JP2967051B2 - Non-aqueous electrolyte secondary battery and method of manufacturing the same - Google Patents

Non-aqueous electrolyte secondary battery and method of manufacturing the same

Info

Publication number
JP2967051B2
JP2967051B2 JP8213570A JP21357096A JP2967051B2 JP 2967051 B2 JP2967051 B2 JP 2967051B2 JP 8213570 A JP8213570 A JP 8213570A JP 21357096 A JP21357096 A JP 21357096A JP 2967051 B2 JP2967051 B2 JP 2967051B2
Authority
JP
Japan
Prior art keywords
lithium
particles
positive electrode
aqueous electrolyte
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8213570A
Other languages
Japanese (ja)
Other versions
JPH09120815A (en
Inventor
光一 久保
雅史 藤原
修司 山田
真次 荒井
基 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8213570A priority Critical patent/JP2967051B2/en
Publication of JPH09120815A publication Critical patent/JPH09120815A/en
Application granted granted Critical
Publication of JP2967051B2 publication Critical patent/JP2967051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池及びその製造方法に関し、特に活物質としてリチウム
含有ニッケル酸化物を含む正極を備えた非水電解液二次
電池及びその製造方法に係るものである。
The present invention relates to a non-aqueous electrolyte secondary battery and a method of manufacturing the same, and more particularly, to a non-aqueous electrolyte secondary battery having a positive electrode containing lithium-containing nickel oxide as an active material and a method of manufacturing the same. It is related to.

【0002】[0002]

【従来の技術】近年、非水電解液二次電池が注目されて
いる。これは、比較的安全な負極材料の開発の成功と非
水電解液の分解電圧を高めることにより高電圧の電池を
実現したことが大きな理由であろうと思われる。中で
も、リチウムイオンを用いた二次電池は、放電電位が特
に高いため、高エネルギー密度な電池が実現できるもの
として期待されている。
2. Description of the Related Art In recent years, non-aqueous electrolyte secondary batteries have attracted attention. This is probably because the successful development of a relatively safe negative electrode material and the realization of a high-voltage battery by increasing the decomposition voltage of the non-aqueous electrolyte are thought to be major reasons. Among them, a secondary battery using lithium ions has a particularly high discharge potential, and thus is expected to be a battery having a high energy density.

【0003】このリチウムイオンを用いる非水電解液二
次電池の正極活物質としては、マンガンスピネル(Li
Mn2 4 )、リチウム含有コバルト酸化物(LiCo
2)、リチウム含有ニッケル酸化物(LiNiO2
が知られている。前記マンガンスピネルは他の2つの酸
化物に比べて安価であるものの、前記マンガンスピネル
を含む正極は理論容量が小さいという問題点がある。ま
た、前記LiCoO2においては、他の2つの酸化物に
比べて合成が容易であるという点と、前記LiCoO2
を含む正極は理論容量が大きいという点が優れている。
しかしながら、前記正極は放電電位が他の2つの酸化物
に比べて高く、非水電解液が分解しない電位範囲におけ
る容量が理論容量の半分程度と低く、さらにコバルトの
価格が比較的高いという問題点がある。
As a positive electrode active material of a nonaqueous electrolyte secondary battery using lithium ions, manganese spinel (Li
Mn 2 O 4 ), lithium-containing cobalt oxide (LiCo
O 2 ), lithium-containing nickel oxide (LiNiO 2 )
It has been known. Although the manganese spinel is less expensive than the other two oxides, the positive electrode containing the manganese spinel has a problem that the theoretical capacity is small. The LiCoO 2 is easier to synthesize than the other two oxides, and the LiCoO 2
Is excellent in that the theoretical capacity is large.
However, the positive electrode has a problem that the discharge potential is higher than those of the other two oxides, the capacity in a potential range where the nonaqueous electrolyte does not decompose is as low as about half the theoretical capacity, and the price of cobalt is relatively high. There is.

【0004】一方、前記LiNiO2 を含む正極は、理
論容量が大きく、かつ最適な放電電位を有するものの、
充放電サイクルの進行に伴ってLiNiO2 の結晶構造
が崩壊するため、放電容量の低下を招く。つまり、前記
正極を備えた二次電池は、充放電サイクル寿命が短いた
め、現状のままでは製品化は困難である。
On the other hand, the positive electrode containing LiNiO 2 has a large theoretical capacity and an optimum discharge potential,
Since the crystal structure of LiNiO 2 collapses as the charge / discharge cycle progresses, the discharge capacity decreases. In other words, a secondary battery provided with the positive electrode has a short charge-discharge cycle life, and is difficult to commercialize as it is.

【0005】ところで、特開平6−243871号の公
開公報の特許請求の範囲には、負極にリチウムイオンを
吸蔵放出可能な材料または金属リチウムが使用されてな
る非水系二次電池において、正極活物質として、組成式
がLix Ni1-y Coy wa (但し、0<x≦1.
3,0≦y≦1,1.8≦w+0.5a≦2.2,0.
25≦a≦2である。)で表されるフッ素含有複合酸化
物が使用されていることを特徴とする非水系二次電池が
開示されている。また、前記公報の実施例1〜5には、
正極活物質を含む円板状の正極と、金属リチウムからな
る円板状の負極と、非水電解液とを用いて作製された偏
平形の非水系二次電池であって、前記正極活物質として
LiNiO1.750.5 、LiNiO1.875 0.25、Li
NiO1. 5 1 、LiNiO1.251.5 、LiNiO1
2 で表されるフッ素含有複合酸化物をそれぞれ用いる
非水系二次電池が記載されている。
[0005] Incidentally, the claims of Japanese Patent Application Laid-Open Publication No. 6-243871 disclose a positive electrode active material in a non-aqueous secondary battery in which a material capable of inserting and extracting lithium ions or metallic lithium is used for the negative electrode. as a composition formula Li x Ni 1-y Co y O w F a ( where, 0 <x ≦ 1.
3,0 ≦ y ≦ 1,1.8 ≦ w + 0.5a ≦ 2.2,0.
25 ≦ a ≦ 2. A non-aqueous secondary battery characterized by using the fluorine-containing composite oxide represented by the formula (1) is disclosed. Further, Examples 1 to 5 of the above publication include:
A disk-shaped positive electrode containing a positive electrode active material, a disk-shaped negative electrode made of metallic lithium, and a flat nonaqueous secondary battery manufactured using a nonaqueous electrolyte, wherein the positive electrode active material LiNiO 1.75 F 0.5 , LiNiO 1.875 F 0.25 , Li
NiO 1. 5 F 1, LiNiO 1.25 F 1.5, LiNiO 1
A non-aqueous secondary battery using a fluorine-containing composite oxide represented by F 2 is described.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、正極
を改良することにより放電容量及び充放電サイクル寿命
が向上された非水電解液二次電池及びその製造方法を提
供しようとするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-aqueous electrolyte secondary battery having improved discharge capacity and charge / discharge cycle life by improving a positive electrode, and a method of manufacturing the same. is there.

【0007】[0007]

【課題を解決するための手段】本発明に係る非水電解液
二次電池は、正極と、負極と、非水電解液とを具備し、
前記正極は組成式がLi1+x Ni1-x u-y y で表
されるリチウム含有ニッケル酸化物を含み、前記x,前
記y及び前記uは下記(1)〜(3)式を満足する (y+0.05)/2≦x<(y+1)/3 ……(1) y>0 ……(2) 1.9≦u≦2.1 ……(3) ことを特徴とする非水電解液二次電池である。
A non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte,
The positive electrode includes a lithium-containing nickel oxide represented by a composition formula of Li 1 + x Ni 1-x O uy F y , wherein x, y, and u satisfy the following formulas (1) to (3). (Y + 0.05) / 2 ≦ x <(y + 1) / 3 (1) y> 0 (2) 1.9 ≦ u ≦ 2.1 (3) Non-water It is an electrolyte secondary battery.

