JP2001223008A - Lithium secondary battery, positive electrode active substance for it and their manufacturing method - Google Patents

Lithium secondary battery, positive electrode active substance for it and their manufacturing method

Info

Publication number
JP2001223008A
JP2001223008A JP2000212819A JP2000212819A JP2001223008A JP 2001223008 A JP2001223008 A JP 2001223008A JP 2000212819 A JP2000212819 A JP 2000212819A JP 2000212819 A JP2000212819 A JP 2000212819A JP 2001223008 A JP2001223008 A JP 2001223008A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
composite oxide
secondary battery
cobalt composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000212819A
Other languages
Japanese (ja)
Inventor
Ro Ki
魯 其
Gohe Yoshida
五兵衛 吉田
Kazuhiko Hirao
一彦 平尾
Yukinori Honjiyou
之伯 本荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honjo Chemical Corp
Original Assignee
Honjo Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honjo Chemical Corp filed Critical Honjo Chemical Corp
Priority to JP2000212819A priority Critical patent/JP2001223008A/en
Priority to US09/662,979 priority patent/US6582854B1/en
Publication of JP2001223008A publication Critical patent/JP2001223008A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a homogeneous and substituted lithium cobalt complex oxide which is not only superior in a cycle property, but also gives a secondary battery of a high capacity, and moreover superior in thermal stability, and provide its manufacturing method. SOLUTION: The substituted lithium cobalt complex oxide expressed in an equation Lix My Co1-y Oz is provided (in the equation, M is at least one kind of metallic element selected among Al, Ti, Mn, Mo and Sn, and x is a number ranging from 0.8 to 1.2, and y is a number ranging from 0.001 to 0.10). The oxide is used as a positive electrode active substance of a lithium secondary battery. By mixing powders of lithium compound, cobalt compound, and a compound of the element M so that the molar ratio agrees with the equation (I) in lower aliphatic alcohol of a carbon number 1-3, drying it, and calcining it at a temperature ranging from 600 to 1,100 deg.C under the oxidizing atmosphere, the substituted lithium cobalt complex oxide can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池、そのためのリチウムコバルト複合酸化物からな
る正極活物質及びその製造方法に関する。詳しくは、本
発明は、置換元素を含むリチウムコバルト複合酸化物を
正極活物質とし、サイクル特性と熱安定性の改善された
リチウムイオン二次電池に関し、更に、上記正極活物質
としてのリチウムコバルト複合酸化物と、これを製造す
るための簡便で経済的な方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery, a positive electrode active material comprising a lithium-cobalt composite oxide therefor, and a method for producing the same. More specifically, the present invention relates to a lithium-ion secondary battery having a lithium-cobalt composite oxide containing a substitution element as a positive electrode active material, and having improved cycle characteristics and thermal stability. It relates to oxides and a simple and economical method for producing them.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、高性能化を背
景として、そのための電源として、軽量で、高電圧、高
エネルギー密度を有し、しかも、長寿命を有するリチウ
ムイオン二次電池の需要が急激に増えており、更に、世
界的な資源量の減少と環境悪化に対処するために、電気
自動車や大型電力貯蔵装置の分野においても、リチウム
イオン二次電池の実用化への研究が精力的に進められて
いる。
2. Description of the Related Art In recent years, against the background of miniaturization and high performance of electronic equipment, a lithium-ion secondary battery having a light weight, a high voltage, a high energy density and a long service life has been developed as a power source therefor. Demand is increasing rapidly, and research on the practical application of lithium-ion secondary batteries in the field of electric vehicles and large-scale power storage devices is also being conducted in order to cope with the global decline in resources and environmental degradation. It is being energetically advanced.

【0003】従来、リチウムイオン二次電池の正極活物
質としては、リチウムコバルト複合酸化物(LiCoO
2 、コバルト酸リチウム)が4V級の高電圧と高エネル
ギー密度を有するので、広く用いられている。しかし、
リチウムコバルト複合酸化物を正極活物質とするリチウ
ムイオン二次電池は、充放電を繰り返すうちに、その結
晶構造が破壊されて、活物質として機能を失なうので、
サイクル特性が十分ではない。更に、このような電池に
おいては、リチウムコバルト複合酸化物が200℃前後
の温度で分解するので、内部短絡等の異常発熱があった
とき、電池が破損するおそれがあり、また、高温環境下
においてサイクル特性の劣化が著しく、熱安定性に欠け
る問題がある。
Conventionally, a lithium cobalt composite oxide (LiCoO) has been used as a positive electrode active material of a lithium ion secondary battery.
2 , lithium cobalt oxide) is widely used because it has a high voltage of 4V class and a high energy density. But,
Lithium-ion secondary batteries using lithium-cobalt composite oxide as a positive electrode active material lose their crystal structure and lose their function as an active material during repeated charging and discharging.
Cycle characteristics are not enough. Further, in such a battery, since the lithium-cobalt composite oxide decomposes at a temperature of about 200 ° C., when abnormal heat generation such as an internal short circuit occurs, the battery may be damaged, and in a high temperature environment, There is a problem that the cycle characteristics are significantly deteriorated and the thermal stability is lacking.

【0004】そこで、リチウムコバルト複合酸化物中の
コバルト原子の一部を別の元素で置換することによっ
て、上記充放電に伴う結晶構造の変化を抑えるようにし
た置換リチウムコバルト複合酸化物とすることが、従
来、提案されている。
[0004] In view of the above, a substituted lithium-cobalt composite oxide in which a part of cobalt atoms in the lithium-cobalt composite oxide is replaced with another element to suppress a change in crystal structure due to the charge and discharge described above is provided. However, it has been conventionally proposed.

【0005】しかし、従来、このような置換リチウムコ
バルト複合酸化物は、例えば、特開平3−201368
号公報、特開平4−319259号公報、特開平5−2
83075号公報等に記載されているように、必要な原
料粉末、例えば、炭酸リチウムと炭酸コバルトと共に置
換元素の酸化物とを乾式混合し、これを空気中で焼成し
た後、冷却し、粉砕することによって製造されている。
However, heretofore, such a substituted lithium cobalt composite oxide has been disclosed in, for example, Japanese Patent Application Laid-Open No. 3-201368.
JP, JP-A-4-319259, JP-A-5-2
As described in US Pat. No. 83075 and the like, necessary raw material powders, for example, lithium carbonate and cobalt carbonate are dry-mixed with an oxide of a substitution element, and the mixture is fired in the air, then cooled and pulverized. It is manufactured by.

【0006】このような乾式法、即ち、原料粉末を反応
物質として用いる固相反応を利用する方法によれば、本
来、原料粉末をサブミクロンレベルで均一な混合物とす
ることが困難であり、しかも、そのような原料粉末の混
合物を焼成して、実用し得る複合酸化物を得るには、実
際には、置換元素の原料粉末を比較的多量に用い、しか
も、高温で長時間にわたる焼成とその後の粉砕を行な
い、更に、このような焼成と粉砕とを繰り返して行なっ
て、目的とする固相反応を十分に行なわせることが必要
である。しかし、他方において、このように、多量の置
換元素の化合物を含む原料粉末を高温で繰返して焼成す
れば、望ましくない副生物が生成したり、反応生成物の
表面性状が望ましくないように変化したりするうえに、
得られる複合酸化物を正極活物質とする電池は、電池容
量が小さく、かくして、特性にすぐれる電池を与える複
合酸化物を得ることができない。
According to such a dry method, that is, a method utilizing a solid phase reaction using the raw material powder as a reactant, it is inherently difficult to obtain a uniform mixture of the raw material powder at a submicron level. In order to obtain a practicable composite oxide by firing such a mixture of the raw material powders, it is actually necessary to use a relatively large amount of the raw material powder of the substitution element, It is necessary to carry out pulverization and further to repeat such calcination and pulverization so that the desired solid phase reaction is sufficiently performed. However, on the other hand, if the raw material powder containing a large amount of the compound of the substitution element is repeatedly fired at a high temperature as described above, undesirable by-products may be generated or the surface properties of the reaction product may be changed in an undesirable manner. In addition to
A battery using the obtained composite oxide as a positive electrode active material has a small battery capacity, and thus cannot provide a composite oxide that provides a battery having excellent characteristics.

