100℃で2
時間乾燥し、さらにマグネシアセッターを用いて、酸素
流量3リットル/minで、加熱速度5℃/minによ
り900℃まで昇温し、18時間保持した。このように
焼成したリチウムコバルト複酸化物を解砕し、粒度を4
0μm以下にした。
[0040] A 4 wt% aqueous solution of PVA (polyvinyl alcohol) (3012 g) was added and granulated for 15 minutes.
A 5 mm granulated product was produced. This granulated product is heated at 100 ° C. for 2 hours.
After drying for an hour, the temperature was raised to 900 ° C. at a heating rate of 5 ° C./min at an oxygen flow rate of 3 liter / min using a magnesia setter and maintained for 18 hours. The lithium-cobalt double oxide calcined in this manner is crushed to a particle size of 4
The thickness was set to 0 μm or less.

【0041】X線回折 実施例1と同様にして、得られたX線回折図形より、該
リチウムコバルト複酸化物は、六方晶型の結晶であり、
LiCoO2の(003)面および(104)面のピー
ク強度を求め、X線強度比を求めたところ、 I(003)/I(104)=2.6 であった。
X-ray Diffraction In the same manner as in Example 1, the obtained X-ray diffraction pattern showed that the lithium-cobalt double oxide was a hexagonal crystal.
When the peak intensities of the (003) plane and the (104) plane of LiCoO 2 were determined and the X-ray intensity ratio was determined, I (003) / I (104) = 2.6.

【0042】実施例1と同様に、生成相は、LiCoO
2以外の相としては、Li2Co3とCo34の相が痕跡
程度検出された以外は、認められなかった。
As in Example 1, the produced phase was LiCoO
No phases other than 2 were recognized except for the traces of Li 2 Co 3 and Co 3 O 4 phases.

【0043】電池評価 さらに、電池評価として、実施例1と同様に初期放電容
量、容量依存率および放電電流密度依存性を測定した。
Battery Evaluation Further, as the battery evaluation, the initial discharge capacity, the capacity dependency ratio and the discharge current density dependency were measured in the same manner as in Example 1.

【0044】これらの結果を表2に示す。Table 2 shows the results.

【0045】(実施例3)リチウム/コバルト比が1.
0となるように、炭酸リチウム(Li2CO3;純度99
%)3.788kg、酸化コバルト(Co34;Co含
有量73.3重量%)8.261kgを、V型混合機で
10分間予備混合を行ない、混合造粒機を用いて10分
間混合を行った。
Example 3 When the lithium / cobalt ratio was 1.
Lithium carbonate (Li 2 CO 3 ; purity 99)
%) And 7.261 kg of cobalt oxide (Co 3 O 4 ; Co content: 73.3% by weight) were premixed for 10 minutes with a V-type mixer and mixed for 10 minutes with a mixing granulator. Was done.

【0046】混合状態においてサンプリング(n=5)
を行ない、混合粉の各部のLi/Coモル比のばらつき
幅を見ると、0.026であった。
Sampling in mixed state (n = 5)
Was performed and the variation width of the Li / Co molar ratio of each part of the mixed powder was 0.026.

【0047】4wt%のPVA(ポリビニルアルコー
ル)水溶液3012gを加えて、15分間造粒し、3〜
5mmの造粒物を作製した。この造粒物を100℃で2
時間乾燥し、さらにマグネシアセッターを用いて、酸素
流量3リットル/minで、加熱速度5℃/minによ
り1000℃まで昇温し、10時間保持した。このよう
に焼成したリチウムコバルト複酸化物を解砕し、粒度を
40μm以下にした。
3012 g of a 4 wt% PVA (polyvinyl alcohol) aqueous solution was added, and the mixture was granulated for 15 minutes.
A 5 mm granulated product was produced. This granulated product is heated at 100 ° C. for 2 hours.
After drying for an hour, the temperature was further increased to 1000 ° C. at a heating rate of 5 ° C./min at an oxygen flow rate of 3 liter / min using a magnesia setter and maintained for 10 hours. The thus-calcined lithium-cobalt double oxide was pulverized to a particle size of 40 μm or less.