【0008】本発明に係る非水電解液二次電池の製造方
法は、正極と、負極と、非水電解液を具備する非水電解
液二次電池の製造方法であって、リチウム水酸化物、リ
チウム酸化物、リチウム炭酸塩及びリチウム硝酸塩から
選ばれる少なくとも1種の化合物と、ニッケル水酸化
物、ニッケル酸化物、ニッケル炭酸塩及びニッケル硝酸
塩から選ばれる少なくとも1種の化合物と、リチウムの
フッ化物とをモル比0.85〜1.0:0.8〜0.9
5:0.05〜0.35で混合する工程;得られた混合
物を酸素雰囲気中にて550℃〜600℃に保持する工
程;酸素雰囲気中にて600℃〜680℃で焼成する工
程;を具備する方法により前記正極を作製することを特
徴とする非水電解液二次電池の製造方法である。
A method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention is a method for manufacturing a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. , At least one compound selected from lithium oxide, lithium carbonate and lithium nitrate, at least one compound selected from nickel hydroxide, nickel oxide, nickel carbonate and nickel nitrate, and lithium fluoride And a molar ratio of 0.85 to 1.0: 0.8 to 0.9.
5: mixing at 0.05 to 0.35; maintaining the obtained mixture at 550 to 600 ° C. in an oxygen atmosphere; and firing at 600 to 680 ° C. in an oxygen atmosphere. A method for producing a non-aqueous electrolyte secondary battery, wherein the positive electrode is produced by a method provided.

【0009】本発明に係る非水電解液二次電池は、リチ
ウム含有ニッケル酸化物を主成分とする粒子及び前記粒
子表面の少なくとも一部に形成されたリチウム含有酸化
物を主成分とする膜を含む正極と、負極と、非水電解液
を具備し、前記リチウム含有ニッケル酸化物は組成式が
Li1+x Ni1-x u-y y で表され、前記x,前記y
及び前記uは下記(4)〜(7)式を満足し、 y/2≦x<(y+1)/3 ……(4) y>0 ……(5) x≧0.05 ……(6) 1.9≦u≦2.1 ……(7) 前記リチウム含有酸化物は、組成式がLiMO2 (但
し、前記MはAl、Co、Ni、Li、Mn、Ga及び
Ruから選ばれる少なくとも1種の元素である)で表さ
れることを特徴とする非水電解液二次電池である。
The non-aqueous electrolyte secondary battery according to the present invention comprises a particle mainly composed of lithium-containing nickel oxide and a film mainly composed of lithium-containing oxide formed on at least a part of the surface of the particle. A positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the lithium-containing nickel oxide has a composition formula represented by Li 1 + x Ni 1-x O uy F y , wherein the x and y
And u satisfies the following equations (4) to (7): y / 2 ≦ x <(y + 1) / 3 (4) y> 0 (5) x ≧ 0.05 (6) 1.9 ≦ u ≦ 2.1 (7) The lithium-containing oxide has a composition formula of LiMO 2 (where M is at least selected from Al, Co, Ni, Li, Mn, Ga and Ru). A non-aqueous electrolyte secondary battery.

【0010】本発明に係る非水電解液二次電池の製造方
法は、正極と、負極と、非水電解液を具備する非水電解
液二次電池の製造方法であって、リチウム水酸化物、リ
チウム酸化物、リチウム炭酸塩及びリチウム硝酸塩から
選ばれる少なくとも1種の化合物と、ニッケル水酸化
物、ニッケル酸化物、ニッケル炭酸塩及びニッケル硝酸
塩から選ばれる少なくとも1種の化合物と、リチウムの
フッ化物とをモル比0.85〜1.0:0.8〜0.9
5:0.05〜0.35で混合する工程;得られた混合
物を酸素雰囲気中にて550℃〜600℃に保持する工
程;酸素雰囲気中にて600℃〜680℃で焼成するこ
とにより粒子を作製する工程;リチウム硝酸塩か、また
はリチウム有機酸塩のいずれか一方と、元素Mの硝酸塩
か、または元素Mの有機酸塩のいずれか一方を含む水溶
液を前記粒子に含浸させる工程、前記MはAl、Co、
Ni、Li、Mn、Ga及びRuから選ばれる少なくと
も一種である;酸素雰囲気中にて500〜600℃で焼
成する工程;を具備する方法により前記正極を作製する
ことを特徴とする非水電解液二次電池の製造方法であ
る。
A method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention is a method for manufacturing a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, comprising a lithium hydroxide. , At least one compound selected from lithium oxide, lithium carbonate and lithium nitrate, at least one compound selected from nickel hydroxide, nickel oxide, nickel carbonate and nickel nitrate, and lithium fluoride And a molar ratio of 0.85 to 1.0: 0.8 to 0.9.
5: a step of mixing at 0.05 to 0.35; a step of maintaining the obtained mixture at 550 ° C. to 600 ° C. in an oxygen atmosphere; and a step of firing at 600 ° C. to 680 ° C. in an oxygen atmosphere. A step of impregnating the particles with an aqueous solution containing either a lithium nitrate or a lithium organic acid salt and either the element M nitrate or the element M organic acid salt; Are Al, Co,
A step of baking at 500 to 600 ° C. in an oxygen atmosphere at least one selected from Ni, Li, Mn, Ga, and Ru; This is a method for manufacturing a secondary battery.

【0011】[0011]

【発明の実施の形態】以下、本発明に係わる非水電解液
二次電池(例えば円筒形非水電解液二次電池)を図1を
参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery (for example, a cylindrical non-aqueous electrolyte secondary battery) according to the present invention will be described below with reference to FIG.

【0012】例えばステンレスからなる有底円筒状の容
器1は、底部に絶縁体2が配置されている。電極群3
は、前記容器1内に収納されている。前記電極群3は、
正極4、セパレ―タ5及び負極6をこの順序で積層した
帯状物を前記セパレータ5が外側に位置するように渦巻
き状に巻回した構造になっている。前記セパレータ5
は、例えば合成樹脂製不織布、ポリエチレン多孔質フィ
ルム、ポリプロピレン多孔質フィルムから形成されてい
る。
A bottomed cylindrical container 1 made of, for example, stainless steel has an insulator 2 disposed at the bottom. Electrode group 3
Are stored in the container 1. The electrode group 3 includes:
A belt-like material in which a positive electrode 4, a separator 5 and a negative electrode 6 are laminated in this order is spirally wound so that the separator 5 is located outside. The separator 5
Is formed from, for example, a synthetic resin nonwoven fabric, a polyethylene porous film, or a polypropylene porous film.

【0013】前記容器1内には、電解液が収容されてい
る。中央部が開口された絶縁紙7は、前記容器1内の前
記電極群3の上方に載置されている。絶縁封口板8は、
前記容器1の上部開口部に配置され、かつ前記上部開口
部付近を内側にかしめ加工することにより前記封口板8
は前記容器1に液密に固定されている。正極端子9は、
前記絶縁封口板8の中央には嵌合されている。正極リ―
ド10の一端は、前記正極4に、他端は前記正極端子9
にそれぞれ接続されている。前記負極6は、図示しない
負極リ―ドを介して負極端子である前記容器1に接続さ
れている。
The container 1 contains an electrolytic solution. The insulating paper 7 having a central portion opened is placed above the electrode group 3 in the container 1. The insulating sealing plate 8
The sealing plate 8 is disposed at the upper opening of the container 1 and caulked in the vicinity of the upper opening inward.
Is fixed to the container 1 in a liquid-tight manner. The positive terminal 9 is
The insulating sealing plate 8 is fitted at the center. Positive lead
One end of the cathode 10 is connected to the positive electrode 4, and the other end is connected to the positive electrode terminal 9.
Connected to each other. The negative electrode 6 is connected to the container 1 as a negative terminal via a negative lead (not shown).

【0014】次に、前記正極4、前記負極6および前記
非水電解液の構成について具体的に説明する。
Next, the configurations of the positive electrode 4, the negative electrode 6, and the non-aqueous electrolyte will be specifically described.

