KR100434547B1 - Lithium metal oxide cathode and lithium secondary battery using the same - Google Patents

Lithium metal oxide cathode and lithium secondary battery using the same Download PDF

Info

Publication number
KR100434547B1
KR100434547B1 KR1019970018322A KR19970018322A KR100434547B1 KR 100434547 B1 KR100434547 B1 KR 100434547B1 KR 1019970018322 A KR1019970018322 A KR 1019970018322A KR 19970018322 A KR19970018322 A KR 19970018322A KR 100434547 B1 KR100434547 B1 KR 100434547B1
Authority
KR
South Korea
Prior art keywords
lithium
secondary battery
binder
conductive agent
lithium secondary
Prior art date
Application number
KR1019970018322A
Other languages
Korean (ko)
Other versions
KR19980083155A (en
Inventor
유영창
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019970018322A priority Critical patent/KR100434547B1/en
Publication of KR19980083155A publication Critical patent/KR19980083155A/en
Application granted granted Critical
Publication of KR100434547B1 publication Critical patent/KR100434547B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A lithium cathode having a stable crystal structure is provided to manufacture lithium secondary batteries having high capacity and improved self-discharge characteristics and cycle life characteristics. CONSTITUTION: The lithium cathode comprises a lithium-containing metal composite oxide represented by the formula of LixNiaCobMcO2, a conductive agent and a binder. In the above formula, M is at least one metal element selected from the group consisting of boron, chrome and manganese; x ranges from 0.85 to 1.10; a ranges from 0.50 to 0.95; b ranges from 0.05 to 0.50; c ranges from 0.005 to 0.2; and a+b+c ranges from 0.85 to 1.10. Particularly, the conductive agent is selected from the group consisting of acetylene black, carbon black and graphite, and the binder is polyvinyl difluoride or polytetrafluoroethylene.

Description

리튬 양극 및 이를 채용하는 리튬 2차 전지{Lithium metal oxide cathode and lithium secondary battery using the same}Lithium anode and lithium secondary battery employing the same {Lithium metal oxide cathode and lithium secondary battery using the same}

본 발명은 리튬 양극 및 이를 채용하는 2차 전지에 관한 것으로서, 보다 상세하게는 고용량화가 가능하고 자기방전특성 및 수명특성을 개선할 수 있는 리튬 양극 및 이를 채용하는 리튬 2차 전지에 관한 것이다.The present invention relates to a lithium positive electrode and a secondary battery employing the same. More particularly, the present invention relates to a lithium positive electrode and a lithium secondary battery employing the same.

리튬 2차 전지는 용량밀도가 높고 출력특성이 우수하여 소형전자기기로의 적용이 점차 확대되고 있는 차세대 전지의 하나로서 그 특성 향상을 위한 연구가 활발하게 진행되고 있다.Lithium secondary batteries are one of the next generation batteries that have a high capacity density and excellent output characteristics, and thus are increasingly being applied to small electronic devices.

통상의 전지와 마찬가지로 리튬 2차 전지는 양극, 음극, 전해질 및 세퍼레이터로 이루어져 있다.Like a conventional battery, a lithium secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator.

이중, 사용되는 전해질의 종류에 따라서 유기 전해질을 사용하는 리튬이온 2차 전지와 고체 폴리머 전해질을 사용하는 리튬폴리머 2차 전지로 대별될 수 있다. 또한 세퍼레이트로는 폴리에틸렌 또는 폴리프로필렌 부직포 섬유 시이트 등이 통상 사용된다.Among them, depending on the type of electrolyte used, it may be roughly classified into a lithium ion secondary battery using an organic electrolyte and a lithium polymer secondary battery using a solid polymer electrolyte. As the separator, polyethylene or polypropylene nonwoven fiber sheet or the like is usually used.

또한, 양극 및 음극은 각각 활물질, 도전제 및 결합제를 포함하여 이루어져있다. 이중 활물질은 각 전극의 용량을 결정하는 중요한 성분인데, 음극활물질로는 리튬 금속 또는 리튬 이온의 삽입과 방출이 용이한 탄소재가, 양극활물질로는 층상구조 또는 스피넬 구조의 리튬금속산화물이 주로 사용된다. 본 발명은 양극활물질에 관한 것이다.In addition, the positive electrode and the negative electrode each comprise an active material, a conductive agent and a binder. The dual active material is an important component for determining the capacity of each electrode. As the negative electrode active material, a lithium metal or a carbon material which can easily insert and release lithium ions, and a lithium metal oxide having a layered or spinel structure are used as the positive electrode active material. . The present invention relates to a cathode active material.