【0048】X線回折 実施例1と同様にして、得られたX線回折図形より、該
リチウムコバルト複酸化物は、六方晶型の結晶であり、
LiCoO2の(003)面および(104)面のピー
ク強度を求め、X線強度比を求めたところ、 I(003)/I(104)=3.4 であった。
X-Ray Diffraction In the same manner as in Example 1, the obtained X-ray diffraction pattern showed that the lithium-cobalt double oxide was a hexagonal crystal.
When the peak intensities of the (003) plane and the (104) plane of LiCoO 2 were determined and the X-ray intensity ratio was determined, I (003) / I (104) = 3.4.

【0049】実施例1と同様に、生成相は、LiCoO
2以外の相としては、Li2Co3とCo34の相が痕跡
程度検出された以外は、認められなかった。
As in Example 1, the produced phase was LiCoO
No phases other than 2 were recognized except for the traces of Li 2 Co 3 and Co 3 O 4 phases.

【0050】電池評価 さらに、電池評価として、実施例1と同様に初期放電容
量、容量依存率および放電電流密度依存性を測定した。
Battery Evaluation Further, as the battery evaluation, the initial discharge capacity, the capacity dependence and the discharge current density dependence were measured in the same manner as in Example 1.

【0051】これらの結果を表1および表2に示す。The results are shown in Tables 1 and 2.

【0052】(実施例4)リチウム/コバルト比が1.
0となるように、炭酸リチウム(Li2CO3;純度99
%)3.788kg、酸化コバルト(Co34;Co含
有量73.3重量%)8.261kgを、高速混合細粒
機で3分間混合を行なった。
Example 4 The lithium / cobalt ratio was 1.
Lithium carbonate (Li 2 CO 3 ; purity 99)
%) And 8.261 kg of cobalt oxide (Co 3 O 4 ; Co content: 73.3% by weight) were mixed for 3 minutes by a high-speed mixing fine granulator.

【0053】混合状態においてサンプリング(n=5)
を行ない、混合粉の各部のLi/Coモル比のばらつき
幅を見ると、0.022であった。
Sampling in a mixed state (n = 5)
Was performed and the variation width of the Li / Co molar ratio of each part of the mixed powder was 0.022.

【0054】4wt%のPVA(ポリビニルアルコー
ル)水溶液3012gを加えて、15分間造粒し、1〜
3mmの造粒物を作製した。この造粒物を100℃で2
時間乾燥し、さらにマグネシアセッターを用いて、酸素
流量3リットル/minで、加熱速度5℃/minによ
り960℃まで昇温し、13時間保持した。このように
焼成したリチウムコバルト複酸化物を解砕し、粒度を4
0μm以下にした。
3012 g of a 4 wt% PVA (polyvinyl alcohol) aqueous solution was added and granulated for 15 minutes.
A 3 mm granulated product was produced. This granulated product is heated at 100 ° C. for 2 hours.
After drying for an hour, the temperature was further increased to 960 ° C. at a heating rate of 5 ° C./min at an oxygen flow rate of 3 liter / min using a magnesia setter and maintained for 13 hours. The lithium-cobalt double oxide calcined in this manner is crushed to a particle size of 4
The thickness was set to 0 μm or less.

【0055】X線回折 実施例1と同様にして、得られたX線回折図形より、該
リチウムコバルト複酸化物は、六方晶型の結晶であり、
LiCoO2の(003)面および(104)面のピー
ク強度を求め、X線強度比を求めたところ、 I(003)/I(104)=3.0 であった。
X-Ray Diffraction In the same manner as in Example 1, the obtained X-ray diffraction pattern showed that the lithium-cobalt double oxide was a hexagonal crystal.
When the peak intensities of the (003) plane and the (104) plane of LiCoO 2 were determined and the X-ray intensity ratio was determined, I (003) / I (104) = 3.0.

【0056】実施例1と同様に、生成相は、LiCoO
2以外の相としては、Li2Co3とCo34の相が痕跡
程度検出された以外は、認められなかった。
As in Example 1, the produced phase was LiCoO
No phases other than 2 were recognized except for the traces of Li 2 Co 3 and Co 3 O 4 phases.

【0057】電池評価 さらに、電池評価として、実施例1と同様に初期放電容
量、容量依存率および放電電流密度依存性を測定した。
Battery Evaluation Further, as the battery evaluation, the initial discharge capacity, the capacity dependency ratio and the discharge current density dependency were measured as in Example 1.

【0058】これらの結果を表1および表2に示す。Tables 1 and 2 show the results.