【0007】[0007]

【発明が解決しようとする課題】本発明は、リチウムイ
オン二次電池用正極活物質としての従来の置換リチウム
コバルト複合酸化物における上述したような問題を解決
するためになされたものであって、サイクル特性にすぐ
れるのみならず、高容量の二次電池を与え、しかも、熱
安定性にもすぐれる均質な置換リチウムコバルト複合酸
化物とその製造方法を提供することを目的とし、更に、
このような置換リチウムコバルト複合酸化物を正極活物
質とするリチウムイオン二次電池を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional substituted lithium cobalt composite oxide as a positive electrode active material for a lithium ion secondary battery, Aims to provide a homogeneous substituted lithium-cobalt composite oxide having not only excellent cycle characteristics but also a high capacity secondary battery, and also excellent thermal stability, and a method for producing the same.
It is an object to provide a lithium ion secondary battery using such a substituted lithium cobalt composite oxide as a positive electrode active material.

【0008】[0008]

【課題を解決するための手段】本発明によれば、一般式 Lix y Co1-y 2 (I) (式中、Mは、Al、Ti、Mn、Mo及びSnから選
ばれる少なくとも1種の金属元素を示し、xは0.8〜1.
2の範囲の数であり、yは0.001〜0.10の範囲の数
である。)で表わされ、リチウムイオン二次電池の正極
活物質として用いるための置換リチウムコバルト複合酸
化物が提供される。
According to the present invention According to an aspect of the general formula Li x M y Co 1-y O 2 (I) ( wherein, M is at least Al, Ti, Mn, selected from Mo and Sn X represents 0.8 to 1.
2 is a number in the range of 2, and y is a number in the range of 0.001 to 0.10. The present invention provides a substituted lithium cobalt composite oxide for use as a positive electrode active material of a lithium ion secondary battery.

【0009】このような置換リチウムコバルト複合酸化
物は、本発明に従って、炭素数1〜3の脂肪族低級アル
コール中でリチウム化合物とコバルト化合物と元素Mの
化合物の粉末を元素のモル比換算で上記一般式(I)に
一致するように混合し、これを乾燥し、酸化性雰囲気下
に600〜1100℃の範囲の温度にて焼成することに
よって得ることができる。
According to the present invention, such a substituted lithium-cobalt composite oxide is prepared by mixing a powder of a lithium compound, a cobalt compound and a compound of an element M in an aliphatic lower alcohol having 1 to 3 carbon atoms in terms of the molar ratio of the elements. It can be obtained by mixing so as to conform to the general formula (I), drying this, and firing it in an oxidizing atmosphere at a temperature in the range of 600 to 1100 ° C.

【0010】更に、本発明によれば、このような置換リ
チウムコバルト複合酸化物を正極活物質とするリチウム
イオン二次電池が提供される。
Further, according to the present invention, there is provided a lithium ion secondary battery using such a substituted lithium cobalt composite oxide as a positive electrode active material.

【0011】[0011]

【発明の実施の形態】本発明によるリチウムイオン二次
電池用正極活物質として用いるためのリチウムコバルト
複合酸化物は、一般式 Lix y Co1-y 2 (I) (式中、Mは、Al、Ti、Mn、Mo及びSnから選
ばれる少なくとも1種の金属元素を示し、xは0.8〜1.
2の範囲の数であり、yは0.001〜0.10の範囲の数
である。)で表わされるものであって、コバルト原子の
一部が上記元素M(以下、置換元素という。)で置換さ
れている。
Lithium-cobalt composite oxide for use as positive active material for a lithium ion secondary battery according to the embodiment of the present invention have the general formula Li x M y Co 1-y O 2 (I) ( wherein, M Represents at least one metal element selected from Al, Ti, Mn, Mo, and Sn, and x is 0.8 to 1.0.
2 is a number in the range of 2, and y is a number in the range of 0.001 to 0.10. ), Wherein part of the cobalt atom is replaced by the above-described element M (hereinafter, referred to as a substitution element).

【0012】上記一般式(I)で表わされる置換リチウ
ムコバルト複合酸化物において、好ましくは、xは0.9
〜1.1の範囲にあり、特に好ましくは、1であり、y
は、0.002〜0.075の範囲にあり、より好ましく
は、0.005〜0.05の範囲にあり、特に好ましくは、
0.01〜0.03の範囲にある。
In the substituted lithium cobalt composite oxide represented by the general formula (I), x is preferably 0.9.
~ 1.1, particularly preferably 1.
Is in the range of 0.002 to 0.075, more preferably in the range of 0.005 to 0.05, and particularly preferably
It is in the range of 0.01 to 0.03.

【0013】前記一般式(I)で表わされるリチウムコ
バルト複合酸化物において、yが0.001よりも小さい
ときは、得られる複合酸化物がそのサイクル特性と熱安
定性において殆ど改善されず、他方、yが0.10よりも
大きいときは、得られる複合酸化物は、サイクル特性に
おいて改善されるものの、電池容量の低下が著しい。
In the lithium-cobalt composite oxide represented by the general formula (I), when y is smaller than 0.001, the obtained composite oxide has almost no improvement in cycle characteristics and thermal stability. , Y is greater than 0.10, the resulting composite oxide has improved cycle characteristics, but the battery capacity is significantly reduced.

【0014】特に、本発明によれば、置換元素は、初期
放電容量、サイクル特性及び熱安定性がすぐれるところ
から、Ti及びMnから選ばれる少なくとも1種の元素
であることが好ましく、なかでも、Tiであることが好
ましい。例えば、置換元素としてチタンを用いることに
よって、少量、例えば、0.5〜5モル%(即ち、yが0.
005〜0.05)、好ましくは、1〜3モル%(即ち、
yが0.01〜0.03)の置換によって、初期放電容量、
サイクル特性及び熱安定性がすぐれる二次電池正極活物
質用の複合酸化物を得ることができる。
In particular, according to the present invention, the replacement element is preferably at least one element selected from Ti and Mn in view of excellent initial discharge capacity, cycle characteristics and thermal stability. , Ti. For example, by using titanium as a substitution element, a small amount, for example, 0.5 to 5 mol% (that is, when y is 0.5 to 0.5 mol%).
005-0.05), preferably 1-3 mol% (i.e.
By replacing y with 0.01 to 0.03), the initial discharge capacity,
A composite oxide for a secondary battery positive electrode active material having excellent cycle characteristics and thermal stability can be obtained.

【0015】このような置換リチウムコバルト複合酸化
物は、本発明によれば、炭素数1〜3の脂肪族低級アル
コール中でリチウム化合物とコバルト化合物と置換元素
の化合物の粉末を元素のモル比換算で上記一般式(I)
に一致するように混合し、これを乾燥し、酸化性雰囲気
下に600〜1100℃、好ましくは、700〜100
0℃の範囲の温度にて焼成することによって得ることが
できる。
According to the present invention, such a substituted lithium-cobalt composite oxide is obtained by converting a powder of a lithium compound, a cobalt compound and a compound of a substitution element in an aliphatic lower alcohol having 1 to 3 carbon atoms into a molar ratio of elements. And the above general formula (I)
And dried under an oxidizing atmosphere at 600 to 1100 ° C., preferably 700 to 100 ° C.
It can be obtained by firing at a temperature in the range of 0 ° C.

【0016】本発明の方法においては、上記リチウム化
合物としては、水酸化リチウム、酸化リチウム、炭酸リ
チウム、有機酸塩(例えば、ギ酸塩、シュウ酸塩、酢酸
塩等)等が用いられるが、なかでも、炭酸リチウム又は
水酸化リチウムが好ましく用いられる。他方、コバルト
化合物や置換元素の化合物としては、通常、酸化物、水
酸化物、オキシ水酸化物、炭酸塩、硝酸塩、硫酸塩、塩
化物等が用いられるが、なかでも、酸化物、水酸化物、
有機酸塩等が好ましく用いられる。これらのリチウム化
合物、コバルト化合物及び置換元素の化合物は、いずれ
も粉末で用いられるが、しかし、特に、その粒径におい
て限定されるものではない。
In the method of the present invention, lithium hydroxide, lithium oxide, lithium carbonate, organic acid salts (eg, formate, oxalate, acetate, etc.) are used as the lithium compound. However, lithium carbonate or lithium hydroxide is preferably used. On the other hand, oxides, hydroxides, oxyhydroxides, carbonates, nitrates, sulfates, chlorides, and the like are usually used as the cobalt compound and the compound of the substitution element. object,
Organic acid salts and the like are preferably used. These lithium compounds, cobalt compounds and compounds of the substitution elements are all used in powder form, but are not particularly limited in their particle size.