양극활물질로서 현재 널리 사용되고 있는 것중의 하나가 미합중국 특허 제4302518호에 개시된 층상구조의 LiCoO2인데, 이 활물질은 제조단가가 높고 환경문제를 야기시키는 문제점이 있다.One of the widely used cathode active materials is LiCoO 2 having a layered structure disclosed in US Pat. No. 4,430,518. This active material has a high manufacturing cost and causes environmental problems.

이를 극복할 수 있는 활물질로서 미합중국 특허 제4246253호 및 4828834호에 스피넬 구조의 LiMn2O4가 개시되어 있으며 일부 실용화되고 있다. 이 활물질은 가격이 저렴하고 무공해일 뿐 아니라 리튬에 대하여 높은 전압을 나타낸다는 잇점이 있으나 충방전 특성이 불량하다는 단점이 있다.As an active material capable of overcoming this, US Pat. Nos. 4,424,625 and 4828834 disclose spinel structured LiMn 2 O 4 and have been put to practical use. This active material is advantageous in that it is inexpensive, pollution-free, and exhibits a high voltage with respect to lithium, but has a disadvantage of poor charging and discharging characteristics.

이외에도, 전술한 활물질들은 모두 용량 밀도가 130-140㎃h/g 정도에 불과하다는 한계를 가지고 있기 때문에 고용량화가 요구되고 있는 최근의 추세에는 부응하지 못하고 있다.In addition, all of the above-described active materials have a limitation that the capacity density is only about 130-140 mAh / g, and thus does not meet the recent trend in which high capacity is required.

이러한 용량밀도 제한의 문제점을 해결하기 위한 수단으로서 육방정계 (hexagonal)의 구조를 갖는 LiNiO2(J.B.Goodenough, Mat. Res. Bull., 20, 1137 (1985), J.R.Dahn, J.Electrochem..Soc., 138, 2207-11 (1990)) 및 LiNi1-xCoxO2(0.5≤x≤1) (T.Ohzuku, Chemistry Express, 5, 733 (1990))이 양극활물질로서 연구 개발되고 있다.LiNiO 2 having a hexagonal structure (JB Goodenough, Mat. Res. Bull., 20, 1137 (1985), JRDahn, J. Electrochem .. Soc.,) As a means to solve the problem of capacity density limitation. 138, 2207-11 (1990)) and LiNi 1 - x Co x O 2 (0.5 ≦ x ≦ 1) (T.Ohzuku, Chemistry Express, 5, 733 (1990)) are being researched and developed as positive electrode active materials.

그러나, LiNiO2의 경우에는 충방전에 의해 리튬 이온이 삽입되거나 방출됨에 따라 육방정계와 단사정계 (Monoclinic)의 상전이가 반복된다. 이에 따라 구조적 안정성이 저하되며 급격한 충방전 싸이클 용량 감소가 발생된다.However, in the case of LiNiO 2 , phase transitions between hexagonal and monoclinic (Monoclinic) are repeated as lithium ions are inserted or released by charging and discharging. As a result, structural stability is lowered, and a sudden decrease in charge / discharge cycle capacity occurs.

또한, LiNi1-xCoxO2의 경우에는 LiNiO2에 비해 싸이클의 안정성은 다소 좋은 편이지만 용량 에너지 밀도가 상당히 낮다. 특히, 리튬 이온의 방출량을 크게하여 용량을 높히면 전극전위가 매우 높아져서 전해액 분해와 부반응이 쉽게 발생되므로 자기방전과 싸이클 안정성이 크게 저하된다는 문제점이 있다.In addition, in the case of LiNi 1 - x Co x O 2, the cycle stability is slightly better than that of LiNiO 2 , but the capacity energy density is considerably low. In particular, when the discharge capacity of the lithium ions is increased to increase the capacity, the electrode potential is very high, and electrolyte decomposition and side reactions are easily generated. Therefore, self-discharge and cycle stability are greatly reduced.

