JPH09293510A - Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture - Google Patents

Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture

Info

Publication number
JPH09293510A
JPH09293510A JP8131228A JP13122896A JPH09293510A JP H09293510 A JPH09293510 A JP H09293510A JP 8131228 A JP8131228 A JP 8131228A JP 13122896 A JP13122896 A JP 13122896A JP H09293510 A JPH09293510 A JP H09293510A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
weight
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8131228A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
浩史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP8131228A priority Critical patent/JPH09293510A/en
Publication of JPH09293510A publication Critical patent/JPH09293510A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode in which high discharging capacity and an excellent cycle characteristic are displayed and electric conductivity is given by uniformly dispersing conductive auxiliary material in the positive electrode material, and provide a method by which such positive electrode material is easily manufactured. SOLUTION: Positive electrode material is composed of lithium transition metal composite oxide of 70 to 90 percentage by weight and carbon of 30 to 10 percentage by weight. The carbon of 30 to 10 percentage by weight which is formed by carbonizing an organic compound is uniformly dispersed in the matrix of the lithium transition metal composite oxide of 70 to 90 percentage by weight. The manufacturing method is to temporarily burn the mixture of a transition metal compound and a lithium compound so as to obtain a temporarily burnt substance, and to mix the temporarily burnt substance into dispersion solution which is formed by dispersing the organic compound into solvent, and to regularly burn the mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、具体的にはリチウムイオン二次電池の正極材料及び
その製造方法、特に電気導電性を有した正極材料及びそ
の簡易な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, specifically, a positive electrode material for a lithium ion secondary battery and a method for producing the same, and particularly a positive electrode material having electrical conductivity and a simple method for producing the same. Regarding

【0002】[0002]

【従来の技術】近年、電子機器の小型化、ポータブル化
が進み、これらの駆動用電源として小型・軽量で、高エ
ネルギー密度を有し、充放電サイクル特性に優れた長寿
命の二次電池への要望が高い。今後電気自動車用の電源
としての応用も検討されている。そこで、最近、リチウ
ムやリチウム合金、又は炭素材料等のリチウムイオンの
ドープ・脱ドープが可能な物質を負極活物質として用
い、リチウムコバルト複合酸化物等のリチウム遷移金属
複合酸化物を正極活物質として使用する非水電解質二次
電池の研究・開発が行われており、既に実用化されてい
るものもある。
2. Description of the Related Art In recent years, electronic devices have become smaller and more portable, and as a power source for driving these devices, they have become small-sized, lightweight, high energy density, long-life secondary batteries with excellent charge / discharge cycle characteristics. Is highly demanded. In the future, application as a power source for electric vehicles is also under consideration. Therefore, recently, a material capable of doping / dedoping lithium ions such as lithium, a lithium alloy, or a carbon material is used as a negative electrode active material, and a lithium transition metal composite oxide such as a lithium cobalt composite oxide is used as a positive electrode active material. The non-aqueous electrolyte secondary battery to be used has been researched and developed, and some have already been put to practical use.

【0003】このようなリチウムイオン二次電池の構成
としては、以下のようなものが挙げられる。先ず、正極
活物質としては、リチウムをドープ・脱ドープ可能なリ
チウム含有複合酸化物、特にリチウム遷移金属複合酸化
物が用いられ、具体的には、コバルト酸リチウム(Li
CoO2 )、マンガン酸リチウム(LiMn2 4 )、
ニッケル酸リチウム(LiNiO2 )等が挙げられる。
The structure of such a lithium ion secondary battery is as follows. First, as the positive electrode active material, a lithium-containing composite oxide capable of being doped / dedoped with lithium, particularly a lithium transition metal composite oxide is used. Specifically, lithium cobalt oxide (Li
CoO 2 ), lithium manganate (LiMn 2 O 4 ),
Examples thereof include lithium nickel oxide (LiNiO 2 ).

