JP2004253174A - Positive pole active material for nonaqueous electrolytic secondary battery - Google Patents

Positive pole active material for nonaqueous electrolytic secondary battery Download PDF

Info

Publication number
JP2004253174A
JP2004253174A JP2003039903A JP2003039903A JP2004253174A JP 2004253174 A JP2004253174 A JP 2004253174A JP 2003039903 A JP2003039903 A JP 2003039903A JP 2003039903 A JP2003039903 A JP 2003039903A JP 2004253174 A JP2004253174 A JP 2004253174A
Authority
JP
Japan
Prior art keywords
active material
transition metal
lithium
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003039903A
Other languages
Japanese (ja)
Other versions
JP4096754B2 (en
Inventor
Junichi Tokuno
順一 得野
Hideki Yoshida
秀樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2003039903A priority Critical patent/JP4096754B2/en
Publication of JP2004253174A publication Critical patent/JP2004253174A/en
Application granted granted Critical
Publication of JP4096754B2 publication Critical patent/JP4096754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive pole active material for a nonaqueous electrolytic secondary battery having superior battery characteristics even in a severer environment of use. <P>SOLUTION: The positive pole active material includes at least a lithium transition metal compound oxide of a lamellar structure, wherein the lithium transition metal double oxide consists of a hollow particle having an outside outer shell portion and a space portion inside the outer shell portion. A percentage of an area of the space to a total of the outer shell portion and the space portion is preferably larger than 0% but less than 20% when the lithium transition metal compound oxide is cross sectioned. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は非水電解液二次電池及びその正極活物質、特に層状構造のリチウム遷移金属複合酸化物に関する。例えば、携帯電話、パソコン、電気自動車に使用される。
【0002】
【従来の技術】
非水電解液二次電池は、従来のニッケルカドミウム二次電池などに比べて作動電圧が高く、かつエネルギー密度が高いという特徴を有し、電子機器の電源として広く利用されている。この非水電解液二次電池の正極活物質としてはLiCoO、LiNiO、LiMnに代表されるリチウム遷移金属複合酸化物が挙げられる。
【0003】
電子機器は、具体的には携帯電話やノート型パソコンに代表されるモバイル電子機器である。このような電子機器において、これまではLiCoOを用いた非水電解液二次電池で十分な電池特性が得られていた。
【0004】
しかしながら、現在では、携帯電話、ノート型パソコン、デジタルカメラ等のモバイル機器は、さまざまな機能が付与される等の高機能化や、高温や低温での使用等のため、使用環境がより一層厳しいものとなっている。また、電気自動車用バッテリー等の電源への応用が期待されており、これまでのLiCoOを用いた非水電解液二次電池では、十分な電池特性が得られず、更なる改良が求められている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、より一層厳しい使用環境下においても優れた電池特性を有する非水電解液二次電池用正極活物質を提供することにある。すなわち優れた出力特性、サイクル特性および熱安定性を有する非水電解液二次電池用正極活物質を提供することにある。
【0006】
【課題を解決するための手段】
本発明に記載される非水電解液二次電池用正極活物質は、少なくとも層状構造のリチウム遷移金属複合酸化物を有する非水電解液二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、外側の外殻部と、該外殻部の内側の空間部とを有する中空粒子からなるリチウム遷移金属複合酸化物であることを特徴とする。
【0007】
リチウム遷移金属複合酸化物は充放電に伴い粒子界面及び粒子内部の拡散によりリチウムイオンが挿入脱離する。また充放電を重ねることにより、粒子内部と粒子界面においてリチウムイオンの挿入脱離に不均一が生じサイクル特性は劣化すると考えられる。本発明は、外殻部の内側に空間部を有するため、外殻部の表面よりリチウムイオンが均一に挿入脱離しやすくなりサイクル特性が向上すると考えられる。
【0008】
前記リチウム遷移金属複合酸化物について断面出しを行ったときの、前記空間部の、前記外殻部と前記空間部の合計に対する面積割合は、0%より大きく20%より小さいことが好ましい。高負荷の場合リチウムイオンは直線的に拡散し負極に移動するため、空間部が存在することによりリチウムイオンの移動経路が長くなり出力特性が低下すると考えられる。空間部の、外殻部と空間部の合計に対する面積割合をこの範囲に規定することで優れた出力特性、低温出力特性とサイクル特性、高温サイクル特性の両立を図ることができる。
【0009】
前記リチウム遷移金属複合酸化物は、リチウムの量が化学量論比よりも多いことが好ましい。リチウムの量が化学量論比よりも多いことで、焼成時におけるリチウムサイトへの遷移金属イオンの転移が抑制されるため出力特性がさらに向上する。
【0010】
前記リチウム遷移金属複合酸化物は、少なくともアルミニウムを有し、前記アルミニウムの含有量は、前記リチウム遷移金属複合酸化物に対して、1mol%〜20mol%であることが好ましい。アルミニウムの含有量が、リチウム遷移金属複合酸化物に対して1mol%〜20mol%であることで結晶構造の安定化が図られ、熱安定性が向上し、サイクル後の出力特性も向上する。
【0011】
前記リチウム遷移金属複合酸化物は、前記層状構造における(104)面の垂線方向の結晶子径が400Å〜800Åであることが好ましい。層状構造の(104)面の垂線方向の結晶子径が400Å〜800Åであることで、リチウムの拡散を阻害する結晶粒界を少なくすることができ、出力特性がさらに改善される。
【0012】
【発明の実施の形態】
以下、本発明に係る非水電解液二次電池用正極活物質を、実施の形態、実施例及び図1〜図8を用いて説明する。ただし、本発明は、この実施の形態、実施例及び図1〜図8に限定されない。
【0013】
(非水電解液二次電池用正極活物質)
本発明の非水電解液二次電池用正極活物質は、少なくとも層状構造のリチウム遷移金属複合酸化物からなる。層状構造とは、リチウム遷移金属複合酸化物の結晶構造が層状であることを意味する。層状構造は、α−NaFeO型構造と呼ばれ、立方密充填酸素配列の固体マトリックス中の全ての六配位サイトをリチウムイオンと遷移金属イオンが、各々半分ずつ規則正しく占めている。リチウムは3bサイト3を占有し、酸素は6cサイト2を占有し、遷移金属は3aサイト1を占有する。
【0014】
層状構造のリチウム遷移金属複合酸化物は特に限定されない。例えば、コバルト酸リチウム、ニッケル酸リチウム、クロム酸リチウム、バナジン酸リチウム、マンガン酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルコバルトアルミン酸リチウムである。好適には、ニッケルコバルトマンガン酸リチウム、ニッケルコバルトアルミン酸リチウムである。ニッケルコバルトマンガン酸リチウムの場合、携帯電話や電動工具等に用いられる優れたサイクル特性、熱安定性を有する非水電解液二次電池用正極活物質が得られる。さらに、ニッケルコバルトアルミン酸リチウムの場合、電気自動車に用いられる優れたサイクル特性、高温サイクル特性、サイクル後の出力特性及び低温出力特性を有する非水電解液二次電池用正極活物質が得られる。
【0015】
リチウム遷移金属複合酸化物は、一般式がLiNiCo(1−m−p)(式中、ZはAlまたはMnを表し、kは0.95≦k≦1.10を満たす数を表し、mは0.1≦m≦0.9を満たす数を表し、pは0.1≦p≦0.9を満たす数を表し、rは1.8≦r≦2.2を満たす数を表す。)で表されることが好ましい。LiNiCoMn(1−m−p)の場合、携帯電話や電動工具等に用いられる優れたサイクル特性、熱安定性を有する非水電解液二次電池用正極活物質が得られる。さらに、LiNiCoAl(1−m−p)の場合、電気自動車に用いられる優れたサイクル特性、高温サイクル特性、サイクル後の出力特性及び低温出力特性を有する非水電解液二次電池用正極活物質が得られる。
【0016】
本発明に係るリチウム遷移金属複合酸化物は、外側の外殻部と、該外殻部の内側の空間部とを有する中空粒子からなる。本発明に係るリチウム遷移金属複合酸化物は、例えば、図7及び図8のFIB加工部における二次イオン像からわかるように、表面層を形成する外殻部と、その外殻部の内側に形成された空間部とを有した中空粒子からなる。図8からわかるように空間部は中空粒子内に1箇所だけでなく数カ所存在していてもよい。中空粒子の最大径と最小径との比は、0.8〜1.2の範囲にある。中空粒子は、ほぼ球状の外観を有する。中空粒子が、ほぼ球状の外観を有することにより、正極板を作製する際、カーボン材料で代表される導電剤粉末との混合性が良くなり、電池の内部抵抗が減少し、放電容量が向上すると考えられる。
【0017】
FIB加工部とは、集束イオンビーム加工観察装置により断面出しをされたリチウム遷移金属複合酸化物粒子の断面部分をいう。サブミクロンオーダーに絞られた集束イオンビームで、本発明に係るリチウム遷移金属複合酸化物のFIB加工部の表面を走査し、このとき表面から放出される二次電子を検出して走査イオン像として観察し、これを二次イオン像とする。
【0018】
本発明に係るリチウム遷移金属複合酸化物について断面出しを行ったときの、前記空間部の、前記外殻部と前記空間部の合計に対する面積割合は、0%より大きく20%より小さいことが好適である。本発明において、断面出しは次のように行う。本発明に係るリチウム遷移金属複合酸化物の数ある粒子の中から、平均粒子径のリチウム遷移金属複合酸化物を選択する。ここで平均粒子径は中位径を意味する。選択したリチウム遷移金属複合酸化物の粒子断面像が最大粒径となる部分まで断面出しを行う。断面出しの方法は、特に限定されない。例えば、樹脂に埋包してその粒子断面を削り出す方法、FIBにて加工する方法によって行うことができる。粒子断面像は、特に限定されない。例えば、SEM像、SIM像、TEM像、STEM像を用いることができる。
【0019】
リチウム遷移金属複合酸化物について断面出しを行ったときの、空間部の、外殻部と空間部の合計に対する面積割合は、1%〜18%であることが好ましい。より好ましくは、2%〜15%であり、さらに好ましくは、5%〜10%である。
このとき、優れたサイクル特性及び高温サイクル特性と、優れた出力特性及び低温出力特性を両立させることができる。
空間部が複数存在する場合には、本発明における空間部とは、複数存在する空間部の合計を意味する。
【0020】
本発明に係るリチウム遷移金属複合酸化物は、リチウムの量が化学量論比よりも多いことが好ましい。リチウムの量が化学量論比より少なければ、リチウムイオンサイトへ遷移金属イオンが入り局所的に岩塩層ができやすい。これは不活性であるためリチウムの拡散を阻害し好ましくない。
【0021】
本発明に係るリチウム遷移金属複合酸化物において、リチウムの量は、化学量論比の1.00倍より多く1.10倍以下であることが好ましい。リチウムの量が化学量論比の1.10倍より多くなれば、未反応のリチウムが残存しやすく放電容量が少なくなるため好ましくない。より好ましくは1.01倍〜1.08倍である。
【0022】
本発明に係るリチウム遷移金属複合酸化物は、少なくともアルミニウムを有し、前記アルミニウムの含有量は、前記リチウム遷移金属複合酸化物に対して、1mol%〜20mol%であることが好ましい。アルミニウムの含有量がリチウム遷移金属複合酸化物に対して、この範囲外であるなら結晶構造が不安定となり熱安定性、サイクル後の出力特性において好ましくない。
【0023】
アルミニウムの含有量は、リチウム遷移金属複合酸化物に対して、3mol%〜15mol%であることがより好ましい。このときさらに結晶構造の安定化が図られ、さらに熱安定性、サイクル後の出力特性が向上する。
【0024】
本発明に係るリチウム遷移金属複合酸化物は、前記層状構造における(104)面の垂線方向の結晶子径が400Å〜800Åであることが好ましい。結晶子は単結晶と考えられる最大限の集合を示す。このため結晶子径が大きいほど結晶性に優れ、結晶構造の歪みが少ないことになる。層状構造のリチウム遷移金属複合酸化物では、特に(104)面の垂線方向の結晶子径を用いることによって単位格子の規則的な配列度が分かる。層状構造における(104)面の垂線方向の結晶子径は500Å〜700Åであることがより好ましい。
【0025】
(非水電解液二次電池用正極活物質の製造方法)
次に、本発明に係る非水電解液二次電池用正極活物質(Li0.95Ni0.7Co0.3)の製造方法を説明するが、本製造方法に限定されない。
【0026】
攪拌している純水中に所定の組成比のコバルトイオン、ニッケルイオンを含む水溶液を滴下する。さらにpH8〜pH11となるように水酸化ナトリウムを滴下し、40℃〜80℃、回転数500rpm〜1500rpmでコバルトとニッケルを共沈させ、共沈物を得る。
【0027】
コバルト源は特に限定されない。基本的には水溶液を作りうる塩であればいずれも使用可能である。例えば塩化コバルト、ヨウ化コバルト、硫酸コバルト、臭素酸コバルト、硝酸コバルト等が用いられる。好適には、CoSO・7HO、Co(NO)・6HO等が用いられる。
【0028】
ニッケル源は特に限定されない。基本的には水溶液を作りうる塩であればいずれも使用可能である。例えば塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、硫酸ニッケル、硝酸ニッケル、ギ酸ニッケル等が用いられる。好適には、NiSO・6HO、Ni(NO・6HO等が用いられる。
【0029】
本発明に係るリチウム遷移金属複合酸化物がニッケルコバルトアルミン酸リチウムの場合はコバルト、ニッケルとともに、アルミニウム等を共沈させる。ニッケルコバルトマンガン酸リチウムの場合はコバルト、ニッケルとともに、マンガン等を共沈させる。
【0030】
アルミニウム源は特に限定されない。基本的には水溶液を作りうる塩であればいずれも使用可能である。例えば塩化アルミニウム、ヨウ化アルミニウム、硫酸アルミニウム、硝酸アルミニウム等が用いられる。好適には、Al(SO、Al(NO等が用いられる。
【0031】
マンガン源は特に限定されない。基本的には水溶液を作りうる塩であればいずれも使用可能である。例えば塩化マンガン、ヨウ化マンガン、硫酸マンガン、硝酸マンガン等が用いられる。好適には、MnSO、MnCl等が用いられる。