본 발명이 이루고자 하는 기술적 과제는 고용량화가 가능하며 자기방전특성 및 수명특성을 개선할 수 있는 리튬 양극을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a lithium anode capable of high capacity and improve the self-discharge characteristics and life characteristics.

본 발명이 이루고자 하는 다른 기술적 과제는 고용량화가 가능하며 자기방전특성 및 수명특성을 개선할 수 있는 리튬 양극을 채용하는 리튬 2차 전지를 제공하는 것이다.Another object of the present invention is to provide a lithium secondary battery employing a lithium positive electrode capable of high capacity and improving self discharge characteristics and lifespan characteristics.

본 발명의 기술적 과제는 활물질, 도전제 및 결합제를 포함하는 리튬 양극에 있어서, 상기 활물질이 하기 화학식 1의 리튬-함유 금속복합산화물인 것을 특징으로 하는 리튬 양극에 의하여 이루어질 수 있다:Technical problem of the present invention is a lithium anode comprising an active material, a conductive agent and a binder, the active material may be made by a lithium anode, characterized in that the lithium-containing metal composite oxide of the formula (1):

[화학식 1][Formula 1]

LixNiaCobMcO2 Li x Ni a Co b McO 2

(상기식중, M은 붕소, 크롬 및 망간으로 구성된 군으로부터 선택된 적어도 하나의 금속 원소이며, 0.85≤x≤1.10, 0.50≤a≤0.95, 0.05≤b≤0.50, 0.005≤c≤0.2, 0.85≤a+b+c≤1.10이다).(Wherein, M is at least one metal element selected from the group consisting of boron, chromium and manganese, 0.85≤x≤1.10, 0.50≤a≤0.95, 0.05≤b≤0.50, 0.005≤c≤0.2, 0.85≤ a + b + c ≦ 1.10).

본 발명에 따른 리튬 양극용 활물질에 있어서, x의 첨가몰비는 0.85-1.10, 바람직하게는 1.0 정도인데, 이 범위를 벗어날 경우 활물질의 용량이 저하되므로 바람직하지 않다.In the active material for lithium positive electrode according to the present invention, the added molar ratio of x is 0.85-1.10, preferably about 1.0, which is not preferable because the capacity of the active material is lowered outside this range.

또한, Ni와 Co의 첨가몰비에 있어서는 Ni가 Co에 비해 가격이 저렴하고 고용량의 활물질을 얻을 수 있으므로 Ni를 Co보다 다량 첨가하는 것이 유리하다. 따라서, a는 0.50-0.95, b는 0.05-0.50의 범위인 것이 바람직하다. 만약 Ni에 비해 Co의 첨가량이 많아지면 활물질의 용량이 감소되기 때문에 바람직하지 않다.In addition, in the addition molar ratio of Ni and Co, since Ni is inexpensive compared to Co and a high capacity active material can be obtained, it is advantageous to add Ni in a larger amount than Co. Therefore, it is preferable that a is 0.50-0.95, and b is 0.05-0.50. If the amount of Co added is larger than Ni, it is not preferable because the capacity of the active material is reduced.

또한, 붕소, 크롬 및 망간으로 구성된 군으로부터 선택된 적어도 하나의 금속 원소의 첨가몰비인 c의 값은 0.005-0.2 범위인데, 만약 c가 0.005 미만이면 첨가효과가 거의 없어지는 반면, 0.2를 초과하는 경우에는 활물질의 용량밀도 저하 현상이 일어나므로 바람직하지 않다.In addition, the value of c, the addition molar ratio of at least one metal element selected from the group consisting of boron, chromium and manganese is in the range of 0.005-0.2, if c is less than 0.005, the addition effect is almost lost, whereas it exceeds 0.2. It is not preferable because the capacity density decrease phenomenon of the active material occurs.

본 발명에 따른 리튬 양극용 활물질의 제조방법은 특별히 제한되지 않으며, 각 구성금속의 염을 볼밀 등을 이용하여 균일하게 혼합한 다음, 가열로에 넣어 열처리함으로써 얻어질 수 있다.The manufacturing method of the active material for lithium positive electrode according to the present invention is not particularly limited, and may be obtained by uniformly mixing the salts of the constituent metals using a ball mill and the like, and then putting them in a heating furnace to perform heat treatment.