【0004】負極活物質としてはリチウムイオンのドー
プ・脱ドープが可能な炭素材料が用いられ、かかる炭素
材料としては、天然黒鉛や人造黒鉛などの黒鉛材料、難
黒鉛性炭素、コークスなどの無定形炭素等が挙げられ
る。
As the negative electrode active material, a carbon material capable of being doped or dedoped with lithium ions is used. Examples of such a carbon material include graphite materials such as natural graphite and artificial graphite, non-graphite carbon, and amorphous materials such as coke. Examples include carbon.

【0005】電解質としては、LiClO4 、LiPF
6 、LiBF4 、LiAsF6 、等のリチウム塩が挙げ
られる。これら電解質を溶解する有機溶媒としては、た
とえば、プロピレンカーボネイト(PC)、エチレンカ
ーボネイト(EC)、ジメチルカーボネイト(DM
C)、ジエチルカーボネイト(DEC)、エチルメチル
カーボネイト(EMC)等が挙げられ、これらの1種又
は2種以上の混合溶媒が用いられる。
As the electrolyte, LiClO 4 , LiPF 4
6 , lithium salts such as LiBF 4 , LiAsF 6 , and the like. Examples of the organic solvent that dissolves these electrolytes include propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DM).
C), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like, and one kind or a mixed solvent of two or more kinds thereof is used.

【0006】かかるリチウムイオン二次電池の正極材料
自体、すなわちリチウム遷移金属複合酸化物自体には電
気導電性がないので、例えばカーボンブラック等の炭素
材料を導電補助材として添加する。かかる炭素材料の添
加方法としては、乾式法と湿式法とがある。乾式法は、
リチウム遷移金属複合酸化物の正極材料(粉末)と導電
補助材としての炭素材料(粉末)をボールミル等で混合
する方法であるが、正極材料と炭素材料との比重差が大
きいため、長時間費やさないと均一な混合が困難であ
る。また、湿式法は、上記混合操作を例えば水等の分散
媒中で行う方法であるが、分散媒、正極材料、炭素材そ
れぞれの比重が異なるため、十分均一に分散させること
ができない。分散媒に炭素を先に分散させたものに、正
極材料を添加して分散させると、若干の改善はあるもの
の、未だ十分ではなかった。
Since the positive electrode material itself of such a lithium ion secondary battery, that is, the lithium transition metal composite oxide itself has no electrical conductivity, a carbon material such as carbon black is added as a conduction auxiliary material. As a method of adding such a carbon material, there are a dry method and a wet method. The dry method is
This is a method of mixing the positive electrode material (powder) of the lithium-transition metal composite oxide and the carbon material (powder) as a conductive auxiliary material with a ball mill etc. Without it, uniform mixing is difficult. The wet method is a method in which the above mixing operation is performed in a dispersion medium such as water, but the dispersion medium, the positive electrode material, and the carbon material have different specific gravities, and therefore cannot be dispersed sufficiently uniformly. When a positive electrode material was added to and dispersed in a dispersion medium in which carbon was previously dispersed, there was some improvement, but it was still not sufficient.