【0032】
また、水酸化ナトリウム水溶液を加えているが、これに限られるわけではなく、炭酸水素ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム水溶液等のアルカリ溶液であればよい。
【0033】
次に、得られる共沈物を濾過、水洗後、乾燥したのち、水酸化リチウムと混合し、酸素分圧を制御した雰囲気中にて、650℃〜1100℃の温度で1〜24時間焼成を行い、本発明に係るリチウム遷移金属複合酸化物を合成する。
【0034】
共沈物と混合するものは水酸化リチウムに限定されない。基本的にはリチウム化合物であればいずれも使用可能である。例えばフッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、酸化リチウム、過酸化リチウム、炭酸リチウム等が用いられる。好適にはLiCO、LiOH、LiOH・HO、LiO、LiCl、LiNO、LiSO、LiHCO、Li(CHCOO)等が用いられる。
【0035】
共沈物、リチウム化合物とともに、硫黄含有化合物、ハロゲン元素を含む化合物、ホウ素化合物等を混合してもよい。
【0036】
硫黄含有化合物は特に限定されない。例えば硫化物、ヨウ化硫黄、硫化水素、硫酸とその塩、硫化窒素等が用いられる。好適にはLiSO、MnSO、(NHSO、Al(SO、MgSO等が用いられる。
【0037】
ハロゲン元素を含む化合物は特に限定されない。例えば、フッ化水素、フッ化酸素、フッ化水素酸、塩化水素、塩酸、酸化塩素、フッ化酸化塩素、酸化臭素、フルオロ硫酸臭素、ヨウ化水素、酸化ヨウ素、過ヨウ素酸等が用いられる。好適には、NHF、NHCl、NHBr、NHI、LiF、LiCl、LiBr、LiI、MnF、MnCl、MnBr、MnI等が用いられる。
【0038】
ホウ素化合物としては、特に限定されない。例えば、ホウ化物、酸化ホウ素、リン酸ホウ素等が用いられる。好適には、B(融点460℃)、HBO(分解温度173℃)が用いられる。
【0039】
焼成の温度は、好適には700℃〜1050℃であり、また焼成の時間は6〜12時間が好ましい。焼成温度が700℃よりも低い場合、未反応の原料が非水電解液二次電池用正極活物質中に残留し、本発明の目的を達成できる十分な特性が得られない場合がある。また、1100℃よりも高い温度で焼成した場合、副生成物が生成しやすくなり、単位重量当たりの放電容量の低下、サイクル充放電特性の低下、作動電圧の低下を招く。焼成の時間は、1時間未満では原料混合物の粒子間の拡散反応が進行せず、目的とする非水電解液二次電池用正極活物質が得られない。また24時間より長く焼成を行うと焼結による粗大粒子が形成され、好ましくない。
【0040】
上記焼成により得られるリチウム遷移金属複合酸化物を乳鉢やボールミル、振動ミル、ピンミルおよびジェットミル等により粉砕しても構わない。上記方法によって比表面積が0.2〜3m/gである本発明の非水電解液二次電池用正極活物質を得ることができる。
【0041】
以上の製造方法を使用することにより、目的とする非水電解液二次電池用正極活物質を得ることが可能である。
【0042】
なお、コバルトとニッケルの共沈により、Li0.95Ni0.7Co0.3を製造したが、コバルト化合物、ニッケル化合物を所定の組成比となるように混合し、焼成して製造してもよい。
【0043】
(非水電解液二次電池)
本発明に係る非水電解液二次電池用正極活物質は、リチウムイオン二次電池、リチウムイオンポリマー二次電池等の非水電解液二次電池に好適に用いられる。
【0044】
非水電解液二次電池は、従来公知の非水電解液二次電池において、正極活物質を本発明の正極活物質とすればよく、他の構成は特に限定されない。本発明に係るリチウム遷移金属複合酸化物を主成分とする正極活物質層を備えた非水電解液二次電池であればよい。
【0045】
本発明に係るリチウム遷移金属複合酸化物を主成分とする正極活物質を使用する正極は、好ましくは次のように製造される。本発明に係るリチウム遷移金属複合酸化物の粉末に、アセチレンブラック、黒鉛等のカーボン系導電剤、結着剤及び結着剤の溶媒または分散媒とを混合することにより正極合剤が形成される。前記正極合剤をスラリーまたは混練物とし、アルミニウム箔等の集電体12に塗布又は担持し、プレス圧延して正極活物質層を集電体12に形成する。
【0046】
結着剤にはポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミドアクリル樹脂等が使用できる。
【0047】
本発明に係るリチウム遷移金属複合酸化物は、導電剤粉末との混合性が良く、電池の内部抵抗は減少すると考えられる。このため充放電特性、特に放電容量が向上する。また結着剤と混練するときも、本発明のリチウム遷移金属複合酸化物は、流動性に優れ、また結着剤の高分子と絡まりやすく、優れた結着性を有する。さらに粗大粒子を含まず、球状であるため、作製した正極13の塗膜面の表面は平滑性に優れる。このため正極板の塗膜面は結着性に優れ剥がれにくく、また表面が平滑で充放電に伴う塗膜面表面のリチウムイオンの出入りが均一に行われるため、サイクル特性において顕著な改善が得られる。
【0048】
例えば、負極活物質には金属リチウム、リチウム合金、又はリチウムイオンを吸蔵放出可能な化合物が使用できる。リチウム合金としては例えばLiAl合金,LiSn合金,LiPb合金などが使用できる。リチウムイオンを吸蔵放出可能な化合物としては例えばグラファイト,黒鉛などの炭素材料が使用できる。また酸化スズ、酸化チタン等のリチウムイオンを挿入・脱離することができる酸化物を用いてもよい。
【0049】
電解液としては作動電圧で変質、分解しない化合物であれば特に限定されず使用できる。溶媒として例えばジメトキシエタン,ジエトキシエタン,エチレンカーボネート,プロピレンカーボネート,ジメチルカーボネート,ジエチルカーボネート,エチルメチルカーボネート,メチルホルメート,γ−ブチロラクトン,2−メチルテトラヒドロフラン,ジメチルスルホキシド,スルホランなどの有機溶媒が使用でき、また前記した有機溶媒群から選ばれた2種類以上を混合して使用しても構わない。
【0050】
電解質としては例えば過塩素酸リチウム,四フッ化ホウ酸リチウム,六フッ化リン酸リチウム,トリフルオロメタン酸リチウムなどのリチウム塩などが使用できる。上記した溶媒と電解質とを混合して電解液として使用する。ここでゲル化剤などを添加し、ゲル状として使用してもよく、また吸湿性ポリマーに吸収させて使用しても構わない。更に無機系又は有機系のリチウムイオンの導電性を有する固体電解質を使用しても構わない。
【0051】
更にセパレーター14としてポリエチレン製、ポリプロピレン製等の多孔性膜等が使用できる。本発明に係る非水電解液二次電池用正極活物質、上記した負極活物質、電解液、セパレーターを用いて定法に従い非水電解液二次電池とする。これにより従来達成できなかった優れた電池特性が実現できる。
【0052】
また、本発明に係る非水電解液二次電池用正極活物質を正極活物質として用いた正極活物質層を帯状正極集電体の両面にそれぞれ形成することにより構成した帯状正極と、上記の負極活物質層の負極活物質層を帯状負極集電体の両面にそれぞれ形成することにより構成した帯状負極とをそれぞれ具備し、帯状正極と帯状負極とを帯状セパレータを介して積層した状態で多数回巻回することにより帯状正極と帯状負極との間に帯状セパレータが介在している渦巻型の巻回体を構成して非水電解液二次電池とすることができる。このように構成することで、製造工程が簡単であるとともに、正極活物質層および負極活物質層の割れや帯状セパレータからの剥離を生じ難く、電池容量を大きく、エネルギー密度を高くすることができる。特に本発明に係る非水電解液二次電池用正極活物質は、出力特性およびサイクル特性に優れる。そのため高い充放電容量を有し、かつ出力特性およびサイクル特性に優れた非水電解液二次電池を得ることができる。
【0053】
非水電解液二次電池の形状としては、円筒型でも、コイン型でも、角型でも、ラミネート型等でもよい。
【0054】
(非水電解液二次電池の用途)
本発明に係る非水電解液二次電池用正極活物質を用いた非水電解液二次電池の用途は特に限定されない。例えばノートパソコン、ペン入力パソコン、ポケットパソコン、ノート型ワープロ、ポケットワープロ、電子ブックプレーヤ、携帯電話、コードレスフォン子機、電子手帳、電卓、液晶テレビ、電気シェーバ、電動工具、電子翻訳機、自動車電話、携帯プリンタ、トランシーバ、ページャ、ハンディターミナル、携帯コピー、音声入力機器、メモリカード、バックアップ電源、テープレコーダ、ラジオ、ヘッドホンステレオ、ハンディクリーナ、ポータブルCD、ビデオムービ、ナビゲーションシステムなどの機器用の電源に用いることができる。また照明機器、エアコン、テレビ、ステレオ、温水器、冷蔵庫、オーブン電子レンジ、食器洗い器、洗濯機、乾燥器、ゲーム機器、玩具、ロードコンディショナ、医療機器、自動車、電気自動車、ゴルフカート、電動カート、電力貯蔵システムなどの電源として使用することができる。また、民生用の他、軍需用、宇宙用としても使用することができる。
【0055】
以下、本発明に係る非水電解液二次電池用正極活物質について実施例を挙げて説明するが、この実施例に限定されるものではない。
【0056】
【実施例】
〔実施例1〕
攪拌している純水中に所定の組成比のコバルトイオン、ニッケルイオンを含む水溶液を滴下した。さらにpH9となるように水酸化ナトリウムを滴下し、80℃、回転数650rpmでコバルトとニッケルを共沈させ、共沈物を得た。得られた共沈物を濾過、水洗後、熱処理したのち、水酸化リチウムと混合し、酸素分圧を制御した雰囲気中にて750℃で10時間焼成した。そして乳鉢にて粉砕しLi0.95Ni0.7Co0.3が得られた。
【0057】
(非水電解液二次電池用正極活物質の評価)
本発明に係る非水電解液二次電池用正極活物質は、以下の方法により組成分析、比表面積、粒度分布の測定を行う。また試験電池を作製し、各評価を行う。
【0058】
(組成分析)
所定量の非水電解液二次電池用正極活物質を硝酸に溶解し、プラズマ発光分光(ICP)分析法により、ハロゲン元素、酸素以外の各構成元素の含有量の定量を行った。また所定量の非水電解液二次電池用正極活物質を純水に投入して撹拌し、上澄み水溶液を得た。アニオン選択性電極を指示電極に用いたイオンメーターにより、上澄み水溶液中のハロゲン元素を定量した。
【0059】
(粉末の評価)
非水電解液二次電池用正極活物質の比表面積は、窒素ガスを用いた定圧式BET吸着法により測定した。
【0060】
(結晶子径の測定)
理学電気(株)社製のUltimaを用いて測定した。X線源にはCuKα1を用い、管電流100mA、管電圧40kVにてX線回折パターンを測定した。(104)面に起因する回折ピークより以下の式で表されるシェラーの式によって算出された。
【0061】
【数1】

Figure 2004253174
【0062】
なお式中のDは結晶子の大きさ(オングストローム)、Kは定数(βを積分幅より算出した場合はK=1.05)、λはX線源の波長(CuKα1=1.540562オングストローム)、βは積分幅(radian)、θは回折角2θ/2(degree)を示す。
【0063】
(リチウムイオン二次電池の作製)
正極活物質である本発明のリチウム遷移金属複合酸化物粉末90重量部、導電剤として炭素粉末5重量部、ポリフッ化ビニリデン5重量部になるようにノルマルメチルピロリドン溶液に溶解させたをポリフッ化ビニリデンとを混練してペーストを調製し、これを正極集電体に塗布し、乾燥して正極板とした。また負極活物質に炭素材料を用いて同様にして負極集電体に塗布し、負極板を作製した。セパレーターに多孔性プロピレンフィルムを用い、電解液としてエチレンカーボネイト:ジエチルカーボネイト=1:1(体積比)の混合溶媒にLiPFを1mol/lの濃度で溶解した溶液を用いた。シート状に成形した正極板、負極板及びセパレーターを巻回し、金属円筒形の電池ケースに収納し、円筒型リチウムイオン二次電池を作製した。
【0064】
(インピーダンスの測定)
測定にはSI1287及びSI1260(SOLARTRON社製)を使用した。円筒型リチウムイオン二次電池の正負極に設けたリード線に測定機のクリップを取り付け、交流インピーダンス法により内部インピーダンスを測定した。逢坂哲彌、2D16、電池討論会予稿集(1999)と同形状のCole−Coleプロットが得られた。図3に示した等価回路に従って解析し、正極抵抗を算出した。
【0065】
(出力特性の測定)
満充電後の電池を所定の放電深度(DOD)まで放電させた後、まず1Cの電流で10秒間放電させた時の電圧を測定する。10分間放置後、今度は1Cレートの電流で10秒間充電した時の電圧を測定する。次に10分間放置後3Cの電流で10秒間放電した時の電圧を測定する。10分間放置後3Cの電流で10秒間充電した時の電圧を測定する。10分間放置後、充放電レートをnC(n=5,7,…)として同様な繰り返し測定を行い、V−I直線を求め、この直線の傾きから内部直流抵抗を求める。
【0066】
(サイクル充放電特性・高温サイクル充放電特性の評価)
サイクル充放電特性は、作製した円筒型リチウムイオン二次電池を常温にて充電密度1Cで4.2Vまで定電流充電後、1Cで2.75Vまで放電する充放電を400サイクル行い、400サイクル目の容量維持率(%)を下記の式から求めた。
【0067】
【数2】
Figure 2004253174
【0068】
高温サイクル充放電特性は、作製した円筒型リチウムイオン二次電池を60℃にて充電密度1Cで4.2Vまで定電流充電後、1Cで2.75Vまで放電する充放電を400サイクル行い、400サイクル目の容量維持率(%)を下記の式から求めた。
【0069】
【数3】
Figure 2004253174
【0070】
(熱安定性の評価)
正極活物質粉末90重量部と、導電剤としてのカーボン5重量部と、PVDF(ポリフッ化ビニリデン)5重量部になるようにノルマルメチルピロリドン溶液に溶解させたをPVDFとを混練してペーストを調製した。得られたペーストを正極集電体に塗布し、負極がリチウム金属である試験用二次電池を作製し、定電流による充放電を行いなじませた。その後、試験用二次電池を一定電流の下で電池電圧が4.3Vになるまで充電を行った。充電が完了した後、試験用二次電池から正極を取り出し、洗浄して乾燥し、正極から正極活物質を削り取った。電解液に使用するエチレンカーボネートをAlセルに約2mgと、正極から削り取った正極活物質約5mgを秤量し、示差走査熱量を測定した。
示差走査熱量分析は、物質及び基準物質の温度をプログラムに従って変化させながら、その物質と基準物質に対するエネルギー入力の差を温度の関数として測定する方法で、低温部では温度が上昇しても示差走査熱量は変化しないが、ある温度以上では示差走査熱量が大きく増大する。この時の温度を発熱開始温度とし、この温度が高いほど熱安定性が良い。
【0071】
(面積割合の測定)
本発明に係るリチウム遷移金属複合酸化物の数ある粒子の中から、中位径のリチウム遷移金属複合酸化物を選択した。選択したリチウム遷移金属複合酸化物の粒子断面像(SIM像)が最大粒径となる部分まで集束イオンビーム加工観察装置により断面出しを行った。この粒子断面像の空間部の、外殻部と空間部の合計に対する面積の割合をSIM像から計算した。
【0072】
結果を表1に示す。
【0073】
〔実施例2〕
攪拌している純水中に所定の組成比のコバルトイオン、ニッケルイオン及びアルミニウムイオンを含む水溶液を滴下した。さらにpH9となるように水酸化ナトリウムを滴下し、80℃、回転数650rpmでコバルト、ニッケル及びアルミニウムを共沈させ、共沈物を得た。得られた共沈物を濾過、水洗後、熱処理したのち、水酸化リチウムと混合し、酸素分圧を制御した雰囲気中にて750℃で10時間焼成した。そして乳鉢にて粉砕しLi0.98Ni0.7Co0.2Al0.1が得られた。
【0074】
以下、実施例1と同様にして非水電解液二次電池用正極活物質の評価を行う。結果を表1に示す。
【0075】
〔実施例3〕
攪拌している純水中に所定の組成比のコバルトイオン、ニッケルイオン及びアルミニウムイオンを含む水溶液を滴下した。さらにpH9となるように水酸化ナトリウムを滴下し、80℃、回転数650rpmでコバルト、ニッケル及びアルミニウムを共沈させ、共沈物を得た。得られた共沈物を濾過、水洗後、熱処理したのち、水酸化リチウムと混合し、酸素分圧を制御した雰囲気中にて750℃で10時間焼成した。そして乳鉢にて粉砕しLi0.95Ni0.6Co0.2Al0.2が得られた。
【0076】
以下、実施例1と同様にして非水電解液二次電池用正極活物質の評価を行う。結果を表1に示す。
【0077】
〔実施例4〕
