JP2001223008A - Lithium secondary battery, positive electrode active substance for it and their manufacturing method - Google Patents

Lithium secondary battery, positive electrode active substance for it and their manufacturing method

Info

Publication number
JP2001223008A
JP2001223008A JP2000212819A JP2000212819A JP2001223008A JP 2001223008 A JP2001223008 A JP 2001223008A JP 2000212819 A JP2000212819 A JP 2000212819A JP 2000212819 A JP2000212819 A JP 2000212819A JP 2001223008 A JP2001223008 A JP 2001223008A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
lithium
composite oxide
positive electrode
secondary battery
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000212819A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hirao
Yukinori Honjiyou
Ro Ki
Gohe Yoshida
魯 其
五兵衛 吉田
一彦 平尾
之伯 本荘
Original Assignee
Honjo Chemical Corp
本荘ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators

Abstract

PROBLEM TO BE SOLVED: To provide a homogeneous and substituted lithium cobalt complex oxide which is not only superior in a cycle property, but also gives a secondary battery of a high capacity, and moreover superior in thermal stability, and provide its manufacturing method.
SOLUTION: The substituted lithium cobalt complex oxide expressed in an equation Lix My Co1-y Oz is provided (in the equation, M is at least one kind of metallic element selected among Al, Ti, Mn, Mo and Sn, and x is a number ranging from 0.8 to 1.2, and y is a number ranging from 0.001 to 0.10). The oxide is used as a positive electrode active substance of a lithium secondary battery. By mixing powders of lithium compound, cobalt compound, and a compound of the element M so that the molar ratio agrees with the equation (I) in lower aliphatic alcohol of a carbon number 1-3, drying it, and calcining it at a temperature ranging from 600 to 1,100°C under the oxidizing atmosphere, the substituted lithium cobalt complex oxide can be obtained.
COPYRIGHT: (C)2001,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、リチウムイオン二次電池、そのためのリチウムコバルト複合酸化物からなる正極活物質及びその製造方法に関する。 The present invention relates to a lithium ion secondary battery, regarding the positive electrode active material and a manufacturing method thereof a lithium-cobalt composite oxide for this purpose. 詳しくは、本発明は、置換元素を含むリチウムコバルト複合酸化物を正極活物質とし、サイクル特性と熱安定性の改善されたリチウムイオン二次電池に関し、更に、上記正極活物質としてのリチウムコバルト複合酸化物と、これを製造するための簡便で経済的な方法に関する。 Specifically, the present invention provides a lithium-cobalt composite oxide containing substituent element as the positive electrode active material, relates to a lithium ion secondary battery having improved cycle characteristics and thermal stability, further, a lithium cobalt complex as the positive electrode active material and oxides, to simple and economical process for producing the same.

【0002】 [0002]

【従来の技術】近年、電子機器の小型化、高性能化を背景として、そのための電源として、軽量で、高電圧、高エネルギー密度を有し、しかも、長寿命を有するリチウムイオン二次電池の需要が急激に増えており、更に、世界的な資源量の減少と環境悪化に対処するために、電気自動車や大型電力貯蔵装置の分野においても、リチウムイオン二次電池の実用化への研究が精力的に進められている。 In recent years, miniaturization of electronic devices, as a background of higher performance, as a power source therefor, a lightweight, high-voltage, has a high energy density, moreover, the lithium ion secondary battery having a long life demand has increased sharply, further, in order to cope with the loss and environmental degradation worldwide abundance, in the field of electric vehicles and large-sized power storage devices, the study of the practical application of the lithium ion secondary battery It has been vigorously pursued.

【0003】従来、リチウムイオン二次電池の正極活物質としては、リチウムコバルト複合酸化物(LiCoO Conventionally, as a cathode active material of the lithium ion secondary batteries, lithium cobalt composite oxide (LiCoO
2 、コバルト酸リチウム)が4V級の高電圧と高エネルギー密度を有するので、広く用いられている。 2, since the lithium cobalt oxide) has a high voltage and high energy density of 4V class, it has been widely used. しかし、 But,
リチウムコバルト複合酸化物を正極活物質とするリチウムイオン二次電池は、充放電を繰り返すうちに、その結晶構造が破壊されて、活物質として機能を失なうので、 Lithium-ion secondary battery using lithium-cobalt composite oxide as a positive electrode active material, after repeated charging and discharging, the crystals structure is destroyed and the function as an active material so loses,
サイクル特性が十分ではない。 Cycle characteristics are not sufficient. 更に、このような電池においては、リチウムコバルト複合酸化物が200℃前後の温度で分解するので、内部短絡等の異常発熱があったとき、電池が破損するおそれがあり、また、高温環境下においてサイクル特性の劣化が著しく、熱安定性に欠ける問題がある。 Further, in such a battery, since the lithium-cobalt composite oxide is decomposed at around 200 ° C. temperature, when there is abnormal heat such as an internal short circuit, there is a risk that the battery is damaged, and in a high temperature environment deterioration of cycle characteristics significantly, there is a problem of lacking in thermal stability.

【0004】そこで、リチウムコバルト複合酸化物中のコバルト原子の一部を別の元素で置換することによって、上記充放電に伴う結晶構造の変化を抑えるようにした置換リチウムコバルト複合酸化物とすることが、従来、提案されている。 [0004] Therefore, by substituting a part of cobalt atoms of the lithium-cobalt composite oxide by another element, it is a substituted lithium cobalt composite oxide to suppress the change of the crystal structure accompanying the above charge and discharge but, conventionally, it has been proposed.

【0005】しかし、従来、このような置換リチウムコバルト複合酸化物は、例えば、特開平3−201368 However, conventionally, such substituted lithium cobalt composite oxide, for example, JP-A-3-201368
号公報、特開平4−319259号公報、特開平5−2 JP, Hei 4-319259, JP-A No. 5-2
83075号公報等に記載されているように、必要な原料粉末、例えば、炭酸リチウムと炭酸コバルトと共に置換元素の酸化物とを乾式混合し、これを空気中で焼成した後、冷却し、粉砕することによって製造されている。 As described in 83075 JP etc., the raw material powder necessary, for example, an oxide substitution elements with lithium carbonate and cobalt carbonate were dry mixed, after which it was calcined in air, cooled, pulverized It is manufactured by.

【0006】このような乾式法、即ち、原料粉末を反応物質として用いる固相反応を利用する方法によれば、本来、原料粉末をサブミクロンレベルで均一な混合物とすることが困難であり、しかも、そのような原料粉末の混合物を焼成して、実用し得る複合酸化物を得るには、実際には、置換元素の原料粉末を比較的多量に用い、しかも、高温で長時間にわたる焼成とその後の粉砕を行ない、更に、このような焼成と粉砕とを繰り返して行なって、目的とする固相反応を十分に行なわせることが必要である。 [0006] Such a dry process, i.e., according to the method of using a solid-phase reaction using a raw material powder as a reactant, originally, it is difficult to form a uniform mixture the raw material powder at submicron level, yet , by firing a mixture of such raw material powder, to obtain a composite oxide capable of practical use, in fact, using the raw material powder of the substitution elements relatively large amount, moreover, firing followed over time at elevated temperatures performs the grinding, further, is performed by repeating the milling and such baking, it is necessary to sufficiently perform solid-phase reaction of interest. しかし、他方において、このように、多量の置換元素の化合物を含む原料粉末を高温で繰返して焼成すれば、望ましくない副生物が生成したり、反応生成物の表面性状が望ましくないように変化したりするうえに、 However, on the other hand, this way, if firing is repeated a raw material powder containing a compound of a large amount of substituting element at high temperatures to produce undesirable by-products or varies such that the surface properties of the reaction products is undesirable on top of or,
得られる複合酸化物を正極活物質とする電池は、電池容量が小さく、かくして、特性にすぐれる電池を与える複合酸化物を得ることができない。 Cells The composite oxide as a positive electrode active material obtained has a small battery capacity, thus, it is impossible to obtain a composite oxide which gives the battery excellent characteristics.