【0007】このように正極材料中に均一に導電補助材
が分散していないと、かかる正極材料を組み込んでなる
二次電池には、高い放電容量が得られず、また良好なサ
イクル特性が得られない。
If the conductive auxiliary material is not uniformly dispersed in the positive electrode material as described above, a secondary battery incorporating such a positive electrode material cannot obtain a high discharge capacity and good cycle characteristics. I can't.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明は、正
極材料中に導電補助材が均一に分散されて、高い放電容
量と良好なサイクル特性を示し、電気導電性を有した正
極材料及びかかる正極材料を簡易に製造する方法を提供
することを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention provides a positive electrode material in which a conductive auxiliary material is uniformly dispersed in a positive electrode material, exhibits a high discharge capacity and good cycle characteristics, and has electrical conductivity. An object is to provide a method for easily manufacturing a positive electrode material.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の非水電解質二次電池用正極材料は、リチウ
ム遷移金属複合酸化物70〜90重量%と炭素30〜1
0重量%からなること、を特徴としている。また、リチ
ウム遷移金属複合酸化物70〜90重量%のマトリック
ス中に有機化合物を炭素化させた炭素30〜10重量%
を均一に分散させたこと、を特徴としている。ここで、
前記有機化合物としては900℃以下で炭素化する化合
物、より具体的にはセルロース又はその誘導体が好まし
い。また、本発明の非水電解質二次電池用正極材料の製
造方法は、遷移金属化合物とリチウム化合物との混合物
を仮焼成して仮焼成物を得、溶媒中に有機化合物を分散
させた分散液に前記仮焼成物を混合し、該混合物を本焼
成すること、を特徴としている。ここで、前記有機化合
物としては900℃以下で炭素化する化合物、より具体
的にはセルロース又はその誘導体が好ましい。
In order to solve the above problems, the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention comprises a lithium transition metal composite oxide 70 to 90% by weight and carbon 30 to 1% by weight.
It is characterized by comprising 0% by weight. Further, 30 to 10% by weight of carbon obtained by carbonizing an organic compound in a matrix of lithium to transition metal composite oxide 70 to 90% by weight.
Is evenly dispersed. here,
The organic compound is preferably a compound that carbonizes at 900 ° C. or lower, and more specifically, cellulose or its derivative. Further, the method for producing a positive electrode material for a non-aqueous electrolyte secondary battery of the present invention, a mixture of a transition metal compound and a lithium compound is calcined to obtain a calcined product, a dispersion liquid in which an organic compound is dispersed in a solvent. Is mixed with the preliminarily calcined product, and the mixture is subjected to main calcination. Here, the organic compound is preferably a compound that carbonizes at 900 ° C. or lower, more specifically, cellulose or a derivative thereof.

【0010】[0010]

【発明の実施の形態】以下本発明の非水電解質二次電池
用正極材料及びかかる正極材料の製造方法の実施の形態
を説明する。本発明の非水電解質二次電池用正極材料
は、リチウム遷移金属複合酸化物70〜90重量%と炭
素30〜10重量%からなる。ここで、リチウム遷移金
属複合酸化物としては、コバルト酸リチウム(LiCo
2 )、マンガン酸リチウム(LiMn2 4 )、ニッ
ケル酸リチウム(LiNiO2 )等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the positive electrode material for a non-aqueous electrolyte secondary battery and the method for producing the positive electrode material according to the present invention will be described below. The positive electrode material for a non-aqueous electrolyte secondary battery of the present invention comprises 70 to 90% by weight of lithium transition metal composite oxide and 30 to 10% by weight of carbon. Here, as the lithium-transition metal composite oxide, lithium cobalt oxide (LiCo
O 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickel oxide (LiNiO 2 ) and the like.

【0011】その含有量は、70〜90重量%の範囲と
する。70重量%未満(炭素含有量が30重量%を越え
る)では、正極活物質量が少なく、電池の容量不足を招
く。一方、90重量%を越える(炭素含有量が10重量
%未満)と、導電性を示す炭素の量が不足して十分な導
電性が得られない。
The content thereof is in the range of 70 to 90% by weight. If it is less than 70% by weight (the carbon content exceeds 30% by weight), the amount of the positive electrode active material is small and the battery capacity becomes insufficient. On the other hand, if it exceeds 90% by weight (carbon content is less than 10% by weight), the amount of conductive carbon is insufficient and sufficient conductivity cannot be obtained.