【0017】本発明の方法によれば、先ず、目的とする
置換リチウムコバルト複合酸化物Lix y Co1-y
2 を生成するモル比にて、所要のLi/M/Coモル比
に調整したリチウム化合物、コバルト化合物及び置換元
素の化合物の粉末を炭素数1〜3の脂肪族低級アルコー
ルからなる溶剤に加え、この溶剤中で混合する。本発明
によれば、xは、前述したように、0.8〜1.2の範囲の
数1であり、従って、本発明によれば、化学量論的な原
子比を有する複合酸化物も、非化学量論的な原子比を有
する複合酸化物も、同様にして、得ることができる。
According to the method of the present invention, firstly, a substituted lithium-cobalt composite oxide for the purpose Li x M y Co 1-y O
In a molar ratio for producing 2 , a lithium / cobalt compound / substituted element compound powder adjusted to a required Li / M / Co molar ratio is added to a solvent composed of an aliphatic lower alcohol having 1 to 3 carbon atoms, Mix in this solvent. According to the present invention, x is the number 1 in the range of 0.8 to 1.2, as described above. Therefore, according to the present invention, a composite oxide having a stoichiometric atomic ratio is also provided. A composite oxide having a non-stoichiometric atomic ratio can be obtained in a similar manner.

【0018】上記脂肪族低級アルコールとしては、メタ
ノール、エタノール、n−プロパノール及びイソプロパ
ノールを挙げることができるが、これらのなかでは、特
に、メタノールが好ましい。この溶剤としてのメタノー
ルは、水を含まないことが好ましいが、しかし、20重
量%以下の範囲で水を含んでいてもよい。
Examples of the aliphatic lower alcohol include methanol, ethanol, n-propanol and isopropanol. Of these, methanol is particularly preferred. Methanol as this solvent preferably does not contain water, but may contain water in a range of 20% by weight or less.

【0019】本発明においては、このように、上記脂肪
族低級アルコールを溶剤として用いて、この溶剤中で原
料粉末を混合することによって、置換元素の化合物の粒
子をほぼ一次粒子のレベルで混合物中に均一に分散させ
ることができる。
In the present invention, by using the aliphatic lower alcohol as a solvent and mixing the raw material powder in the solvent, the particles of the compound of the substitution element can be substantially reduced to the primary particle level in the mixture. Can be uniformly dispersed.

【0020】用いる溶剤の量は、特に、限定されるもの
ではないが、好ましくは、リチウム化合物とニッケル化
合物と置換元素の化合物の粉末とを溶剤中で混合したと
き、ペーストを形成する程度であればよい。
The amount of the solvent used is not particularly limited, but is preferably such that a paste is formed when a lithium compound, a nickel compound, and a powder of a compound of a substitution element are mixed in the solvent. I just need.

【0021】次いで、本発明によれば、このようなペー
ストを加熱し、乾燥させた後、空気のような酸化性雰囲
気下、600〜1100℃、好ましくは、700〜10
00℃、最も好ましくは、750〜950℃の範囲の温
度にて、比較的、短時間にわたって、通常、0.5〜10
時間、好ましくは、0.5〜5時間程度、焼成することに
よって、目的とする置換リチウムコバルト複合酸化物を
得ることができる。
Next, according to the present invention, after heating and drying such a paste, the paste is heated in an oxidizing atmosphere such as air at 600 to 1100 ° C., preferably 700 to 1100 ° C.
00 ° C, most preferably at a temperature in the range of 750-950 ° C, for a relatively short period of time, usually 0.5-10 ° C.
By firing for a time, preferably about 0.5 to 5 hours, the desired substituted lithium-cobalt composite oxide can be obtained.

【0022】本発明によれば、この複合酸化物は、電池
特性にすぐれるように、一次粒子径が0.5〜5μmの範
囲にあり、二次粒子径が1〜30μmの範囲にあるのが
好ましい。
According to the present invention, this composite oxide has a primary particle size in the range of 0.5 to 5 μm and a secondary particle size in the range of 1 to 30 μm so as to have excellent battery characteristics. Is preferred.

【0023】本発明によれば、前述したようにして、原
料粉末の混合物をペーストとして得、これを乾燥した
後、焼成するに際して、加熱手段として、電気炉のほ
か、マイクロ波加熱装置を適宜に用いることができ、例
えば、マイクロ波加熱装置を用いて、100〜350℃
の範囲の温度に加熱し、乾燥した後、引続き、電気炉を
用いて、前述したように、600〜1000℃の温度で
焼成することによって、速やかに目的とする複合酸化物
を得ることができる。勿論、ペーストの加熱と焼成をマ
イクロ波加熱装置を用いて行なってもよい。
According to the present invention, as described above, a mixture of the raw material powders is obtained as a paste, which is dried and then fired. Can be used, for example, using a microwave heating device at 100 to 350 ° C.
After heating to a temperature in the range described above and drying, the mixture is continuously fired at a temperature of 600 to 1000 ° C. using an electric furnace as described above, whereby the target composite oxide can be obtained quickly. . Of course, heating and baking of the paste may be performed using a microwave heating device.

【0024】また、本発明によれば、上記原料粉末の混
合物をペーストとして得、これを乾燥した後、ロータリ
ーキルンを用いて、酸化性雰囲気下に700〜1000
℃、好ましくは、750〜950℃の範囲の温度に加熱
することによって、生産性よく連続的に焼成することが
できる。このように、ロータリーキルンを用いるとき
は、通常、1時間以内の焼成によって、サイクル特性に
すぐれる置換リチウムコバルト複合酸化物を得ることが
できる。
According to the present invention, a mixture of the above raw material powders is obtained as a paste, which is dried, and then dried in a rotary kiln under an oxidizing atmosphere at a temperature of 700 to 1000.
C., preferably by heating to a temperature in the range of 750 to 950.degree. As described above, when a rotary kiln is used, a substituted lithium-cobalt composite oxide having excellent cycle characteristics can be obtained usually by firing for one hour or less.

【0025】本発明によれば、このように、コバルト原
子の一部を他の元素Mで置換してなるリチウムコバルト
複合酸化物を正極活物質とすることによって、サイクル
特性と熱安定性が格段に改善されたリチウム二次電池を
得ることができる。特に、本発明によれば、コバルト原
子を好ましくは僅かに5モル%以下の置換元素によって
置換することによって、サイクル特性と熱安定性を著し
く改善することができるのは、前述したように、特に、
置換元素の化合物粉末をリチウム化合物とコバルト化合
物とを前記アルコール溶剤中で混合することによって、
置換元素の化合物粉末をほぼ一次粒子のレベルで原料粉
末中に分散させることができることによるとみられる。
According to the present invention, cycle characteristics and thermal stability are markedly improved by using a lithium-cobalt composite oxide obtained by substituting a part of cobalt atoms with another element M as a positive electrode active material. Thus, an improved lithium secondary battery can be obtained. In particular, according to the present invention, the cycle characteristics and thermal stability can be significantly improved by substituting the cobalt atoms with preferably 5 mol% or less of the substitution elements, as mentioned above, ,
By mixing a lithium compound and a cobalt compound in a compound powder of the substitution element in the alcohol solvent,
It is considered that the compound powder of the substitution element can be dispersed in the raw material powder at a level of substantially primary particles.

【0026】本発明によるリチウムイオン二次電池は、
正極と、リチウム、リチウム合金又はリチウムイオンを
吸蔵、放出し得る炭素質材料からなる負極と、これら正
極と負極との間に配設されるセパレータと、リチウムイ
オン伝導性非水(有機)電解質とを含む。このようなリ
チウムイオン非水二次電池は、既に、よく知られてい
る。
The lithium ion secondary battery according to the present invention
A positive electrode, a negative electrode made of a carbonaceous material capable of occluding and releasing lithium, a lithium alloy or lithium ions, a separator disposed between the positive electrode and the negative electrode, and a lithium ion conductive nonaqueous (organic) electrolyte. including. Such a lithium ion nonaqueous secondary battery is already well known.