【0007】 [0007]

【発明が解決しようとする課題】本発明は、リチウムイオン二次電池用正極活物質としての従来の置換リチウムコバルト複合酸化物における上述したような問題を解決するためになされたものであって、サイクル特性にすぐれるのみならず、高容量の二次電池を与え、しかも、熱安定性にもすぐれる均質な置換リチウムコバルト複合酸化物とその製造方法を提供することを目的とし、更に、 [0008] The present invention was made to solve the problems described above in conventional replacement lithium cobalt composite oxide as a positive active material for a lithium ion secondary battery, not only excellent cycle characteristics, given a secondary battery with high capacity, moreover, an object of the invention to provide thermally superior in stability homogenous substituted lithium-cobalt composite oxide and its production method, further,
このような置換リチウムコバルト複合酸化物を正極活物質とするリチウムイオン二次電池を提供することを目的とする。 And to provide a lithium ion secondary battery using such a substituted lithium cobalt composite oxide as a positive electrode active material.

【0008】 [0008]

【課題を解決するための手段】本発明によれば、一般式 Li xy Co 1-y2 (I) (式中、Mは、Al、Ti、Mn、Mo及びSnから選ばれる少なくとも1種の金属元素を示し、xは0.8〜1. According to the present invention According to an aspect of the general formula Li x M y Co 1-y O 2 (I) ( wherein, M is at least Al, Ti, Mn, selected from Mo and Sn represents one of the metal element, x is 0.8 to 1.
2の範囲の数であり、yは0.001〜0.10の範囲の数である。 The number of the second range, y is a number in the range of 0.001 to 0.10. )で表わされ、リチウムイオン二次電池の正極活物質として用いるための置換リチウムコバルト複合酸化物が提供される。 ) Is represented by a substituted lithium-cobalt composite oxide for use as a cathode active material of a lithium ion secondary battery is provided.

【0009】このような置換リチウムコバルト複合酸化物は、本発明に従って、炭素数1〜3の脂肪族低級アルコール中でリチウム化合物とコバルト化合物と元素Mの化合物の粉末を元素のモル比換算で上記一般式(I)に一致するように混合し、これを乾燥し、酸化性雰囲気下に600〜1100℃の範囲の温度にて焼成することによって得ることができる。 [0009] Such substitutions lithium cobalt composite oxide according to the present invention, the molar ratio in terms of powder elements of the lithium compound and a cobalt compound and a compound of the element M in number 1-3 aliphatic lower alcohol in the carbon It was mixed to match the general formula (I), dried, can be obtained by firing at a temperature in the range of 600 to 1100 ° C. in an oxidizing atmosphere.

【0010】更に、本発明によれば、このような置換リチウムコバルト複合酸化物を正極活物質とするリチウムイオン二次電池が提供される。 Furthermore, according to the present invention, a lithium ion secondary battery using such a substituted lithium cobalt composite oxide as a cathode active material is provided.

【0011】 [0011]

【発明の実施の形態】本発明によるリチウムイオン二次電池用正極活物質として用いるためのリチウムコバルト複合酸化物は、一般式 Li xy Co 1-y2 (I) (式中、Mは、Al、Ti、Mn、Mo及びSnから選ばれる少なくとも1種の金属元素を示し、xは0.8〜1. Lithium-cobalt composite oxide for use as positive active material for a lithium ion secondary battery according to the embodiment of the present invention have the general formula Li x M y Co 1-y O 2 (I) ( wherein, M represents Al, Ti, Mn, of at least one metal element selected from Mo and Sn, x is 0.8 to 1.
2の範囲の数であり、yは0.001〜0.10の範囲の数である。 The number of the second range, y is a number in the range of 0.001 to 0.10. )で表わされるものであって、コバルト原子の一部が上記元素M(以下、置換元素という。)で置換されている。 ) Represented by those in a in a portion of the cobalt atoms the element M (hereinafter, has been replaced by that.) Replacing element.

【0012】上記一般式(I)で表わされる置換リチウムコバルト複合酸化物において、好ましくは、xは0.9 [0012] In substituted lithium-cobalt composite oxide represented by the general formula (I), preferably, x 0.9
〜1.1の範囲にあり、特に好ましくは、1であり、y In the range of to 1.1, particularly preferably a 1, y
は、0.002〜0.075の範囲にあり、より好ましくは、0.005〜0.05の範囲にあり、特に好ましくは、 Is in the range of 0.002 to 0.075, more preferably, in the range of 0.005 to 0.05, particularly preferably,
0.01〜0.03の範囲にある。 It is in the range of 0.01 to 0.03.

【0013】前記一般式(I)で表わされるリチウムコバルト複合酸化物において、yが0.001よりも小さいときは、得られる複合酸化物がそのサイクル特性と熱安定性において殆ど改善されず、他方、yが0.10よりも大きいときは、得られる複合酸化物は、サイクル特性において改善されるものの、電池容量の低下が著しい。 [0013] In the lithium-cobalt complex oxide represented by the general formula (I), when y is smaller than 0.001, the composite oxide obtained is hardly improved in the cycle characteristics and thermal stability, while when y is greater than 0.10, the composite oxide obtained, although is improved in cycle characteristics, reduction of the battery capacity is significant.

【0014】特に、本発明によれば、置換元素は、初期放電容量、サイクル特性及び熱安定性がすぐれるところから、Ti及びMnから選ばれる少なくとも1種の元素であることが好ましく、なかでも、Tiであることが好ましい。 [0014] In particular, according to the present invention, substitution elements, the initial discharge capacity, from where the cycle characteristics and thermal stability is excellent, is preferably at least one element selected from Ti and Mn, among others is preferably Ti. 例えば、置換元素としてチタンを用いることによって、少量、例えば、0.5〜5モル%(即ち、yが0. For example, by using titanium as a substitution element, a small amount, e.g., 0.5 to 5 mol% (i.e., y is 0.
005〜0.05)、好ましくは、1〜3モル%(即ち、 005 to 0.05), preferably 1 to 3 mol% (i.e.,
yが0.01〜0.03)の置換によって、初期放電容量、 By substitution of y is 0.01 to 0.03), the initial discharge capacity,
サイクル特性及び熱安定性がすぐれる二次電池正極活物質用の複合酸化物を得ることができる。 Can cycle characteristics and thermal stability to obtain a composite oxide for a secondary battery positive electrode active material excellent.

【0015】このような置換リチウムコバルト複合酸化物は、本発明によれば、炭素数1〜3の脂肪族低級アルコール中でリチウム化合物とコバルト化合物と置換元素の化合物の粉末を元素のモル比換算で上記一般式(I) [0015] Such substitutions lithium cobalt composite oxide, according to the present invention, powder elemental molar ratio Conversion of the compound of the substituting element with a lithium compound and a cobalt compound by the number 1-3 aliphatic lower alcohol in the carbon in the above-mentioned general formula (I)
に一致するように混合し、これを乾燥し、酸化性雰囲気下に600〜1100℃、好ましくは、700〜100 Were mixed to match, this was dried, 600 to 1100 ° C. in an oxidizing atmosphere, preferably, from 700 to 100
0℃の範囲の温度にて焼成することによって得ることができる。 0 can be obtained by firing at a temperature in the range of ° C..

【0016】本発明の方法においては、上記リチウム化合物としては、水酸化リチウム、酸化リチウム、炭酸リチウム、有機酸塩(例えば、ギ酸塩、シュウ酸塩、酢酸塩等)等が用いられるが、なかでも、炭酸リチウム又は水酸化リチウムが好ましく用いられる。 In the process of the present invention, examples of the lithium compound, lithium hydroxide, lithium oxide, lithium carbonate, organic acid salts (e.g., formates, oxalates, acetates, etc.) or the like is used, Naka But, lithium or lithium hydroxide carbonate is preferably used. 他方、コバルト化合物や置換元素の化合物としては、通常、酸化物、水酸化物、オキシ水酸化物、炭酸塩、硝酸塩、硫酸塩、塩化物等が用いられるが、なかでも、酸化物、水酸化物、 On the other hand, the compounds of cobalt compound or replacing elements, typically oxides, hydroxides, oxyhydroxides, carbonates, nitrates, sulfates, and chlorides are used, inter alia, oxides, hydroxide Stuff,
有機酸塩等が好ましく用いられる。 Organic acid salts are preferably used. これらのリチウム化合物、コバルト化合物及び置換元素の化合物は、いずれも粉末で用いられるが、しかし、特に、その粒径において限定されるものではない。 These lithium compound, a cobalt compound and a compound of the substituent elements are all used in the powder, but not especially limited in the particle size.