【0059】(比較例1)実施例1と同様に、リチウム
/コバルト比が1.0となるように、炭酸リチウム(L
2CO3;純度99%)3.788kg、酸化コバルト
(Co34;Co含有量73.3重量%)8.261k
gを、V型混合機で7分間予備混合を行ない、本比較例
では、混合造粒機を用いて3分間混合を行った。
Comparative Example 1 As in Example 1, lithium carbonate (L
3.788 kg of i 2 CO 3 ; purity: 99%; 8.261 k of cobalt oxide (Co 3 O 4 ; Co content: 73.3% by weight)
g was premixed for 7 minutes with a V-type mixer, and in this comparative example, mixing was performed for 3 minutes using a mixing granulator.

【0060】混合状態においてサンプリング(n=1
0)を行ない、混合粉の各部のLi/Coモル比のばら
つき幅を見ると、0.05であった。
In the mixed state, sampling (n = 1)
0), and the variation range of the Li / Co molar ratio in each part of the mixed powder was 0.05.

【0061】4wt%のPVA(ポリビニルアルコー
ル)水溶液3012gを加えて、15分間造粒し、3〜
5mmの造粒物を作製した。この造粒物を100℃で2
時間乾燥し、さらにマグネシアセッターを用いて、酸素
流量3リットル/minで、加熱速度5℃/minによ
り950℃まで昇温し、15時間保持した。このように
焼成したリチウムコバルト複酸化物を解砕し、粒度を4
0μm以下にした。
3012 g of a 4 wt% PVA (polyvinyl alcohol) aqueous solution is added, and granulated for 15 minutes.
A 5 mm granulated product was produced. This granulated product is heated at 100 ° C. for 2 hours.
After drying for an hour, the temperature was further increased to 950 ° C. at a heating rate of 5 ° C./min at an oxygen flow rate of 3 liter / min using a magnesia setter and maintained for 15 hours. The lithium-cobalt double oxide calcined in this manner is crushed to a particle size of 4
The thickness was set to 0 μm or less.

【0062】X線回折 実施例1と同様にして、得られたX線回折図形より、該
リチウムコバルト複酸化物は、六方晶型の結晶であり、
LiCoO2の(003)面および(104)面のピー
ク強度を求め、X線強度比を求めたところ、 I(003)/I(104)=5.8 であった。
X-ray Diffraction In the same manner as in Example 1, the obtained X-ray diffraction pattern showed that the lithium-cobalt double oxide was a hexagonal crystal.
When the peak intensities of the (003) plane and the (104) plane of LiCoO 2 were determined and the X-ray intensity ratio was determined, I (003) / I (104) = 5.8.

【0063】実施例1と同様に、生成相は、LiCoO
2以外の相としては、Li2Co3とCo34の相が痕跡
程度検出された以外は、認められなかった。
As in Example 1, the produced phase was LiCoO
No phases other than 2 were recognized except for the traces of Li 2 Co 3 and Co 3 O 4 phases.

【0064】電池評価 さらに、電池評価として、実施例1と同様に初期放電容
量、容量依存率および放電電流密度依存性を測定した。
Battery evaluation Further, as the battery evaluation, the initial discharge capacity, the capacity dependency ratio and the discharge current density dependency were measured in the same manner as in Example 1.

【0065】これらの結果を表2に示す。Table 2 shows the results.

【0066】(比較例2)実施例1と同様に、リチウム
/コバルト比が1.0となるように、炭酸リチウム(L
2CO3;純度99%)3.788kg、酸化コバルト
(Co34;Co含有量73.3重量%)8.261k
gを、V型混合機で7分間予備混合を行ない、さらに、
混合造粒機を用いて3分間混合を行った。
Comparative Example 2 As in Example 1, lithium carbonate (L) was used so that the lithium / cobalt ratio was 1.0.
3.788 kg of i 2 CO 3 ; purity: 99%; 8.261 k of cobalt oxide (Co 3 O 4 ; Co content: 73.3% by weight)
g was premixed for 7 minutes in a V-type mixer,
Mixing was performed for 3 minutes using a mixing granulator.

【0067】混合状態においてサンプリング(n=1
0)を行ない、混合粉の各部のLi/Coモル比のばら
つき幅を見ると、0.05であった。
In the mixed state, sampling (n = 1)
0), and the variation range of the Li / Co molar ratio in each part of the mixed powder was 0.05.