【0027】上記正極は、一例として、コイン型電池に
用いる場合には、正極活物質と導電剤と結着剤とを混合
し、この混合物(正極合剤)を加圧成形して、円板状の
正極を得ることができる。導電剤としては、例えば、黒
鉛が用いられ、結着剤としては、例えば、ポリテトラフ
ルオロエチレン等が用いられる。他方、負極には、金属
リチウム、リチウム合金又はリチウムイオンを吸蔵、放
出することができる炭素質材料からなり、その形状は、
上記正極に応じて、適宜に定められる。また、正極と負
極は、必要に応じて、集電体を併用してもよい。
For example, when the positive electrode is used in a coin-type battery, a positive electrode active material, a conductive agent and a binder are mixed, and this mixture (positive electrode mixture) is pressure-formed to form a disc. A positive electrode can be obtained. As the conductive agent, for example, graphite is used, and as the binder, for example, polytetrafluoroethylene or the like is used. On the other hand, the negative electrode is made of a carbonaceous material capable of occluding and releasing lithium metal, a lithium alloy or lithium ions, and has a shape of
It is determined appropriately according to the positive electrode. Further, the positive electrode and the negative electrode may be used together with a current collector, if necessary.

【0028】これら正極と負極との間に配設されるセパ
レータとしては、例えば、ポリエチレンやポリプロピレ
ン等のポリオレフィン繊維からなる不織布、ポリオレフ
ィンからなる多孔性フィルム等が用いられる。
As the separator provided between the positive electrode and the negative electrode, for example, a nonwoven fabric made of a polyolefin fiber such as polyethylene or polypropylene, a porous film made of a polyolefin, or the like is used.

【0029】また、リチウムイオン伝導性有機電解質と
しては、例えば、非水溶媒に電解質を溶解させた電解液
が好ましく用いられるが、しかし、これに限定されるも
のではない。上記非水溶媒としては、例えば、エチレン
カーボネート、プロピレンカーボネート、ブチレンカー
ボネート、ジメチルカーボネート、ジエチルカーボネー
ト、エチルメチルカーボネート、γ−ブチロラクトン、
スルホラン、アセトニトリル、1,2−ジメトキシエタ
ン、1,3−ジメトキシプロパン、ジメチルエーテル、テ
トラヒドロフラン、2−メチルテトラヒドロフラン等が
用いられる。これらは、単独で、又は2種以上の混合物
として用いられる。
As the lithium ion conductive organic electrolyte, for example, an electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent is preferably used, but is not limited to this. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone,
Sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran and the like are used. These are used alone or as a mixture of two or more.

【0030】上記リチウムイオン伝導性電解質として
は、例えば、過塩素酸リチウム(LiClO4 )、六フ
ッ化リン酸リチウム(LiPF6 )、ホウフッ化リチウ
ム(LiBF4 )、六フッ化砒素リチウム(LiAsF
6 )、トリフルオロメタンスルホン酸リチウム(LiC
3 SO3 )、塩化アルミニウムリチウム(LiAlC
l)等のリチウム塩を挙げることができる。このような
電解質は、通常、上記非水溶媒に0.5〜1.5モル/L濃
度となるように用いられる。
Examples of the lithium ion conductive electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and lithium arsenide hexafluoride (LiAsF).
6 ), lithium trifluoromethanesulfonate (LiC
F 3 SO 3 ), lithium aluminum chloride (LiAlC)
l) and the like. Such an electrolyte is usually used in the non-aqueous solvent so as to have a concentration of 0.5 to 1.5 mol / L.

【0031】更に、本発明においては、上述したような
有機電解質液とセパレータとの組合わせを用いる代わり
に、セパレータを兼ねるリチウムイオン伝導性固体電解
質を用いることもできる。このような固体電解質も、既
に、種々のものが知られている。
Further, in the present invention, instead of using the combination of the organic electrolyte solution and the separator as described above, a lithium ion conductive solid electrolyte which also serves as the separator can be used. Various types of such solid electrolytes are already known.

【0032】図1にコイン型リチウム二次電池の一例を
示す。即ち、この電池においては、例えば、ステンレス
鋼からなる正極缶1の底面上に正極集電体2が配設さ
れ、その上に円板状の正極3が積層され、更に、この正
極の上にセパレータ4が積層されている。円板状の負極
5は、このセパレータの上に配設されており、負極集電
体6がこの負極の上に設けられている。更に、負極缶7
がこの負極集電体を底面に有する負極缶7が絶縁パッキ
ング8を介して、前記正極缶の開口部を液密に封止する
ように設けられている。上記負極缶7は、例えば、ステ
ンレス鋼からなる。また、前記リチウムイオン伝導性電
解液は、通常、セパレータに含浸担持されている。
FIG. 1 shows an example of a coin-type lithium secondary battery. That is, in this battery, for example, a positive electrode current collector 2 is disposed on the bottom surface of a positive electrode can 1 made of stainless steel, a disk-shaped positive electrode 3 is laminated thereon, and further, The separator 4 is laminated. The disk-shaped negative electrode 5 is provided on the separator, and the negative electrode current collector 6 is provided on the negative electrode. Further, the negative electrode can 7
A negative electrode can 7 having the negative electrode current collector on the bottom surface is provided via an insulating packing 8 so as to liquid-tightly seal the opening of the positive electrode can. The negative electrode can 7 is made of, for example, stainless steel. Further, the lithium ion conductive electrolyte is usually impregnated and supported on a separator.

【0033】[0033]

【発明の効果】本発明によれば、前記アルコールからな
る溶剤中で原料粉末を混合することによって、置換元素
の化合物をほぼ一次粒子として分散させることができ、
かくして、置換元素の化合物を均一に分散させてなる原
料混合物を容易に得ることができ、しかも、この混合物
を乾燥した後、酸化性雰囲気下、所定の温度で比較的短
時間焼成することによって、目的とする置換リチウムコ
バルト複合酸化物を得ることができる。即ち、本発明の
方法によれば、従来の乾式法と異なり、焼成と粉砕を繰
り返すことなく、しかも、より低い温度でより短い時
間、焼成することによって、高品質高性能の複合酸化物
を容易に得ることができる。
According to the present invention, the compound of the substitution element can be dispersed almost as primary particles by mixing the raw material powder in the solvent comprising the alcohol,
Thus, it is possible to easily obtain a raw material mixture obtained by uniformly dispersing the compound of the substitution element, and further, after drying this mixture, baking at a predetermined temperature in an oxidizing atmosphere for a relatively short time, The intended substituted lithium cobalt composite oxide can be obtained. That is, according to the method of the present invention, unlike the conventional dry method, high-quality and high-performance composite oxides can be easily obtained by firing at a lower temperature for a shorter time without repeating firing and pulverization. Can be obtained.

【0034】しかも、この複合酸化物を正極活物質とす
るリチウムイオン二次電池によれば、4V級の高電圧を
有すると共に、高エネルギー密度を有し、充放電のサイ
クル特性にすぐれると共に、熱安定性にもすぐれてい
る。
In addition, according to the lithium ion secondary battery using the composite oxide as a positive electrode active material, the lithium ion secondary battery has a high voltage of 4V class, a high energy density, and excellent charge / discharge cycle characteristics. Excellent thermal stability.

【0035】[0035]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited by these examples.

【0036】実施例1 炭酸リチウム(Li2 CO3 )と酸化コバルト(Co3
4 )と二酸化チタン(TiO2 )とをLi/(Co+
Ti)モル比が1.0であり、y=Ti/(Co+Ti)
モル比が0、0.005、0.01、0.03又は0.10とな
るようにメタノール中で混合、攪拌して、ペーストを得
た。このペーストを乾熱して乾燥させた後、電気炉を用
いて、空気中、900℃で3時間焼成して、チタン置換
リチウムコバルト複合酸化物LiTiy Co1-y 2
得た。
Example 1 Lithium carbonate (Li 2 CO 3 ) and cobalt oxide (Co 3
O 4 ) and titanium dioxide (TiO 2 ) by Li / (Co +
Ti) the molar ratio is 1.0, y = Ti / (Co + Ti)
Mixing and stirring were performed in methanol such that the molar ratio became 0.005, 0.01, 0.03, or 0.10 to obtain a paste. After the paste was dried by heating, it was fired in an electric furnace at 900 ° C. for 3 hours in the air to obtain a titanium-substituted lithium-cobalt composite oxide LiTi y Co 1-y O 2 .