【0017】本発明の方法によれば、先ず、目的とする置換リチウムコバルト複合酸化物Li xy Co 1-y According to the method of the present invention, firstly, a substituted lithium-cobalt composite oxide for the purpose Li x M y Co 1-y O
2を生成するモル比にて、所要のLi/M/Coモル比に調整したリチウム化合物、コバルト化合物及び置換元素の化合物の粉末を炭素数1〜3の脂肪族低級アルコールからなる溶剤に加え、この溶剤中で混合する。 A molar ratio to produce a 2, lithium compounds adjusted to the required Li / M / Co mole ratio, cobalt compound and a powder of a compound of the substitution element is added to a solvent consisting of an aliphatic lower alcohol having 1 to 3 carbon atoms, They are mixed in the solvent. 本発明によれば、xは、前述したように、0.8〜1.2の範囲の数1であり、従って、本発明によれば、化学量論的な原子比を有する複合酸化物も、非化学量論的な原子比を有する複合酸化物も、同様にして、得ることができる。 According to the present invention, x is, as described above, a number 1 in the range of 0.8 to 1.2, Therefore, according to the present invention, even complex oxide having a stoichiometric atomic ratio a composite oxide having a non-stoichiometric atomic ratio may also be obtained analogously to.

【0018】上記脂肪族低級アルコールとしては、メタノール、エタノール、n−プロパノール及びイソプロパノールを挙げることができるが、これらのなかでは、特に、メタノールが好ましい。 [0018] The aliphatic lower alcohol is methanol, ethanol, can be mentioned n- propanol and isopropanol, and among these, in particular, methanol is preferable. この溶剤としてのメタノールは、水を含まないことが好ましいが、しかし、20重量%以下の範囲で水を含んでいてもよい。 Methanol as the solvent is preferably free of water, but may contain water in the range of 20 wt% or less.

【0019】本発明においては、このように、上記脂肪族低級アルコールを溶剤として用いて、この溶剤中で原料粉末を混合することによって、置換元素の化合物の粒子をほぼ一次粒子のレベルで混合物中に均一に分散させることができる。 In the present invention, thus, with the aliphatic lower alcohol as a solvent, this by mixing the raw material powder in a solvent, mixture of particles of a compound of replacing elements at the level of approximately primary particles it can be uniformly dispersed in.

【0020】用いる溶剤の量は、特に、限定されるものではないが、好ましくは、リチウム化合物とニッケル化合物と置換元素の化合物の粉末とを溶剤中で混合したとき、ペーストを形成する程度であればよい。 The amount of solvent used, in particular, but not limited to, any preferably, a powder of a compound of the substituting element with a lithium compound and a nickel compound when mixed in a solvent to the extent of forming a paste Bayoi.

【0021】次いで、本発明によれば、このようなペーストを加熱し、乾燥させた後、空気のような酸化性雰囲気下、600〜1100℃、好ましくは、700〜10 [0021] Then, according to the present invention, such paste was heated and dried, an oxidizing atmosphere such as air, 600 to 1100 ° C., preferably, 700 to 10
00℃、最も好ましくは、750〜950℃の範囲の温度にて、比較的、短時間にわたって、通常、0.5〜10 00 ° C., and most preferably, at a temperature in the range of 750 to 950 ° C., relatively, for a short time, typically 0.5 to 10
時間、好ましくは、0.5〜5時間程度、焼成することによって、目的とする置換リチウムコバルト複合酸化物を得ることができる。 Time, preferably, about 0.5 to 5 hours, followed by firing, it is possible to obtain a substituted lithium cobalt composite oxide of interest.

【0022】本発明によれば、この複合酸化物は、電池特性にすぐれるように、一次粒子径が0.5〜5μmの範囲にあり、二次粒子径が1〜30μmの範囲にあるのが好ましい。 According to the present invention, the composite oxide, as excellent battery characteristics, there primary particle size in the range of 0.5 to 5 [mu] m, secondary particle size in the range of 1~30μm It is preferred.

【0023】本発明によれば、前述したようにして、原料粉末の混合物をペーストとして得、これを乾燥した後、焼成するに際して、加熱手段として、電気炉のほか、マイクロ波加熱装置を適宜に用いることができ、例えば、マイクロ波加熱装置を用いて、100〜350℃ According to the present invention, as described above, to give a mixture of the raw material powder as a paste, after drying it, upon firing, as a heating means, in addition to an electric furnace, appropriate microwave heating apparatus It can be used, for example, by using a microwave heating apparatus, 100 to 350 ° C.
の範囲の温度に加熱し、乾燥した後、引続き、電気炉を用いて、前述したように、600〜1000℃の温度で焼成することによって、速やかに目的とする複合酸化物を得ることができる。 Was heated to a range of temperature, dried, subsequently, using an electric furnace, as described above, may be by firing at a temperature of 600 to 1000 ° C., to obtain a rapidly composite oxide of interest . 勿論、ペーストの加熱と焼成をマイクロ波加熱装置を用いて行なってもよい。 Of course, firing and heating of the paste may be performed using a microwave heating apparatus.

【0024】また、本発明によれば、上記原料粉末の混合物をペーストとして得、これを乾燥した後、ロータリーキルンを用いて、酸化性雰囲気下に700〜1000 Further, according to the present invention, to give a mixture of the raw material powder as a paste, after drying this, using a rotary kiln, in an oxidizing atmosphere 700-1000
℃、好ましくは、750〜950℃の範囲の温度に加熱することによって、生産性よく連続的に焼成することができる。 ° C., preferably by heating to a temperature in the range of 750 to 950 ° C., it can be continuously firing good productivity. このように、ロータリーキルンを用いるときは、通常、1時間以内の焼成によって、サイクル特性にすぐれる置換リチウムコバルト複合酸化物を得ることができる。 Thus, when using a rotary kiln can be usually by baking within one hour, to obtain a substituted lithium cobalt composite oxide having excellent cycle characteristics.

【0025】本発明によれば、このように、コバルト原子の一部を他の元素Mで置換してなるリチウムコバルト複合酸化物を正極活物質とすることによって、サイクル特性と熱安定性が格段に改善されたリチウム二次電池を得ることができる。 According to the present invention, thus, a part of lithium cobalt composite oxide obtained by replacing with other elements M cobalt atoms by the positive electrode active material, the cycle characteristics and thermal stability remarkably it is possible to obtain an improved lithium secondary battery. 特に、本発明によれば、コバルト原子を好ましくは僅かに5モル%以下の置換元素によって置換することによって、サイクル特性と熱安定性を著しく改善することができるのは、前述したように、特に、 In particular, according to the present invention, by replacing preferably slightly 5 mole percent substitution elements cobalt atom, it can be significantly improved cycle characteristics and thermal stability, as described above, in particular ,
置換元素の化合物粉末をリチウム化合物とコバルト化合物とを前記アルコール溶剤中で混合することによって、 By mixing the compound powder substitution elements with a lithium compound and a cobalt compound in said alcohol solvent,
置換元素の化合物粉末をほぼ一次粒子のレベルで原料粉末中に分散させることができることによるとみられる。 Seen to be due to that can be dispersed in the raw material powder in compound powder substitution elements at the level of approximately primary particles.

【0026】本発明によるリチウムイオン二次電池は、 [0026] The lithium-ion secondary battery according to the present invention,
正極と、リチウム、リチウム合金又はリチウムイオンを吸蔵、放出し得る炭素質材料からなる負極と、これら正極と負極との間に配設されるセパレータと、リチウムイオン伝導性非水(有機)電解質とを含む。 A positive electrode, lithium, absorbs lithium alloy or lithium ions, a negative electrode comprising a carbonaceous material capable of releasing, a separator disposed between these positive electrode and the negative electrode, and a lithium ion conductive non-aqueous (organic) electrolyte including. このようなリチウムイオン非水二次電池は、既に、よく知られている。 Such lithium ion nonaqueous secondary battery has already been well known.

【0027】上記正極は、一例として、コイン型電池に用いる場合には、正極活物質と導電剤と結着剤とを混合し、この混合物(正極合剤)を加圧成形して、円板状の正極を得ることができる。 [0027] The positive electrode, as an example, when used in the coin type battery can be obtained by mixing the positive electrode active material, a conductive agent and a binder, the mixture (positive electrode mixture) was pressure-formed, disc it can be obtained Jo positive electrode. 導電剤としては、例えば、黒鉛が用いられ、結着剤としては、例えば、ポリテトラフルオロエチレン等が用いられる。 The conductive agent, for example, graphite is used as the binder, e.g., polytetrafluoroethylene or the like is used. 他方、負極には、金属リチウム、リチウム合金又はリチウムイオンを吸蔵、放出することができる炭素質材料からなり、その形状は、 On the other hand, the negative electrode, becomes a metal lithium, a lithium alloy or lithium ions occluded, a carbonaceous material capable of emitting, its shape,
上記正極に応じて、適宜に定められる。 Depending on the positive electrode is determined as appropriate. また、正極と負極は、必要に応じて、集電体を併用してもよい。 Also, the positive electrode and the negative electrode, if necessary, may be used in combination the current collector.