【0015】1)正極4の構成 この正極4は、活物質として組成式がLi1+x Ni1-x
u-y y 、但し、前記x,前記y及び前記uは下記
(1)〜(3)式を満たす、 (y+0.05)/2≦x<(y+1)/3 …(1) y>0 …(2) 1.9≦u≦2.1 …(3) で表されるリチウム含有ニッケル酸化物を含む。この酸
化物は、α−NaFeO2 構造を有する。なお、前記組
成式中のリチウムの原子比(1+x)は、酸化物合成時
の値である。前記リチウム含有ニッケル酸化物のリチウ
ム量は、充放電時、リチウムイオンの吸蔵放出に伴って
増減し得る。
1) Configuration of Positive Electrode 4 The positive electrode 4 has a composition formula of Li 1 + x Ni 1-x as an active material.
O uy F y , where x, y and u satisfy the following equations (1) to (3): (y + 0.05) / 2 ≦ x <(y + 1) / 3 (1) y> 0 .. (2) 1.9 ≦ u ≦ 2.1 (3) Including a lithium-containing nickel oxide represented by the following formula: This oxide has an α-NaFeO 2 structure. The atomic ratio of lithium (1 + x) in the above composition formula is a value at the time of oxide synthesis. The amount of lithium in the lithium-containing nickel oxide may increase or decrease as lithium ions are absorbed and released during charge and discharge.

【0016】前記正極4は、例えば、前記リチウム含有
ニッケル酸化物を主成分とする粒子,導電剤、結着剤及
び溶媒を混合することによりスラリーを調製し、このス
ラリーを集電体に塗布、乾燥した後、加圧成形すること
により作製される。
The positive electrode 4 is prepared by, for example, preparing a slurry by mixing particles containing the lithium-containing nickel oxide as a main component, a conductive agent, a binder and a solvent, and applying the slurry to a current collector. After drying, it is produced by pressure molding.

【0017】前記リチウム含有ニッケル酸化物におい
て、前記x及び前記yは図2に示すように、3本の直線
x=(y+0.05)/2、x=(y+1)/3及びy
=0で囲まれた領域のうち(y+0.05)/2≦x<
(y+1)/3、y>0を満たす領域内の値をとること
ができる。前記x及び前記yをx<(y+0.05)/
2及びy>0を満たす領域内の値にすると、充放電サイ
クル寿命が低下する恐れがある。一方、前記x及び前記
yをx≧(y+1)/3及びy>0を満たす領域内の値
にすると、このような組成のリチウム含有ニッケル酸化
物はニッケル成分の平均価数が4価以上になるため、原
理的に合成が不可能である。
In the lithium-containing nickel oxide, as shown in FIG. 2, x and y are three straight lines x = (y + 0.05) / 2, x = (y + 1) / 3 and y
= 0 (y + 0.05) / 2 ≦ x <
It is possible to take a value in a region satisfying (y + 1) / 3, y> 0. X and y are defined as x <(y + 0.05) /
When the value is within the range satisfying 2 and y> 0, the charge / discharge cycle life may be reduced. On the other hand, when x and y are set to values in a region satisfying x ≧ (y + 1) / 3 and y> 0, the lithium-containing nickel oxide having such a composition has an average valence of nickel component of 4 or more. Therefore, synthesis is impossible in principle.

【0018】前記リチウム含有ニッケル酸化物におい
て、前記uを前記範囲に限定するのは次のような理由に
よるものである。前記uを1.9未満にすると、前記x
及び前記yの値が前記領域内にあっても前記酸化物中の
ニッケルの一部が2価を取り得ることとなり、充放電効
率が低下する。一方、前記uが2.1を越えると、電池
の充放電効率が低下する。これは、余剰の酸素が結晶格
子を歪めてリチウムイオンの移動を妨げることに起因す
るものと考えられる。
In the lithium-containing nickel oxide, the value of u is limited to the above range for the following reason. When u is less than 1.9, x
Even if the value of y is in the above range, a part of nickel in the oxide can be divalent, and the charge / discharge efficiency is reduced. On the other hand, when u exceeds 2.1, the charge / discharge efficiency of the battery decreases. This is considered to be due to excess oxygen distorting the crystal lattice and hindering the movement of lithium ions.

【0019】より好ましいリチウム含有ニッケル酸化物
は、組成式がLi1+x Ni1-x u- y y で表され、前
記uが前記(3)式を満たし、かつ前記x及び前記yが
下記(4)〜(5)式を満足するものである。
A more preferred lithium-containing nickel oxide has a composition formula of Li 1 + x Ni 1-x O u- y F y , wherein u satisfies the above formula (3), and the x and y Satisfy the following expressions (4) and (5).

【0020】 (y+0.05)/2≦x≦(y+0.2)/2 …(4) 0<y≦0.4 …(5) 前記x及び前記yが前記(4)式〜(5)式を同時に満
たす場合、前記x及び前記yは、前述した図2に示すよ
うに、4本の直線x=(y+0.05)/2、x=(y
+0.2)/2、y=0及びy=0.4で囲まれた領域
のうち(y+0.05)/2≦x≦(y+0.2)/
2、0<y≦0.4を満たす領域内の値をとることがで
きる。このようなリチウム含有ニッケル酸化物を含む正
極を備えた非水電解液二次電池は、放電容量及び充放電
サイクル寿命を飛躍的に向上することができる。
(Y + 0.05) / 2 ≦ x ≦ (y + 0.2) / 2 (4) 0 <y ≦ 0.4 (5) where x and y are the above formulas (4) to (5). When the expressions are simultaneously satisfied, the x and y are, as shown in FIG. 2 described above, four straight lines x = (y + 0.05) / 2 and x = (y
+0.2) / 2, (y + 0.05) / 2 ≦ x ≦ (y + 0.2) / in the region surrounded by y = 0 and y = 0.4
2, a value within a region satisfying 0 <y ≦ 0.4 can be taken. A non-aqueous electrolyte secondary battery including a positive electrode containing such a lithium-containing nickel oxide can dramatically improve discharge capacity and charge / discharge cycle life.

【0021】前記リチウム含有ニッケル酸化物は、ニッ
ケル成分がニッケルとコバルトとの固溶体か、またはニ
ッケルとマンガンとの固溶体である組成にしても良い。
The lithium-containing nickel oxide may have a composition in which the nickel component is a solid solution of nickel and cobalt or a solid solution of nickel and manganese.

【0022】前記リチウム含有ニッケル酸化物を主成分
とする粒子は、例えば次に示す方法により合成すること
ができる。リチウム水酸化物、リチウム酸化物、リチウ
ム炭酸塩及びリチウム硝酸塩から選ばれる少なくとも1
種と、ニッケル水酸化物、ニッケル酸化物、ニッケル炭
酸塩及びニッケル硝酸塩から選ばれる少なくとも1種
と、リチウムフッ化物とをモル比0.85〜1.0:
0.8〜0.95:0.05〜0.35で混合し、得ら
れた混合物を酸素雰囲気中にて550℃〜600℃に保
持した後、より好ましくは550℃にて5時間程度保持
した後、酸素雰囲気中にて600℃〜680℃で5時間
以上焼成することによって前記リチウム含有ニッケル酸
化物を主成分とする粒子を合成する。
The particles containing the lithium-containing nickel oxide as a main component can be synthesized, for example, by the following method. At least one selected from lithium hydroxide, lithium oxide, lithium carbonate and lithium nitrate
The species, at least one selected from nickel hydroxide, nickel oxide, nickel carbonate and nickel nitrate, and lithium fluoride in a molar ratio of 0.85 to 1.0:
0.8 to 0.95: mixing at 0.05 to 0.35, keeping the resulting mixture at 550 ° C. to 600 ° C. in an oxygen atmosphere, more preferably at 550 ° C. for about 5 hours After that, the particles containing the lithium-containing nickel oxide as a main component are synthesized by firing at 600 ° C. to 680 ° C. for 5 hours or more in an oxygen atmosphere.