【0012】また、本発明の正極材料は、リチウム遷移
金属複合酸化物70〜90重量%のマトリックス中に有
機化合物を炭素化させた炭素30〜10重量%を均一に
分散させてなる。その製造方法は後述する。このよう
に、所定量のリチウム遷移金属複合酸化物のマトリック
ス中に有機化合物を炭素化させた導電補助材たる炭素の
所定量を均一に分散させたので、高い放電容量と良好な
サイクル特性を示す非水電解質二次電池が得られる。
The positive electrode material of the present invention is obtained by uniformly dispersing 30 to 10% by weight of carbon obtained by carbonizing an organic compound in a matrix of 70 to 90% by weight of a lithium transition metal composite oxide. The manufacturing method will be described later. Thus, a predetermined amount of carbon, which is a conductive auxiliary material obtained by carbonizing an organic compound, is uniformly dispersed in a matrix of a predetermined amount of lithium-transition metal composite oxide, and thus exhibits high discharge capacity and good cycle characteristics. A non-aqueous electrolyte secondary battery can be obtained.

【0013】また、本発明の非水電解質二次電池用正極
材料の製造方法は、遷移金属化合物とリチウム化合物と
の混合物を酸素雰囲気又は空気中で仮焼成して仮焼成物
を得、溶媒中に有機化合物を分散させた分散液に前記仮
焼成物を混合し、該混合物を窒素、Ar等の不活性雰囲
気下で本焼成する方法である。かかる製造方法により、
リチウム遷移金属複合酸化物のマトリックス中に有機化
合物を炭素化させた炭素を均一に分散させることができ
る。各化合物の配合割合は、本焼成によりリチウム遷移
金属複合酸化物70〜90重量%、有機化合物が炭素化
された炭素30〜10重量%となるように適宜調製す
る。なお、仮焼成の段階で複合酸化物化が完了していな
くとも、本焼成により複合酸化物化が完了すればよい。
Further, the method for producing a positive electrode material for a non-aqueous electrolyte secondary battery of the present invention comprises calcination of a mixture of a transition metal compound and a lithium compound in an oxygen atmosphere or air to obtain a calcination product in a solvent. In this method, the pre-baked product is mixed with a dispersion liquid in which an organic compound is dispersed, and the mixture is subjected to main-baking in an inert atmosphere such as nitrogen or Ar. By this manufacturing method,
Carbon obtained by carbonizing an organic compound can be uniformly dispersed in a matrix of a lithium transition metal composite oxide. The mixing ratio of each compound is appropriately adjusted so that the main component is 70 to 90% by weight of the lithium-transition metal composite oxide and the organic compound is carbonized to 30 to 10% by weight. It should be noted that even if the complex oxide formation is not completed at the stage of calcination, the complex oxide formation may be completed by the main firing.

【0014】ここで、遷移金属化合物としては、コバル
ト、マンガン、ニッケル等の水酸化物、酸化物、ハロゲ
ン化物等が挙げられる。また、リチウム化合物として
は、リチウムの水酸化物、酸化物、ハロゲン化物、炭酸
塩等が挙げられる。
Here, examples of the transition metal compound include hydroxides, oxides and halides of cobalt, manganese, nickel and the like. Examples of the lithium compound include lithium hydroxide, oxides, halides and carbonates.

【0015】有機化合物としては900℃以下で炭素化
する化合物が好ましい。これは、正極活物質の本焼成の
温度が700〜900℃程度であり、その焼成の際に炭
素化させるためである。なお、本焼成の際に炭素化すれ
ばよく、正極活物質の本焼成の下限値である700℃未
満の温度で炭素化するものであってもよい。
As the organic compound, a compound which carbonizes at 900 ° C. or lower is preferable. This is because the main-baking temperature of the positive electrode active material is about 700 to 900 ° C., and carbonization occurs during the baking. It should be noted that carbonization may be performed during the main firing, and carbonization may be performed at a temperature lower than 700 ° C. which is the lower limit of the main firing of the positive electrode active material.