【0028】これら正極と負極との間に配設されるセパレータとしては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン繊維からなる不織布、ポリオレフィンからなる多孔性フィルム等が用いられる。 [0028] As the separator to be disposed between these positive electrode and the negative electrode, for example, a nonwoven fabric made of polyolefin fibers such as polyethylene and polypropylene, porous films made of polyolefin are used.

【0029】また、リチウムイオン伝導性有機電解質としては、例えば、非水溶媒に電解質を溶解させた電解液が好ましく用いられるが、しかし、これに限定されるものではない。 [0029] As the lithium ion conductive organic electrolytes, such as, but electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent is preferably used, but not limited thereto. 上記非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、 Examples of the nonaqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, .gamma.-butyrolactone,
スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン等が用いられる。 Sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran or the like is used. これらは、単独で、又は2種以上の混合物として用いられる。 These are used alone or as a mixture of two or more thereof.

【0030】上記リチウムイオン伝導性電解質としては、例えば、過塩素酸リチウム(LiClO 4 )、六フッ化リン酸リチウム(LiPF 6 )、ホウフッ化リチウム(LiBF 4 )、六フッ化砒素リチウム(LiAsF [0030] As the lithium ion conductive electrolyte, for example, lithium perchlorate (LiClO 4), lithium hexafluorophosphate (LiPF 6), lithium borofluoride (LiBF 4), lithium hexafluoroarsenate (LiAsF
6 )、トリフルオロメタンスルホン酸リチウム(LiC 6), lithium trifluoromethanesulfonate (LiC
3 SO 3 )、塩化アルミニウムリチウム(LiAlC F 3 SO 3), lithium aluminum chloride (LiAlC
l)等のリチウム塩を挙げることができる。 l) lithium salt of the like can be mentioned. このような電解質は、通常、上記非水溶媒に0.5〜1.5モル/L濃度となるように用いられる。 Such electrolytes are usually used so that 0.5 to 1.5 mol / L concentration in the nonaqueous solvent.

【0031】更に、本発明においては、上述したような有機電解質液とセパレータとの組合わせを用いる代わりに、セパレータを兼ねるリチウムイオン伝導性固体電解質を用いることもできる。 Furthermore, in the present invention, instead of using a combination of organic electrolyte solution and a separator as described above, it is also possible to use a lithium ion conductive solid electrolyte also serving as a separator. このような固体電解質も、既に、種々のものが知られている。 Such solid electrolytes are also already known are various.

【0032】図1にコイン型リチウム二次電池の一例を示す。 [0032] An example of a coin-type lithium secondary battery in FIG. 即ち、この電池においては、例えば、ステンレス鋼からなる正極缶1の底面上に正極集電体2が配設され、その上に円板状の正極3が積層され、更に、この正極の上にセパレータ4が積層されている。 That is, in this battery, for example, the positive electrode current collector 2 on the bottom surface of the positive electrode can 1 made of stainless steel is disposed, disc-shaped cathode 3 is laminated thereon, further, on this positive electrode separator 4 is stacked. 円板状の負極5は、このセパレータの上に配設されており、負極集電体6がこの負極の上に設けられている。 Negative electrode 5 of the disc-shaped is disposed on top of the separator, the negative electrode current collector 6 is provided on the negative electrode. 更に、負極缶7 In addition, the negative electrode can 7
がこの負極集電体を底面に有する負極缶7が絶縁パッキング8を介して、前記正極缶の開口部を液密に封止するように設けられている。 There negative electrode 7 having the negative electrode current collector to the bottom via an insulating packing 8, wherein are liquid-tightly provided so as to seal the opening of the cathode can. 上記負極缶7は、例えば、ステンレス鋼からなる。 The negative electrode can 7, for example, made of stainless steel. また、前記リチウムイオン伝導性電解液は、通常、セパレータに含浸担持されている。 Further, the lithium ion conductive electrolyte is impregnated supported usually separator.

【0033】 [0033]

【発明の効果】本発明によれば、前記アルコールからなる溶剤中で原料粉末を混合することによって、置換元素の化合物をほぼ一次粒子として分散させることができ、 According to the present invention, by mixing the raw material powder in a solvent consisting of the alcohol, it is possible to disperse the compound of substituent elements as substantially primary particles,
かくして、置換元素の化合物を均一に分散させてなる原料混合物を容易に得ることができ、しかも、この混合物を乾燥した後、酸化性雰囲気下、所定の温度で比較的短時間焼成することによって、目的とする置換リチウムコバルト複合酸化物を得ることができる。 Thus, a raw material mixture comprising by uniformly dispersing a compound of substituting element can be easily obtained, Moreover, after drying this mixture, under an oxidizing atmosphere, by a relatively short time firing at a predetermined temperature, it is possible to give the substituted lithium cobalt composite oxide of interest. 即ち、本発明の方法によれば、従来の乾式法と異なり、焼成と粉砕を繰り返すことなく、しかも、より低い温度でより短い時間、焼成することによって、高品質高性能の複合酸化物を容易に得ることができる。 That is, according to the method of the present invention, unlike the conventional dry method, without repeating calcination and pulverization, moreover, shorter times at lower temperatures, by calcining, facilitates a composite oxide of high quality performance it can be obtained.

【0034】しかも、この複合酸化物を正極活物質とするリチウムイオン二次電池によれば、4V級の高電圧を有すると共に、高エネルギー密度を有し、充放電のサイクル特性にすぐれると共に、熱安定性にもすぐれている。 [0034] Moreover, according to this composite oxide to the lithium ion secondary battery positive electrode active material, which has a high voltage of 4V class, have a high energy density, excellent cycle characteristics of charge and discharge, It is excellent in thermal stability.

【0035】 [0035]

【実施例】以下に実施例を挙げて本発明を説明するが、 EXAMPLES The present invention will be described by the following examples,
本発明はこれら実施例により何ら限定されるものではない。 The present invention is not limited by these examples.

【0036】実施例1 炭酸リチウム(Li 2 CO 3 )と酸化コバルト(Co 3 [0036] Example 1 Lithium carbonate (Li 2 CO 3) and cobalt oxide (Co 3
4 )と二酸化チタン(TiO 2 )とをLi/(Co+ O 4) and a titanium dioxide (TiO 2) Li / (Co +
Ti)モル比が1.0であり、y=Ti/(Co+Ti) Ti) molar ratio is 1.0, y = Ti / (Co + Ti)
モル比が0、0.005、0.01、0.03又は0.10となるようにメタノール中で混合、攪拌して、ペーストを得た。 Molar ratio mixture in methanol so that 0,0.005,0.01,0.03 or 0.10, and stirred to obtain a paste. このペーストを乾熱して乾燥させた後、電気炉を用いて、空気中、900℃で3時間焼成して、チタン置換リチウムコバルト複合酸化物LiTi y Co 1-y2を得た。 After the paste was dried by heating dry, using an electric furnace, in air, and then calcined 3 hours at 900 ° C., to obtain a titanium-substituted lithium-cobalt composite oxide LiTi y Co 1-y O 2 .

【0037】このようにして得たチタン置換リチウムコバルト複合酸化物85重量部に導電剤として黒鉛10重量部と結着剤としてポリテトラフルオロエチレン5重量部を混合して正極合剤とし、これを加圧成形して円板状の正極を調製した。 [0037] Thus as 10 parts by weight and the binder graphite as a conductive agent to 85 parts by weight of titanium substituted lithium cobalt complex oxide obtained by a mixture of polytetrafluoroethylene 5 parts by weight of the cathode mixture, it It was prepared a disc-shaped positive electrode and molded under pressure. 負極として、円板状のリチウムを用いた。 A negative electrode, a lithium disk-shaped. また、電解液は、エチレンカーボネートとジエチルカーボネートの容量比1:2の混合物に六フッ化リン酸リチウム(LiPF Further, the electrolyte, the volume ratio of ethylene carbonate and diethyl carbonate 1: lithium hexafluorophosphate in a mixture of 2 (LiPF 6 )を濃度1モル/Lにて溶解させて調製した。 6) was prepared by dissolving at a concentration 1 mol / L. セパレータとして微孔性ポリプロピレンフィルムを用いて、図1に示した試験用のコイン型リチウムイオン二次電池を組み立てた。 Using microporous polypropylene film as a separator were assembled coin type lithium ion secondary battery for test shown in Fig.