또한, 본 발명에 따른 양극은 통상의 극판 제조시와 마찬가지로 활물질인 상기 화학식 1의 리튬-함유 금속복합산화물을 도전제 및 결합제와 혼합한 다음, 성형함으로써 제조될 수 있다. 여기서, 상기 도전제 및 결합제는 본 발명의 분야에서사용될 수 있는 것이면 어느 것이어도 무방한데, 상기 도전제로는 아세틸렌블랙, 카본 블랙, 그라파이트 등이, 상기 결합제로는 폴리비닐디플루오라이드, 폴리테트라플루오르에틸렌 등이 사용될 수 있으며, 상기 도전제 및 결합제의 함유량은 상기 활물질의 총중량을 기준으로 하여 각각 3-12중량% 및 5-15중량%이다.In addition, the positive electrode according to the present invention may be prepared by mixing the lithium-containing metal composite oxide of Chemical Formula 1, which is an active material, with a conductive agent and a binder, and then molding the same as in manufacturing a normal electrode plate. Here, the conductive agent and the binder may be any one that can be used in the field of the present invention, the conductive agent is acetylene black, carbon black, graphite, etc., the binder is polyvinyl difluoride, polytetrafluor Ethylene and the like can be used, and the content of the conductive agent and the binder is 3-12% by weight and 5-15% by weight, respectively, based on the total weight of the active material.

본 발명의 다른 기술적 과제는 양극, 음극 및 전해질로 이루어진 리튬 2차 전지으로서, 상기 양극이 상기 화학식 1로 나타낸 리튬-함유 금속복합산화물, 도전제 및 결합제를 포함하는 리튬 양극인 리튬 2차 전지에 의해서 이루어질 수 있다.Another technical problem of the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode is a lithium secondary battery including a lithium-containing metal composite oxide represented by Chemical Formula 1, a conductive agent, and a binder. Can be made by.

본 발명에 따른 리튬 2차 전지에 있어서, 상기 음극 및 전해질로는 본 분야에서 통상 사용되는 것이라면 어느 것이어도 무방한데, 상기 음극으로는 리튬 금속 또는 리튬이온의 삽입과 방출이 가능한 탄소재 (그래파이트, 코크스 등) 또는 비정질 리튬금속산화물 등을 사용할 수 있다. 또한, 전해액으로는 프로필렌카보네이트, 에틸렌카보네이트, 디메틸카보네이트, 디에틸카보네이트 등으로부터 선택된 단독 또는 혼합 유기 용매에 LiClO4, LiPF6, LiBF4, LiAsF6, LiCF3SO3등과 같은 무기 입자가 분산된 유기 전해액 , 또는 통상의 고체 폴리머 전해질을 사용할 수 있다.In the lithium secondary battery according to the present invention, the negative electrode and the electrolyte may be any one commonly used in the art, and as the negative electrode, a carbon material capable of inserting and releasing lithium metal or lithium ions (graphite, Coke or the like) or an amorphous lithium metal oxide. In addition, as an electrolyte, an organic particle in which inorganic particles such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , and LiCF 3 SO 3 are dispersed in a single or mixed organic solvent selected from propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and the like. Electrolyte solution or normal solid polymer electrolyte can be used.

이하, 실시예 및 비교예를 들어 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

<실시예 1-6><Example 1-6>

양극활물질을 합성하기 위한 원료로서 LiNO2, Ni(OH)2, B2O3, MgCO3, Cr(NO)3·9H2O 및 Mn(NO)6H2O를 준비하였다. 하기 표에 나타낸 몰비대로 각 혼합물을 혼합한 다음, 혼합분말을 알루미나 도가니에 넣고 산소분위기 하에 800℃에서 약 10시간 동안 열처리하였다. 열처리된 혼합분말을 냉각시킨 다음, 분쇄하여 활물질 분말을 얻었다. 얻어진 활물질 분말 85g에 도전제인 아세틸렌블랙 8g과 결합제인 폴리비닐디플루오라이드 (PVdF) 용액 (N-메틸-2-피롤리돈 중의 8%용액) 7g을 가하여 양극활물질 슬러리를 제조하였다. 이어서, 제조된 슬러리를 알루미늄 호일에 도포한 다음, 건조시키고 지름 16㎜ 크기로 성형하여 리튬 양극을 제조하였다.LiNO 2 , Ni (OH) 2 , B 2 O 3 , MgCO 3 , Cr (NO) 3 .9H 2 O, and Mn (NO) 3 · 6H 2 O were prepared as raw materials for synthesizing the positive electrode active material. Each mixture was mixed in the molar ratio shown in the following table, and the mixed powder was placed in an alumina crucible and heat-treated at 800 ° C. for about 10 hours under an oxygen atmosphere. The mixed powder was heat-treated and then pulverized to obtain an active material powder. 8 g of acetylene black as a conductive agent and 7 g of a polyvinyl difluoride (PVdF) solution (8% solution in N-methyl-2-pyrrolidone) as a binder were added to 85 g of the obtained active material powder to prepare a cathode active material slurry. Subsequently, the prepared slurry was applied to aluminum foil, then dried and molded into a diameter of 16 mm to prepare a lithium anode.