【0068】4wt%のPVA(ポリビニルアルコー
ル)水溶液3012gを加えて、15分間造粒し、3〜
5mmの造粒物を作製した。この造粒物を100℃で2
時間乾燥し、さらにマグネシアセッターを用いて、酸素
流量3リットル/minで、加熱速度5℃/minによ
り900℃まで昇温し、18時間保持した。このように
焼成したリチウムコバルト複酸化物を解砕し、粒度を4
0μm以下にした。
[0068] A 3wt% PVA (polyvinyl alcohol) aqueous solution (3012g) was added, and the mixture was granulated for 15 minutes.
A 5 mm granulated product was produced. This granulated product is heated at 100 ° C for 2 hours.
After drying for an hour, the temperature was raised to 900 ° C. at a heating rate of 5 ° C./min at an oxygen flow rate of 3 liter / min using a magnesia setter and maintained for 18 hours. The lithium-cobalt double oxide calcined in this manner is crushed to a particle size of 4
The thickness was set to 0 μm or less.

【0069】X線回折 実施例1と同様にして、得られたX線回折図形より、該
リチウムコバルト複酸化物は、六方晶型の結晶であり、
LiCoO2の(003)面および(104)面のピー
ク強度を求め、X線強度比を求めたところ、 I(003)/I(104)=4.2 であった。
X-ray Diffraction In the same manner as in Example 1, the obtained X-ray diffraction pattern showed that the lithium-cobalt double oxide was a hexagonal crystal.
When the peak intensities of the (003) plane and the (104) plane of LiCoO 2 were determined and the X-ray intensity ratio was determined, I (003) / I (104) = 4.2.

【0070】実施例1と同様に、生成相は、LiCoO
2以外の相としては、Li2Co3とCo34の相が痕跡
程度検出された以外は、認められなかった。
As in Example 1, the produced phase was LiCoO
No phases other than 2 were recognized except for the traces of Li 2 Co 3 and Co 3 O 4 phases.

【0071】電池評価 さらに、電池評価として、実施例1と同様に初期放電容
量、容量依存率および放電電流密度依存性を測定した。
Battery Evaluation Further, as the battery evaluation, the initial discharge capacity, the capacity dependency ratio and the discharge current density dependency were measured in the same manner as in Example 1.

【0072】これらの結果を表2に示す。Table 2 shows the results.

【0073】(比較例3)実施例1と同様に、リチウム
/コバルト比が1.0となるように、炭酸リチウム(L
2CO3;純度99%)3.788kg、酸化コバルト
(Co34;Co含有量73.3重量%)8.261k
gを、V型混合機で5分間予備混合を行ない、さらに、
混合造粒機を用いて5分間混合を行った。
(Comparative Example 3) As in Example 1, lithium carbonate (L
3.788 kg of i 2 CO 3 ; purity: 99%; 8.261 k of cobalt oxide (Co 3 O 4 ; Co content: 73.3% by weight)
g was premixed in a V-type mixer for 5 minutes.
Mixing was performed for 5 minutes using a mixing granulator.

【0074】混合状態においてサンプリング(n=5)
を行ない、混合粉の各部のLi/Coモル比のばらつき
幅を見ると、0.071であった。
Sampling in mixed state (n = 5)
Was performed, and the variation width of the Li / Co molar ratio of each part of the mixed powder was 0.071.

【0075】4wt%のPVA(ポリビニルアルコー
ル)水溶液3012gを加えて、15分間造粒し、3〜
5mmの造粒物を作製した。この造粒物を100℃で2
時間乾燥し、さらにマグネシアセッターを用いて、酸素
流量3リットル/minで、加熱速度5℃/minによ
り1000℃まで昇温し、10時間保持した。このよう
に焼成したリチウムコバルト複酸化物を解砕し、粒度を
40μm以下にした。
3012 g of a 4 wt% PVA (polyvinyl alcohol) aqueous solution was added, and the mixture was granulated for 15 minutes.
A 5 mm granulated product was produced. This granulated product is heated at 100 ° C for 2 hours.
After drying for an hour, the temperature was further increased to 1000 ° C. at a heating rate of 5 ° C./min at an oxygen flow rate of 3 liter / min using a magnesia setter and maintained for 10 hours. The thus-calcined lithium-cobalt double oxide was pulverized to a particle size of 40 μm or less.