【0038】この電池について、25℃において、電流密度1mA/cm 2にて上限電圧4.3Vまで充電を行ない、電流密度2mA/cm 2にて下限電圧3.0Vまで放電を行ない、このように、充放電を繰り返して、放電容量のサイクル特性を調べた。 [0038] This cell, at 25 ° C., subjected to charging at a current density of 1 mA / cm 2 until the upper limit voltage 4.3 V, performs discharging at a current density of 2 mA / cm 2 until the lower limit voltage 3.0 V, thus , repeating the charge and discharge, the cycle characteristics were examined in the discharge capacity. チタン原子によるコバルト原子の置換割合と得られた複合酸化物を用いたリチウムイオン二次電池の150サイクル時の放電容量保持率を表1に示す。 The discharge capacity retention rate at 150 cycles of the lithium ion secondary battery using the composite oxide obtained with substitution ratio of cobalt atoms by titanium atoms shown in Table 1. 放電容量保持率は、(150サイクル時の放電容量(V)/初期放電容量(V))×1008 Discharge capacity retention rate (150 cycles when the discharge capacity (V) / initial discharge capacity (V)) × 1008
(%)で定義される。 As defined in (%). また、図2にサイクル数と放電容量との関係を示す。 The relation between discharge capacity and number of cycles in FIG. 図2中のAからEは、それぞれ表1 A to E in FIG. 2, Table 1, respectively,
中のAからEに対応する。 Corresponding to E from A in.

【0039】 [0039]

【表1】 [Table 1]

【0040】次に、上記コバルト原子の1モル%をチタンで置換したチタン置換リチウムコバルト複合酸化物L Next, titanium substituted lithium cobalt complex oxide 1 mol% was replaced with titanium of the cobalt atom L
iTi 0.01 Co 0.992を正極活物質として有する電池と無置換のリチウムコバルト複合酸化物LiCoO 2を正極活物質として有する電池をそれぞれ満充電状態(充電条件:1Cの電流で3時間、4.3Vまで定電流・定電圧充電)とした後、それぞれの電池から正極を取り出し、ジエチルカーボネートで洗浄、真空乾燥した。 iTi 0.01 Co 0.99 O 2, respectively fully charged a battery having a battery and unsubstituted lithium cobalt composite oxide LiCoO 2 having as the positive electrode active material as a positive electrode active material (charge condition: 1C 3 hours at a current of, 4.3 V after a constant current-constant voltage charging) to retrieve the positive electrode from each battery, washed with diethyl carbonate, and dried under vacuum.

【0041】エチレンカーボネートとジエチルカーボネートの容量比1:1の混合物に六フッ化リン酸リチウム(LiPF 6 )を濃度1モル/Lにて溶解させて電解液を調製し、これを上記正極に加えて、DSC(示差走査型熱量分析)測定を行なった。 The volume of ethylene carbonate and diethyl carbonate ratio of 1: lithium hexafluorophosphate in a mixture of 1 (LiPF 6) was prepared an electrolytic solution dissolved at a concentration 1 mol / L, which was added to the positive electrode Te was performed DSC (differential scanning calorimetry) measurements. 結果を図3に示す。 The results are shown in Figure 3.

【0042】無置換のリチウムコバルト複合酸化物Li [0042] non-substituted lithium cobalt composite oxide Li
CoO 2を活物質とする正極は、180℃付近からDS The positive electrode for a CoO 2 and active material, DS from around 180 ° C.
C曲線の急激な立ち上がり、即ち、急激な発熱がみられる。 The rapid rise of the C curve, that is, rapid heat generation can be seen. しかし、本発明によるチタン置換リチウムコバルト複合酸化物LiTi 0.01 Co However, titanium substituted lithium-cobalt composite oxide according to the present invention LiTi 0.01 Co 0.992を活物質とする正極においては、140℃付近から発熱がみられるものの、DSC曲線の急激な立ち上がりはなく、非常に緩やかにピークを形成している。 In the positive electrode for a of 0.99 O 2 as an active material, although is observed exotherm from around 140 ° C., no sharp rise in DSC curve, it forms a very slowly peak. また、発熱のピークも、高温側にシフトしている。 The peak of heat generation, are shifted to the high temperature side. かくして、本発明による置換リチウムコバルト複合酸化物を活物質とする正極は、無置換のリチウムコバルト複合酸化物LiCoO 2を活物質とする正極に比べて、熱安定性にすぐれている。 Thus, a positive electrode for a replacement lithium-cobalt composite oxide according to the present invention as an active material, a lithium-cobalt composite oxide LiCoO 2 unsubstituted than the positive electrode to the active material, is excellent in thermal stability.

【0043】実施例2 炭酸リチウム(Li 2 CO 3 )と酸化コバルト(Co 3 [0043] Example 2 Lithium carbonate (Li 2 CO 3) and cobalt oxide (Co 3
4 )と酢酸マンガン((CH 3 COO) 2 Mn)とをLi/(Co+Mn)モル比が1.0であり、y=Mn/ O 4) and manganese acetate ((CH 3 COO) 2 Mn ) and the Li / (Co + Mn) molar ratio is 1.0, y = Mn /
(Co+Mn)モル比が0.01となるようにメタノール中で混合、攪拌して、ペーストを得た。 (Co + Mn) molar ratio is mixed with methanol so that 0.01, and stirred to obtain a paste. このペーストを乾熱して乾燥させた後、電気炉を用いて、空気中、90 After the paste was dried by heating dry, using an electric furnace, in air, 90
0℃で3時間焼成して、マンガン置換リチウムコバルト複合酸化物LiMn 0.01 Co 0.992を得た。 0 and then calcined 3 hours at ° C., to obtain a manganese-substituted lithium cobalt composite oxide LiMn 0.01 Co 0.99 O 2.

【0044】上記において、酢酸マンガンに代えて、酸化アルミニウム、酸化モリブデン又は酸化スズをそれぞれコバルト原子に対して1モル%用いて、同様にして、 [0044] In the above, in place of manganese acetate, aluminum oxide, with 1 mol% of molybdenum oxide or tin oxide for each cobalt atom, in the same way,
アルミニウム、モリブデン又はスズ置換リチウムコバルト複合酸化物を得た。 Aluminum, to obtain a molybdenum or tin-substituted lithium cobalt composite oxide.

【0045】これらの置換リチウムコバルト複合酸化物をそれぞれ用いて、実施例1と同様にして、試験用のコイン型リチウムイオン二次電池を組み立て、同様にして、初期放電容量と70サイクル時の放電容量保持率を調べた。 [0045] Using these substitutions lithium cobalt composite oxide, respectively, in the same manner as in Example 1, assembled coin type lithium ion secondary battery for testing, in the same manner, the discharge in the initial discharge capacity and 70-cycle It examined the capacity retention rate. 併せて、実施例1で得たチタン置換リチウムコバルト複合酸化物を正極活物質とした実施例1の電池についても、同様に、初期放電容量と70サイクル時の放電容量保持率を調べた。 In addition, for battery also Example 1 In Example 1, a titanium-substituted lithium cobalt composite oxide as the positive electrode active material obtained was similarly investigated the discharge capacity retention rate at the time of the initial discharge capacity and 70 cycles. 結果を表2に示す。 The results are shown in Table 2. また、図4 In addition, FIG. 4
にそれぞれの電池のサイクル数と放電容量との関係を示す。 It shows the relationship between the number of cycles each battery and the discharge capacity. 図4中のaからfは、それぞれ表2中のaからfに対応する。 f from a in FIG. 4, respectively correspond to f from a in Table 2.