【0023】前記リチウム含有ニッケル酸化物を主成分
とする粒子は、リチウム水酸化物、リチウム酸化物、リ
チウム炭酸塩、リチウム硝酸塩、ニッケル水酸化物、ニ
ッケル酸化物、ニッケル炭酸塩、ニッケル硝酸塩、リチ
ウムフッ化物のような未反応物を含むことを許容する。
The particles containing lithium-containing nickel oxide as a main component include lithium hydroxide, lithium oxide, lithium carbonate, lithium nitrate, nickel hydroxide, nickel oxide, nickel carbonate, nickel nitrate, lithium It is allowed to contain unreacted substances such as fluoride.

【0024】前記合成方法において、前記モル比が前記
範囲を外れると、前述した(1)〜(3)を満たす組成
を有するリチウム含有ニッケル酸化物を主成分とする粒
子を得られない恐れがある。前記モル比は、0.95〜
1.0:0.9〜0.95:0.05〜0.15にする
ことがより好ましい。
In the above synthesis method, if the molar ratio is out of the above range, particles containing lithium-containing nickel oxide as a main component having a composition satisfying the above (1) to (3) may not be obtained. . The molar ratio is 0.95
1.0: 0.9 to 0.95: More preferably, it is 0.05 to 0.15.

【0025】前記焼成温度を前記範囲に限定したのは次
のような理由によるものである。前記焼成温度を600
℃未満にすると、反応を十分に行わせるために要する時
間が長くかかり過ぎ、実用性に乏しい。一方、前記焼成
温度が680℃を越えると、前記uの値が1.9以下に
まで低下する場合がある。より好ましい焼成温度は、6
50℃〜680℃の範囲である。
The firing temperature is limited to the above range for the following reason. The firing temperature is set at 600
When the temperature is lower than 0 ° C, the time required for sufficiently performing the reaction takes too long, and is not practical. On the other hand, if the firing temperature exceeds 680 ° C., the value of u may decrease to 1.9 or less. A more preferred firing temperature is 6
The range is from 50 ° C to 680 ° C.

【0026】前記導電剤としては、例えばアセチレンブ
ラック、カーボンブラック、黒鉛等を挙げることができ
る。前記導電剤は、酸素雰囲気中において150℃〜2
50℃で5時間以上熱処理が施されていると良い。
Examples of the conductive agent include acetylene black, carbon black, graphite and the like. The conductive agent is used in an oxygen atmosphere at 150 ° C. to 2 ° C.
It is preferable that heat treatment is performed at 50 ° C. for 5 hours or more.

【0027】前記結着剤としては、例えばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)、ポリエーテルサルフォン(PES)、エ
チレン−プロピレン−ジエン共重合体(EPDM)、ス
チレン−ブタジエンゴム(SBR)等を用いることがで
きる。
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyether sulfone (PES), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber. (SBR) or the like can be used.

【0028】前記集電体としては、例えばアルミニウム
箔、ステンレス箔、ニッケル箔等を用いることが好まし
い。
As the current collector, for example, an aluminum foil, a stainless steel foil, a nickel foil, or the like is preferably used.

【0029】2)負極6の構成 この負極6としては、例えばリチウムイオンを吸蔵・放
出する物質(例えば炭素質物、カルコゲン化合物、軽金
属)からなるもの等を用いることができる。中でも、リ
チウムイオンを吸蔵・放出する炭素質物又はリチウムイ
オンを吸蔵・放出するカルコゲン化合物を含む負極は、
前記二次電池のサイクル寿命などの電池特性が向上する
ために好ましい。
2) Configuration of Negative Electrode 6 As the negative electrode 6, for example, a material made of a substance that absorbs and releases lithium ions (for example, a carbonaceous substance, a chalcogen compound, and a light metal) can be used. Among them, a negative electrode containing a carbonaceous material that occludes and releases lithium ions or a chalcogen compound that occludes and releases lithium ions,
It is preferable because battery characteristics such as cycle life of the secondary battery are improved.

【0030】前記リチウムイオンを吸蔵・放出する炭素
質物としては、例えばコークス、炭素繊維、熱分解気相
炭素物質、黒鉛、樹脂焼成体、メソフェーズピッチ系炭
素を挙げることができる。前記メソフェーズピッチ系炭
素の中でも、2500℃以上で黒鉛化したメソフェーズ
ピッチ系炭素繊維、2500℃以上で黒鉛化したメソフ
ェーズ球状カーボンが良い。このような炭素繊維や、球
状カーボンを含む負極は、容量が高くなるために好まし
い。
Examples of the carbonaceous material that occludes and releases lithium ions include coke, carbon fiber, pyrolytic gas phase carbon material, graphite, resin fired body, and mesophase pitch carbon. Among the mesophase pitch-based carbons, mesophase pitch-based carbon fibers graphitized at 2500 ° C. or more are preferably mesophase spherical carbons graphitized at 2500 ° C. or more. Such a carbon fiber or a negative electrode containing spherical carbon is preferable because the capacity is increased.

【0031】前記炭素質物は、特に示差熱分析で700
℃以上に発熱ピーク、より好ましくは800℃以上に発
熱ピークを有し、X線回折による黒鉛構造の(101)
回折ピーク(P101 )と(100)回折ピーク
(P100 )の強度比P101 /P100 が0.7〜2.2の
範囲にあることが好ましい。このような炭素質物を含む
負極はリチウムイオンの急速な吸蔵・放出ができるた
め、前記二次電池の急速充放電性能が向上される。
The carbonaceous material is particularly 700 ppm by differential thermal analysis.
It has an exothermic peak above ℃, more preferably above 800 ℃, and has a graphite structure (101)
The intensity ratio P 101 / P 100 between the diffraction peak (P 101 ) and the (100) diffraction peak (P 100 ) is preferably in the range of 0.7 to 2.2. Since the negative electrode containing such a carbonaceous material can rapidly store and release lithium ions, the rapid charging and discharging performance of the secondary battery is improved.

【0032】前記リチウムイオンを吸蔵・放出するカル
コゲン化合物としては、二硫化チタン(TiS2 )、二
硫化モリブデン(MoS2 )、セレン化ニオブ(NbS
2)などを挙げることができる。このようなカルコゲ
ン化合物を負極に用いると、前記二次電池の電圧は低下
するものの前記負極の容量が増加するため、前記二次電
池の容量が向上される。更に、前記負極はリチウムイオ
ンの拡散速度が大きいため、前記二次電池の急速充放電
性能が向上される。
The chalcogen compounds that occlude and release lithium ions include titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), and niobium selenide (NbS).
e 2 ). When such a chalcogen compound is used for the negative electrode, the capacity of the negative electrode increases although the voltage of the secondary battery decreases, so that the capacity of the secondary battery is improved. Further, since the negative electrode has a high diffusion rate of lithium ions, the rapid charge / discharge performance of the secondary battery is improved.

【0033】前記リチウムイオンを吸蔵・放出する軽金
属としては、アルミニウム、アルミニウム合金、マグネ
シウム合金、リチウム金属、リチウム合金などを挙げる
ことができる。
Examples of the light metals that occlude and release lithium ions include aluminum, aluminum alloys, magnesium alloys, lithium metals, and lithium alloys.

【0034】前記負極は、例えば、前記炭素質物か、あ
るいは前記カルコゲン化合物と、結着剤と溶媒を混合し
てスラリーを調製し、このスラリーを集電体に塗布し、
乾燥した後、加圧成形することにより作製される。
For the negative electrode, for example, a slurry is prepared by mixing the carbonaceous material or the chalcogen compound, a binder and a solvent, and applying the slurry to a current collector.
After drying, it is produced by pressure molding.

【0035】前記結着剤としては、例えばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)、エチレン−プロピレン−ジエン共重合体
(EPDM)、スチレン−ブタジエンゴム(SBR)、
カルボキシメチルセルロース(CMC)等を用いること
ができる。
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR),
Carboxymethyl cellulose (CMC) or the like can be used.

【0036】前記集電体としては、例えば銅箔、ステン
レス箔、ニッケル箔等を用いることが好ましい。
As the current collector, for example, a copper foil, a stainless steel foil, a nickel foil, or the like is preferably used.