음극으로는 두께가 8㎜이고, 지름이 16㎜인 리튬 필름을 사용하고 전해액으로는 프로필렌카보네이트와 디에틸카보네이트 혼합액 1ℓ에 1몰의 LiPF6를 용해시킨 것을 사용하였다. 또한, 세퍼레이터로는 폴리프로필렌 필름을 사용하였다.A lithium film having a thickness of 8 mm and a diameter of 16 mm was used as the cathode, and 1 mol of LiPF 6 was dissolved in 1 L of a mixed solution of propylene carbonate and diethyl carbonate. In addition, the polypropylene film was used as a separator.

이와 같이 준비된 양극, 음극, 전해질 및 세퍼레이터를 사용하여 코인형 전지 1-6 (직경: 20㎜, 두께: 1.6㎜)을 제조하였다.The coin-type battery 1-6 (diameter: 20 mm, thickness: 1.6 mm) was manufactured using the positive electrode, the negative electrode, the electrolyte, and the separator thus prepared.

이렇게 제조된 전지 1-6에 대하여 충전전류밀도 0.5㎃/㎠, 충전전압 4.2V, 방전전류밀도 0.5㎃/㎠, 방지종지전압 2.7V의 조건하에서 용량밀도를 측정하고, 충방전 싸이클이 100회 반복되는 동안의 용량 유지율을 측정하여 전지의 충방전 특성을 평가하였다. 또한, 4.2V 충전상태에서 7일 동안 상온에서 방치한 다음 자기방전율을 측정하여 자기방전특성을 평가하였다.Thus, the capacity of the battery 1-6 was measured under the conditions of 0.5 mA / cm 2 of charging current density, 4.2 V of charging voltage, 0.5 mA / cm 2 of discharge current density, and 2.7 V of stop voltage, and 100 charge / discharge cycles were performed. The charge and discharge characteristics of the battery were evaluated by measuring the capacity retention rate during the repetition. In addition, the magnetic discharge characteristics were evaluated by measuring the magnetic discharge rate after leaving at room temperature for 7 days in a 4.2V state of charge.

이러한 평가결과를 하기 표에 나타내었다.These evaluation results are shown in the table below.

<비교예 1-3><Comparative Example 1-3>

하기 표에 나타낸 바와 같은 몰비로 각 원료를 혼합한 다음, 실시예 1-6에서와 동일한 방법으로 양극들을 제조하고, 이들을 채용하는 코인형 전지 7-9를 각각 제조하였다. 이렇게 제조된 전지들의 용량밀도, 충방전특성 및 자기방전특성을 실시예 1-6에서와 마찬가지의 조건하에서 평가하여 그 결과를 하기 표 1에 나타내었다.Each raw material was mixed in a molar ratio as shown in the following table, and then positive electrodes were prepared in the same manner as in Example 1-6, and coin-type batteries 7-9 employing these were prepared, respectively. The capacity density, charge and discharge characteristics, and self discharge characteristics of the batteries thus prepared were evaluated under the same conditions as in Example 1-6, and the results are shown in Table 1 below.