【0037】このようにして得たチタン置換リチウムコ
バルト複合酸化物85重量部に導電剤として黒鉛10重
量部と結着剤としてポリテトラフルオロエチレン5重量
部を混合して正極合剤とし、これを加圧成形して円板状
の正極を調製した。負極として、円板状のリチウムを用
いた。また、電解液は、エチレンカーボネートとジエチ
ルカーボネートの容量比1:2の混合物に六フッ化リン
酸リチウム(LiPF 6 )を濃度1モル/Lにて溶解さ
せて調製した。セパレータとして微孔性ポリプロピレン
フィルムを用いて、図1に示した試験用のコイン型リチ
ウムイオン二次電池を組み立てた。
The titanium-substituted lithium core thus obtained
85 weight parts of Baltic composite oxide, 10 weight graphite as conductive agent
Parts and polytetrafluoroethylene 5 weight as binder
Parts of the mixture into a positive electrode mixture, which is press-formed and disc-shaped.
Was prepared. Disc-shaped lithium used as negative electrode
Was. In addition, the electrolytic solution is composed of ethylene carbonate and diethyl carbonate.
Phosphorus hexafluoride was added to a mixture of 1: 2 by volume of carbonate.
Lithium oxide (LiPF 6 ) At a concentration of 1 mol / L
Prepared. Microporous polypropylene as separator
Using a film, the coin-shaped test type shown in Fig. 1
A secondary battery was assembled.

【0038】この電池について、25℃において、電流
密度1mA/cm2 にて上限電圧4.3Vまで充電を行な
い、電流密度2mA/cm2 にて下限電圧3.0Vまで放
電を行ない、このように、充放電を繰り返して、放電容
量のサイクル特性を調べた。チタン原子によるコバルト
原子の置換割合と得られた複合酸化物を用いたリチウム
イオン二次電池の150サイクル時の放電容量保持率を
表1に示す。放電容量保持率は、(150サイクル時の
放電容量(V)/初期放電容量(V))×1008
(%)で定義される。また、図2にサイクル数と放電容
量との関係を示す。図2中のAからEは、それぞれ表1
中のAからEに対応する。
This battery was charged at 25 ° C. at a current density of 1 mA / cm 2 to an upper limit voltage of 4.3 V, and discharged at a current density of 2 mA / cm 2 to a lower limit voltage of 3.0 V. The charge / discharge was repeated to examine the cycle characteristics of the discharge capacity. Table 1 shows the replacement ratio of cobalt atoms by titanium atoms and the retention of discharge capacity at 150 cycles of a lithium ion secondary battery using the obtained composite oxide. The discharge capacity retention rate was (discharge capacity at 150 cycles (V) / initial discharge capacity (V)) × 1008.
(%). FIG. 2 shows the relationship between the number of cycles and the discharge capacity. A to E in FIG.
Corresponds to A to E in the middle.

【0039】[0039]

【表1】 [Table 1]

【0040】次に、上記コバルト原子の1モル%をチタ
ンで置換したチタン置換リチウムコバルト複合酸化物L
iTi0.01Co0.992 を正極活物質として有する電池
と無置換のリチウムコバルト複合酸化物LiCoO2
正極活物質として有する電池をそれぞれ満充電状態(充
電条件:1Cの電流で3時間、4.3Vまで定電流・定電
圧充電)とした後、それぞれの電池から正極を取り出
し、ジエチルカーボネートで洗浄、真空乾燥した。
Next, a titanium-substituted lithium-cobalt composite oxide L in which 1 mol% of the above cobalt atoms are substituted with titanium is used.
A battery having iTi 0.01 Co 0.99 O 2 as a positive electrode active material and a battery having an unsubstituted lithium-cobalt composite oxide LiCoO 2 as a positive electrode active material were fully charged (charging conditions: 3 hours at a current of 1 C, 4.3 V). After that, the positive electrode was taken out of each battery, washed with diethyl carbonate, and dried in vacuum.

【0041】エチレンカーボネートとジエチルカーボネ
ートの容量比1:1の混合物に六フッ化リン酸リチウム
(LiPF6 )を濃度1モル/Lにて溶解させて電解液
を調製し、これを上記正極に加えて、DSC(示差走査
型熱量分析)測定を行なった。結果を図3に示す。
Lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 mol / L in a mixture of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 to prepare an electrolytic solution, which was added to the positive electrode. Then, DSC (differential scanning calorimetry) measurement was performed. The results are shown in FIG.

【0042】無置換のリチウムコバルト複合酸化物Li
CoO2 を活物質とする正極は、180℃付近からDS
C曲線の急激な立ち上がり、即ち、急激な発熱がみられ
る。しかし、本発明によるチタン置換リチウムコバルト
複合酸化物LiTi0.01Co 0.992 を活物質とする正
極においては、140℃付近から発熱がみられるもの
の、DSC曲線の急激な立ち上がりはなく、非常に緩や
かにピークを形成している。また、発熱のピークも、高
温側にシフトしている。かくして、本発明による置換リ
チウムコバルト複合酸化物を活物質とする正極は、無置
換のリチウムコバルト複合酸化物LiCoO2 を活物質
とする正極に比べて、熱安定性にすぐれている。
Unsubstituted lithium cobalt composite oxide Li
CoOTwo Positive electrode with an active material of DS
Sudden rise of C curve, that is, rapid heat generation
You. However, the titanium-substituted lithium cobalt according to the present invention
Composite oxide LiTi0.01Co 0.99OTwo Positive as active material
At the pole, heat is generated from around 140 ° C
There is no sharp rise of the DSC curve
A crab peak is formed. Also, the peak of fever is high.
It has shifted to the warm side. Thus, the replacement resource according to the invention is
The positive electrode using the active material of titanium-cobalt composite oxide
Lithium cobalt composite oxide LiCoOTwo The active material
As compared with the positive electrode described above.

【0043】実施例2 炭酸リチウム(Li2 CO3 )と酸化コバルト(Co3
4 )と酢酸マンガン((CH3 COO)2 Mn)とを
Li/(Co+Mn)モル比が1.0であり、y=Mn/
(Co+Mn)モル比が0.01となるようにメタノール
中で混合、攪拌して、ペーストを得た。このペーストを
乾熱して乾燥させた後、電気炉を用いて、空気中、90
0℃で3時間焼成して、マンガン置換リチウムコバルト
複合酸化物LiMn0.01Co0.992 を得た。
Example 2 Lithium carbonate (Li 2 CO 3 ) and cobalt oxide (Co 3
O 4 ) and manganese acetate ((CH 3 COO) 2 Mn) have a Li / (Co + Mn) molar ratio of 1.0, and y = Mn /
Mixing and stirring were performed in methanol so that the (Co + Mn) molar ratio was 0.01, to obtain a paste. After the paste was dried by heating, it was dried in air using an electric furnace.
By calcining at 0 ° C. for 3 hours, a manganese-substituted lithium-cobalt composite oxide LiMn 0.01 Co 0.99 O 2 was obtained.

【0044】上記において、酢酸マンガンに代えて、酸
化アルミニウム、酸化モリブデン又は酸化スズをそれぞ
れコバルト原子に対して1モル%用いて、同様にして、
アルミニウム、モリブデン又はスズ置換リチウムコバル
ト複合酸化物を得た。
In the above, aluminum oxide, molybdenum oxide or tin oxide is used in place of manganese acetate in an amount of 1 mol% with respect to each cobalt atom.
An aluminum, molybdenum or tin-substituted lithium cobalt composite oxide was obtained.

【0045】これらの置換リチウムコバルト複合酸化物
をそれぞれ用いて、実施例1と同様にして、試験用のコ
イン型リチウムイオン二次電池を組み立て、同様にし
て、初期放電容量と70サイクル時の放電容量保持率を
調べた。併せて、実施例1で得たチタン置換リチウムコ
バルト複合酸化物を正極活物質とした実施例1の電池に
ついても、同様に、初期放電容量と70サイクル時の放
電容量保持率を調べた。結果を表2に示す。また、図4
にそれぞれの電池のサイクル数と放電容量との関係を示
す。図4中のaからfは、それぞれ表2中のaからfに
対応する。
Using these substituted lithium-cobalt composite oxides, a coin-type lithium ion secondary battery for testing was assembled in the same manner as in Example 1, and the initial discharge capacity and the discharge at 70 cycles were similarly set. The capacity retention was examined. In addition, for the battery of Example 1 using the titanium-substituted lithium-cobalt composite oxide obtained in Example 1 as a positive electrode active material, the initial discharge capacity and the discharge capacity retention rate at 70 cycles were similarly examined. Table 2 shows the results. FIG.
Fig. 2 shows the relationship between the number of cycles and the discharge capacity of each battery. 4 correspond to a to f in Table 2, respectively.