【0037】3)非水電解液の構成 この非水電解液としては、非水溶媒に電解質(リチウム
塩)を溶解させたものが用いられる。
3) Structure of Nonaqueous Electrolyte As the nonaqueous electrolyte, a solution in which an electrolyte (lithium salt) is dissolved in a nonaqueous solvent is used.

【0038】前記非水溶媒としては、リチウム二次電池
の溶媒として公知の非水溶媒を用いることができ、特に
限定はされないが、エチレンカーボネート(EC)と前
記エチレンカーボネートより低融点であり且つドナー数
が18以下である1種以上の非水溶媒(以下第2溶媒と
称す)との混合溶媒を主体とする非水溶媒を用いること
が好ましい。このような非水溶媒は、黒鉛構造の発達し
た炭素質物を含む負極に対して安定で、電解液の還元分
解または酸化分解が起き難く、さらに導電性が高いとい
う利点がある。
As the non-aqueous solvent, a known non-aqueous solvent as a solvent for a lithium secondary battery can be used, and is not particularly limited. Ethylene carbonate (EC) has a melting point lower than that of ethylene carbonate and a donor. It is preferable to use a non-aqueous solvent mainly composed of a mixed solvent with one or more non-aqueous solvents having a number of 18 or less (hereinafter, referred to as a second solvent). Such a non-aqueous solvent is advantageous in that it is stable with respect to a negative electrode containing a carbonaceous material having a developed graphite structure, hardly undergoes reductive decomposition or oxidative decomposition of an electrolytic solution, and has high conductivity.

【0039】エチレンカーボネートを単独含む非水電解
液では、黒鉛化した炭素質物に対して還元分解されに難
い性質を持つ利点があるが、融点が高く(39℃〜40
℃)粘度が高いため、導電率が小さく常温作動の二次電
池では不向きである。エチレンカーボネートに混合する
第2の溶媒は混合溶媒を前記エチレンカーボネートより
も粘度を小さくして導電性を向上させる。また、ドナー
数が18以下の第2の溶媒(ただし、エチレンカーボネ
ートのドナー数は16.4)を用いることにより前記エ
チレンカーボネートがリチウムイオンに選択的に溶媒和
し易くなくなり、黒鉛構造の発達した炭素質物に対して
前記第2の溶媒の還元反応が抑制されることが考えられ
る。また、前記第2の溶媒のドナー数を18以下にする
ことによって、酸化分解電位がリチウム電極に対して4
V以上となり易く、高電圧なリチウム二次電池を実現で
きる利点も有している。
The non-aqueous electrolyte containing ethylene carbonate alone has the advantage of being hardly reductively decomposed to the graphitized carbonaceous material, but has a high melting point (39 ° C. to 40 ° C.).
℃) Because of high viscosity, the conductivity is small and not suitable for a secondary battery operated at room temperature. The second solvent mixed with ethylene carbonate has a lower viscosity than the ethylene carbonate in the mixed solvent to improve conductivity. Further, by using the second solvent having a donor number of 18 or less (provided that the number of donors of ethylene carbonate is 16.4), the ethylene carbonate is not easily solvated selectively with lithium ions, and the graphite structure is developed. It is considered that the reduction reaction of the second solvent with respect to the carbonaceous material is suppressed. Further, by setting the number of donors of the second solvent to 18 or less, the oxidative decomposition potential becomes 4 with respect to the lithium electrode.
V or more, and has an advantage that a high-voltage lithium secondary battery can be realized.

【0040】前記第2の溶媒としては、例えば鎖状カー
ボンが好ましく、中でもジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)、ジエチル
カーボネート(DEC)、またはプロピレンカーボネー
ト(PC)、γ−ブチロラクトン(γ−BL)、アセト
ニトリル(AN)、酢酸エチル(EA)、トルエン、キ
シレンまたは、酢酸メチル(MA)などが挙げられる。
これらの第2の溶媒は、単独または2種以上の混合物の
形態で用いることができる。特に、前記第2の溶媒はド
ナー数が16.5以下であることがより好ましい。
As the second solvent, for example, chain carbon is preferable, and among them, dimethyl carbonate (DM
C), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), or propylene carbonate (PC), γ-butyrolactone (γ-BL), acetonitrile (AN), ethyl acetate (EA), toluene, xylene or methyl acetate (MA) and the like.
These second solvents can be used alone or in the form of a mixture of two or more. In particular, the second solvent more preferably has a donor number of 16.5 or less.

【0041】前記第2の溶媒の粘度は、25℃において
28cp以下であることが好ましい。 前記混合溶媒中
の前記エチレンカーボネートの配合量は、体積比率で1
0〜80%であることが好ましい。この範囲を逸脱する
と、導電性の低下あるいは溶媒の分解がおき、充放電効
率が低下する恐れがある。より好ましい前記エチレンカ
ーボネートの配合量は体積比率で20〜75%である。
非水溶媒中のエチレンカーボネートの配合量を20体積
%以上に高めることにより電解液の導電率が向上され
る。
The viscosity of the second solvent is preferably 28 cp or less at 25 ° C. The mixing amount of the ethylene carbonate in the mixed solvent is 1 by volume ratio.
Preferably it is 0-80%. If the ratio is out of this range, the conductivity may be reduced or the solvent may be decomposed, and the charge / discharge efficiency may be reduced. A more preferable blending amount of the ethylene carbonate is 20 to 75% by volume ratio.
By increasing the amount of ethylene carbonate in the non-aqueous solvent to 20% by volume or more, the conductivity of the electrolytic solution is improved.

【0042】前記混合溶媒のより好ましい組成は、EC
とMEC、ECとPCとMEC、ECとMECとDE
C、ECとMECとDMC、ECとMECとPCとDE
Cの混合溶媒で、MECの体積比率は30〜70%とす
ることが好ましい。このようにMECの体積比率を30
〜70%、より好ましくは40〜60%にすることによ
り、導電率を向上できる。一方、溶媒の還元分解反応を
抑える観点から、炭酸ガス(CO2 )を溶解した電解液
を用いると、容量とサイクル寿命の向上に効果的であ
る。
A more preferred composition of the mixed solvent is EC
And MEC, EC and PC and MEC, EC and MEC and DE
C, EC, MEC, DMC, EC, MEC, PC, DE
In the mixed solvent of C, the volume ratio of MEC is preferably set to 30 to 70%. Thus, the volume ratio of MEC is set to 30.
By setting the content to 70%, more preferably 40% to 60%, the conductivity can be improved. On the other hand, from the viewpoint of suppressing the reductive decomposition reaction of the solvent, using an electrolytic solution in which carbon dioxide (CO 2 ) is dissolved is effective in improving the capacity and cycle life.

【0043】前記混合溶媒(非水溶媒)中に存在する主
な不純物としては、水分と、有機過酸化物(例えばグリ
コール類、アルコール類、カルボン酸類)などが挙げら
れる。前記各不純物は、サイクル寿命や容量の低下に影
響を与える恐れがある。また高温(60℃以上)貯蔵時
の自己放電も増大する恐れがある。このようなことか
ら、非水溶媒を含む電解液においては前記不純物はでき
るだけ低減されることが好ましい。具体的には、水分は
50ppm以下、有機過酸化物は1000ppm以下で
あることが好ましい。
The main impurities present in the mixed solvent (non-aqueous solvent) include water and organic peroxides (eg, glycols, alcohols, carboxylic acids). Each of the impurities may affect the cycle life and the capacity. In addition, self-discharge during high-temperature (60 ° C. or higher) storage may increase. For this reason, it is preferable that the impurities be reduced as much as possible in the electrolytic solution containing the non-aqueous solvent. Specifically, the water content is preferably 50 ppm or less, and the organic peroxide content is preferably 1000 ppm or less.