【0016】かかる有機化合物を分散させる溶媒として
は、有機化合物の種類に応じて分散性の良好なものを適
宜選択する。例えば、溶媒として水を用いる場合、有機
化合物としては、水の比重に近い比重を有するものが分
散性が良好で好ましく、具体的には、セルロース又はそ
の誘導体が好ましい。ここで、セルロースとしては、天
然セルロース、人造セルロースのいずれでもよい。セル
ロース誘導体としては、硝酸セルロース、酢酸セルロー
ス、エチルセルロース、メチルセルロースなどが挙げら
れる。これらのセルロース及びその誘導体はその比重が
0.95〜1.05程度と水の比重に近く、水に対する
分散性が良好である。
As a solvent for dispersing the organic compound, a solvent having good dispersibility is appropriately selected according to the kind of the organic compound. For example, when water is used as a solvent, an organic compound having a specific gravity close to that of water is preferable because of good dispersibility, and specifically, cellulose or a derivative thereof is preferable. Here, as the cellulose, either natural cellulose or artificial cellulose may be used. Examples of the cellulose derivative include cellulose nitrate, cellulose acetate, ethyl cellulose, methyl cellulose and the like. These celluloses and their derivatives have a specific gravity of about 0.95 to 1.05, which is close to the specific gravity of water and have good dispersibility in water.

【0017】上記において、仮焼成の条件は、酸素雰囲
気下又は空気中にて、焼成温度700〜900℃程度、
焼成時間8〜24時間程度である。また、本焼成の条件
は、窒素、Ar等の不活性雰囲気下で行う他は仮焼成の
場合と略同様である。
In the above, the calcination conditions are as follows: calcination temperature of about 700 to 900 ° C. in an oxygen atmosphere or in air.
The firing time is about 8 to 24 hours. The conditions for the main calcination are substantially the same as those for the calcination except that the conditions for the main calcination are those under an inert atmosphere such as nitrogen and Ar.

【0018】[0018]

【実施例】以下に本発明を実施例においてより具体的に
説明する。実施例は本発明を例示的に示したものであっ
て本発明を制限するものではない。実施例1 正極材料の作製 Ni(OH)2 とLiOHとを1:1のモル比で混合
し、その混合物を700kgf/cm2 の圧力で加圧し
てペレット化(13mmφ、厚さ5〜6mm)し、この
ペレットを電気炉内で仮焼成する。仮焼成条件は、酸素
雰囲気下、昇温速度:20℃/min、焼成温度:75
0℃、焼成時間:12時間とした。こうして得た仮焼成
物を粉砕して粉末化した仮焼成物に、セルロース・ディ
スパージョン(天然セルロース30:水70(重量
比))を重量比で85:50になるように混合する。こ
の混合物を濾過して水分を除去し、乾燥した後、上記と
同じ条件でペレット化し、電気炉内で本焼成する。本焼
成の焼成条件は、窒素中で行った他は仮焼成の場合と同
じである。こうして得た正極材料中の炭素の含有量は1
5重量%であった。
EXAMPLES The present invention will be described more specifically below with reference to examples. The examples are illustrative of the invention and do not limit the invention. Example 1 Production of Positive Electrode Material Ni (OH) 2 and LiOH were mixed at a molar ratio of 1: 1 and the mixture was pressurized at a pressure of 700 kgf / cm 2 to be pelletized (13 mmφ, thickness 5 to 6 mm). Then, the pellets are pre-baked in an electric furnace. The calcination conditions are as follows: in an oxygen atmosphere, a heating rate: 20 ° C./min, a calcination temperature: 75
The temperature was 0 ° C. and the firing time was 12 hours. The thus-obtained calcinated product is pulverized and powdered, and the cellulose dispersion (natural cellulose 30: water 70 (weight ratio)) is mixed at a weight ratio of 85:50. This mixture is filtered to remove water, dried, pelletized under the same conditions as above, and then calcined in an electric furnace. The firing conditions for the main firing are the same as those for the preliminary firing except that the firing is performed in nitrogen. The carbon content in the positive electrode material thus obtained was 1
It was 5% by weight.