【0046】[0046]

【表2】 [Table 2]

【0047】実施例3 炭酸リチウム(Li2 CO3 )と酸化コバルト(Co3
4 )と二酸化チタン(TiO2 )とをLi/(Co+
Ti)モル比が1.0であり、y=Ti/(Co+Ti)
モル比が0.01となるようにメタノール中で混合、攪拌
して、ペーストを得た。このペーストを乾熱して乾燥さ
せた後、電気炉を用いて、空気中、900℃で45分間
焼成して、チタン置換リチウムコバルト複合酸化物Li
Ti0.01Co0.992 を得た。
Example 3 Lithium carbonate (Li 2 CO 3 ) and cobalt oxide (Co 3
O 4 ) and titanium dioxide (TiO 2 ) by Li / (Co +
Ti) the molar ratio is 1.0, y = Ti / (Co + Ti)
The mixture was mixed and stirred in methanol so that the molar ratio became 0.01, to obtain a paste. After the paste was dried by heating, it was baked at 900 ° C. for 45 minutes in the air using an electric furnace to obtain a titanium-substituted lithium-cobalt composite oxide Li.
Ti 0.01 Co 0.99 O 2 was obtained.

【0048】このようにして得たチタン置換リチウムコ
バルト複合酸化物を用いて円板状の正極を調製した以外
は、実施例1と同様にして、試験用のコイン型リチウム
イオン二次電池を組み立て、この電池について、実施例
1と同じ条件下に特性を評価したところ、初期放電容量
は148.8mAh/g、100サイクル時の放電容量は
132.1mAh/g、放電容量保持率は88.8%であっ
た。
A coin-type lithium ion secondary battery for testing was assembled in the same manner as in Example 1 except that a disk-shaped positive electrode was prepared using the titanium-substituted lithium-cobalt composite oxide thus obtained. When the characteristics of this battery were evaluated under the same conditions as in Example 1, the initial discharge capacity was 148.8 mAh / g, the discharge capacity at 100 cycles was 132.1 mAh / g, and the discharge capacity retention was 88.8. %Met.

【0049】実施例4 炭酸リチウム(Li2 CO3 )と酸化コバルト(Co3
4 )と二酸化チタン(TiO2 )とをLi/(Co+
Ti)モル比が1.0であり、y=Ti/(Co+Ti)
モル比が0.01となるようにメタノール中で混合、攪拌
して、ペーストを得た。このペーストを乾熱して乾燥さ
せ、粉砕し、得られた粉末をロータリーキルンに装入
し、空気雰囲気下、650℃、750℃、950℃又は
950℃の温度で40分間、加熱、焼成した。このよう
にして得られた焼成物のX線回折図を図5に示す。75
0℃で40分間の焼成によって、チタン置換リチウムコ
バルト複合酸化物LiTi0.01Co0.992 を得ること
ができることが示される。
Example 4 Lithium carbonate (Li 2 CO 3 ) and cobalt oxide (Co 3
O 4 ) and titanium dioxide (TiO 2 ) by Li / (Co +
Ti) the molar ratio is 1.0, y = Ti / (Co + Ti)
The mixture was mixed and stirred in methanol so that the molar ratio became 0.01, to obtain a paste. The paste was dried by heating, dried and pulverized. The obtained powder was placed in a rotary kiln, and heated and fired at 650 ° C., 750 ° C., 950 ° C. or 950 ° C. for 40 minutes in an air atmosphere. FIG. 5 shows an X-ray diffraction diagram of the fired product thus obtained. 75
It is shown that calcining at 0 ° C. for 40 minutes can obtain a titanium-substituted lithium-cobalt composite oxide LiTi 0.01 Co 0.99 O 2 .

【0050】次に、上記上記原料粉末から調製したペー
ストを上記と同様にして乾燥させ、粉砕し、得られた粉
末をロータリーキルンに装入し、空気雰囲気下、775
℃、795℃又は845℃の温度で40分間、加熱、焼
成して、チタン置換リチウムコバルト複合酸化物LiT
0.01Co0.992 を得た。
Next, the paste prepared from the above raw material powder was dried and pulverized in the same manner as described above, and the obtained powder was charged into a rotary kiln, and then dried under an air atmosphere at 775.
And baked at a temperature of 795 ° C. or 845 ° C. for 40 minutes to obtain a titanium-substituted lithium-cobalt composite oxide LiT
i 0.01 Co 0.99 O 2 was obtained.

【0051】これらのチタン置換リチウムコバルト複合
酸化物90重量部に導電剤として黒鉛4重量部と結着剤
としてポリテトラフルオロエチレン6重量部を混合して
正極合剤とし、これを加圧成形して円板状の正極を調製
した。負極として、円板状のリチウムを用いた。また、
電解液は、エチレンカーボネートとジエチルカーボネー
トの容量比1:2の混合物に六フッ化リン酸リチウム
(LiPF6 )を濃度1モル/Lにて溶解させて調製し
た。セパレータとして微孔性ポリプロピレンフィルムを
用いて、図1に示した試験用のコイン型リチウムイオン
二次電池を組み立てた。
To 90 parts by weight of the titanium-substituted lithium-cobalt composite oxide, 4 parts by weight of graphite as a conductive agent and 6 parts by weight of polytetrafluoroethylene as a binder were mixed to form a positive electrode mixture. Thus, a disk-shaped positive electrode was prepared. Disc-shaped lithium was used as the negative electrode. Also,
The electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a concentration of 1 mol / L in a mixture of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 2. Using a microporous polypropylene film as a separator, a test coin-type lithium ion secondary battery shown in FIG. 1 was assembled.

【0052】この電池について、実施例1と同じ条件下
に充放電を繰り返して、放電容量のサイクル特性を調べ
た。図6にサイクル数と放電容量との関係を示す。ま
た、図6に示されるように、775℃の焼成で得られた
チタン置換リチウムコバルト複合酸化物を正極活物質と
するリチウムイオン二次電池の300サイクル時の放電
容量保持率は81.5%であり、焼成温度795℃のもの
は79.3%、焼成温度845℃のものは77.5%であっ
た。
This battery was repeatedly charged and discharged under the same conditions as in Example 1, and the cycle characteristics of the discharge capacity were examined. FIG. 6 shows the relationship between the number of cycles and the discharge capacity. As shown in FIG. 6, the discharge capacity retention of the lithium ion secondary battery using the titanium-substituted lithium-cobalt composite oxide obtained by firing at 775 ° C. as a positive electrode active material during 300 cycles was 81.5%. The firing temperature was 79.3% at 795 ° C., and the firing temperature at 845 ° C. was 77.5%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、リチウムイオン二次電池の一例を示す断面
図である。
FIG. 1 is a sectional view showing an example of a lithium ion secondary battery.

【図2】は、種々の割合でコバルト原子をチタンで置換
してなるリチウムコバルト複合酸化物を正極活物質とす
るリチウムイオン二次電池のサイクル数と放電容量との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the number of cycles and the discharge capacity of a lithium ion secondary battery using a lithium cobalt composite oxide in which cobalt atoms are replaced with titanium at various ratios as a positive electrode active material.

【図3】は、本発明によるチタン置換リチウムコバルト
複合酸化物LiTi0. 01Co0.992 を活物質とする正
極と、比較例としての無置換のリチウムコバルト複合酸
化物LiCoO2 を活物質とする正極とについて、DS
C曲線を示すグラフである。
FIG. 3 shows a titanium-substituted lithium cobalt according to the present invention.
Composite oxide LiTi0. 01Co0.99OTwo Positive as active material
Electrodes and unsubstituted lithium cobalt complex acids as comparative examples
LiCoOTwo And DS
It is a graph which shows a C curve.

【図4】は、種々の元素にてコバルト原子を1モル%置
換してなるリチウムコバルト複合酸化物を正極活物質と
するリチウムイオン二次電池のサイクル数と放電容量と
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the number of cycles and the discharge capacity of a lithium ion secondary battery using a lithium cobalt composite oxide obtained by substituting 1 mol% of cobalt atoms with various elements as a positive electrode active material. is there.