【0046】 [0046]

【表2】 [Table 2]

【0047】実施例3 炭酸リチウム(Li 2 CO 3 )と酸化コバルト(Co 3 [0047] EXAMPLE 3 Lithium carbonate (Li 2 CO 3) and cobalt oxide (Co 3
4 )と二酸化チタン(TiO 2 )とをLi/(Co+ O 4) and a titanium dioxide (TiO 2) Li / (Co +
Ti)モル比が1.0であり、y=Ti/(Co+Ti) Ti) molar ratio is 1.0, y = Ti / (Co + Ti)
モル比が0.01となるようにメタノール中で混合、攪拌して、ペーストを得た。 Molar ratio mixture in methanol so that 0.01, and stirred to obtain a paste. このペーストを乾熱して乾燥させた後、電気炉を用いて、空気中、900℃で45分間焼成して、チタン置換リチウムコバルト複合酸化物Li After the paste was dried by heating dry, using an electric furnace, in air, and then calcined for 45 minutes at 900 ° C., titanium substituted lithium cobalt composite oxide Li
Ti 0.01 Co 0.992を得た。 To obtain a Ti 0.01 Co 0.99 O 2.

【0048】このようにして得たチタン置換リチウムコバルト複合酸化物を用いて円板状の正極を調製した以外は、実施例1と同様にして、試験用のコイン型リチウムイオン二次電池を組み立て、この電池について、実施例1と同じ条件下に特性を評価したところ、初期放電容量は148.8mAh/g、100サイクル時の放電容量は132.1mAh/g、放電容量保持率は88.8%であった。 The assembled this way except for preparing a disc-shaped positive electrode using titanium substituted lithium-cobalt composite oxide obtained, the same procedure as in Example 1, a coin type lithium ion secondary battery for testing for this battery was evaluated for properties in the same conditions as in example 1, the initial discharge capacity and discharge capacity at 148.8mAh / g, 100 cycles 132.1mAh / g, the discharge capacity retention ratio 88.8 %Met.

【0049】実施例4 炭酸リチウム(Li 2 CO 3 )と酸化コバルト(Co 3 [0049] Example 4 Lithium carbonate (Li 2 CO 3) and cobalt oxide (Co 3
4 )と二酸化チタン(TiO 2 )とをLi/(Co+ O 4) and a titanium dioxide (TiO 2) Li / (Co +
Ti)モル比が1.0であり、y=Ti/(Co+Ti) Ti) molar ratio is 1.0, y = Ti / (Co + Ti)
モル比が0.01となるようにメタノール中で混合、攪拌して、ペーストを得た。 Molar ratio mixture in methanol so that 0.01, and stirred to obtain a paste. このペーストを乾熱して乾燥させ、粉砕し、得られた粉末をロータリーキルンに装入し、空気雰囲気下、650℃、750℃、950℃又は950℃の温度で40分間、加熱、焼成した。 The paste was dried by heating to dryness, pulverized, charged resulting powder in a rotary kiln under an air atmosphere, 650 ° C., 750 ° C., 950 ° C. or 950 ° C. 40 minutes at a temperature of, heating, and fired. このようにして得られた焼成物のX線回折図を図5に示す。 It shows the X-ray diffraction pattern of the calcined product obtained in this manner in FIG. 75 75
0℃で40分間の焼成によって、チタン置換リチウムコバルト複合酸化物LiTi 0.01 Co 0.992を得ることができることが示される。 By baking for 40 minutes at 0 ° C., it indicates that it is possible to obtain a titanium-substituted lithium-cobalt composite oxide LiTi 0.01 Co 0.99 O 2.

【0050】次に、上記上記原料粉末から調製したペーストを上記と同様にして乾燥させ、粉砕し、得られた粉末をロータリーキルンに装入し、空気雰囲気下、775 Next, a paste prepared from the above raw material powder was dried in the same manner as described above, ground, and charged resulting powder in a rotary kiln under an air atmosphere, 775
℃、795℃又は845℃の温度で40分間、加熱、焼成して、チタン置換リチウムコバルト複合酸化物LiT ° C., 795 ° C. or 845 ° C. 40 minutes at a temperature of, heating, and fired, titanium substituted lithium cobalt composite oxide LiT
0.01 Co 0.992を得た。 give the i 0.01 Co 0.99 O 2.

【0051】これらのチタン置換リチウムコバルト複合酸化物90重量部に導電剤として黒鉛4重量部と結着剤としてポリテトラフルオロエチレン6重量部を混合して正極合剤とし、これを加圧成形して円板状の正極を調製した。 [0051] a mixture of polytetrafluoroethylene 6 parts by weight of graphite, 4 parts by weight and the binder as a conductive agent to 90 parts by weight These titanium substituted lithium cobalt composite oxide as a positive electrode material mixture, which was pressure-formed It was prepared a disc-shaped positive electrode Te. 負極として、円板状のリチウムを用いた。 A negative electrode, a lithium disk-shaped. また、 Also,
電解液は、エチレンカーボネートとジエチルカーボネートの容量比1:2の混合物に六フッ化リン酸リチウム(LiPF 6 )を濃度1モル/Lにて溶解させて調製した。 Electrolyte, the volume ratio of ethylene carbonate and diethyl carbonate 1: lithium hexafluorophosphate in a mixture of 2 (LiPF 6) was prepared by dissolving at a concentration 1 mol / L. セパレータとして微孔性ポリプロピレンフィルムを用いて、図1に示した試験用のコイン型リチウムイオン二次電池を組み立てた。 Using microporous polypropylene film as a separator were assembled coin type lithium ion secondary battery for test shown in Fig.

【0052】この電池について、実施例1と同じ条件下に充放電を繰り返して、放電容量のサイクル特性を調べた。 [0052] For this battery, charge and discharge are repeated in the same conditions as in Example 1, the cycle characteristics were examined for discharge capacity. 図6にサイクル数と放電容量との関係を示す。 Showing the relationship between discharge capacity and number of cycles in FIG. また、図6に示されるように、775℃の焼成で得られたチタン置換リチウムコバルト複合酸化物を正極活物質とするリチウムイオン二次電池の300サイクル時の放電容量保持率は81.5%であり、焼成温度795℃のものは79.3%、焼成温度845℃のものは77.5%であった。 Further, as shown in FIG. 6, the discharge capacity retention rate at 300 cycles of the lithium ion secondary battery using the titanium-substituted lithium-cobalt composite oxide obtained by firing 775 ° C. and a positive electrode active material 81.5% by and 79.3 percent that of the firing temperature 795 ° C., those firing temperature 845 ° C. was 77.5 percent.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】は、リチウムイオン二次電池の一例を示す断面図である。 [1] is a sectional view showing an example of a lithium ion secondary battery.

【図2】は、種々の割合でコバルト原子をチタンで置換してなるリチウムコバルト複合酸化物を正極活物質とするリチウムイオン二次電池のサイクル数と放電容量との関係を示すグラフである。 [2] is a graph showing the relationship between the number of cycles and the discharge capacity of the lithium ion secondary battery using lithium-cobalt composite oxide obtained by substituting cobalt atom of titanium in various ratios between the positive electrode active material.

【図3】は、本発明によるチタン置換リチウムコバルト複合酸化物LiTi 0. [3] a titanium substituted lithium-cobalt composite oxide according to the present invention LiTi 0. 01 Co 0.992を活物質とする正極と、比較例としての無置換のリチウムコバルト複合酸化物LiCoO 2を活物質とする正極とについて、DS 01 and the positive electrode to Co of 0.99 O 2 active material for a positive electrode of the non-substituted lithium cobalt composite oxide LiCoO 2 as a comparative example and an active material, DS
C曲線を示すグラフである。 Is a graph showing the C curve.

【図4】は、種々の元素にてコバルト原子を1モル%置換してなるリチウムコバルト複合酸化物を正極活物質とするリチウムイオン二次電池のサイクル数と放電容量との関係を示すグラフである。 [4] is a graph showing the relationship between the number of cycles and the discharge capacity of the lithium ion secondary battery using lithium-cobalt composite oxides formed by replacing 1 mol% of cobalt atoms in various elements and the positive electrode active material is there.

【図5】は、コバルト原子の1モル%をチタンで置換してなるリチウムコバルト複合酸化物の製造において、原料粉末の混合物ペーストを乾燥させ、粉砕した後、ロータリーキルンを用いて種々の温度で焼成して得られた焼成物のX線回折図を示す。 [5] is 1 mol% of cobalt atoms in the manufacture of lithium-cobalt composite oxide obtained by replacing titanium, a mixture paste of raw material powder was dried, pulverized, calcined at various temperatures using a rotary kiln and an X-ray diffraction diagram of the obtained baked product.