【0019】正極材料の電気化学的評価 上記のようにして作製した二次焼成物に、バインダーで
あるポリフッ化ビニリデン(PVDF)をN−メチルピ
ロリドン(NMP)中(容量比でPVDF:NMP=
1:5)で加え、撹拌混合し(重量比で二次焼成物:P
VDF=9:1)、得たスラリーを厚さ20μmのアル
ミニウムメッシュに塗布、乾燥し、電極を作製した。得
られた電極を作用極とし、金属リチウムを対極及び参照
極として三電極式ガラスセルを作製した。電解液は、エ
チレンカーボネイト(EC)とジエチレンカーボネイト
(DEC)の混合溶媒(容量比でEC:DEC=1:
1)にLiClO4 を1mol/Lの濃度で溶解したも
のを用い、電流密度:20mA/g、充放電電圧:3〜
4.3Vで充放電試験を実施した。1サイクル目及び1
00サイクル目の放電容量を表1に示す。
Electrochemical Evaluation of Positive Electrode Material Polyvinylidene fluoride (PVDF) as a binder was added to the secondary fired material produced as described above in N-methylpyrrolidone (NMP) (PVDF: NMP = volume ratio).
1: 5), stirred and mixed (secondary fired product: P in weight ratio)
VDF = 9: 1), the obtained slurry was applied to an aluminum mesh having a thickness of 20 μm and dried to prepare an electrode. A three-electrode type glass cell was prepared using the obtained electrode as a working electrode and metallic lithium as a counter electrode and a reference electrode. The electrolytic solution is a mixed solvent of ethylene carbonate (EC) and diethylene carbonate (DEC) (volume ratio of EC: DEC = 1:
1) LiClO 4 dissolved at a concentration of 1 mol / L was used. Current density: 20 mA / g, charge / discharge voltage: 3 to
A charge / discharge test was conducted at 4.3V. 1st cycle and 1
Table 1 shows the discharge capacity at the 00th cycle.

【0020】実施例2 MnO2 とLiCO3 とを2:1のモル比で混合したこ
と、及び空気中で仮焼成した他は実施例1と同様にして
仮焼成物及び本焼成物を得た。こうして得た正極材料中
の炭素の含有量は15重量%であった。正極材料の電気
化学的評価は実施例1と同様にして行った。その結果を
表1に示す。
Example 2 A calcined product and a calcined product were obtained in the same manner as in Example 1 except that MnO 2 and LiCO 3 were mixed at a molar ratio of 2: 1 and calcined in air. . The carbon content in the positive electrode material thus obtained was 15% by weight. The electrochemical evaluation of the positive electrode material was performed in the same manner as in Example 1. Table 1 shows the results.

【0021】比較例1 Ni(OH)2 とLiOHとを1:1のモル比で混合
し、以下実施例1と同様にして仮焼成物を得た。この仮
焼成物に、アセチレンブラック・ディスパージョン(ア
セチレンブラック30:水70(重量比))を重量比で
85:50になるように混合する。この混合物を濾過し
て水分を除去し、乾燥した後、実施例1におけると同じ
条件でペレット化し、電気炉内で本焼成する。焼成条件
は仮焼成と同じである。こうして得た正極材料中の炭素
の含有量は15重量%であった。正極材料の電気化学的
評価は実施例1と同様にして行った。その結果を表1に
示す。
Comparative Example 1 Ni (OH) 2 and LiOH were mixed at a molar ratio of 1: 1 and the same procedure as in Example 1 was performed to obtain a pre-baked product. Acetylene black dispersion (acetylene black 30: water 70 (weight ratio)) is mixed with this pre-baked product in a weight ratio of 85:50. The mixture is filtered to remove water, dried, pelletized under the same conditions as in Example 1, and then calcined in an electric furnace. The firing conditions are the same as those for the preliminary firing. The carbon content in the positive electrode material thus obtained was 15% by weight. The electrochemical evaluation of the positive electrode material was performed in the same manner as in Example 1. Table 1 shows the results.