원료의 혼합몰비Mixed molar ratio of raw materials 용량밀도 (㎃h/g)Capacity density (㎃h / g) 100회 싸이클 동안의 용량유지율 (%)Capacity retention rate for 100 cycles (%) 자기방전율 (%)Self discharge rate (%) LiLi NiNi CoCo MM 실시예Example 1 (전지 1)1 (battery 1) 1.01.0 0.850.85 0.10.1 B: 0.05B: 0.05 158158 97.597.5 5.15.1 2 (전지 2)2 (battery 2) 1.01.0 0.80.8 0.10.1 Mg: 0.1Mg: 0.1 151151 96.196.1 4.74.7 3 (전지 3)3 (battery 3) 1.01.0 0.80.8 0.10.1 Cr: 0.1Cr: 0.1 150150 94.394.3 6.56.5 4 (전지 4)4 (battery 4) 1.01.0 0.850.85 0.10.1 Mn: 0.05Mn: 0.05 157157 95.895.8 5.95.9 5 (전지 5)5 (battery 5) 1.01.0 0.750.75 0.150.15 B: 0.02Cr: 0.08B: 0.02Cr: 0.08 151151 99.199.1 3.83.8 6 (전지 6)6 (battery 6) 1.01.0 0.80.8 0.10.1 B: 0.02Cr: 0.08B: 0.02Cr: 0.08 153153 98.798.7 4.14.1 비교예Comparative example 1 (전지 7)1 (battery 7) 1.01.0 1.01.0 -- -- 161161 82.682.6 12.212.2 2 (전지 8)2 (battery 8) 1.01.0 0.80.8 0.20.2 -- 148148 90.790.7 7.87.8 3 (전지 9)3 (battery 9) 1.01.0 0.40.4 0.30.3 Mn: 0.3Mn: 0.3 137137 95.595.5 8.38.3

상기 표 1의 결과로부터 알 수 있듯이, LiNiO2의 경우 (비교예1)에는 용량밀도는 매우 우수하지만 싸이클 안정성 및 자기방전율이 매우 불량한 것으로 나타났으며, LiNi1-xCoxO2의 경우 (비교예 2)에는 싸이클 안정성은 상기 비교예 1의 경우보다는 좋지만 용량밀도와 자기방전율이 상당한 불량하게 나타나는 등 특성이 전반적으로 불만스럽게 나타났다. 또한, 비교예 3의 경우에는 싸이클 안정성은 상당히 양호하나 니켈의 함유몰비가 코발트에 비해 상대적으로 낮고 망간의 함유량이 바람직한 범위를 초과하기 때문에 용량밀도가 현저하게 떨어질 뿐 아니라 자기방전율도 상당히 불량한 것으로 나타났다.As can be seen from the results of Table 1, in the case of LiNiO2 (Comparative Example 1), the capacity density was very good, but the cycle stability and the self-discharge rate were very poor, and in the case of LiNi 1 - x Co x O 2 (comparative) In Example 2), the cycle stability is better than that of Comparative Example 1, but the characteristics are generally unsatisfactory, such as poor capacity density and self-discharge rate. In addition, in the case of Comparative Example 3, the cycle stability is quite good, but since the molar ratio of nickel is relatively lower than that of cobalt and the content of manganese exceeds the desired range, the capacity density is notably decreased, and the self discharge rate is also poor. .

이에 반하여 본 발명의 범주에 포함되는 리튬 양극을 채용하는 전지들 (실시예 1-6)은 용량밀도, 싸이클 안정성 및 자기방전율이 모두 만족할만한 정도의 양호한 결과를 나타내었다.On the contrary, the batteries employing the lithium positive electrode included in the scope of the present invention (Examples 1-6) showed satisfactory results in which the capacity density, the cycle stability, and the self discharge rate were all satisfactory.

본 발명에 따른 양극활물질은 결정구조가 안정하기 때문에 이를 포함하는 리튬 양극을 채용한 리튬 2차 전지는 용량밀도 및 싸이클 안정성이 우수할 뿐 아니라 자기방전율이 낮은 매우 우수한 전지이다.Since the positive electrode active material according to the present invention has a stable crystal structure, a lithium secondary battery employing a lithium positive electrode including the same has excellent capacity density and cycle stability as well as a low self discharge rate.