攪拌している純水中に所定の組成比のコバルトイオン、ニッケルイオンを含む水溶液を滴下した。さらにpH9となるように水酸化ナトリウムを滴下し、80℃、回転数650rpmでコバルトとニッケルを共沈させ、共沈物を得た。得られた共沈物を濾過、水洗後、熱処理したのち、水酸化リチウムと混合し、酸素分圧を制御した雰囲気中にて750℃で10時間焼成した。そして乳鉢にて粉砕しLi1.02Ni0.7Co0.3が得られた。
【0078】
以下、実施例1と同様にして非水電解液二次電池用正極活物質の評価を行う。結果を表1に示す。
【0079】
〔実施例5〕
攪拌している純水中に所定の組成比のコバルトイオン、ニッケルイオン及びアルミニウムイオンを含む水溶液を滴下した。さらにpH9となるように水酸化ナトリウムを滴下し、80℃、回転数650rpmでコバルト、ニッケル及びアルミニウムを共沈させ、共沈物を得た。得られた共沈物を濾過、水洗後、熱処理したのち、水酸化リチウムと混合し、酸素分圧を制御した雰囲気中にて750℃で10時間焼成した。そして乳鉢にて粉砕しLi1.02Ni0.7Co0.2Al0.1が得られた。
【0080】
以下、実施例1と同様にして非水電解液二次電池用正極活物質の評価を行う。結果を表1に示す。
【0081】
〔実施例6〕
攪拌している純水中に所定の組成比のコバルトイオン、ニッケルイオン及びアルミニウムイオンを含む水溶液を滴下した。さらにpH9となるように水酸化ナトリウムを滴下し、80℃、回転数650rpmでコバルト、ニッケル及びアルミニウムを共沈させ、共沈物を得た。得られた共沈物を濾過、水洗後、熱処理したのち、水酸化リチウムと混合し、酸素分圧を制御した雰囲気中にて750℃で10時間焼成した。そして乳鉢にて粉砕しLi1.02Ni0.65Co0.2Al0.15が得られた。
【0082】
以下、実施例1と同様にして非水電解液二次電池用正極活物質の評価を行う。結果を表1に示す。
【0083】
〔実施例7〕
攪拌している純水中に所定の組成比のコバルトイオン、ニッケルイオン及びアルミニウムイオンを含む水溶液を滴下した。さらにpH9となるように水酸化ナトリウムを滴下し、80℃、回転数1200rpmでコバルト、ニッケル及びアルミニウムを共沈させ、共沈物を得た。得られた共沈物を濾過、水洗後、熱処理したのち、水酸化リチウムと混合し、酸素分圧を制御した雰囲気中にて750℃で10時間焼成した。そして乳鉢にて粉砕しLi1.04Ni0.65Co0.2Al0.15が得られた。
【0084】
以下、実施例1と同様にして非水電解液二次電池用正極活物質の評価を行う。結果を表1に示す。
【0085】
表1から明らかなように、本発明の非水電解液二次電池用正極活物質は、サイクル特性、高温サイクル特性が優れていることがわかる。またインピーダンス、低温インピーダンスも小さいことから出力特性、低温出力特性に優れていることがわかる。さらに熱安定性も向上していることがわかる。
【0086】
実施例1乃至7に係るリチウム遷移金属複合酸化物の空間部の、前記外殻部と前記空間部の合計に対する面積割合と、インピーダンスおよびサイクル特性の関係から次のことがわかる。面積割合が大きい程(実施例7)、サイクル特性、高温サイクル特性は向上するものの、インピーダンスは大きくなり出力特性、低温出力特性は低下する。面積割合が小さい程、インピーダンスは小さくなり出力特性、低温出力特性は向上するものの、サイクル特性、高温サイクル特性は低下する。したがって、面積割合は、7%〜16%が最適であることがわかる。
【0087】
【表1】
Figure 2004253174
【0088】
前記各実施の形態から把握できる請求項記載以外の技術思想(発明)について、以下にその効果とともに記載する。
【0089】
(1)請求項1乃至請求項5の少なくともいずれか1項に記載の発明において、
前記リチウム遷移金属複合酸化物は、ニッケルおよびコバルトと同一でない遷移金属、周期表の2族、アルミニウムと同一でない13族および14族の元素ならびにハロゲン元素からなる群から選ばれる少なくとも1種の元素を含む、ニッケルコバルトアルミン酸リチウムまたはニッケル、コバルトおよびマンガンと同一でない遷移金属、周期表の2族、13族および14族の元素ならびにハロゲン元素からなる群から選ばれる少なくとも1種の元素を含む、ニッケルコバルトマンガン酸リチウムであることがより好ましい。これらの元素を含むことで、さらに優れたサイクル特性と負荷特性の向上が実現できる。
【0090】
(2)請求項1乃至請求項5及び(1)の少なくともいずれか1項に記載の発明において、前記リチウム遷移金属複合酸化物は、Co、Niおよび下記式においてZがMnの場合はMnと同一でない遷移金属、周期表の2族、下記式においてZがAlの場合はAlと同一でない13族および14族の元素ならびにハロゲン元素からなる群から選ばれる少なくとも1種の元素を含む、一般式がLiNiCo(1−m−p)(式中、ZはAlまたはMnを表し、kは0.95≦k≦1.10を満たす数を表し、mは0.1≦m≦0.9を満たす数を表し、pは0.1≦p≦0.9を満たす数を表し、rは1.8≦r≦2.2を満たす数を表す。)で表されることがより好ましい。これらの元素を含むことで、さらに優れたサイクル特性と負荷特性の向上が実現できる。
【0091】
(3)請求項1乃至請求項5及び(1)又は(2)の少なくともいずれか1項に記載の発明において、前記リチウム遷移金属複合酸化物は、マグネシウム、チタン及びジルコニウムから選ばれた少なくとも一種類の元素と、硫黄を含む、一般式がLi1−y(MはCo,Niから選ばれる少なくとも一種類の元素を表し、XはAl,Mnから選ばれる少なくとも一種類の元素を表し、xは0.95≦x≦1.10を満たす数を表し、yは0.5≦y≦1.0を満たす数を表し、zは1.8≦z≦2.2を満たす数を表す。)で表されることがより好ましい。マグネシウム、チタン及びジルコニウムから選ばれた少なくとも一種類の元素と、硫黄という元素を含むことによって、サイクル特性、出力特性及び熱安定性の向上を損なうことなく、電池の膨張率が低減し、容量維持率が高くなるからである。
【0092】
(4)請求項1乃至請求項5及び(1)乃至(3)の少なくともいずれか1項に記載の発明において、前記リチウム遷移金属複合酸化物の比表面積は、0.2〜3m/gであることがより好ましい。比表面積が3m/gより大きいと、正極活物質表面あるいはその近傍で起こる電解液の酸化分解反応の反応性が増し、発生するガス量が増えるため好ましくない。比表面積が0.2m/gより小さいと正極活物質の粒径が大きくなり過ぎて電池特性が低下するため好ましくない。このように規定することで、サイクル特性、出力特性及び熱安定性の向上を損なうことなく、ガス発生が低減でき、さらに優れたサイクル特性、負荷特性が得られる。
【0093】
(5)請求項1乃至請求項5及び(1)乃至(4)の少なくともいずれか1項に記載の発明において、前記リチウム遷移金属複合酸化物の体積基準の粒子径が50μm以上の粒子の割合は、全粒子の10体積%以下であることがより好ましい。この範囲内の正極活物質であることで、サイクル特性、出力特性及び熱安定性の向上を損なうことなく、電池膨張率を低減することができる。
【0094】
(6)粉末本体と、該粉末本体の表面の少なくとも一部を被覆する被覆層とを有する粉末からなる非水電解液二次電池用正極活物質であって、
該粉末本体が請求項1乃至請求項5及び(1)乃至(5)の少なくともいずれか1項に記載の非水電解液二次電池用正極活物質に用いられるリチウム遷移金属複合酸化物であり、
該被覆層が、Al及び/又はLiTiOの粉末からなる、非水電解液二次電池用正極活物質であることが好ましい。前記被覆層がAlの粉末からなることにより、電気二重層中の移動速度を多少低下することができ、結晶格子中のリチウムイオンの移動速度とバランスを保つことができると考えられる。したがって、サイクル特性、出力特性及び熱安定性の向上を損なうことなく、電圧降下を改善することができる。また、前記被覆層がLiTiOの粉末からなることにより、充放電時にリチウムイオンの授受を行う際、特異な現象が起きているためサイクル特性、出力特性及び熱安定性の向上を損なうことなく、負荷特性を向上させることができる。前記LiTiOは空間群Fm3mに属することが好ましい。
【0095】
(7)請求項1乃至請求項5及び(1)乃至(6)の少なくともいずれか1項に記載の発明において、前記リチウム遷移金属複合酸化物は、粒子形状であると共に、その表面に硫酸根を有することがより好ましい。層状構造のリチウム遷移金属複合酸化物の粒子の表面に硫酸根を有することにより、硫酸根が電子を通しやすくすると考えられる。そのためサイクル特性、出力特性及び熱安定性の向上を損なうことなく、負荷特性が向上する。
【0096】
【発明の効果】
以上に説明したように、本発明の非水電解液二次電池用正極活物質は、サイクル特性、出力特性及び熱安定性等の電池特性に優れる。したがって、本発明の非水電解液二次電池用正極活物質は、リチウムイオン二次電池等に好適に用いられる。
【図面の簡単な説明】
【図1】電池の等価回路を示す図である。
【図2】層状構造のリチウム遷移金属複合酸化物を示す図である。
【図3】活物質の結着模式図である。
【図4】円筒型電池の断面図である。
【図5】コイン型電池の構造を示す図である。
【図6】角型電池の構造を示す図である。
【図7】実施例7の非水電解液二次電池用正極活物質のFIB加工部における二次イオン像を示す図である。
【図8】実施例4の非水電解液二次電池用正極活物質のFIB加工部における二次イオン像を示す図である。
【符号の説明】
1…Co及び/又はNi層
2…酸素層
3…Li層
4…結着剤
5…活物質
11…負極
12…集電体
13…正極
14…セパレーター
21…外殻部
22…空間部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonaqueous electrolyte secondary battery and a positive electrode active material thereof, particularly a layered lithium transition metal composite oxide. For example, it is used for mobile phones, personal computers, and electric vehicles.
[0002]
[Prior art]
Non-aqueous electrolyte secondary batteries are characterized by higher operating voltage and higher energy density than conventional nickel cadmium secondary batteries and the like, and are widely used as power sources for electronic devices. LiCoO is used as a positive electrode active material of the nonaqueous electrolyte secondary battery. 2 , LiNiO 2 , LiMn 2 O 4 And lithium transition metal composite oxides.
[0003]
The electronic device is specifically a mobile electronic device represented by a mobile phone or a notebook computer. In such electronic devices, LiCoO has hitherto been used. 2 Sufficient battery characteristics have been obtained with a non-aqueous electrolyte secondary battery using.
[0004]
However, at present, mobile devices such as mobile phones, notebook computers, digital cameras, and the like have more severe usage environments due to higher functions such as being provided with various functions and use at high and low temperatures. It has become something. It is also expected to be applied to a power supply such as a battery for an electric vehicle. 2 In non-aqueous electrolyte secondary batteries using, a sufficient battery characteristic cannot be obtained, and further improvement is required.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent battery characteristics even in a more severe use environment. That is, it is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent output characteristics, cycle characteristics, and thermal stability.
[0006]
[Means for Solving the Problems]
The positive electrode active material for a nonaqueous electrolyte secondary battery described in the present invention is a positive electrode active material for a nonaqueous electrolyte secondary battery having at least a layered structure lithium transition metal composite oxide, wherein the lithium transition metal The composite oxide is a lithium transition metal composite oxide comprising hollow particles having an outer shell and a space inside the outer shell.
[0007]
In the lithium transition metal composite oxide, lithium ions are intercalated and desorbed due to diffusion at the particle interface and inside the particles during charge and discharge. In addition, it is considered that the repeated charging / discharging causes non-uniformity in the insertion / desorption of lithium ions between the inside of the particle and the particle interface, thereby deteriorating the cycle characteristics. In the present invention, since the space portion is provided inside the outer shell portion, it is considered that lithium ions are easily inserted and desorbed uniformly from the surface of the outer shell portion and cycle characteristics are improved.
[0008]