【0022】比較例2 MnO2 とLiCO3 とを2:1のモル比で混合し、以
下実施例2と同様にして仮焼成物を得た。この仮焼成物
を比較例1と同様にして本焼成物を得た。こうして得た
正極材料中の炭素の含有量は15重量%であった。正極
材料の電気化学的評価は実施例1と同様にして行った。
その結果を表1に示す。
Comparative Example 2 MnO 2 and LiCO 3 were mixed at a molar ratio of 2: 1 and a calcination product was obtained in the same manner as in Example 2 below. This pre-baked product was obtained in the same manner as in Comparative Example 1 to obtain a main-baked product. The carbon content in the positive electrode material thus obtained was 15% by weight. The electrochemical evaluation of the positive electrode material was performed in the same manner as in Example 1.
Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から分かるように、実施例1及び2に
おいては、正極材料中における炭素の分散性が良好なた
め、放電容量が高くかつサイクル特性も良好であること
がわかる。これに対し、比較例1及び2においては、ア
セチレンブラックを水に分散させる際、凝集し易く水へ
の分散性が十分でなかった。このため正極材料中に炭素
が均一に分散されず、放電容量が低くまたサイクル特性
も良好でなかった。
As can be seen from Table 1, in Examples 1 and 2, since the dispersibility of carbon in the positive electrode material was good, the discharge capacity was high and the cycle characteristics were also good. On the other hand, in Comparative Examples 1 and 2, when acetylene black was dispersed in water, the acetylene black was easily aggregated and the dispersibility in water was insufficient. Therefore, carbon was not uniformly dispersed in the positive electrode material, the discharge capacity was low, and the cycle characteristics were not good.

【0025】[0025]

【発明の効果】以上説明したように、本発明の非水電解
質二次電池用正極材料によれば、正極材料中に導電材で
ある炭素が均一に混合されてなるので、放電容量が高く
かつサイクル特性に優れる非水電解質二次電池が得られ
る。また本発明の非水電解質二次電池用正極材料の製造
方法によれば、導電材である炭素が均一に混合された導
電性正極材料を簡易な方法で得ることができる等の効果
を奏する。
As described above, according to the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention, carbon, which is a conductive material, is uniformly mixed in the positive electrode material, so that the discharge capacity is high and A non-aqueous electrolyte secondary battery having excellent cycle characteristics can be obtained. Further, according to the method for producing a positive electrode material for a non-aqueous electrolyte secondary battery of the present invention, it is possible to obtain a conductive positive electrode material in which carbon, which is a conductive material, is uniformly mixed by a simple method.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】リチウム遷移金属複合酸化物70〜90重
量%と炭素30〜10重量%からなることを特徴とする
非水電解質二次電池用正極材料。
1. A positive electrode material for a non-aqueous electrolyte secondary battery, comprising 70 to 90% by weight of a lithium transition metal composite oxide and 30 to 10% by weight of carbon.
【請求項2】リチウム遷移金属複合酸化物70〜90重
量%のマトリックス中に有機化合物を炭素化させた炭素
30〜10重量%を均一に分散させたことを特徴とする
非水電解質二次電池用正極材料。
2. A non-aqueous electrolyte secondary battery characterized by uniformly dispersing 30 to 10% by weight of carbon obtained by carbonizing an organic compound in a matrix of 70 to 90% by weight of a lithium transition metal composite oxide. Cathode material.
【請求項3】遷移金属化合物とリチウム化合物との混合
物を仮焼成して仮焼成物を得、溶媒中に有機化合物を分
散させた分散液に前記仮焼成物を混合し、該混合物を本
焼成することを特徴とする非水電解質二次電池用正極材
料の製造方法。
3. A calcined product is obtained by calcining a mixture of a transition metal compound and a lithium compound, and the calcined product is mixed with a dispersion in which an organic compound is dispersed in a solvent, and the mixture is subjected to main calcining. A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, comprising:
【請求項4】前記有機化合物が900℃以下で炭素化す
る化合物である請求項3に記載の非水電解質二次電池用
正極材料の製造方法。
4. The method for producing a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 3, wherein the organic compound is a compound that carbonizes at 900 ° C. or lower.
【請求項5】前記有機化合物がセルロース又はその誘導
体である請求項3又は4に記載の非水電解質二次電池用
正極材料の製造方法。
5. The method for producing a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 3, wherein the organic compound is cellulose or a derivative thereof.
JP8131228A 1996-04-25 1996-04-25 Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture Pending JPH09293510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8131228A JPH09293510A (en) 1996-04-25 1996-04-25 Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8131228A JPH09293510A (en) 1996-04-25 1996-04-25 Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH09293510A true JPH09293510A (en) 1997-11-11