【0076】X線回折 実施例1と同様にして、得られたX線回折図形より、該
リチウムコバルト複酸化物は、六方晶型の結晶であり、
LiCoO2の(003)面および(104)面のピー
ク強度を求め、X線強度比を求めたところ、 I(003)/I(104)=8.3 であった。
X-ray Diffraction In the same manner as in Example 1, the obtained X-ray diffraction pattern showed that the lithium-cobalt double oxide was a hexagonal crystal.
The peak intensities of the (003) plane and the (104) plane of LiCoO 2 were determined, and the X-ray intensity ratio was determined. As a result, I (003) / I (104) = 8.3.

【0077】実施例1と同様に、生成相は、LiCoO
2以外の相としては、Li2Co3とCo34の相が痕跡
程度検出された以外は、認められなかった。
As in Example 1, the produced phase was LiCoO
No phases other than 2 were recognized except for the traces of Li 2 Co 3 and Co 3 O 4 phases.

【0078】電池評価 さらに、電池評価として、実施例1と同様に初期放電容
量、容量依存率および放電電流密度依存性を測定した。
Battery Evaluation Further, as the battery evaluation, the initial discharge capacity, the capacity dependence and the discharge current density dependence were measured in the same manner as in Example 1.

【0079】これらの結果を表1および表2に示す。The results are shown in Tables 1 and 2.

【0080】(比較例4)実施例1と同様に、リチウム
/コバルト比が1.0となるように、炭酸リチウム(L
2CO3;純度99%)3.788kg、酸化コバルト
(Co34;Co含有量73.3重量%)8.261k
gを、V型混合機で5分間予備混合を行ない、混合造粒
機を用いて5分間混合を行った。
(Comparative Example 4) As in Example 1, lithium carbonate (L
3.788 kg of i 2 CO 3 ; purity: 99%; 8.261 k of cobalt oxide (Co 3 O 4 ; Co content: 73.3% by weight)
g was preliminarily mixed with a V-type mixer for 5 minutes, and mixed for 5 minutes using a mixing granulator.

【0081】混合状態においてサンプリング(n=1
0)を行ない、混合粉の各部のLi/Coモル比のばら
つき幅を見ると、0.07であった。
Sampling (n = 1) in a mixed state
0), and the variation width of the Li / Co molar ratio in each part of the mixed powder was 0.07.

【0082】4wt%のPVA(ポリビニルアルコー
ル)水溶液3012gを加えて、15分間造粒し、3〜
5mmの造粒物を作製した。この造粒物を、100℃で
2時間乾燥し、さらにマグネシアセッターを用いて、酸
素流量3リットル/minで、加熱速度5℃/minに
より900℃まで昇温し、18時間保持した。このよう
に焼成したリチウムコバルト複酸化物を解砕し粒度を、
40μm以下にした。
3012 g of a 4 wt% PVA (polyvinyl alcohol) aqueous solution was added, and the mixture was granulated for 15 minutes.
A 5 mm granulated product was produced. The granulated product was dried at 100 ° C. for 2 hours, and further heated to 900 ° C. at a heating rate of 5 ° C./min at an oxygen flow rate of 3 liter / min using a magnesia setter and held for 18 hours. The thus-calcined lithium-cobalt double oxide is crushed to determine the particle size,
It was 40 μm or less.

【0083】X線回折 実施例1と同様にして、得られたX線回折図形より、該
リチウムコバルト複酸化物は、六方晶型の結晶であり、
LiCoO2の(003)面および(104)面のピー
ク強度を求め、X線強度比を求めたところ、 I(003)/I(104)=1.8 であった。
X-ray Diffraction In the same manner as in Example 1, the obtained X-ray diffraction pattern showed that the lithium-cobalt double oxide was a hexagonal crystal.
When the peak intensities of the (003) plane and the (104) plane of LiCoO 2 were determined and the X-ray intensity ratio was determined, I (003) / I (104) = 1.8.

【0084】実施例1と同様に、生成相は、LiCoO
2以外の相としては、Li2Co3とCo34の相が痕跡
程度検出された以外は、認められなかった。
As in Example 1, the produced phase was LiCoO
No phases other than 2 were recognized except for the traces of Li 2 Co 3 and Co 3 O 4 phases.