【0044】前記非水電解液に含まれる電解質として
は、例えば過塩素酸リチウム(LiClO4 )、六フッ
化リン酸リチウム(LiPF6 )、ホウフッ化リチウム
(LiBF4 )、六フッ化砒素リチウム(LiAs
6 )、トリフルオロメタスルホン酸リチウム(LiC
3 SO3 )、ビストリフルオロメチルスルホニルイミ
ドリチウム[LiN(CF3 SO2 2 ]などのリチウ
ム塩(電解質)が挙げられる。中でもLiPF6 、Li
BF4 、LiN(CF3 SO2 2 を用いるのが好まし
い。
Examples of the electrolyte contained in the nonaqueous electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and lithium arsenide hexafluoride (LiBF 4 ). LiAs
F 6 ), lithium trifluorometasulfonate (LiC
F 3 SO 3 ) and lithium salts (electrolytes) such as lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ]. Among them, LiPF 6 , Li
It is preferable to use BF 4 or LiN (CF 3 SO 2 ) 2 .

【0045】前記電解質の前記非水溶媒に対する溶解量
は、0.5〜2.0モル/1とすることが望ましい。
The amount of the electrolyte dissolved in the non-aqueous solvent is desirably 0.5 to 2.0 mol / 1.

【0046】なお、前述した図1では正極と負極の間に
セパレータを介在して渦巻状に捲回し、有底円筒状の容
器内に収納した円筒形非水電解液二次電池に適用した例
を説明したが、例えば、正極と負極との間にセパレータ
を介在し、これを複数枚積層した積層物を有底矩形筒状
の容器内に収納した角形非水電解液二次電池にも同様に
適用することができる。
In FIG. 1 described above, an example in which the present invention is applied to a cylindrical non-aqueous electrolyte secondary battery which is spirally wound with a separator interposed between a positive electrode and a negative electrode and housed in a cylindrical container having a bottom. However, for example, a separator is interposed between the positive electrode and the negative electrode, the same applies to a square non-aqueous electrolyte secondary battery in which a laminate obtained by laminating a plurality of these is housed in a bottomed rectangular cylindrical container. Can be applied to

【0047】本発明に係る非水電解液二次電池は、リチ
ウム含有ニッケル酸化物を主成分とする粒子及び前記粒
子表面の少なくとも一部に形成されたリチウム含有酸化
物を主成分とする膜を含む正極と、負極と、非水電解液
を具備し、前記リチウム含有ニッケル酸化物は組成式が
Li1+x Ni1-x u-y y で表され、前記x,前記y
及び前記uは下記(6)〜(9)式を満足し、 y/2≦x<(y+1)/3 ……(6) y>0 ……(7) x≧0.05 ……(8) 1.9≦u≦2.1 ……(9) 前記リチウム含有酸化物は、組成式がLiMO2 (但
し、前記MはAl、Co、Ni、Li、Mn、Ga及び
Ruから選ばれる少なくとも1種の元素である)で表さ
れる非水電解液二次電池である。
The non-aqueous electrolyte secondary battery according to the present invention comprises a particle mainly composed of lithium-containing nickel oxide and a film mainly composed of lithium-containing oxide formed on at least a part of the surface of the particle. A positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the lithium-containing nickel oxide has a composition formula represented by Li 1 + x Ni 1-x O uy F y , wherein the x and y
And u satisfies the following equations (6) to (9): y / 2 ≦ x <(y + 1) / 3 (6) y> 0 (7) x ≧ 0.05 (8) 1.9 ≦ u ≦ 2.1 (9) The lithium-containing oxide has a composition formula of LiMO 2 (where M is at least selected from Al, Co, Ni, Li, Mn, Ga and Ru). A non-aqueous electrolyte secondary battery represented by the following formula:

【0048】前記二次電池は、前記正極と前記負極の間
にセパレータを介在して電極群を作製し、前記電極群及
び非水電解液を容器内に収納し、前記容器を封口するこ
とにより製造することができる。
The secondary battery is manufactured by forming an electrode group with a separator interposed between the positive electrode and the negative electrode, storing the electrode group and the non-aqueous electrolyte in a container, and closing the container. Can be manufactured.

【0049】前記負極、前記セパレータ及び前記電解液
は、前述したのと同様なものを用いることができる。
As the negative electrode, the separator and the electrolytic solution, the same ones as described above can be used.

【0050】(正極)この正極は、リチウム含有ニッケ
ル酸化物を主成分とする粒子及び前記粒子の表面の少な
くとも一部に形成されたリチウム含有酸化物を主成分と
する膜を活物質として含む。前記リチウム含有ニッケル
酸化物は、組成式がLi1+x Ni1-xu-y y 、但
し、前記x,前記y及び前記uは下記(6)〜(9)式
を同時に満たす、 y/2≦x<(y+1)/3 …(6) 0<y …(7) 0.05≦x …(8) 1.9≦u≦2.1 …(9) で表される。この酸化物は、α−NaFeO2 構造を有
する。なお、前記組成式中のリチウムの原子比(1+
x)は、酸化物合成時の値である。前記リチウム含有ニ
ッケル酸化物のリチウム量は、充放電時、リチウムイオ
ンの吸蔵放出に伴って増減し得る。
(Positive Electrode) This positive electrode contains, as an active material, particles mainly composed of lithium-containing nickel oxide and a film mainly composed of lithium-containing oxide formed on at least a part of the surface of the particles. The lithium-containing nickel oxide has a composition formula of Li 1 + x Ni 1-x O uy F y , wherein x, y and u simultaneously satisfy the following formulas (6) to (9): y / 2 ≦ x <(y + 1) / 3 (6) 0 <y (7) 0.05 ≦ x (8) 1.9 ≦ u ≦ 2.1 (9) This oxide has an α-NaFeO 2 structure. The atomic ratio of lithium in the composition formula (1+
x) is a value at the time of oxide synthesis. The amount of lithium in the lithium-containing nickel oxide may increase or decrease as lithium ions are absorbed and released during charge and discharge.

【0051】前記リチウム含有ニッケル酸化物は、ニッ
ケル成分がニッケルとコバルトとの固溶体か、またはニ
ッケルとマンガンとの固溶体である組成にしても良い。
The lithium-containing nickel oxide may have a composition in which the nickel component is a solid solution of nickel and cobalt or a solid solution of nickel and manganese.

【0052】また、前記膜のリチウム含有酸化物は、組
成式LiMO2 (前記MはAl,Co,Ni,Li,M
n,Ga及びRuから選ばれる1種、2種、または3種
の元素であると良い)で表される。中でも、前記MはA
l,CoまたはMnであると良い。
The lithium-containing oxide of the film has a composition formula of LiMO 2 (where M is Al, Co, Ni, Li, M
one, two, or three elements selected from n, Ga, and Ru). Among them, M is A
It is good to be 1, Co, or Mn.

【0053】前記正極は、例えば、前述した構造の粒
子,導電剤、結着剤及び溶媒を混合してスラリーを調製
し、このスラリーを集電体に塗布、乾燥した後、加圧成
形することにより作製される。
The positive electrode is prepared by, for example, preparing a slurry by mixing particles having the above-described structure, a conductive agent, a binder, and a solvent, applying the slurry to a current collector, drying the slurry, and then pressing it. It is produced by

【0054】前記リチウム含有ニッケル酸化物におい
て、前記x及び前記yは、図3に示すように4本の直
線、x=y/2,x=(y+1)/3,y=0,x=
0.05で囲まれた領域のうち、x=(y+1)/3上
及びy=0上を除く領域内の値を取ることができる。前
記x及び前記yがx<y/2及びy>0を満たす領域内
か、または0.05>x及びy>0を満たす領域内の値
を取ると、このような組成のリチウム含有ニッケル酸化
物はニッケル成分の一部が2価になり、ニッケル成分の
平均価数が3価未満になるため、二次電池の充放電サイ
クル寿命が低下する。また、前記x及び前記yをx≧
(y+1)/3及びy>0を満たす領域内の値にする
と、このような組成のリチウム含有ニッケル酸化物はニ
ッケル成分の平均価数が4価以上になるため、原理的に
合成が不可能である。
In the lithium-containing nickel oxide, x and y are four straight lines as shown in FIG. 3, x = y / 2, x = (y + 1) / 3, y = 0, x =
In the region surrounded by 0.05, values in regions other than x = (y + 1) / 3 and y = 0 can be taken. When the value of x and the value of y take a value in a region satisfying x <y / 2 and y> 0, or a value in a region satisfying 0.05> x and y> 0, lithium-containing nickel oxide having such a composition is obtained. In the product, part of the nickel component becomes divalent, and the average valence of the nickel component becomes less than three, so that the charge / discharge cycle life of the secondary battery decreases. Further, x and y are defined as x ≧
When the value is within the range satisfying (y + 1) / 3 and y> 0, the lithium-containing nickel oxide having such a composition has an average valence of nickel component of 4 or more, and cannot be synthesized in principle. It is.