Claims (10)

하기 화학식 1로 나타낸 리튬-함유 금속복합산화물, 도전제 및 결합제를 포함하는 것을 특징으로 하는 리튬 양극.A lithium anode comprising a lithium-containing metal composite oxide, a conductive agent and a binder represented by the following formula (1). [화학식 1][Formula 1] LixNiaCobMcO2 Li x Ni a Co b McO 2 (상기식중, M은 붕소, 크롬 및 망간으로 구성된 군으로부터 선택된 하나 이상의 금속 원소이며,Wherein M is at least one metal element selected from the group consisting of boron, chromium and manganese, 0.85≤x≤1.10, 0.50≤a≤0.95, 0.05≤b≤0.50, 0.005≤c≤0.2, 0.85≤a+b+c≤1.10이다).0.85 ≦ x ≦ 1.10, 0.50 ≦ a ≦ 0.95, 0.05 ≦ b ≦ 0.50, 0.005 ≦ c ≦ 0.2, 0.85 ≦ a + b + c ≦ 1.10). 제1항에 있어서, 상기 도전제가 아세틸렌블랙, 카본블랙 및 그라파이트로 구성된 군으로부터 선택된 것임을 특징으로 하는 리튬 양극.The lithium anode of claim 1, wherein the conductive agent is selected from the group consisting of acetylene black, carbon black, and graphite. 제1항에 있어서, 상기 결합제가 폴리비닐디플루오라이드 또는 폴리테트라플루오르에틸렌인 것을 특징으로 하는 리튬 양극.The lithium positive electrode of claim 1, wherein the binder is polyvinyldifluoride or polytetrafluoroethylene. 제1항에 있어서, 상기 도전제 및 결합제의 함유량이 상기 리튬-함유 금속복합산화물의 총중량을 기준으로 하여 각각 3-12중량% 및 5-15중량%인 것을 특징으로 하는 리튬 양극.The lithium positive electrode of claim 1, wherein the content of the conductive agent and the binder is 3-12% by weight and 5-15% by weight based on the total weight of the lithium-containing metal composite oxide. 양극, 음극 및 전해질로 이루어진 리튬 2차 전지에 있어서, 상기 양극이 하기 화학식 1로 나타낸 리튬-함유 금속복합산화물, 도전제 및 결합제를 포함하는 리튬 양극인 것을 특징으로 하는 리튬 2차 전지.A lithium secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode is a lithium secondary battery including a lithium-containing metal composite oxide, a conductive agent, and a binder represented by Chemical Formula 1 below. [화학식 1][Formula 1] LixNiaCobMcO2 Li x Ni a Co b McO 2 (상기식중, M은 붕소, 크롬 및 망간으로 구성된 군으로부터 선택된 하나 이상의 금속 원소이며,Wherein M is at least one metal element selected from the group consisting of boron, chromium and manganese, 0.85≤x≤1.10, 0.50≤a≤0.95, 0.05≤b≤0.50, 0.005≤c≤0.2, 0.85≤a+b+c≤1.10이다).0.85 ≦ x ≦ 1.10, 0.50 ≦ a ≦ 0.95, 0.05 ≦ b ≦ 0.50, 0.005 ≦ c ≦ 0.2, 0.85 ≦ a + b + c ≦ 1.10). 제5항에 있어서, 상기 도전제가 아세틸렌블랙, 카본블랙 및 그라파이트로 구성된 군으로부터 선택된 것임을 특징으로 하는 리튬 2차 전지.The lithium secondary battery according to claim 5, wherein the conductive agent is selected from the group consisting of acetylene black, carbon black and graphite. 제5항에 있어서, 상기 결합제가 폴리비닐디플루오라이드 또는 폴리테트라플루오르에틸렌인 것을 특징으로 하는 리튬 2차 전지.The lithium secondary battery according to claim 5, wherein the binder is polyvinyldifluoride or polytetrafluoroethylene. 제5항에 있어서, 상기 도전제 및 결합제의 함유량이 상기 리튬-함유 금속복합산화물의 총중량을 기준으로 하여 각각 3-12중량% 및 5-15중량%인 것을 특징으로 하는 리튬 2차 전지.The lithium secondary battery according to claim 5, wherein the content of the conductive agent and the binder is 3-12% by weight and 5-15% by weight, respectively, based on the total weight of the lithium-containing metal composite oxide. 제5항에 있어서, 상기 음극이 리튬 금속, 탄소재 또는 비정질 리튬금속산화물인 것을 특징으로 하는 리튬 2차 전지.The lithium secondary battery according to claim 5, wherein the negative electrode is a lithium metal, a carbon material or an amorphous lithium metal oxide. 제5항에 있어서, 상기 전해질이 유기 전해액 또는 고체 폴리머 전해질인 것을 특징으로 하는 리튬 2차 전지.The lithium secondary battery according to claim 5, wherein the electrolyte is an organic electrolyte or a solid polymer electrolyte.
KR1019970018322A 1997-05-12 1997-05-12 Lithium metal oxide cathode and lithium secondary battery using the same KR100434547B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970018322A KR100434547B1 (en) 1997-05-12 1997-05-12 Lithium metal oxide cathode and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970018322A KR100434547B1 (en) 1997-05-12 1997-05-12 Lithium metal oxide cathode and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
KR19980083155A KR19980083155A (en) 1998-12-05
KR100434547B1 true KR100434547B1 (en) 2004-09-18