【0085】電池評価 さらに、電池評価として、実施例1と同様に初期放電容
量、容量依存率および放電電流密度依存性を測定した。
Battery Evaluation Further, as the battery evaluation, the initial discharge capacity, the capacity dependency ratio and the discharge current density dependency were measured in the same manner as in Example 1.

【0086】これらの結果を表2に示す。Table 2 shows the results.

【0087】(参考例)参考例として、実施例1と同様
に、リチウム/コバルト比が1.0となるように、炭酸
リチウム(Li2CO3;純度99%)3.788kg、
酸化コバルト(Co34;Co含有量73.3重量%)
8.261kgを、V型混合機で5分間予備混合を行な
った。
Reference Example As a reference example, as in Example 1, 3.788 kg of lithium carbonate (Li 2 CO 3 ; purity 99%) was used so that the lithium / cobalt ratio became 1.0.
Cobalt oxide (Co 3 O 4 ; Co content 73.3% by weight)
8.261 kg was premixed for 5 minutes with a V-type mixer.

【0088】混合状態においてサンプリング(n=5)
を行ない、混合粉の各部のLi/Coモル比のばらつき
幅を見ると、0.118と大きかった。この結果を表1
に示す。
Sampling in mixed state (n = 5)
Was performed, and the variation width of the Li / Co molar ratio of each part of the mixed powder was found to be as large as 0.118. Table 1 shows the results.
Shown in

【0089】[0089]

【表1】 [Table 1]

【0090】[0090]

【表2】 [Table 2]

【0091】上記実施例1〜4から明らかなように、本
発明では、リチウムコバルト複酸化物は、リチウム原料
とコバルト原料の混合状態を高めておく。具体的には、
両原料を混合した状態で、各所からサンプリングを行な
い、各混合粉のLiとCoの分析を行ない、Li/Co
モル比のばらつき幅が0.03以下であるようにするこ
とによって、X線回折強度比で、 2.5≦I(003)/I(104)≦3.5 の範囲内になる。
As is apparent from Examples 1 to 4, in the present invention, the lithium-cobalt double oxide is prepared by increasing the mixture state of the lithium raw material and the cobalt raw material. In particular,
In a state where both raw materials are mixed, sampling is performed from various places, Li and Co of each mixed powder are analyzed, and Li / Co
By setting the variation width of the molar ratio to be equal to or less than 0.03, the X-ray diffraction intensity ratio falls within the range of 2.5 ≦ I (003) / I (104) ≦ 3.5.

【0092】これを正極活物質として用いると、サイク
ル特性、保存特性および高率放電を行なった場合の放電
容量が優れた非水系電解質二次電池の製造が可能とな
る。
When this is used as a positive electrode active material, it becomes possible to manufacture a nonaqueous electrolyte secondary battery having excellent cycle characteristics, storage characteristics, and excellent discharge capacity when high-rate discharge is performed.

【0093】一方、比較例1〜3のように、Li/Co
モル比のばらつき幅が0.04を越えると、混合粉の中
で局所的にLiの多い部分ができ、その部分では、同じ
条件で焼成しても、1次粒子の結晶成長が早まり、結果
として、粗大化した板状の層状結晶構造を持つリチウム
コバルト複酸化物ができやすくなる。この場合は、X線
回折強度比で、 3.5<I(003)/I(104) の範囲の比較例1〜3では、層状結晶構造を有していて
保存特性は優れたものとなるが、LiCoO2の粗大な
板状結晶が増えることとなり、サイクル特性が悪くな
り、高率放電容量も大きくならないものと推定される。
On the other hand, as in Comparative Examples 1 to 3, Li / Co
When the variation ratio of the molar ratio exceeds 0.04, a portion with a large amount of Li is locally formed in the mixed powder, and in that portion, even if firing is performed under the same conditions, the crystal growth of the primary particles is accelerated, and as a result, As a result, a lithium-cobalt double oxide having a coarse plate-like layered crystal structure is easily formed. In this case, Comparative Examples 1 to 3 having an X-ray diffraction intensity ratio of 3.5 <I (003) / I (104) have a layered crystal structure and have excellent storage characteristics. However, it is estimated that the number of coarse plate-like crystals of LiCoO 2 increases, the cycle characteristics deteriorate, and the high-rate discharge capacity does not increase.