【図5】は、コバルト原子の1モル%をチタンで置換し
てなるリチウムコバルト複合酸化物の製造において、原
料粉末の混合物ペーストを乾燥させ、粉砕した後、ロー
タリーキルンを用いて種々の温度で焼成して得られた焼
成物のX線回折図を示す。
FIG. 5 is a diagram showing a process for producing a lithium-cobalt composite oxide obtained by substituting 1 mol% of cobalt atoms with titanium, drying a mixture paste of raw material powders, pulverizing the mixture, and sintering the mixture at various temperatures using a rotary kiln. 1 shows an X-ray diffraction diagram of the fired product obtained as described above.

【図6】は、ロータリーキルンを用いて焼成して得られ
たチタン置換リチウムコバルト複合酸化物LiTi0.01
Co0.992 を正極活物質とするリチウムイオン二次電
池のサイクル数と放電容量との関係を示すグラフであ
る。
FIG. 6 shows a titanium-substituted lithium-cobalt composite oxide LiTi 0.01 obtained by firing using a rotary kiln.
5 is a graph showing the relationship between the number of cycles and the discharge capacity of a lithium ion secondary battery using Co 0.99 O 2 as a positive electrode active material.

【符号の説明】[Explanation of symbols]

1…正極缶、2…正極集電体、3…正極、4…セパレー
タ、5…負極、6…負極集電体、7…負極缶、8…絶縁
パッキング。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode can, 2 ... Positive electrode collector, 3 ... Positive electrode, 4 ... Separator, 5 ... Negative electrode, 6 ... Negative electrode collector, 7 ... Negative electrode can, 8 ... Insulating packing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 一彦 大阪市淀川区宮原三丁目5番24号 本荘ケ ミカル株式会社内 (72)発明者 本荘 之伯 大阪市淀川区宮原三丁目5番24号 本荘ケ ミカル株式会社内 Fターム(参考) 4G048 AA04 AB02 AB05 AC06 AD03 AE05 5H029 AJ03 AJ14 AK03 AK07 AL12 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 CJ28 DJ16 HJ02 HJ14 5H050 AA08 AA19 BA17 CA08 EA09 EA24 FA17 GA27 HA02 HA14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhiko Hirao 3-5-24-2 Miyahara, Yodogawa-ku, Osaka-shi Inside Honjo Chemical Co., Ltd. F-term (reference) in Honjo Chemical Co., Ltd. 4G048 AA04 AB02 AB05 AC06 AD03 AE05 5H029 AJ03 AJ14 AK03 AK07 AL12 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 CJ28 DJ16 HJ02 HJ14 5H050 AA08 AA19 BA17 CA14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】一般式 Lix y Co1-y 2 (I) (式中、Mは、Al、Ti、Mn、Mo及びSnから選
ばれる少なくとも1種の金属元素を示し、xは0.8〜1.
2の範囲の数であり、yは0.001〜0.10の範囲の数
である。)で表わされ、リチウムイオン二次電池用正極
活物質として用いるための置換リチウムコバルト複合酸
化物。
1. A in the general formula Li x M y Co 1-y O 2 (I) ( wherein, M represents Al, Ti, Mn, of at least one metal element selected from Mo and Sn, x is 0.8-1.
2 is a number in the range of 2, and y is a number in the range of 0.001 to 0.10. A substituted lithium-cobalt composite oxide for use as a positive electrode active material for a lithium ion secondary battery.
【請求項2】yが0.002〜0.05の範囲の数である請
求項1に記載の置換リチウムコバルト複合酸化物。
2. The substituted lithium cobalt composite oxide according to claim 1, wherein y is a number in the range of 0.002 to 0.05.
【請求項3】MがTi及びMnから選ばれる少なくとも
1種の元素である請求項1に記載の置換リチウムコバル
ト複合酸化物。
3. The substituted lithium cobalt composite oxide according to claim 1, wherein M is at least one element selected from Ti and Mn.
【請求項4】一般式 Lix y Co1-y 2 (I) (式中、Mは、Al、Ti、Mn、Mo及びSnから選
ばれる少なくとも1種の金属元素を示し、xは0.8〜1.
2の範囲の数であり、yは0.001〜0.10の範囲の数
である。)で表わされる置換リチウムコバルト複合酸化
物からなるリチウムイオン二次電池用正極活物質の製造
方法において、炭素数1〜3の脂肪族低級アルコール中
でリチウム化合物とコバルト化合物と元素Mの化合物の
粉末を元素のモル比換算で上記一般式に一致するように
加え、混合し、これを乾燥し、酸化性雰囲気下に600
〜1100℃の範囲の温度にて焼成することを特徴とす
る方法。
Wherein in the general formula Li x M y Co 1-y O 2 (I) ( wherein, M represents Al, Ti, Mn, of at least one metal element selected from Mo and Sn, x is 0.8-1.
2 is a number in the range of 2, and y is a number in the range of 0.001 to 0.10. The method for producing a positive electrode active material for a lithium ion secondary battery comprising a substituted lithium-cobalt composite oxide represented by the following formula): Are added so as to correspond to the above general formula in terms of the molar ratio of the elements, mixed, dried, and dried under an oxidizing atmosphere at 600.degree.
Baking at a temperature in the range of 11100 ° C.
【請求項5】溶剤がメタノールである請求項4に記載の
方法。
5. The method according to claim 4, wherein the solvent is methanol.
【請求項6】溶剤が水を20重量%以下の範囲で含むメ
タノールである請求項4に記載の方法。
6. The method according to claim 4, wherein the solvent is methanol containing water in a range of not more than 20% by weight.
【請求項7】正極と、リチウム、リチウム合金又はリチ
ウムイオンを吸蔵、放出し得る炭素質材料からなる負極
と、これら正極と負極との間に配設されるセパレータ
と、リチウムイオン伝導性非水電解質とを有し、上記正
極の活物質が請求項1に記載の置換リチウムコバルト複
合酸化物からなることを特徴とするリチウムイオン非水
二次電池。
7. A positive electrode, a negative electrode made of a carbonaceous material capable of occluding and releasing lithium, a lithium alloy or lithium ions, a separator disposed between the positive electrode and the negative electrode, and a lithium ion conductive non-aqueous A lithium ion nonaqueous secondary battery comprising: an electrolyte; and the active material of the positive electrode comprises the substituted lithium cobalt composite oxide according to claim 1.
JP2000212819A 1999-12-02 2000-07-13 Lithium secondary battery, positive electrode active substance for it and their manufacturing method Pending JP2001223008A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000212819A JP2001223008A (en) 1999-12-02 2000-07-13 Lithium secondary battery, positive electrode active substance for it and their manufacturing method
US09/662,979 US6582854B1 (en) 1999-12-02 2000-09-15 Lithium ion secondary battery, cathode active material therefor and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34317799 1999-12-02
JP11-343177 1999-12-02
JP2000212819A JP2001223008A (en) 1999-12-02 2000-07-13 Lithium secondary battery, positive electrode active substance for it and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2001223008A true JP2001223008A (en) 2001-08-17

Family

ID=26577453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212819A Pending JP2001223008A (en) 1999-12-02 2000-07-13 Lithium secondary battery, positive electrode active substance for it and their manufacturing method

Country Status (2)

Country Link
US (1) US6582854B1 (en)
JP (1) JP2001223008A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002066A (en) * 2002-05-29 2004-01-08 Toda Kogyo Corp Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
JP2005302628A (en) * 2004-04-15 2005-10-27 Toshiba Corp Positive active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
KR100854241B1 (en) * 2001-11-20 2008-08-25 니폰 가가쿠 고교 가부시키가이샤 Lithium-Cobalt Based Combination Oxide, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Cell, and Lithium Secondary Cell
WO2011043296A1 (en) * 2009-10-05 2011-04-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
WO2012098724A1 (en) * 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP2015156363A (en) * 2014-01-20 2015-08-27 日立マクセル株式会社 Lithium/cobalt-containing composite oxide, method for producing the same, nonaqueous secondary battery electrode using the lithium/cobalt-containing composite oxide, and nonaqueous secondary battery using the electrode
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
JP2016528159A (en) * 2013-08-19 2016-09-15 ダウ グローバル テクノロジーズ エルエルシー Improved lithium metal oxide rich cathode materials and methods for their preparation
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP2022514239A (en) * 2018-12-14 2022-02-10 寧徳時代新能源科技股▲分▼有限公司 Lithium-ion batteries and appliances