【0055】前記リチウム含有ニッケル酸化物におい
て、前記uを前記範囲に限定するのは次のような理由に
よるものである。前記uを1.9未満にすると、前記x
及び前記yの値が前記領域内にあっても前記酸化物中の
ニッケルの一部が2価を取り得ることとなり、充放電効
率が低下する。一方、前記uが2.1を越えると、電池
の充放電効率が低下する。これは、余剰の酸素が結晶格
子を歪めてリチウムイオンの移動を妨げることが原因で
あると考えられる。
In the lithium-containing nickel oxide, the value of u is limited to the above range for the following reason. When u is less than 1.9, x
Even if the value of y is in the above range, a part of nickel in the oxide can be divalent, and the charge / discharge efficiency is reduced. On the other hand, when u exceeds 2.1, the charge / discharge efficiency of the battery decreases. This is considered to be because excess oxygen distorts the crystal lattice and hinders the movement of lithium ions.

【0056】より好ましいリチウム含有ニッケル酸化物
は、組成式がLi1+x Ni1-x u- y y で表され、前
記uが前記(9)式を満たし、かつ前記x及び前記yが
下記(8)、(10)、(11)を同時に満足するもの
である。
More preferable lithium-containing nickel oxide has a composition formula of Li 1 + x Ni 1-x O u- y F y , wherein u satisfies the above-mentioned formula (9), and the above-mentioned x and y Satisfy the following (8), (10), and (11) at the same time.

【0057】 0.05≦x …(8) (y+0.05)/2≦x≦(y+0.2)/2 …(10) 0<y≦0.4 …(11) 前記x及び前記yが前記(8)式、(10)式及び(1
1)式を同時に満たす場合、前記x及び前記yは、前述
した図3に示すように、5本の直線x=(y+0.0
5)/2、x=(y+0.2)/2、y=0、y=0.
4及びx=0.05で囲まれた領域のうち、y=0上を
除く領域内の値をとることができる。このような組成の
リチウム含有ニッケル酸化物を主成分とする粒子であっ
て、表面の少なくとも一部が前記膜で被覆されたものを
含む正極を備えた非水電解液二次電池は、初期容量及び
充放電サイクル寿命を飛躍的に向上することができる。
0.05 ≦ x (8) (y + 0.05) / 2 ≦ x ≦ (y + 0.2) / 2 (10) 0 <y ≦ 0.4 (11) The x and the y are Equations (8), (10) and (1)
When the expression (1) is satisfied at the same time, the x and the y are expressed by five straight lines x = (y + 0.0) as shown in FIG.
5) / 2, x = (y + 0.2) / 2, y = 0, y = 0.
Among the regions surrounded by 4 and x = 0.05, values within the region excluding y = 0 can be taken. A non-aqueous electrolyte secondary battery including a positive electrode including particles mainly composed of a lithium-containing nickel oxide having such a composition and having at least a part of the surface thereof coated with the film has an initial capacity of In addition, the charge / discharge cycle life can be significantly improved.

【0058】前記膜は、前記リチウム含有ニッケル酸化
物を主成分とする粒子表面の少なくとも一部に形成され
ていれば良い。好ましい粒子形態は、表面全体が前記膜
で被覆されたものである。
The film may be formed on at least a part of the surface of the particles containing the lithium-containing nickel oxide as a main component. A preferred particle morphology is one in which the entire surface is coated with the film.

【0059】前記膜は、前記リチウム含有ニッケル酸化
物を主成分とする粒子表面にエピタキシャル成長によっ
て形成されていると良い。ここでいうエピタキシャル成
長は、リチウム含有ニッケル酸化物結晶(下地結晶)の
表面にリチウム含有酸化物結晶が少なくともそのc軸の
向きが下地結晶のc軸の向きと同じになるように成長す
ることを意味する。リチウムイオンは、前記リチウム含
有ニッケル酸化物結晶や、前記リチウム含有酸化物結晶
に、これら結晶のc軸と垂直な方向に沿って吸蔵放出さ
れる。したがって、前記エピタキシャル成長によって形
成されたリチウム含有酸化物を主成分とする膜は、前記
リチウム含有ニッケル酸化物を主成分とする粒子とリチ
ウムイオンが吸蔵放出される方向が同じになるため、こ
の膜が表面に形成された粒子は円滑にリチウムイオンを
吸蔵放出することができ、膜形成に起因するリチウムイ
オンを吸蔵放出時の内部インピーダンスの上昇を回避す
ることができる。
The film is preferably formed by epitaxial growth on the surface of a particle containing the lithium-containing nickel oxide as a main component. Here, the epitaxial growth means that the lithium-containing oxide crystal grows on the surface of the lithium-containing nickel oxide crystal (base crystal) such that at least the direction of the c-axis is the same as the direction of the c-axis of the base crystal. I do. Lithium ions are absorbed and released into the lithium-containing nickel oxide crystal and the lithium-containing oxide crystal along a direction perpendicular to the c-axis of these crystals. Therefore, the film mainly composed of the lithium-containing oxide formed by the epitaxial growth has the same direction as the particles mainly composed of the lithium-containing nickel oxide in which the lithium ions are inserted and extracted. The particles formed on the surface can smoothly occlude and release lithium ions, and can avoid an increase in internal impedance at the time of storing and releasing lithium ions due to film formation.

【0060】前記膜の厚さは、1nm〜50nmの範囲
にすることが好ましい。これは次のような理由によるも
のである。前記膜の厚さを1nm未満にすると、前記リ
チウム含有ニッケル酸化物のフッ素成分と前記正極の前
記導電剤や前記電解液との反応を抑制ないし回避するこ
とが困難になり、充放電サイクル寿命の向上を図ること
が困難になる恐れがある。一方、前記膜の厚さが50n
mを越えると、リチウムイオンの吸蔵放出に伴うリチウ
ム含有ニッケル酸化物結晶の格子定数の変化にリチウム
含有酸化物結晶のそれが十分に追随することができない
ため、膜と粒子との接触界面で歪みを生じ、前記膜が前
記リチウム含有ニッケル酸化物粒子から剥がれ落ちる恐
れがある。また、前記正極に占める前記リチウム含有ニ
ッケル酸化物の割合が不足して前記正極の容量が低下す
る恐れがある。より好ましい膜厚は、10nm〜30n
mの範囲である。
The thickness of the film is preferably in the range of 1 nm to 50 nm. This is due to the following reasons. When the thickness of the film is less than 1 nm, it is difficult to suppress or avoid the reaction between the fluorine component of the lithium-containing nickel oxide and the conductive agent or the electrolytic solution of the positive electrode. There is a risk that improvement may be difficult. On the other hand, the thickness of the film is 50 n
If it exceeds m, the lithium-containing oxide crystal cannot sufficiently follow the change in the lattice constant of the lithium-containing nickel oxide crystal due to the occlusion and release of lithium ions, so that distortion occurs at the contact interface between the film and the particles. And the film may peel off from the lithium-containing nickel oxide particles. In addition, the ratio of the lithium-containing nickel oxide in the positive electrode may be insufficient, and the capacity of the positive electrode may be reduced. More preferred film thickness is 10 nm to 30 n
m.