It is preferable that the area ratio of the space to the total of the outer shell and the space when the cross section is obtained for the lithium transition metal composite oxide is larger than 0% and smaller than 20%. In the case of a high load, lithium ions diffuse linearly and move to the negative electrode. Therefore, it is considered that the existence of the space portion lengthens the movement path of lithium ions and lowers output characteristics. By defining the area ratio of the space portion to the total of the outer shell portion and the space portion within this range, it is possible to achieve both excellent output characteristics, low-temperature output characteristics, cycle characteristics, and high-temperature cycle characteristics.
[0009]
In the lithium transition metal composite oxide, the amount of lithium is preferably larger than the stoichiometric ratio. When the amount of lithium is larger than the stoichiometric ratio, transition of transition metal ions to lithium sites during firing is suppressed, so that output characteristics are further improved.
[0010]
The lithium transition metal composite oxide preferably contains at least aluminum, and the content of the aluminum is preferably 1 mol% to 20 mol% with respect to the lithium transition metal composite oxide. When the content of aluminum is 1 mol% to 20 mol% with respect to the lithium transition metal composite oxide, the crystal structure is stabilized, the thermal stability is improved, and the output characteristics after the cycle are improved.
[0011]
The lithium transition metal composite oxide preferably has a crystallite diameter in the perpendicular direction of the (104) plane in the layered structure of 400 ° to 800 °. When the crystallite diameter in the perpendicular direction of the (104) plane of the layered structure is 400 ° to 800 °, crystal grain boundaries that inhibit the diffusion of lithium can be reduced, and the output characteristics are further improved.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention will be described with reference to embodiments, examples, and FIGS. 1 to 8. However, the present invention is not limited to this embodiment, examples and FIGS.
[0013]
(Positive electrode active material for non-aqueous electrolyte secondary batteries)
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention comprises at least a layered structure lithium transition metal composite oxide. The layered structure means that the crystal structure of the lithium transition metal composite oxide is layered. The layered structure is α-NaFeO 2 Lithium ions and transition metal ions regularly occupy all six coordination sites in a solid matrix with a cubic tightly packed oxygen array, called the type structure. Lithium occupies 3b site 3, oxygen occupies 6c site 2, and transition metal occupies 3a site 1.
[0014]
The lithium transition metal composite oxide having a layered structure is not particularly limited. For example, lithium cobaltate, lithium nickelate, lithium chromate, lithium vanadate, lithium manganate, lithium nickel cobaltate, nickel cobalt lithium manganate, and nickel cobalt lithium aluminate. Preferably, they are lithium nickel cobalt manganate and nickel cobalt lithium aluminate. In the case of lithium nickel cobalt manganate, a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent cycle characteristics and thermal stability used for a mobile phone, a power tool, and the like can be obtained. Furthermore, in the case of nickel cobalt lithium aluminate, a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent cycle characteristics, high-temperature cycle characteristics, output characteristics after cycling, and low-temperature output characteristics used for electric vehicles can be obtained.
[0015]
The lithium transition metal composite oxide has a general formula of Li k Ni m Co p Z (1-mp) O r (Wherein, Z represents Al or Mn, k represents a number satisfying 0.95 ≦ k ≦ 1.10, m represents a number satisfying 0.1 ≦ m ≦ 0.9, and p represents 0. It represents a number that satisfies 1 ≦ p ≦ 0.9, and r represents a number that satisfies 1.8 ≦ r ≦ 2.2.) Li k Ni m Co p Mn (1-mp) O r In this case, a positive electrode active material for a nonaqueous electrolyte secondary battery having excellent cycle characteristics and thermal stability used for a mobile phone, a power tool, and the like can be obtained. Furthermore, Li k Ni m Co p Al (1-mp) O r In this case, a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent cycle characteristics, high-temperature cycle characteristics, output characteristics after cycling, and low-temperature output characteristics used for an electric vehicle can be obtained.
[0016]
The lithium transition metal composite oxide according to the present invention comprises hollow particles having an outer shell and a space inside the outer shell. The lithium transition metal composite oxide according to the present invention has, for example, an outer shell forming a surface layer and an inner side of the outer shell, as can be seen from the secondary ion images in the FIB processed part in FIGS. And a hollow particle having a formed space. As can be seen from FIG. 8, the space may be present not only at one place but also at several places in the hollow particle. The ratio between the maximum diameter and the minimum diameter of the hollow particles is in the range of 0.8 to 1.2. The hollow particles have a substantially spherical appearance. When the hollow particles have a substantially spherical appearance, when the positive electrode plate is manufactured, the mixing property with the conductive agent powder represented by the carbon material is improved, the internal resistance of the battery is reduced, and the discharge capacity is improved. Conceivable.
[0017]
The FIB-processed portion refers to a cross-sectional portion of the lithium transition metal composite oxide particle whose cross section has been set out by the focused ion beam processing observation device. The focused ion beam focused on the submicron order scans the surface of the FIB processed part of the lithium transition metal composite oxide according to the present invention, and at this time, secondary electrons emitted from the surface are detected and a scanned ion image is obtained. Observation is made as a secondary ion image.
[0018]
When the cross section is obtained for the lithium transition metal composite oxide according to the present invention, the area ratio of the space to the total of the outer shell and the space is preferably larger than 0% and smaller than 20%. It is. In the present invention, sectioning is performed as follows. A lithium transition metal composite oxide having an average particle diameter is selected from among a large number of particles of the lithium transition metal composite oxide according to the present invention. Here, the average particle size means a median size. A cross section is obtained up to a portion where the cross-sectional image of the selected lithium transition metal composite oxide has the maximum particle size. The method for forming the cross section is not particularly limited. For example, it can be performed by a method of embedding in a resin to cut out the particle cross section or a method of processing by FIB. The particle cross-sectional image is not particularly limited. For example, SEM images, SIM images, TEM images, and STEM images can be used.