【0094】また、比較例4のように、Li/Coモル
比のばらつき幅が0.04を越え、かつX線回折強度比
で、 I(003)/I(104)<2.0 である場合は、1次粒子の成長が抑制され、層状結晶構
造を持つ粒子が減少しており、保存特性も低く、充放電
容量そのものが低くなると考えられる。
Further, as in Comparative Example 4, the variation width of the Li / Co molar ratio exceeds 0.04, and the X-ray diffraction intensity ratio is I (003) / I (104) <2.0. In this case, it is considered that the growth of the primary particles is suppressed, the particles having a layered crystal structure are reduced, the storage characteristics are low, and the charge / discharge capacity itself is low.

【0095】また、実施例1と比較例3において、合成
後のリチウムコバルト複酸化物の10点サンプリングの
結果を表3に示す。実施例1、比較例3とも、合成後の
ばらつきは、混合状態の粉末時に比較して、約1/10
のばらつきとなっていた。
Table 3 shows the results of 10-point sampling of the synthesized lithium-cobalt double oxide in Example 1 and Comparative Example 3. In both Example 1 and Comparative Example 3, the dispersion after the synthesis was about 1/10 compared to the powder in the mixed state.
Had become a variation.

【0096】[0096]

【表3】 [Table 3]

【0097】[0097]

【発明の効果】本発明によるリチウムコバルト複酸化物
は、非水系電解質二次電池の正極活物質として用いるこ
とで、二次電池のサイクル特性、保存特性、および高率
放電を行なった場合の放電容量を向上させることが可能
であり、優れた二次電池が作製できる。
The lithium-cobalt double oxide according to the present invention is used as a positive electrode active material for a non-aqueous electrolyte secondary battery to provide a cycle characteristic, a storage characteristic, and a high rate discharge of the secondary battery. The capacity can be improved, and an excellent secondary battery can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例に用いた2032型コイン電池の縦断
面図である。
FIG. 1 is a longitudinal sectional view of a 2032 type coin battery used in an example.

【符号の説明】[Explanation of symbols]

1 負極缶 2 Li金属ペレット 3 セパレータ 4 ガスケット 5 正極ペレット 6 正極缶 Reference Signs List 1 negative electrode can 2 Li metal pellet 3 separator 4 gasket 5 positive electrode pellet 6 positive electrode can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽我部 速美 愛媛県新居浜市西原町3−5−3 住友金 属鉱山株式会社別子事業所内 Fターム(参考) 4G048 AA04 AB01 AB05 AC06 AD06 AE05 5H029 AJ04 AJ05 AK03 AL07 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 CJ06 CJ08 DJ16 DJ17 HJ13 5H050 AA07 AA09 BA17 CA08 CB08 DA02 EA24 FA17 FA19 GA02 GA10 HA13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hayami Sogabe 3-5-3 Nishihara-cho, Niihama-shi, Ehime F-term in the Besshi Works of Sumitomo Metal Mining Co., Ltd. 4G048 AA04 AB01 AB05 AC06 AD06 AE05 5H029 AJ04 AJ05 AK03 AL07 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 CJ06 CJ08 DJ16 DJ17 HJ13 5H050 AA07 AA09 BA17 CA08 CB08 DA02 EA24 FA17 FA19 GA02 GA10 HA13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム化合物とコバルト化合物を、L
i/Coモル比で0.98から1.005の範囲で混合
した混合粉を、造粒成形し、焼成することにより合成さ
れたリチウムコバルト複酸化物であって、六方晶型を有
し、CuKα線による粉末X線回折図形において、(0
03)結晶面の回折強度I(003)と、(104)結
晶面の回折強度I(104)との比が、 2.0≦I(003)/I(104)≦4.0 であることを特徴とする非水系電解質二次電池用正極活
物質。
1. A method according to claim 1, wherein the lithium compound and the cobalt compound are
a lithium-cobalt double oxide synthesized by granulating, shaping, and firing a mixed powder mixed in a range of 0.98 to 1.005 at an i / Co molar ratio, having a hexagonal type; In the powder X-ray diffraction pattern by CuKα ray, (0
03) The ratio of the diffraction intensity I (003) of the crystal plane to the diffraction intensity I (104) of the (104) crystal plane is 2.0 ≦ I (003) / I (104) ≦ 4.0. A positive electrode active material for a non-aqueous electrolyte secondary battery, comprising:
【請求項2】 リチウム化合物とコバルト化合物を混合
した混合粉の各部のLi/Coモル比のばらつき幅が、
0.04以下である請求項1記載の非水系電解質二次電
池用正極活物質。
2. The variation width of the Li / Co molar ratio of each part of a mixed powder obtained by mixing a lithium compound and a cobalt compound is as follows:
The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, which is 0.04 or less.
JP2000110251A 2000-04-12 2000-04-12 Positive electrode activator for nonaqueous electrolyte secondary cell Pending JP2001297761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110251A JP2001297761A (en) 2000-04-12 2000-04-12 Positive electrode activator for nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110251A JP2001297761A (en) 2000-04-12 2000-04-12 Positive electrode activator for nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JP2001297761A true JP2001297761A (en) 2001-10-26