【図6】は、ロータリーキルンを用いて焼成して得られたチタン置換リチウムコバルト複合酸化物LiTi 0.01 [6] a titanium substituted lithium cobalt complex oxide obtained by firing using a rotary kiln LiTi 0.01
Co 0.992を正極活物質とするリチウムイオン二次電池のサイクル数と放電容量との関係を示すグラフである。 The Co of 0.99 O 2 is a graph showing the relationship between discharge capacity and number of cycles of the lithium ion secondary battery positive electrode active material.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…正極缶、2…正極集電体、3…正極、4…セパレータ、5…負極、6…負極集電体、7…負極缶、8…絶縁パッキング。 1 ... positive electrode can, 2 ... positive electrode current collector, 3 ... positive electrode, 4 ... separator, 5 ... negative electrode, 6 ... anode current collector, 7 ... negative electrode, 8: insulating packing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 一彦 大阪市淀川区宮原三丁目5番24号 本荘ケ ミカル株式会社内 (72)発明者 本荘 之伯 大阪市淀川区宮原三丁目5番24号 本荘ケ ミカル株式会社内 Fターム(参考) 4G048 AA04 AB02 AB05 AC06 AD03 AE05 5H029 AJ03 AJ14 AK03 AK07 AL12 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 CJ28 DJ16 HJ02 HJ14 5H050 AA08 AA19 BA17 CA08 EA09 EA24 FA17 GA27 HA02 HA14 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Kazuhiko Hirao Yodogawa-ku, Osaka Miyahara Third Street No. 5 No. 24 Honjo Ke Michal within Co., Ltd. (72) inventor Honjo Noriyuki Earl Yodogawa-ku, Osaka Miyahara Third Street No. 5 No. 24 Honjo Ke Michal Co., Ltd. in the F-term (reference) 4G048 AA04 AB02 AB05 AC06 AD03 AE05 5H029 AJ03 AJ14 AK03 AK07 AL12 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 CJ28 DJ16 HJ02 HJ14 5H050 AA08 AA19 BA17 CA08 EA09 EA24 FA17 GA27 HA02 HA14

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】一般式 Li xy Co 1-y2 (I) (式中、Mは、Al、Ti、Mn、Mo及びSnから選ばれる少なくとも1種の金属元素を示し、xは0.8〜1. 1. A in the general formula Li x M y Co 1-y O 2 (I) ( wherein, M represents Al, Ti, Mn, of at least one metal element selected from Mo and Sn, x is 0.8.
    2の範囲の数であり、yは0.001〜0.10の範囲の数である。 The number of the second range, y is a number in the range of 0.001 to 0.10. )で表わされ、リチウムイオン二次電池用正極活物質として用いるための置換リチウムコバルト複合酸化物。 ) Is represented by a substituted lithium-cobalt composite oxide for use as positive active material for a lithium ion secondary battery.
  2. 【請求項2】yが0.002〜0.05の範囲の数である請求項1に記載の置換リチウムコバルト複合酸化物。 2. A substituted lithium-cobalt composite oxide according to claim 1 y is a number ranging from 0.002 to 0.05.
  3. 【請求項3】MがTi及びMnから選ばれる少なくとも1種の元素である請求項1に記載の置換リチウムコバルト複合酸化物。 3. A substituted lithium-cobalt composite oxide according to claim 1, M is at least one element selected from Ti and Mn.
  4. 【請求項4】一般式 Li xy Co 1-y2 (I) (式中、Mは、Al、Ti、Mn、Mo及びSnから選ばれる少なくとも1種の金属元素を示し、xは0.8〜1. Wherein in the general formula Li x M y Co 1-y O 2 (I) ( wherein, M represents Al, Ti, Mn, of at least one metal element selected from Mo and Sn, x is 0.8.
    2の範囲の数であり、yは0.001〜0.10の範囲の数である。 The number of the second range, y is a number in the range of 0.001 to 0.10. )で表わされる置換リチウムコバルト複合酸化物からなるリチウムイオン二次電池用正極活物質の製造方法において、炭素数1〜3の脂肪族低級アルコール中でリチウム化合物とコバルト化合物と元素Mの化合物の粉末を元素のモル比換算で上記一般式に一致するように加え、混合し、これを乾燥し、酸化性雰囲気下に600 The method of manufacturing a lithium ion secondary positive active material for batteries comprising a substituted lithium cobalt complex oxide represented by), the powder of the lithium compound and a cobalt compound and a compound of the element M in number 1-3 aliphatic lower alcohol in the carbon It was added to match the above general formula in a molar ratio in terms of the elements, mixed, which was dried, 600 under an oxidizing atmosphere
    〜1100℃の範囲の温度にて焼成することを特徴とする方法。 Wherein the calcining at a temperature in the range of C. to 1100 ° C..
  5. 【請求項5】溶剤がメタノールである請求項4に記載の方法。 5. The method of claim 4 solvent is methanol.
  6. 【請求項6】溶剤が水を20重量%以下の範囲で含むメタノールである請求項4に記載の方法。 6. The method of claim 4 the solvent is methanol containing in the range below 20 wt% water.
  7. 【請求項7】正極と、リチウム、リチウム合金又はリチウムイオンを吸蔵、放出し得る炭素質材料からなる負極と、これら正極と負極との間に配設されるセパレータと、リチウムイオン伝導性非水電解質とを有し、上記正極の活物質が請求項1に記載の置換リチウムコバルト複合酸化物からなることを特徴とするリチウムイオン非水二次電池。 7. A positive electrode, lithium, absorbs lithium alloy or lithium ions, a negative electrode comprising a carbonaceous material capable of releasing, a separator disposed between these positive electrode and the negative electrode, the lithium ion conductive non-aqueous and a electrolyte, a lithium ion nonaqueous secondary battery, characterized by consisting of a substituted lithium-cobalt composite oxide according to the active material according to claim 1 for the positive electrode.
JP2000212819A 1999-12-02 2000-07-13 Lithium secondary battery, positive electrode active substance for it and their manufacturing method Pending JP2001223008A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11-343177 1999-12-02
JP34317799 1999-12-02
JP2000212819A JP2001223008A (en) 1999-12-02 2000-07-13 Lithium secondary battery, positive electrode active substance for it and their manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000212819A JP2001223008A (en) 1999-12-02 2000-07-13 Lithium secondary battery, positive electrode active substance for it and their manufacturing method
US09662979 US6582854B1 (en) 1999-12-02 2000-09-15 Lithium ion secondary battery, cathode active material therefor and production thereof

Publications (1)

Publication Number Publication Date
JP2001223008A true true JP2001223008A (en) 2001-08-17

Family

ID=26577453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212819A Pending JP2001223008A (en) 1999-12-02 2000-07-13 Lithium secondary battery, positive electrode active substance for it and their manufacturing method

Country Status (2)