[0019]
When the cross section of the lithium transition metal composite oxide is determined, the area ratio of the space to the total of the outer shell and the space is preferably 1% to 18%. More preferably, it is 2% to 15%, and still more preferably, 5% to 10%.
At this time, it is possible to achieve both excellent cycle characteristics and high-temperature cycle characteristics, and excellent output characteristics and low-temperature output characteristics.
When there are a plurality of space parts, the space part in the present invention means a total of the plurality of space parts.
[0020]
In the lithium transition metal composite oxide according to the present invention, the amount of lithium is preferably larger than the stoichiometric ratio. If the amount of lithium is smaller than the stoichiometric ratio, transition metal ions enter the lithium ion site, and a rock salt layer is easily formed locally. This is not preferable because it is inactive and hinders the diffusion of lithium.
[0021]
In the lithium transition metal composite oxide according to the present invention, the amount of lithium is preferably more than 1.00 times and not more than 1.10 times the stoichiometric ratio. If the amount of lithium is more than 1.10 times the stoichiometric ratio, unreacted lithium tends to remain and the discharge capacity decreases, which is not preferable. More preferably, it is 1.01 to 1.08 times.
[0022]
The lithium transition metal composite oxide according to the present invention preferably has at least aluminum, and the content of the aluminum is preferably 1 mol% to 20 mol% with respect to the lithium transition metal composite oxide. If the aluminum content is out of this range with respect to the lithium transition metal composite oxide, the crystal structure becomes unstable, which is not preferable in terms of thermal stability and output characteristics after cycling.
[0023]
The content of aluminum is more preferably 3 mol% to 15 mol% with respect to the lithium transition metal composite oxide. At this time, the crystal structure is further stabilized, and the thermal stability and the output characteristics after the cycle are further improved.
[0024]
In the lithium transition metal composite oxide according to the present invention, the crystallite diameter in the perpendicular direction of the (104) plane in the layered structure is preferably 400 ° to 800 °. Crystallites represent the largest set that can be considered single crystals. Therefore, the larger the crystallite diameter, the more excellent the crystallinity and the less the distortion of the crystal structure. In the case of the lithium transition metal composite oxide having a layered structure, the regular arrangement degree of the unit cell can be determined by using the crystallite diameter in the perpendicular direction of the (104) plane. The crystallite diameter in the perpendicular direction of the (104) plane in the layered structure is more preferably 500 ° to 700 °.
[0025]
(Method of producing positive electrode active material for non-aqueous electrolyte secondary battery)
Next, the positive electrode active material for a nonaqueous electrolyte secondary battery (Li 0.95 Ni 0.7 Co 0.3 O 2 ) Will be described, but the present invention is not limited to this method.
[0026]
An aqueous solution containing cobalt ions and nickel ions having a predetermined composition ratio is dropped into pure water being stirred. Further, sodium hydroxide is added dropwise so as to have a pH of 8 to 11, and cobalt and nickel are coprecipitated at 40 ° C. to 80 ° C. at a rotation speed of 500 rpm to 1500 rpm to obtain a coprecipitate.
[0027]
The cobalt source is not particularly limited. Basically, any salt that can form an aqueous solution can be used. For example, cobalt chloride, cobalt iodide, cobalt sulfate, cobalt bromate, cobalt nitrate and the like are used. Preferably, CoSO 4 ・ 7H 2 O, Co (NO 3 ) ・ 6H 2 O or the like is used.
[0028]
The nickel source is not particularly limited. Basically, any salt that can form an aqueous solution can be used. For example, nickel chloride, nickel bromide, nickel iodide, nickel sulfate, nickel nitrate, nickel formate and the like are used. Preferably, NiSO 4 ・ 6H 2 O, Ni (NO 3 ) 2 ・ 6H 2 O or the like is used.
[0029]
When the lithium transition metal composite oxide according to the present invention is nickel cobalt lithium aluminate, aluminum and the like are coprecipitated together with cobalt and nickel. In the case of nickel cobalt lithium manganate, manganese and the like are coprecipitated together with cobalt and nickel.
[0030]
The aluminum source is not particularly limited. Basically, any salt that can form an aqueous solution can be used. For example, aluminum chloride, aluminum iodide, aluminum sulfate, aluminum nitrate and the like are used. Preferably, Al 2 (SO 4 ) 3 , Al (NO 3 ) 3 Are used.
[0031]
The manganese source is not particularly limited. Basically, any salt that can form an aqueous solution can be used. For example, manganese chloride, manganese iodide, manganese sulfate, manganese nitrate and the like are used. Preferably, MnSO 4 , MnCl 2 Are used.
[0032]
Further, although the aqueous sodium hydroxide solution is added, the invention is not limited to this, and any alkaline solution such as an aqueous sodium hydrogen carbonate solution, an aqueous potassium hydroxide solution, or an aqueous lithium hydroxide solution may be used.
[0033]
Next, the obtained coprecipitate is filtered, washed with water, dried, mixed with lithium hydroxide, and calcined at a temperature of 650 ° C. to 1100 ° C. for 1 to 24 hours in an atmosphere with a controlled oxygen partial pressure. Then, the lithium transition metal composite oxide according to the present invention is synthesized.
[0034]
What mixes with a coprecipitate is not limited to lithium hydroxide. Basically, any lithium compound can be used. For example, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, lithium oxide, lithium peroxide, lithium carbonate and the like are used. Preferably Li 2 CO 3 , LiOH, LiOH.H 2 O, Li 2 O, LiCl, LiNO 3 , Li 2 SO 4 , LiHCO 3 , Li (CH 3 COO) or the like.
[0035]
A sulfur-containing compound, a compound containing a halogen element, a boron compound and the like may be mixed together with the coprecipitate and the lithium compound.
[0036]
The sulfur-containing compound is not particularly limited. For example, sulfide, sulfur iodide, hydrogen sulfide, sulfuric acid and its salts, nitrogen sulfide and the like are used. Preferably Li 2 SO 4 , MnSO 4 , (NH 4 ) 2 SO 4 , Al 2 (SO 4 ) 3 , MgSO 4 Are used.
[0037]
The compound containing a halogen element is not particularly limited. For example, hydrogen fluoride, oxygen fluoride, hydrofluoric acid, hydrogen chloride, hydrochloric acid, chlorine oxide, chlorine fluoride oxide, bromine oxide, bromine fluorosulfate, hydrogen iodide, iodine oxide, periodic acid and the like are used. Preferably, NH 4 F, NH 4 Cl, NH 4 Br, NH 4 I, LiF, LiCl, LiBr, LiI, MnF 2 , MnCl 2 , MnBr 2 , MnI 2 Are used.
[0038]
The boron compound is not particularly limited. For example, boride, boron oxide, boron phosphate and the like are used. Preferably, B 2 O 3 (Melting point 460 ° C), H 3 BO 3 (Decomposition temperature 173 ° C.) is used.
[0039]
The firing temperature is preferably 700 ° C. to 1050 ° C., and the firing time is preferably 6 to 12 hours. If the firing temperature is lower than 700 ° C., unreacted raw materials may remain in the positive electrode active material for a non-aqueous electrolyte secondary battery, and sufficient characteristics for achieving the object of the present invention may not be obtained. In addition, when firing at a temperature higher than 1100 ° C., by-products are easily generated, which causes a decrease in discharge capacity per unit weight, a decrease in cycle charge / discharge characteristics, and a decrease in operating voltage. If the calcination time is less than 1 hour, the diffusion reaction between the particles of the raw material mixture does not proceed, and the desired positive electrode active material for a nonaqueous electrolyte secondary battery cannot be obtained. If the firing is performed for more than 24 hours, coarse particles are formed by sintering, which is not preferable.
[0040]
The lithium transition metal composite oxide obtained by the above calcination may be pulverized by a mortar, a ball mill, a vibration mill, a pin mill, a jet mill, or the like. The specific surface area is 0.2-3m by the above method 2 / G of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention.
[0041]
By using the above manufacturing method, it is possible to obtain a desired positive electrode active material for a non-aqueous electrolyte secondary battery.
[0042]
In addition, by coprecipitation of cobalt and nickel, Li 0.95 Ni 0.7 Co 0.3 O 2 Was manufactured, but a cobalt compound and a nickel compound may be mixed so as to have a predetermined composition ratio and fired.
[0043]
(Non-aqueous electrolyte secondary battery)
The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is suitably used for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery and a lithium ion polymer secondary battery.
[0044]
The nonaqueous electrolyte secondary battery may be any of the conventionally known nonaqueous electrolyte secondary batteries, in which the positive electrode active material is the positive electrode active material of the present invention, and other configurations are not particularly limited. Any non-aqueous electrolyte secondary battery including the positive electrode active material layer containing the lithium transition metal composite oxide according to the present invention as a main component may be used.
[0045]
The positive electrode using the positive electrode active material mainly containing the lithium transition metal composite oxide according to the present invention is preferably manufactured as follows. The positive electrode mixture is formed by mixing the lithium transition metal composite oxide powder according to the present invention with a carbon-based conductive agent such as acetylene black and graphite, a binder and a solvent or a dispersion medium of the binder. . The positive electrode mixture is formed into a slurry or a kneaded material, which is applied or supported on a current collector 12 such as an aluminum foil, and is press-rolled to form a positive electrode active material layer on the current collector 12.
[0046]
As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide acrylic resin or the like can be used.
[0047]
It is considered that the lithium transition metal composite oxide according to the present invention has good mixing properties with the conductive agent powder, and the internal resistance of the battery is reduced. For this reason, the charge / discharge characteristics, particularly the discharge capacity, are improved. Also, when kneaded with a binder, the lithium transition metal composite oxide of the present invention has excellent fluidity, easily entangles with a polymer of the binder, and has excellent binding properties. Further, since it is spherical without containing coarse particles, the surface of the coating surface of the produced positive electrode 13 is excellent in smoothness. As a result, the coating surface of the positive electrode plate has excellent binding properties and is hard to peel off, and since the surface is smooth and lithium ions enter and exit the coating film surface uniformly during charge and discharge, a remarkable improvement in cycle characteristics is obtained. Can be
[0048]
For example, as the negative electrode active material, metal lithium, a lithium alloy, or a compound capable of inserting and extracting lithium ions can be used. As the lithium alloy, for example, a LiAl alloy, a LiSn alloy, a LiPb alloy or the like can be used. As the compound capable of inserting and extracting lithium ions, for example, a carbon material such as graphite and graphite can be used. Further, an oxide such as tin oxide or titanium oxide which can insert and remove lithium ions may be used.
[0049]
The electrolyte can be used without any particular limitation as long as it is a compound that does not deteriorate or decompose at the operating voltage. As the solvent, for example, organic solvents such as dimethoxyethane, diethoxyethane, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl formate, γ-butyrolactone, 2-methyltetrahydrofuran, dimethyl sulfoxide, and sulfolane can be used. Alternatively, two or more kinds selected from the above-mentioned organic solvent group may be used as a mixture.
[0050]
As the electrolyte, for example, lithium salts such as lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate and lithium trifluoromethane can be used. The above-mentioned solvent and electrolyte are mixed and used as an electrolyte. Here, a gelling agent or the like may be added and used as a gel, or it may be used after being absorbed by a hygroscopic polymer. Further, a solid electrolyte having inorganic or organic lithium ion conductivity may be used.
[0051]
Further, as the separator 14, a porous film made of polyethylene, polypropylene, or the like can be used. A non-aqueous electrolyte secondary battery is prepared according to a standard method using the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, the above-described negative electrode active material, electrolyte, and separator. Thereby, excellent battery characteristics that could not be achieved conventionally can be realized.
[0052]
Further, a band-shaped positive electrode constituted by forming a positive electrode active material layer using a positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention as a positive electrode active material on both surfaces of a band-shaped positive electrode current collector, A strip-shaped negative electrode constituted by forming a negative electrode active material layer of the negative electrode active material layer on each side of the strip-shaped negative electrode current collector is provided, and a large number of strip-shaped positive electrodes and strip-shaped negative electrodes are stacked via a strip-shaped separator. By winding, a spiral wound body in which a band-shaped separator is interposed between the band-shaped positive electrode and the band-shaped negative electrode can be formed to obtain a nonaqueous electrolyte secondary battery. With this configuration, the manufacturing process is simple, cracking of the positive electrode active material layer and the negative electrode active material layer and separation from the strip-shaped separator are less likely to occur, and the battery capacity can be increased and the energy density can be increased. . In particular, the positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention is excellent in output characteristics and cycle characteristics. Therefore, a non-aqueous electrolyte secondary battery having a high charge / discharge capacity and excellent output characteristics and cycle characteristics can be obtained.