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081495A1 (en) * 2000-11-08 2002-06-27 Hiroshi Nakajima Nonaqueous electrolyte secondary battery
KR100489509B1 (en) * 2001-03-22 2005-05-16 마쯔시다덴기산교 가부시키가이샤 Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP4510331B2 (en) * 2001-06-27 2010-07-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4836371B2 (en) * 2001-09-13 2011-12-14 パナソニック株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
US8658125B2 (en) * 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4197237B2 (en) * 2002-03-01 2008-12-17 パナソニック株式会社 Method for producing positive electrode active material
US9391325B2 (en) * 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8241790B2 (en) * 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4554911B2 (en) * 2003-11-07 2010-09-29 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7381496B2 (en) * 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
US7811707B2 (en) * 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US20080008933A1 (en) * 2005-12-23 2008-01-10 Boston-Power, Inc. Lithium-ion secondary battery
WO2007011661A1 (en) 2005-07-14 2007-01-25 Boston-Power, Inc. Control electronics for li-ion batteries
EP1994587B1 (en) 2006-03-20 2018-07-11 LG Chem, Ltd. Stoichiometric lithium cobalt oxide and method for preparation of the same
CN101405899B (en) * 2006-03-20 2012-04-04 株式会社Lg化学 Cathode materials for lithium battery having higher performance
TWI426678B (en) * 2006-06-28 2014-02-11 Boston Power Inc Electronics with multiple charge rate, battery packs, methods of charging a lithium ion charge storage power supply in an electronic device and portable computers
TWI485908B (en) 2007-06-22 2015-05-21 Boston Power Inc Cid retention device for li-ion cell
US20090297937A1 (en) * 2008-04-24 2009-12-03 Lampe-Onnerud Christina M Lithium-ion secondary battery
EP2347318A1 (en) * 2008-09-12 2011-07-27 Boston-Power, Inc. Method and apparatus for embedded battery cells and thermal management
KR101553582B1 (en) * 2008-12-05 2015-09-16 삼성에스디아이 주식회사 Cathode active material and cathode and lithium battery comprising same
WO2010135260A2 (en) * 2009-05-18 2010-11-25 Boston-Power, Inc. Energy efficient and fast charge modes of a rechargeable battery
CN102481858B (en) * 2009-09-01 2014-11-05 波士顿电力公司 Safety and performance optimized controls for large scale electric vehicle battery systems
KR20120060820A (en) * 2009-09-01 2012-06-12 보스톤-파워, 인크. Large scale battery systems and method of assembly
TW201136837A (en) * 2010-01-29 2011-11-01 Basf Se Producing oxidic compounds
DE102010038862A1 (en) * 2010-08-04 2012-02-09 Sb Limotive Company Ltd. Method for producing battery modules or battery systems with a plurality of battery cells

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201368A (en) * 1989-10-06 1991-09-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH0513082A (en) * 1991-06-29 1993-01-22 Sony Corp Nonaqueous electrolytic liquid secondary battery
JPH117958A (en) * 1997-04-25 1999-01-12 Sony Corp Manufacture of positive electrode active material, and non-aqueous electrolyte secondary battery
JPH1173958A (en) * 1997-06-18 1999-03-16 Sony Corp Manufacture of positive electrode active material
JPH1197015A (en) * 1997-09-18 1999-04-09 Sony Corp Nonaqueous electrolyte secondary cell
JPH11162464A (en) * 1997-12-01 1999-06-18 Honjo Chemical Kk Manufacture of positive electrode active material for lithium ion secondary battery
JP2000012022A (en) * 1998-06-23 2000-01-14 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2000294242A (en) * 1999-04-09 2000-10-20 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture therefor and nonaqueous electrolyte secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US200704A (en) * 1878-02-26 Improvement in egg-carriers
JP2643046B2 (en) * 1991-12-27 1997-08-20 シャープ株式会社 Non-aqueous secondary battery
US5609975A (en) * 1994-05-13 1997-03-11 Matsushita Electric Industrial Co., Ltd. Positive electrode for non-aqueous electrolyte lithium secondary battery and method of manufacturing the same
CA2207801C (en) * 1996-06-19 2004-03-30 Hideki Kaido Nonaqueous electrolyte battery
US5783333A (en) * 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
US6127065A (en) * 1997-04-25 2000-10-03 Sony Corporation Method of manufacturing cathode active material and nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201368A (en) * 1989-10-06 1991-09-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH0513082A (en) * 1991-06-29 1993-01-22 Sony Corp Nonaqueous electrolytic liquid secondary battery
JPH117958A (en) * 1997-04-25 1999-01-12 Sony Corp Manufacture of positive electrode active material, and non-aqueous electrolyte secondary battery
JPH1173958A (en) * 1997-06-18 1999-03-16 Sony Corp Manufacture of positive electrode active material
JPH1197015A (en) * 1997-09-18 1999-04-09 Sony Corp Nonaqueous electrolyte secondary cell
JPH11162464A (en) * 1997-12-01 1999-06-18 Honjo Chemical Kk Manufacture of positive electrode active material for lithium ion secondary battery
JP2000012022A (en) * 1998-06-23 2000-01-14 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2000294242A (en) * 1999-04-09 2000-10-20 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture therefor and nonaqueous electrolyte secondary battery

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854241B1 (en) * 2001-11-20 2008-08-25 니폰 가가쿠 고교 가부시키가이샤 Lithium-Cobalt Based Combination Oxide, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Cell, and Lithium Secondary Cell
JP2004002066A (en) * 2002-05-29 2004-01-08 Toda Kogyo Corp Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
JP4553095B2 (en) * 2002-05-29 2010-09-29 戸田工業株式会社 Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP2005302628A (en) * 2004-04-15 2005-10-27 Toshiba Corp Positive active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
JP4504074B2 (en) * 2004-04-15 2010-07-14 株式会社東芝 Positive electrode active material for non-aqueous electrolyte battery, positive electrode and non-aqueous electrolyte battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
CN102576872A (en) * 2009-10-05 2012-07-11 日本化学工业株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
KR101751768B1 (en) * 2009-10-05 2017-06-28 닛본 가가쿠고교가부시키가이샤 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
WO2011043296A1 (en) * 2009-10-05 2011-04-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
JP5749650B2 (en) * 2009-10-05 2015-07-15 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
US9227850B2 (en) 2009-10-05 2016-01-05 Nippon Chemical Industrial Co., Ltd. Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
WO2012098724A1 (en) * 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
JP5808316B2 (en) * 2011-01-21 2015-11-10 Jx日鉱日石金属株式会社 Method for producing positive electrode active material for lithium ion battery
JPWO2012098724A1 (en) * 2011-01-21 2014-06-09 Jx日鉱日石金属株式会社 Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2016528159A (en) * 2013-08-19 2016-09-15 ダウ グローバル テクノロジーズ エルエルシー Improved lithium metal oxide rich cathode materials and methods for their preparation
JP2015156363A (en) * 2014-01-20 2015-08-27 日立マクセル株式会社 Lithium/cobalt-containing composite oxide, method for producing the same, nonaqueous secondary battery electrode using the lithium/cobalt-containing composite oxide, and nonaqueous secondary battery using the electrode
JP2022514239A (en) * 2018-12-14 2022-02-10 寧徳時代新能源科技股▲分▼有限公司 Lithium-ion batteries and appliances
JP7175397B2 (en) 2018-12-14 2022-11-18 寧徳時代新能源科技股▲分▼有限公司 Lithium ion battery and equipment

Also Published As

Publication number Publication date
US6582854B1 (en) 2003-06-24

Similar Documents

Publication Publication Date Title
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
CA2796903C (en) Positive electrode active material and non-aqueous electrolyte cell
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP3873717B2 (en) Positive electrode material and battery using the same
US20140315089A1 (en) Positive active material, method of preparing the same, and rechargeable lithium battery including the same
KR20110136689A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
US6291100B1 (en) Electrode composition comprising doped tungsten oxides and electrochemical cell comprising same
JP2016039134A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2002117847A (en) Positive electrode active material and nonaqueous electrolyte battery, as well as their manufacturing method
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2974213B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
EP1032061A1 (en) Non-aqueous electrolyte battery
CN113363490B (en) Based on Li content2Lithium secondary battery with O anode and negative electrode without active material and preparation method thereof
KR101298719B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JP2003086181A (en) Positive electrode active material and lithium ion secondary battery
US20210280862A1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
KR102228749B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP4356127B2 (en) Lithium secondary battery
JP3635884B2 (en) Non-aqueous electrolyte secondary battery
JP2001052700A (en) Lithium secondary battery
JPH06163046A (en) Manufacture of positive electrode active material for nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118