Family

ID=18622790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110251A Pending JP2001297761A (en) 2000-04-12 2000-04-12 Positive electrode activator for nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JP2001297761A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042860A1 (en) * 2002-11-06 2004-05-21 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2004172113A (en) * 2002-11-06 2004-06-17 Toshiba Corp Nonaqueous electrolyte secondary battery
CN1315206C (en) * 2004-06-15 2007-05-09 中国科学技术大学 Liquid-phase synthesis of anode material for lithium ion secondary battery
US7455933B2 (en) 2002-11-06 2008-11-25 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2009218227A (en) * 2004-02-17 2009-09-24 Samsung Sdi Co Ltd Cathode active material for lithium secondary battery and its manufacturing method
WO2010074304A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
WO2010074298A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material, as well as lithium secondary batteries
WO2010074314A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
WO2010074313A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042860A1 (en) * 2002-11-06 2004-05-21 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2004172113A (en) * 2002-11-06 2004-06-17 Toshiba Corp Nonaqueous electrolyte secondary battery
JP4599050B2 (en) * 2002-11-06 2010-12-15 株式会社東芝 Nonaqueous electrolyte secondary battery
CN1330046C (en) * 2002-11-06 2007-08-01 株式会社东芝 Nonaqueous electrolyte secondary battery
US7455933B2 (en) 2002-11-06 2008-11-25 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US7790318B2 (en) 2004-02-17 2010-09-07 Samsung Sdi Co., Ltd. Positive active material for lithium secondary battery and method of preparing same
US7674553B2 (en) 2004-02-17 2010-03-09 Samsung Sdi Co., Ltd. Positive active material for lithium secondary battery and method of preparing same
US7695869B2 (en) 2004-02-17 2010-04-13 Samsung Sdi Co., Ltd. Positive active material for lithium secondary battery and method of preparing same
JP2009218227A (en) * 2004-02-17 2009-09-24 Samsung Sdi Co Ltd Cathode active material for lithium secondary battery and its manufacturing method
JP2013093332A (en) * 2004-02-17 2013-05-16 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery and production method therefor
CN1315206C (en) * 2004-06-15 2007-05-09 中国科学技术大学 Liquid-phase synthesis of anode material for lithium ion secondary battery
WO2010074304A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
WO2010074298A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material, as well as lithium secondary batteries
WO2010074314A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
WO2010074313A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
CN102239588A (en) * 2008-12-24 2011-11-09 日本碍子株式会社 Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material man
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
US8916293B2 (en) 2008-12-24 2014-12-23 Ngk Insulators, Ltd. Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery

Similar Documents

Publication Publication Date Title
US7309546B2 (en) Positive active material for rechargeable lithium battery
US6270924B1 (en) Lithium secondary battery
KR100507021B1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
JPWO2004030126A1 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2000277116A (en) Lithium secondary battery
JP2002289261A (en) Non-aqueous electrolyte secondary battery
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JPH1116573A (en) Lithium cobalt double oxide for lithium ion secondary battery and its manufacture
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2002313337A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2002042811A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JPH09232002A (en) Nonaqueous electrolyte secondary battery
JP2001185142A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method therefor
JP2003109593A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
KR100296878B1 (en) Positive active material for lithium secondary battery and lithium secondary battery comprising the same
KR100434547B1 (en) Lithium metal oxide cathode and lithium secondary battery using the same
JP2003187794A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and manufacturing method therefor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040722