[0053]
The shape of the nonaqueous electrolyte secondary battery may be a cylindrical type, a coin type, a square type, a laminate type, or the like.
[0054]
(Applications of non-aqueous electrolyte secondary batteries)
The use of the nonaqueous electrolyte secondary battery using the positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention is not particularly limited. For example, notebook PC, pen input PC, pocket PC, notebook word processor, pocket word processor, e-book player, mobile phone, cordless phone handset, electronic notebook, calculator, LCD TV, electric shaver, electric tool, electronic translator, car phone , Portable printer, transceiver, pager, handy terminal, portable copy, voice input device, memory card, backup power supply, tape recorder, radio, headphone stereo, handy cleaner, portable CD, video movie, navigation system, etc. Can be used. Lighting equipment, air conditioners, televisions, stereos, water heaters, refrigerators, oven microwaves, dishwashers, washing machines, dryers, game machines, toys, road conditioners, medical equipment, automobiles, electric vehicles, golf carts, electric carts , Can be used as a power source for power storage systems and the like. It can also be used for civilian use, military use, and space use.
[0055]
Hereinafter, the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0056]
【Example】
[Example 1]
An aqueous solution containing a predetermined composition ratio of cobalt ions and nickel ions was dropped into pure water being stirred. Further, sodium hydroxide was added dropwise so as to have a pH of 9, and cobalt and nickel were coprecipitated at 80 ° C. and a rotation number of 650 rpm to obtain a coprecipitate. The obtained coprecipitate was filtered, washed with water, heat-treated, mixed with lithium hydroxide, and fired at 750 ° C. for 10 hours in an atmosphere with a controlled oxygen partial pressure. And crushed in a mortar and Li 0.95 Ni 0.7 Co 0.3 O 2 was gotten.
[0057]
(Evaluation of positive electrode active material for non-aqueous electrolyte secondary battery)
The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is subjected to composition analysis, specific surface area measurement and particle size distribution measurement by the following methods. In addition, a test battery is prepared and each evaluation is performed.
[0058]
(Composition analysis)
A predetermined amount of the positive electrode active material for a non-aqueous electrolyte secondary battery was dissolved in nitric acid, and the contents of each of the constituent elements other than the halogen element and oxygen were quantified by plasma emission spectroscopy (ICP) analysis. Further, a predetermined amount of the positive electrode active material for a non-aqueous electrolyte secondary battery was charged into pure water and stirred to obtain a supernatant aqueous solution. The halogen element in the supernatant aqueous solution was quantified by an ion meter using an anion-selective electrode as an indicator electrode.
[0059]
(Evaluation of powder)
The specific surface area of the positive electrode active material for a non-aqueous electrolyte secondary battery was measured by a constant pressure BET adsorption method using nitrogen gas.
[0060]
(Measurement of crystallite diameter)
The measurement was performed using Ultima manufactured by Rigaku Electric Corporation. The X-ray diffraction pattern was measured at a tube current of 100 mA and a tube voltage of 40 kV using CuKα1 as the X-ray source. It was calculated from the diffraction peak attributable to the (104) plane by Scherrer's formula represented by the following formula.
[0061]
(Equation 1)
Figure 2004253174
[0062]
In the formula, D is the size of the crystallite (angstrom), K is a constant (K = 1.05 when β is calculated from the integral width), and λ is the wavelength of the X-ray source (CuKα1 = 1.540562 angstrom). , Β indicate the integration width (radian), and θ indicates the diffraction angle 2θ / 2 (degree).
[0063]
(Production of lithium ion secondary battery)
90 parts by weight of the lithium transition metal composite oxide powder of the present invention, which is a positive electrode active material, 5 parts by weight of carbon powder as a conductive agent, and 5 parts by weight of polyvinylidene fluoride were dissolved in a solution of normal methylpyrrolidone in polyvinylidene fluoride. Was kneaded to prepare a paste, which was applied to a positive electrode current collector and dried to obtain a positive electrode plate. In addition, a carbon material was used as the negative electrode active material, and the same was applied to the negative electrode current collector in the same manner to prepare a negative electrode plate. Using a porous propylene film as a separator, LiPF in a mixed solvent of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) as an electrolytic solution 6 Was used at a concentration of 1 mol / l. The positive electrode plate, the negative electrode plate, and the separator formed into a sheet were wound and housed in a metal cylindrical battery case to produce a cylindrical lithium ion secondary battery.
[0064]
(Measurement of impedance)
SI1287 and SI1260 (manufactured by SOLARTRON) were used for the measurement. Clips of the measuring instrument were attached to lead wires provided on the positive and negative electrodes of the cylindrical lithium ion secondary battery, and the internal impedance was measured by an AC impedance method. A Cole-Cole plot having the same shape as that of Tetsuya Osaka, 2D16, Proceedings of Battery Symposium (1999) was obtained. Analysis was performed according to the equivalent circuit shown in FIG. 3 to calculate the positive electrode resistance.
[0065]
(Measurement of output characteristics)
After discharging the fully charged battery to a predetermined depth of discharge (DOD), the voltage at the time of discharging at a current of 1 C for 10 seconds is measured. After standing for 10 minutes, the voltage when charging at a current of 1 C rate for 10 seconds is measured. Next, the voltage at the time of discharging for 10 seconds with a current of 3 C after the standing for 10 minutes is measured. After left for 10 minutes, the voltage when charged for 10 seconds with a current of 3C is measured. After standing for 10 minutes, the same repetitive measurement is performed by setting the charge / discharge rate to nC (n = 5, 7,...), A VI line is obtained, and the internal DC resistance is obtained from the slope of this line.
[0066]
(Evaluation of cycle charge / discharge characteristics and high temperature cycle charge / discharge characteristics)
The cycle charge / discharge characteristics were as follows: the charge / discharge of the produced cylindrical lithium ion secondary battery at room temperature to a constant current of 4.2 V at a charge density of 1 C, and then a charge / discharge cycle of discharging to 2.75 V at 1 C; Was determined from the following equation.
[0067]
(Equation 2)
Figure 2004253174
[0068]
The high-temperature cycle charge / discharge characteristics were as follows: the cylindrical lithium ion secondary battery was charged at 60 ° C. at a constant density of 1 C at a constant current of 4.2 V, and then discharged at 1 C to 2.75 V for 400 cycles. The capacity retention rate (%) at the cycle was determined from the following equation.
[0069]
[Equation 3]
Figure 2004253174
[0070]
(Evaluation of thermal stability)
A paste prepared by kneading 90 parts by weight of the positive electrode active material powder, 5 parts by weight of carbon as a conductive agent, and 5 parts by weight of PVDF (polyvinylidene fluoride) dissolved in a normal methylpyrrolidone solution and PVDF. did. The obtained paste was applied to a positive electrode current collector to prepare a test secondary battery in which the negative electrode was made of lithium metal, and was charged and discharged with a constant current to make it conform. Thereafter, the test secondary battery was charged under a constant current until the battery voltage became 4.3 V. After the charging was completed, the positive electrode was taken out of the test secondary battery, washed and dried, and the positive electrode active material was scraped off from the positive electrode. About 2 mg of ethylene carbonate used for the electrolytic solution was weighed in an Al cell, and about 5 mg of a positive electrode active material scraped from the positive electrode was weighed, and the differential scanning calorimetry was measured.
Differential scanning calorimetry is a method of measuring the difference between the energy input of a substance and a reference substance as a function of the temperature while changing the temperature of the substance and the reference substance according to a program. Although the calorific value does not change, the differential scanning calorific value greatly increases at a certain temperature or higher. The temperature at this time is defined as the heat generation start temperature, and the higher the temperature, the better the thermal stability.
[0071]
(Measurement of area ratio)
Medium-sized lithium transition metal composite oxides were selected from among the numerous particles of the lithium transition metal composite oxides according to the present invention. A cross section of the selected lithium transition metal composite oxide was obtained with a focused ion beam processing observation device up to a portion where the particle cross-sectional image (SIM image) had the maximum particle size. The ratio of the area of the space in the particle cross-sectional image to the total of the outer shell and the space was calculated from the SIM image.
[0072]
Table 1 shows the results.
[0073]
[Example 2]
An aqueous solution containing cobalt ions, nickel ions, and aluminum ions having a predetermined composition ratio was dropped into the stirring pure water. Further, sodium hydroxide was added dropwise so as to have a pH of 9, and cobalt, nickel and aluminum were coprecipitated at 80 ° C. and a rotation number of 650 rpm to obtain a coprecipitate. The obtained coprecipitate was filtered, washed with water, heat-treated, mixed with lithium hydroxide, and fired at 750 ° C. for 10 hours in an atmosphere with a controlled oxygen partial pressure. And crushed in a mortar and Li 0.98 Ni 0.7 Co 0.2 Al 0.1 O 2 was gotten.
[0074]
Hereinafter, the evaluation of the positive electrode active material for a non-aqueous electrolyte secondary battery is performed in the same manner as in Example 1. Table 1 shows the results.
[0075]
[Example 3]
An aqueous solution containing cobalt ions, nickel ions, and aluminum ions having a predetermined composition ratio was dropped into the stirring pure water. Further, sodium hydroxide was added dropwise so as to have a pH of 9, and cobalt, nickel and aluminum were coprecipitated at 80 ° C. and a rotation number of 650 rpm to obtain a coprecipitate. The obtained coprecipitate was filtered, washed with water, heat-treated, mixed with lithium hydroxide, and fired at 750 ° C. for 10 hours in an atmosphere with a controlled oxygen partial pressure. And crushed in a mortar and Li 0.95 Ni 0.6 Co 0.2 Al 0.2 O 2 was gotten.
[0076]
Hereinafter, the evaluation of the positive electrode active material for a non-aqueous electrolyte secondary battery is performed in the same manner as in Example 1. Table 1 shows the results.
[0077]
[Example 4]
An aqueous solution containing cobalt ions and nickel ions of a predetermined composition ratio was dropped into pure water under stirring. Further, sodium hydroxide was added dropwise so as to have a pH of 9, and cobalt and nickel were coprecipitated at 80 ° C. and a rotation number of 650 rpm to obtain a coprecipitate. The obtained coprecipitate was filtered, washed with water, heat-treated, mixed with lithium hydroxide, and calcined at 750 ° C. for 10 hours in an atmosphere with a controlled oxygen partial pressure. And crushed in a mortar and Li 1.02 Ni 0.7 Co 0.3 O 2 was gotten.
[0078]
Hereinafter, the evaluation of the positive electrode active material for a non-aqueous electrolyte secondary battery is performed in the same manner as in Example 1. Table 1 shows the results.
[0079]
[Example 5]
An aqueous solution containing cobalt ions, nickel ions, and aluminum ions having a predetermined composition ratio was dropped into the stirring pure water. Further, sodium hydroxide was added dropwise so as to have a pH of 9, and cobalt, nickel and aluminum were coprecipitated at 80 ° C. and a rotation number of 650 rpm to obtain a coprecipitate. The obtained coprecipitate was filtered, washed with water, heat-treated, mixed with lithium hydroxide, and calcined at 750 ° C. for 10 hours in an atmosphere with a controlled oxygen partial pressure. And crushed in a mortar and Li 1.02 Ni 0.7 Co 0.2 Al 0.1 O 2 was gotten.
[0080]
Hereinafter, the evaluation of the positive electrode active material for a non-aqueous electrolyte secondary battery is performed in the same manner as in Example 1. Table 1 shows the results.
[0081]
[Example 6]
An aqueous solution containing cobalt ions, nickel ions, and aluminum ions having a predetermined composition ratio was dropped into the stirring pure water. Further, sodium hydroxide was added dropwise so as to have a pH of 9, and cobalt, nickel and aluminum were coprecipitated at 80 ° C. and a rotation number of 650 rpm to obtain a coprecipitate. The obtained coprecipitate was filtered, washed with water, heat-treated, mixed with lithium hydroxide, and fired at 750 ° C. for 10 hours in an atmosphere with a controlled oxygen partial pressure. And crushed in a mortar and Li 1.02 Ni 0.65 Co 0.2 Al 0.15 O 2 was gotten.