Family

ID=15053028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8131228A Pending JPH09293510A (en) 1996-04-25 1996-04-25 Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH09293510A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054774A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Method of producing electrode for non-aqueous electrolytic cells
JP2001015111A (en) * 1999-04-30 2001-01-19 Hydro Quebec New high surface conductivity electrode material
JP2009259853A (en) * 2009-08-12 2009-11-05 Sony Corp Cathode active material and nonaqueous electrolyte battery
US7815888B2 (en) 2001-07-31 2010-10-19 Mitsui Engineering & Shipbuilding Co., Ltd. Method of producing secondary battery cathode material, and secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054774A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Method of producing electrode for non-aqueous electrolytic cells
JP2001015111A (en) * 1999-04-30 2001-01-19 Hydro Quebec New high surface conductivity electrode material
US7344659B2 (en) 1999-04-30 2008-03-18 Acep, Inc. Electrode materials with high surface conductivity
JP2008186807A (en) * 1999-04-30 2008-08-14 Acep Inc Novel electrode material with high surface conductivity
US8173049B2 (en) 1999-04-30 2012-05-08 Acep Inc. Electrode materials with high surface conductivity
US8257616B2 (en) 1999-04-30 2012-09-04 Acep Inc. Electrode materials with high surface conductivity
US8506852B2 (en) 1999-04-30 2013-08-13 Acep Inc. Electrode materials with high surface conductivity
US8506851B2 (en) 1999-04-30 2013-08-13 Acep Inc. Electrode materials with high surface conductivity
JP2017139240A (en) * 1999-04-30 2017-08-10 アセップ インコーポレイティド New electrode materials with high surface conductivity
US7815888B2 (en) 2001-07-31 2010-10-19 Mitsui Engineering & Shipbuilding Co., Ltd. Method of producing secondary battery cathode material, and secondary battery
JP2009259853A (en) * 2009-08-12 2009-11-05 Sony Corp Cathode active material and nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
CN107112533B (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
JPH09237631A (en) Positive electrode active substance for lithium secondary battery, manufacture thereof and lithium secondary battery
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
CN103337617A (en) Positive electrode active material and positive electrode and lithium ion secondary battery including positive electrode active material
JP4177574B2 (en) Lithium secondary battery
JP2017520892A (en) Positive electrode for lithium battery
JPH0982325A (en) Manufacture of positive active material
KR100922685B1 (en) Cathode active material for lithium secondary battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JPH10188953A (en) Non-aqueous electrolyte secondary battery
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
KR20030076431A (en) Nonaqueous Electrolyte Secondary Battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
KR20170076348A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2002117836A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using it
JPH06349493A (en) Secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP7214662B2 (en) Non-aqueous electrolyte secondary battery
JP2000156224A (en) Nonaqueous electrolyte battery
KR101553389B1 (en) Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same
EP4109599A1 (en) Negative electrode active material for lithium secondary battery, negative electrode, and lithium secondary battery
JPH09293510A (en) Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406