Country Link
US (1) US6582854B1 (en)
JP (1) JP2001223008A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002066A (en) * 2002-05-29 2004-01-08 Toda Kogyo Corp Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
JP2005302628A (en) * 2004-04-15 2005-10-27 Toshiba Corp Positive active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
KR100854241B1 (en) * 2001-11-20 2008-08-25 니폰 가가쿠 고교 가부시키가이샤 Lithium-Cobalt Based Combination Oxide, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Cell, and Lithium Secondary Cell
WO2011043296A1 (en) * 2009-10-05 2011-04-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
WO2012098724A1 (en) * 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP2015156363A (en) * 2014-01-20 2015-08-27 日立マクセル株式会社 Lithium/cobalt-containing composite oxide, method for producing the same, nonaqueous secondary battery electrode using the lithium/cobalt-containing composite oxide, and nonaqueous secondary battery using the electrode
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081495A1 (en) * 2000-11-08 2002-06-27 Hiroshi Nakajima Nonaqueous electrolyte secondary battery
WO2002078105A1 (en) 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP4510331B2 (en) * 2001-06-27 2010-07-21 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP4836371B2 (en) * 2001-09-13 2011-12-14 パナソニック株式会社 The positive electrode active material and a non-aqueous electrolyte secondary battery comprising the same
US8658125B2 (en) * 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4197237B2 (en) * 2002-03-01 2008-12-17 パナソニック株式会社 Manufacturing method of the positive electrode active material
US9391325B2 (en) * 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8241790B2 (en) * 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4554911B2 (en) * 2003-11-07 2010-09-29 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US7381496B2 (en) * 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
US7811707B2 (en) * 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US20080008933A1 (en) * 2005-12-23 2008-01-10 Boston-Power, Inc. Lithium-ion secondary battery
WO2007011661A9 (en) * 2005-07-14 2007-08-23 Boston Power Inc Control electronics for li-ion batteries
EP1994587B1 (en) 2006-03-20 2018-07-11 LG Chem, Ltd. Stoichiometric lithium cobalt oxide and method for preparation of the same
EP2005503A4 (en) * 2006-03-20 2010-12-22 Lg Chemical Ltd Cathode materials for lithium battery having higher performance
JP2009543531A (en) * 2006-06-28 2009-12-03 ボストン−パワー,インコーポレイテッド Rechargeable electronic devices in the plurality of charging speed
EP2162935A1 (en) 2007-06-22 2010-03-17 Boston-Power, Inc. Cid retention device for li-ion cell
US20090297937A1 (en) * 2008-04-24 2009-12-03 Lampe-Onnerud Christina M Lithium-ion secondary battery
WO2010030875A1 (en) * 2008-09-12 2010-03-18 Boston-Power, Inc. Method and apparatus for embedded battery cells and thermal management
KR101553582B1 (en) * 2008-12-05 2015-09-16 삼성에스디아이 주식회사 The positive electrode active material, a positive electrode and lithium battery including the same
CN102422504A (en) * 2009-05-18 2012-04-18 波士顿电力公司 Energy efficient and fast charge modes of a rechargeable battery
EP2473371A4 (en) * 2009-09-01 2017-11-08 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems
JP2013504145A (en) * 2009-09-01 2013-02-04 ボストン−パワー,インコーポレイテッド Large-scale battery system and method of assembly
EP2368850B1 (en) * 2010-01-29 2012-12-26 Basf Se Producing oxidic compounds
DE102010038862A1 (en) * 2010-08-04 2012-02-09 Sb Limotive Company Ltd. A process for the manufacture of battery modules or battery systems having a plurality of battery cells
CN105473508A (en) * 2013-08-19 2016-04-06 陶氏环球技术有限责任公司 Improved lithium metal oxide rich cathode materials and method to make them

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201368A (en) * 1989-10-06 1991-09-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH0513082A (en) * 1991-06-29 1993-01-22 Sony Corp Nonaqueous electrolytic liquid secondary battery
JPH117958A (en) * 1997-04-25 1999-01-12 Sony Corp Manufacture of positive electrode active material, and non-aqueous electrolyte secondary battery
JPH1173958A (en) * 1997-06-18 1999-03-16 Sony Corp Manufacture of positive electrode active material
JPH1197015A (en) * 1997-09-18 1999-04-09 Sony Corp Nonaqueous electrolyte secondary cell
JPH11162464A (en) * 1997-12-01 1999-06-18 Honjo Chemical Kk Manufacture of positive electrode active material for lithium ion secondary battery
JP2000012022A (en) * 1998-06-23 2000-01-14 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2000294242A (en) * 1999-04-09 2000-10-20 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture therefor and nonaqueous electrolyte secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US200704A (en) * 1878-02-26 Improvement in egg-carriers
JP2643046B2 (en) * 1991-12-27 1997-08-20 シャープ株式会社 Non-aqueous secondary battery
US5609975A (en) * 1994-05-13 1997-03-11 Matsushita Electric Industrial Co., Ltd. Positive electrode for non-aqueous electrolyte lithium secondary battery and method of manufacturing the same
CA2207801C (en) * 1996-06-19 2004-03-30 Hideki Kaido Nonaqueous electrolyte battery
US5783333A (en) * 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
US6127065A (en) * 1997-04-25 2000-10-03 Sony Corporation Method of manufacturing cathode active material and nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201368A (en) * 1989-10-06 1991-09-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH0513082A (en) * 1991-06-29 1993-01-22 Sony Corp Nonaqueous electrolytic liquid secondary battery
JPH117958A (en) * 1997-04-25 1999-01-12 Sony Corp Manufacture of positive electrode active material, and non-aqueous electrolyte secondary battery
JPH1173958A (en) * 1997-06-18 1999-03-16 Sony Corp Manufacture of positive electrode active material
JPH1197015A (en) * 1997-09-18 1999-04-09 Sony Corp Nonaqueous electrolyte secondary cell
JPH11162464A (en) * 1997-12-01 1999-06-18 Honjo Chemical Kk Manufacture of positive electrode active material for lithium ion secondary battery
JP2000012022A (en) * 1998-06-23 2000-01-14 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2000294242A (en) * 1999-04-09 2000-10-20 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture therefor and nonaqueous electrolyte secondary battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854241B1 (en) * 2001-11-20 2008-08-25 니폰 가가쿠 고교 가부시키가이샤 Lithium-Cobalt Based Combination Oxide, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Cell, and Lithium Secondary Cell
JP2004002066A (en) * 2002-05-29 2004-01-08 Toda Kogyo Corp Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
JP4553095B2 (en) * 2002-05-29 2010-09-29 戸田工業株式会社 Cobalt oxide particles and the manufacturing method, the positive electrode active for a non-aqueous electrolyte secondary battery materials and their preparation as well as non-aqueous electrolyte secondary battery
JP2005302628A (en) * 2004-04-15 2005-10-27 Toshiba Corp Positive active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
JP4504074B2 (en) * 2004-04-15 2010-07-14 株式会社東芝 The positive electrode active material for a nonaqueous electrolyte battery, a positive electrode and a nonaqueous electrolyte battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
KR101751768B1 (en) * 2009-10-05 2017-06-28 닛본 가가쿠고교가부시키가이샤 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
CN102576872A (en) * 2009-10-05 2012-07-11 日本化学工业株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
US9227850B2 (en) 2009-10-05 2016-01-05 Nippon Chemical Industrial Co., Ltd. Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2011043296A1 (en) * 2009-10-05 2011-04-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
JP5749650B2 (en) * 2009-10-05 2015-07-15 日本化学工業株式会社 Cathode active material for a lithium secondary battery, its production method and a lithium secondary battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5808316B2 (en) * 2011-01-21 2015-11-10 Jx日鉱日石金属株式会社 The method for producing a positive electrode active material for lithium ion batteries
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
WO2012098724A1 (en) * 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2015156363A (en) * 2014-01-20 2015-08-27 日立マクセル株式会社 Lithium/cobalt-containing composite oxide, method for producing the same, nonaqueous secondary battery electrode using the lithium/cobalt-containing composite oxide, and nonaqueous secondary battery using the electrode

Also Published As

Publication number Publication date Type
US6582854B1 (en) 2003-06-24 grant

Similar Documents

Publication Publication Date Title
US6277521B1 (en) Lithium metal oxide containing multiple dopants and method of preparing same
US5352548A (en) Secondary battery
US5783333A (en) Lithium nickel cobalt oxides for positive electrodes
US20090104530A1 (en) Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
US20070148545A1 (en) Electrode materials and lithium battery systems
US20050079417A1 (en) Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery comprising same
US6749967B2 (en) Positive electrode active material and non-aqueous electrolyte cell
US6265110B1 (en) Lithium secondary battery with flake graphite negative electrode
US7935270B2 (en) Cathode active material and lithium battery using the same
US20080305402A1 (en) Method for Producing Difluorophosphate, Non-Aqueous Electrolyte for Secondary Cell and Non-Aqueous Electrolyte Secondary Cell
US5591548A (en) Electrode materials for rechargeable electrochemical cells and method of making same
US6350543B2 (en) Manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
US20050118511A1 (en) Method for preparing positive active material for rechargeable lithium battery and positive active material prepared by same
US6964830B2 (en) Lithium secondary battery
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP2004063422A (en) Positive electrode active material and nonaqueous electrolytic battery
JPH06275263A (en) Lithium secondary battery and manufacture of its negative electrode
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
US7927506B2 (en) Cathode active material and lithium battery using the same
JP2004006094A (en) Nonaqueous electrolyte secondary battery
US6582854B1 (en) Lithium ion secondary battery, cathode active material therefor and production thereof
JP2006107818A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this and its manufacturing method
JP2002117833A (en) Nonaqueous electrolyte secondary battery
JP2005243301A (en) Nonaqueous electrolyte secondary battery
JP2001048545A (en) Production of lithium-manganese multiple oxide and secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118