[0082]
Hereinafter, the evaluation of the positive electrode active material for a non-aqueous electrolyte secondary battery is performed in the same manner as in Example 1. Table 1 shows the results.
[0083]
[Example 7]
An aqueous solution containing cobalt ions, nickel ions, and aluminum ions having a predetermined composition ratio was dropped into the stirring pure water. Further, sodium hydroxide was added dropwise so as to have a pH of 9, and cobalt, nickel and aluminum were coprecipitated at 80 ° C. and 1200 rpm to obtain a coprecipitate. The obtained coprecipitate was filtered, washed with water, heat-treated, mixed with lithium hydroxide, and fired at 750 ° C. for 10 hours in an atmosphere with a controlled oxygen partial pressure. And crushed in a mortar and Li 1.04 Ni 0.65 Co 0.2 Al 0.15 O 2 was gotten.
[0084]
Hereinafter, the evaluation of the positive electrode active material for a non-aqueous electrolyte secondary battery is performed in the same manner as in Example 1. Table 1 shows the results.
[0085]
As is clear from Table 1, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has excellent cycle characteristics and high-temperature cycle characteristics. Further, since the impedance and the low-temperature impedance are small, it is understood that the output characteristics and the low-temperature output characteristics are excellent. It can be seen that the thermal stability has also been improved.
[0086]
The following can be understood from the relationship between the area ratio of the space portion of the lithium transition metal composite oxide according to Examples 1 to 7 to the total of the outer shell portion and the space portion, and the impedance and cycle characteristics. As the area ratio increases (Example 7), although the cycle characteristics and the high-temperature cycle characteristics improve, the impedance increases and the output characteristics and the low-temperature output characteristics decrease. As the area ratio decreases, the impedance decreases and the output characteristics and the low-temperature output characteristics improve, but the cycle characteristics and the high-temperature cycle characteristics deteriorate. Therefore, it is understood that the optimum area ratio is 7% to 16%.
[0087]
[Table 1]
Figure 2004253174
[0088]
The technical ideas (inventions) other than those described in the claims that can be grasped from the above embodiments will be described below together with their effects.
[0089]
(1) In the invention according to any one of claims 1 to 5,
The lithium transition metal composite oxide includes at least one element selected from the group consisting of a transition metal that is not the same as nickel and cobalt, a Group 2 and a Group 14 element that is not the same as aluminum, and a halogen element. Nickel, containing at least one element selected from the group consisting of nickel-cobalt lithium aluminate or a transition metal not identical to nickel, cobalt and manganese, elements of groups 2, 13 and 14 of the periodic table and halogen elements More preferably, it is lithium cobalt manganate. By including these elements, further improved cycle characteristics and load characteristics can be realized.
[0090]
(2) In the invention as set forth in any one of claims 1 to 5 and (1), the lithium transition metal composite oxide includes Co, Ni, and Mn when Z is Mn in the following formula. A general formula containing at least one element selected from the group consisting of non-identical transition metals, Group 2 of the periodic table, elements of Groups 13 and 14 that are not the same as Al when Z is Al, and halogen elements. Is Li k Ni m Co p Z (1-mp) O r (Wherein, Z represents Al or Mn, k represents a number satisfying 0.95 ≦ k ≦ 1.10, m represents a number satisfying 0.1 ≦ m ≦ 0.9, and p represents 0. More preferably, it represents a number that satisfies 1 ≦ p ≦ 0.9, and r represents a number that satisfies 1.8 ≦ r ≦ 2.2.) By including these elements, further improved cycle characteristics and load characteristics can be realized.
[0091]
(3) In the invention according to any one of claims 1 to 5 and (1) or (2), the lithium transition metal composite oxide is at least one selected from magnesium, titanium, and zirconium. The general formula is Li, which contains various elements and sulfur. x M y X 1-y O z (M represents at least one element selected from Co and Ni, X represents at least one element selected from Al and Mn, x represents a number satisfying 0.95 ≦ x ≦ 1.10. y represents a number that satisfies 0.5 ≦ y ≦ 1.0, and z represents a number that satisfies 1.8 ≦ z ≦ 2.2.) By containing at least one element selected from magnesium, titanium and zirconium and an element called sulfur, the expansion rate of the battery is reduced without impairing the improvement of cycle characteristics, output characteristics and thermal stability, and the capacity is maintained. This is because the rate increases.
[0092]
(4) In the invention according to any one of claims 1 to 5 and (1) to (3), the specific surface area of the lithium transition metal composite oxide is 0.2 to 3 m. 2 / G is more preferable. Specific surface area is 3m 2 If it is larger than / g, the reactivity of the oxidative decomposition reaction of the electrolyte solution occurring on or near the surface of the positive electrode active material is increased, and the amount of generated gas is undesirably increased. 0.2m specific surface area 2 If the value is smaller than / g, the particle size of the positive electrode active material becomes too large, and the battery characteristics deteriorate, which is not preferable. By defining as such, gas generation can be reduced without impairing the cycle characteristics, output characteristics, and thermal stability, and further excellent cycle characteristics and load characteristics can be obtained.
[0093]
(5) In the invention according to any one of (1) to (5) and (1) to (4), a ratio of particles of the lithium transition metal composite oxide having a volume-based particle diameter of 50 μm or more. Is more preferably 10% by volume or less of all particles. When the positive electrode active material falls within this range, the battery expansion coefficient can be reduced without impairing the improvement in cycle characteristics, output characteristics, and thermal stability.
[0094]
(6) A positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a powder having a powder main body and a coating layer covering at least a part of the surface of the powder main body,
The powder body is a lithium transition metal composite oxide used for a positive electrode active material for a non-aqueous electrolyte secondary battery according to at least one of claims 1 to 5 and (1) to (5). ,
The coating layer is made of Al 2 O 3 And / or LiTiO 2 It is preferably a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a powder of The coating layer is Al 2 O 3 It is considered that the use of the powder of (1) can slightly reduce the moving speed in the electric double layer, and maintain the balance with the moving speed of lithium ions in the crystal lattice. Therefore, the voltage drop can be improved without impairing the cycle characteristics, output characteristics, and thermal stability. Further, the coating layer is made of LiTiO. 2 By using the powder of the above, load characteristics can be improved without impairing the improvement of cycle characteristics, output characteristics, and thermal stability due to the occurrence of a unique phenomenon when lithium ions are transferred during charge and discharge. . The LiTiO 2 Preferably belongs to the space group Fm3m.
[0095]
(7) In the invention according to any one of claims 1 to 5 and (1) to (6), the lithium transition metal composite oxide has a particle shape and a sulfate group on a surface thereof. It is more preferred to have It is considered that by having a sulfate group on the surface of the particles of the lithium transition metal composite oxide having a layered structure, the sulfate group easily conducts electrons. Therefore, the load characteristics are improved without impairing the improvement in the cycle characteristics, output characteristics, and thermal stability.
[0096]
【The invention's effect】
As described above, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is excellent in battery characteristics such as cycle characteristics, output characteristics, and thermal stability. Therefore, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is suitably used for a lithium ion secondary battery or the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing an equivalent circuit of a battery.
FIG. 2 is a diagram showing a lithium transition metal composite oxide having a layered structure.
FIG. 3 is a schematic diagram of binding of an active material.
FIG. 4 is a sectional view of a cylindrical battery.
FIG. 5 is a view showing a structure of a coin-type battery.
FIG. 6 is a diagram showing a structure of a prismatic battery.
FIG. 7 is a view showing a secondary ion image of a positive electrode active material for a non-aqueous electrolyte secondary battery of Example 7 in an FIB processed part.
FIG. 8 is a view showing a secondary ion image of a positive electrode active material for a non-aqueous electrolyte secondary battery in Example 4 in an FIB processed part.
[Explanation of symbols]
1. Co and / or Ni layer
2 ... oxygen layer
3 ... Li layer
4: Binder
5 Active material
11 ... negative electrode
12 ... current collector
13 ... Positive electrode
14 ... Separator
21 ... outer shell
22 ... space

Claims (5)

少なくとも層状構造のリチウム遷移金属複合酸化物を有する非水電解液二次電池用正極活物質であって、
前記リチウム遷移金属複合酸化物は、
外側の外殻部と、該外殻部の内側の空間部とを有する中空粒子からなるリチウム遷移金属複合酸化物である
ことを特徴とする非水電解液二次電池用正極活物質。
A non-aqueous electrolyte secondary battery positive electrode active material having at least a layered structure lithium transition metal composite oxide,
The lithium transition metal composite oxide,
A positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a lithium transition metal composite oxide comprising hollow particles having an outer shell portion and a space portion inside the outer shell portion.
前記リチウム遷移金属複合酸化物について断面出しを行ったときの、前記空間部の、前記外殻部と前記空間部の合計に対する面積割合は、0%より大きく20%より小さい請求項1に記載の非水電解液二次電池用正極活物質。2. The area ratio of the space to the total of the outer shell and the space when the cross section is obtained for the lithium transition metal composite oxide according to claim 1, is greater than 0% and less than 20%. Cathode active material for non-aqueous electrolyte secondary batteries. 前記リチウム遷移金属複合酸化物は、リチウムの量が化学量論比よりも多い請求項1又は請求項2のいずれかに記載の非水電解液二次電池用正極活物質。The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium transition metal composite oxide has an amount of lithium larger than a stoichiometric ratio. 前記リチウム遷移金属複合酸化物は、少なくともアルミニウムを有し、前記アルミニウムの含有量は、前記リチウム遷移金属複合酸化物に対して、1mol%〜20mol%である請求項1乃至請求項3のいずれか1項に記載の非水電解液二次電池用正極活物質。The lithium transition metal composite oxide has at least aluminum, and the content of the aluminum is 1 mol% to 20 mol% with respect to the lithium transition metal composite oxide. 4. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. 前記リチウム遷移金属複合酸化物は、前記層状構造における(104)面の垂線方向の結晶子径が400Å〜800Åである請求項1乃至請求項4のいずれか1項に記載の非水電解液二次電池用正極活物質。The non-aqueous electrolyte solution according to any one of claims 1 to 4, wherein the lithium transition metal composite oxide has a crystallite diameter in a perpendicular direction of a (104) plane in the layered structure of 400 to 800 °. Positive electrode active material for secondary batteries.