Family

ID=37341048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970018322A KR100434547B1 (en) 1997-05-12 1997-05-12 Lithium metal oxide cathode and lithium secondary battery using the same

Country Status (1)

Country Link
KR (1) KR100434547B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077023B2 (en) 2011-01-12 2015-07-07 Samsung Sdi Co., Ltd. Cathode active material having manganese oxide and boron, cathode and lithium battery including cathode active material, and method of preparing the cathode active material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990026736A (en) * 1997-09-26 1999-04-15 손욱 Cathode active materials for lithium batteries and batteries made therefrom
KR20010046245A (en) * 1999-11-11 2001-06-05 김순택 Active material composition for lithium secondary battery and lithium secondary battery manufactured using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192768A (en) * 1993-11-09 1995-07-28 Moli Energy 1990 Ltd Lithium battery and positive electrode for lithium battery
JPH08185863A (en) * 1994-12-27 1996-07-16 Dowa Mining Co Ltd Positive electrode active material for lithium secondary battery and secondary battery using it
JPH08222220A (en) * 1994-12-16 1996-08-30 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for lithium secondary battery
US5605773A (en) * 1995-12-06 1997-02-25 Kerr-Mcgee Corporation Lithium manganese oxide compound and method of preparation
JPH0992285A (en) * 1995-05-26 1997-04-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192768A (en) * 1993-11-09 1995-07-28 Moli Energy 1990 Ltd Lithium battery and positive electrode for lithium battery
JPH08222220A (en) * 1994-12-16 1996-08-30 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JPH08185863A (en) * 1994-12-27 1996-07-16 Dowa Mining Co Ltd Positive electrode active material for lithium secondary battery and secondary battery using it
JPH0992285A (en) * 1995-05-26 1997-04-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte lithium secondary battery
US5605773A (en) * 1995-12-06 1997-02-25 Kerr-Mcgee Corporation Lithium manganese oxide compound and method of preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077023B2 (en) 2011-01-12 2015-07-07 Samsung Sdi Co., Ltd. Cathode active material having manganese oxide and boron, cathode and lithium battery including cathode active material, and method of preparing the cathode active material

Also Published As

Publication number Publication date
KR19980083155A (en) 1998-12-05

Similar Documents

Publication Publication Date Title
US7381496B2 (en) Lithium metal oxide materials and methods of synthesis and use
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
CA2522107C (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
KR101264333B1 (en) Cathode active material, cathode and lithium battery containing the same, and preparation method thereof
KR101045416B1 (en) Lithium titanate powder, preparation method thereof, electrode and secondary battery comprising the same
CA2284404A1 (en) Lithium secondary battery
KR20110061204A (en) Positive active material for lithium secondary battery and lithium secondary battery comprising the same
KR19980042815A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
KR100307165B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
KR100434547B1 (en) Lithium metal oxide cathode and lithium secondary battery using the same
KR20150089389A (en) Positive active material, lithium battery containing the positive material, and method for manufacturing the positive active material
KR100312689B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
KR100296878B1 (en) Positive active material for lithium secondary battery and lithium secondary battery comprising the same
KR100424638B1 (en) Method of preparing positive active material for rechargeable lithium batteries and preparing the same
JPH10214626A (en) Lithium secondary battery and lithium secondary battery positive active material
JPH09293510A (en) Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture
KR100578865B1 (en) A positive active material for a lithium secondary battery and a lithium secondary battery comprising the same
KR20160105348A (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising the same
JPH09293509A (en) Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture
KR100326458B1 (en) Positive active material for lithium secondary battery and lithium secondary battery by using the same
KR20220089414A (en) Anode active material and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130422

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140423

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150421

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 13

EXPY Expiration of term