JP2003039903A 2003-02-18 2003-02-18 Cathode active material for non-aqueous electrolyte secondary battery Expired - Lifetime JP4096754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039903A JP4096754B2 (en) 2003-02-18 2003-02-18 Cathode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039903A JP4096754B2 (en) 2003-02-18 2003-02-18 Cathode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004253174A true JP2004253174A (en) 2004-09-09
JP4096754B2 JP4096754B2 (en) 2008-06-04

Family

ID=33023946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039903A Expired - Lifetime JP4096754B2 (en) 2003-02-18 2003-02-18 Cathode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4096754B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103141A (en) * 2005-10-04 2007-04-19 Sumitomo Chemical Co Ltd Cathode active substance and nonaqueous electrolyte secondary battery
CN100421287C (en) * 2005-06-29 2008-09-24 松下电器产业株式会社 Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
WO2011067982A1 (en) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 Active material particles and use of same
WO2012049777A1 (en) * 2010-10-15 2012-04-19 トヨタ自動車株式会社 Secondary battery
WO2012049779A1 (en) * 2010-10-15 2012-04-19 トヨタ自動車株式会社 Secondary battery
WO2012131881A1 (en) 2011-03-28 2012-10-04 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2012169274A1 (en) 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
WO2012169083A1 (en) 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery
CN102971893A (en) * 2011-05-06 2013-03-13 丰田自动车株式会社 Lithium ion secondary cell
JP2013118156A (en) * 2011-12-05 2013-06-13 Toyota Motor Corp Lithium ion secondary battery
WO2013094701A1 (en) 2011-12-20 2013-06-27 住友金属鉱山株式会社 Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JP2013143358A (en) * 2012-01-12 2013-07-22 Toyota Motor Corp Lithium secondary battery
EP2639861A1 (en) * 2010-11-12 2013-09-18 Toyota Jidosha Kabushiki Kaisha Secondary battery
CN103348510A (en) * 2010-11-12 2013-10-09 丰田自动车株式会社 Secondary battery
WO2014001898A1 (en) * 2012-06-29 2014-01-03 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and vehicle with the same
US20140087263A1 (en) * 2011-05-30 2014-03-27 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
EP2750223A1 (en) * 2011-08-26 2014-07-02 Toyota Jidosha Kabushiki Kaisha Lithium rechargeable battery
WO2014181891A1 (en) * 2013-05-10 2014-11-13 住友金属鉱山株式会社 Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP2015043332A (en) * 2014-10-14 2015-03-05 トヨタ自動車株式会社 Lithium secondary battery
CN104953111A (en) * 2011-03-28 2015-09-30 住友金属矿山株式会社 Nickel-manganese composite hydroxide particle and manufacturing method thereof, positive electrode active material and manufacturing method thereof and non-water-system electrolyte secondary battery
KR101611401B1 (en) * 2014-10-16 2016-04-11 울산과학기술원 Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
US9559351B2 (en) 2011-03-31 2017-01-31 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide particles and nonaqueous electrolyte secondary battery
JPWO2016017783A1 (en) * 2014-07-31 2017-05-18 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2018045759A (en) * 2016-08-31 2018-03-22 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US10020507B2 (en) 2012-10-15 2018-07-10 Ngk Insulators, Ltd. Positive electrode active material for lithium secondary battery and positive electrode including same
US10109849B2 (en) 2012-06-06 2018-10-23 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
WO2019087493A1 (en) * 2017-10-31 2019-05-09 住友金属鉱山株式会社 Nonaqueous electrolyte secondary battery positive electrode active material and method for producing same, and nonaqueous electrolyte secondary battery which uses positive electrode active material
WO2019131234A1 (en) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2020162277A1 (en) * 2019-02-06 2020-08-13 株式会社村田製作所 Positive electrode active material for secondary battery, and secondary battery
US10923719B2 (en) 2017-11-20 2021-02-16 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022191202A1 (en) * 2021-03-10 2022-09-15 茂 佐野 Positive electrode and storage battery
JP2023000753A (en) * 2021-06-18 2023-01-04 プライムアースEvエナジー株式会社 Positive electrode for secondary battery and method for manufacturing positive electrode for secondary battery
JP7508414B2 (en) 2021-06-18 2024-07-01 プライムアースEvエナジー株式会社 Method for manufacturing positive electrode for secondary battery

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421287C (en) * 2005-06-29 2008-09-24 松下电器产业株式会社 Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
JP2007103141A (en) * 2005-10-04 2007-04-19 Sumitomo Chemical Co Ltd Cathode active substance and nonaqueous electrolyte secondary battery
US9391318B2 (en) 2009-12-02 2016-07-12 Toyota Jidosha Kabushiki Kaisha Active material particles for a lithium secondary battery
WO2011067982A1 (en) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 Active material particles and use of same
JP2011119092A (en) * 2009-12-02 2011-06-16 Toyota Motor Corp Active material particles, and use of same
KR20150093252A (en) * 2009-12-02 2015-08-17 도요타지도샤가부시키가이샤 Active material particles and use of same
KR101668974B1 (en) * 2009-12-02 2016-10-24 도요타지도샤가부시키가이샤 Active material particles and use of same
US8486564B2 (en) 2009-12-02 2013-07-16 Toyota Jidosha Kabushiki Kaisha Method of producing active material particles with lithium transition metal oxide secondary particles
WO2012049777A1 (en) * 2010-10-15 2012-04-19 トヨタ自動車株式会社 Secondary battery
WO2012049779A1 (en) * 2010-10-15 2012-04-19 トヨタ自動車株式会社 Secondary battery
JPWO2012049777A1 (en) * 2010-10-15 2014-02-24 トヨタ自動車株式会社 Secondary battery
CN103348510A (en) * 2010-11-12 2013-10-09 丰田自动车株式会社 Secondary battery
EP2639861A1 (en) * 2010-11-12 2013-09-18 Toyota Jidosha Kabushiki Kaisha Secondary battery
EP2639861A4 (en) * 2010-11-12 2014-08-20 Toyota Motor Co Ltd Secondary battery
US10017875B2 (en) 2011-03-28 2018-07-10 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
US20180347069A1 (en) * 2011-03-28 2018-12-06 Sumito Metal Mining Co., Ltd. Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
CN104953111A (en) * 2011-03-28 2015-09-30 住友金属矿山株式会社 Nickel-manganese composite hydroxide particle and manufacturing method thereof, positive electrode active material and manufacturing method thereof and non-water-system electrolyte secondary battery
WO2012131881A1 (en) 2011-03-28 2012-10-04 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US10669646B2 (en) 2011-03-28 2020-06-02 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
US9559351B2 (en) 2011-03-31 2017-01-31 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide particles and nonaqueous electrolyte secondary battery
US9837663B2 (en) 2011-05-06 2017-12-05 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
CN102971893A (en) * 2011-05-06 2013-03-13 丰田自动车株式会社 Lithium ion secondary cell
US8945768B2 (en) 2011-05-06 2015-02-03 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
US20140087263A1 (en) * 2011-05-30 2014-03-27 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
US10829385B2 (en) * 2011-05-30 2020-11-10 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
KR20140060482A (en) 2011-06-07 2014-05-20 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
US11038168B2 (en) 2011-06-07 2021-06-15 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and manufacturing method thereof, cathode active material for nonaqueos-electrolyte secondary battery and manufacturing method thereof, and nonaqueous-electrolyte secondary battery
US10044025B2 (en) * 2011-06-07 2018-08-07 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
WO2012169274A1 (en) 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
US20150228977A1 (en) * 2011-06-07 2015-08-13 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
US10396356B2 (en) 2011-06-07 2019-08-27 Sumitomo Metal Mining Co., Ltd Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
KR20160113330A (en) 2011-06-07 2016-09-28 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
US10128501B2 (en) 2011-06-07 2018-11-13 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and manufacturing method thereof, cathode active material for nonaqueous-electrolyte secondary battery and manufacturing method thereof, and nonaqueous-electrolyte secondary battery
US9318739B2 (en) 2011-06-07 2016-04-19 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
US11545663B2 (en) 2011-06-07 2023-01-03 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and manufacturing method thereof, cathode active material for nonaqueos-electrolyte secondary battery and manufacturing method thereof, and nonaqueous-electrolyte secondary battery
US11876222B2 (en) 2011-06-07 2024-01-16 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and manufacturing method thereof, cathode active material for nonaqueos-electrolyte secondary battery and manufacturing method thereof, and nonaqueous-electrolyte secondary battery
WO2012169083A1 (en) 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery
EP2750223A1 (en) * 2011-08-26 2014-07-02 Toyota Jidosha Kabushiki Kaisha Lithium rechargeable battery
EP2750223A4 (en) * 2011-08-26 2015-04-22 Toyota Motor Co Ltd Lithium rechargeable battery
US9577254B2 (en) 2011-12-05 2017-02-21 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
KR20140106646A (en) 2011-12-05 2014-09-03 도요타지도샤가부시키가이샤 Lithium ion secondary battery
JP2013118156A (en) * 2011-12-05 2013-06-13 Toyota Motor Corp Lithium ion secondary battery
US9831497B2 (en) 2011-12-05 2017-11-28 Toyota Jidosha Kabushiki Kaisha Method of manufacturing active material particles
KR20140126302A (en) 2011-12-20 2014-10-30 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
WO2013094701A1 (en) 2011-12-20 2013-06-27 住友金属鉱山株式会社 Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
US9406930B2 (en) 2011-12-20 2016-08-02 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and production method thereof, cathode active material for non-aqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
JP2013143358A (en) * 2012-01-12 2013-07-22 Toyota Motor Corp Lithium secondary battery
US10109849B2 (en) 2012-06-06 2018-10-23 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
CN104396065A (en) * 2012-06-29 2015-03-04 丰田自动车株式会社 Lithium secondary battery and vehicle with the same
WO2014001898A1 (en) * 2012-06-29 2014-01-03 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and vehicle with the same
US10020507B2 (en) 2012-10-15 2018-07-10 Ngk Insulators, Ltd. Positive electrode active material for lithium secondary battery and positive electrode including same
US10424787B2 (en) 2013-05-10 2019-09-24 Sumitomo Metal Mining Co., Ltd. Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery
JP2016154143A (en) * 2013-05-10 2016-08-25 住友金属鉱山株式会社 Transition metal complex hydroxide particle and manufacturing method therefor, positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor, and nonaqueous electrolyte secondary battery
WO2014181891A1 (en) * 2013-05-10 2014-11-13 住友金属鉱山株式会社 Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
US11283072B2 (en) 2013-05-10 2022-03-22 Sumitomo Metal Mining Co., Ltd. Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery
JPWO2014181891A1 (en) * 2013-05-10 2017-02-23 住友金属鉱山株式会社 Transition metal composite hydroxide particles and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery, production method thereof, and nonaqueous electrolyte secondary battery
US10840510B2 (en) * 2014-07-31 2020-11-17 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same
US20170207453A1 (en) * 2014-07-31 2017-07-20 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same
JPWO2016017783A1 (en) * 2014-07-31 2017-05-18 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2015043332A (en) * 2014-10-14 2015-03-05 トヨタ自動車株式会社 Lithium secondary battery
KR101611401B1 (en) * 2014-10-16 2016-04-11 울산과학기술원 Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP2018045759A (en) * 2016-08-31 2018-03-22 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US11417879B2 (en) 2016-08-31 2022-08-16 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US11967709B2 (en) 2017-10-31 2024-04-23 Sumitomo Metal Mining Co., Ltd. Nonaqueous electrolyte secondary battery positive electrode active material and method for producing same, and nonaqueous electrolyte secondary battery which uses positive electrode active material
WO2019087493A1 (en) * 2017-10-31 2019-05-09 住友金属鉱山株式会社 Nonaqueous electrolyte secondary battery positive electrode active material and method for producing same, and nonaqueous electrolyte secondary battery which uses positive electrode active material
JPWO2019087493A1 (en) * 2017-10-31 2020-11-26 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using positive electrode active material
JP7406734B2 (en) 2017-10-31 2023-12-28 住友金属鉱山株式会社 Method for evaluating the characteristics of positive electrode active materials for non-aqueous electrolyte secondary batteries
JP7240613B2 (en) 2017-10-31 2023-03-16 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using positive electrode active material
US10923719B2 (en) 2017-11-20 2021-02-16 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7126173B2 (en) 2017-12-26 2022-08-26 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2022163131A (en) * 2017-12-26 2022-10-25 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery positive electrode active material and non-aqueous electrolyte secondary battery
WO2019131234A1 (en) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP7336778B2 (en) 2017-12-26 2023-09-01 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11831013B2 (en) 2017-12-26 2023-11-28 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JPWO2019131234A1 (en) * 2017-12-26 2020-12-24 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP7078141B2 (en) 2019-02-06 2022-05-31 株式会社村田製作所 Positive electrode active material for secondary batteries and secondary batteries
JPWO2020162277A1 (en) * 2019-02-06 2021-11-04 株式会社村田製作所 Positive electrode active material for secondary batteries and secondary batteries
WO2020162277A1 (en) * 2019-02-06 2020-08-13 株式会社村田製作所 Positive electrode active material for secondary battery, and secondary battery
WO2022191202A1 (en) * 2021-03-10 2022-09-15 茂 佐野 Positive electrode and storage battery
JP2023000753A (en) * 2021-06-18 2023-01-04 プライムアースEvエナジー株式会社 Positive electrode for secondary battery and method for manufacturing positive electrode for secondary battery
JP7508414B2 (en) 2021-06-18 2024-07-01 プライムアースEvエナジー株式会社 Method for manufacturing positive electrode for secondary battery

Also Published As

Publication number Publication date
JP4096754B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
KR100583384B1 (en) Positive electrode active material for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery
JP3885764B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2004193115A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5382025B2 (en) Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery
JP2005251716A (en) Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
EP1391949A2 (en) Positive electrode active material for a nonaqueous electrolyte secondary battery
JP2004311408A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2004235144A (en) Nonaqueous electrolyte secondary battery and negative electrode active substance therefor
JP2006012433A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005044743A (en) Positive electrode activator of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2006012426A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005222956A (en) Nonaqueous electrolytic solution secondary battery
JP4259393B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2005044722A (en) Cathode active substance for nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery
JP4626141B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3856015B2 (en) Positive electrode secondary active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2004327309A (en) Anode active material for nonaqueous electrolyte secondary battery
JP4940530B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP4492058B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004047448A (en) Positive electrode activator for nonaqueous electrolyte secondary battery
JP3885720B2 (en) Positive electrode active material for lithium ion secondary battery
JP3835419B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2005190900A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Ref document number: 4096754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term