【0061】表面の少なくとも一部が前記リチウム含有
酸化物(LiMO2 )を主成分とする膜で被覆された前
記リチウム含有ニッケル酸化物(Li1+x Ni1-x
u-y y )を主成分とする粒子は、例えば、次に説明す
る方法によって作製することができる。
The lithium-containing nickel oxide (Li 1 + x Ni 1-x O) whose surface is at least partially covered with a film containing the lithium-containing oxide (LiMO 2 ) as a main component.
uy F y) particles composed mainly of, for example, can be prepared by methods described below.

【0062】まず、リチウム水酸化物、リチウム酸化
物、リチウム炭酸塩及びリチウム硝酸塩から選ばれる少
なくとも1種と、ニッケル水酸化物、ニッケル酸化物、
ニッケル炭酸塩及びニッケル硝酸塩から選ばれる少なく
とも1種と、リチウムフッ化物とをモル比0.85〜
1.0:0.8〜0.95:0.05〜0.35で混合
し、得られた混合物を酸素雰囲気中にて550℃〜60
0℃に保持した後、より好ましくは550℃にて5時間
程度保持した後、酸素雰囲気中にて600℃〜680℃
で5時間以上焼成することによって前記(6)〜(9)
式を満たす組成のリチウム含有ニッケル酸化物を主成分
とする粒子を合成する。
First, at least one selected from lithium hydroxide, lithium oxide, lithium carbonate and lithium nitrate, and nickel hydroxide, nickel oxide,
A molar ratio of at least one selected from nickel carbonate and nickel nitrate to lithium fluoride is 0.85 to 0.85.
1.0: 0.8 to 0.95: 0.05 to 0.35, and the resulting mixture is heated to 550 ° C to 60 ° C in an oxygen atmosphere.
After maintaining at 0 ° C., more preferably at 550 ° C. for about 5 hours, and then in an oxygen atmosphere at 600 ° C. to 680 ° C.
(6) to (9)
Particles mainly composed of lithium-containing nickel oxide having a composition satisfying the formula are synthesized.

【0063】リチウム源としてリチウム硝酸塩か、また
はリチウム有機酸塩(例えばリチウム酢酸塩)と、元素
M(MはAl,Co,Ni,Li,Mn,Ga及びRu
から選ばれる少なくとも1種からなる)の供給源として
元素Mの硝酸塩か、または元素Mの有機酸塩(例えば酢
酸塩)をモル比1:1で蒸留水に溶解させ、膜形成溶液
を調製する。得られた溶液を前記粒子に含浸させた後、
酸素雰囲気中にて500℃〜600℃で5時間以上焼成
することにより前記粒子表面の少なくとも一部に組成式
LiMO2 (MはAl,Co,Ni,Li,Mn,Ga
及びRuから選ばれる少なくとも1種からなる)で表さ
れるリチウム含有酸化物を主成分とする膜をエピタキシ
ャル成長によって形成させる。なお、前記粒子に含浸さ
せる溶液の量は、前記粒子に対し形成されるリチウム含
有酸化物膜がモル比で2%以下になる量にするとよい。
このような方法により表面の少なくとも一部が前記リチ
ウム含有酸化物膜で被覆された前記リチウム含有ニッケ
ル酸化物を主成分とする粒子を作製する。
As a lithium source, lithium nitrate or a lithium organic acid salt (for example, lithium acetate) and an element M (M is Al, Co, Ni, Li, Mn, Ga and Ru)
A nitrate of the element M or an organic acid salt of the element M (for example, acetate) is dissolved in distilled water at a molar ratio of 1: 1 to prepare a film-forming solution. . After impregnating the particles with the obtained solution,
By baking at 500 ° C. to 600 ° C. for 5 hours or more in an oxygen atmosphere, at least a part of the particle surface has a composition formula of LiMO 2 (M is Al, Co, Ni, Li, Mn, Ga
And at least one selected from Ru) are formed by epitaxial growth. The amount of the solution for impregnating the particles is preferably such that the molar ratio of the lithium-containing oxide film formed to the particles is 2% or less.
By such a method, particles containing the lithium-containing nickel oxide as a main component, at least a part of the surface of which is coated with the lithium-containing oxide film, are produced.

【0064】膜形成工程における焼成温度を前記範囲に
限定するのは次のような理由によるものである。前記焼
成温度を500℃未満にすると、膜形成反応に要する時
間が長く掛かり過ぎ、量産性が低下する恐れがある。一
方、前記焼成温度が600℃を越えると、膜形成溶液と
粒子とが相互拡散を起こして混じり合い、前記粒子表面
に前記膜が形成されない場合がある。より好ましい焼成
温度は、530℃〜580℃の範囲である。
The firing temperature in the film forming step is limited to the above range for the following reason. If the calcination temperature is lower than 500 ° C., the time required for the film formation reaction takes too long, and the mass productivity may be reduced. On the other hand, if the calcination temperature exceeds 600 ° C., the film-forming solution and the particles cause mutual diffusion and are mixed, and the film may not be formed on the surface of the particles. A more preferred firing temperature is in the range of 530C to 580C.

【0065】なお、前記リチウム含有ニッケル酸化物を
主成分とする粒子は、リチウム水酸化物、リチウム酸化
物、リチウム炭酸塩、リチウム硝酸塩、ニッケル水酸化
物、ニッケル酸化物、ニッケル炭酸塩、ニッケル硝酸
塩、リチウムフッ化物のような未反応物を含むことを許
容する。
The particles containing lithium-containing nickel oxide as a main component include lithium hydroxide, lithium oxide, lithium carbonate, lithium nitrate, nickel hydroxide, nickel oxide, nickel carbonate, nickel nitrate. , And unreacted substances such as lithium fluoride.

【0066】また、前記リチウム含有酸化物を主成分と
する膜は、リチウム硝酸塩、リチウム有機酸塩と、元素
M(MはAl,Co,Ni,Li,Mn,Ga及びRu
から選ばれる少なくとも1種からなる)の硝酸塩、前記
元素Mの有機酸塩のような未反応物を含むことを許容す
る。
The film containing the lithium-containing oxide as a main component is made of a lithium nitrate, a lithium organic acid salt, and an element M (M is Al, Co, Ni, Li, Mn, Ga, and Ru).
And at least one unreacted substance such as an organic acid salt of the element M.

【0067】前記導電剤、前記結着剤及び前記集電体と
しては、前述したのと同様なものを用いることができ
る。
As the conductive agent, the binder and the current collector, the same ones as described above can be used.

【0068】以上説明したように、本発明に係る非水電
解液二次電池は、組成式がLi1+xNi1-x
u-y y 、但し、前記x,前記y及び前記uは下記
(1)〜(3)式を満たす、 (y+0.05)/2≦x<(y+1)/3 …(1) y>0 …(2) 1.9≦u≦2.1 …(3) で表されるリチウム含有ニッケル酸化物を含む正極を備
える。このような二次電池は、放電容量(初期容量)及
び充放電サイクル寿命を向上することができる。本発明
に係る非水電解液二次電池が高容量化及び長寿命化を達
成できる理由は明らかではないが、次のようなメカニズ
ムによるものと推測される。
As described above, the nonaqueous electrolyte secondary battery according to the present invention has a composition formula of Li 1 + x Ni 1-x O
uy F y , where x, y and u satisfy the following equations (1) to (3): (y + 0.05) / 2 ≦ x <(y + 1) / 3 (1) y> 0 (2) 1.9 ≦ u ≦ 2.1 (3) A positive electrode containing a lithium-containing nickel oxide represented by the following formula (3) is provided. Such a secondary battery can improve discharge capacity (initial capacity) and charge / discharge cycle life. It is not clear why the nonaqueous electrolyte secondary battery according to the present invention can achieve high capacity and long life, but it is presumed to be due to the following mechanism.

【0069】LiNiO2 を活物質として含む正極を備
えた非水電解液二次電池における、充放電サイクルの進
行に伴う前記LiNiO2 の結晶構造の崩壊は、以下に
説明することが原因となって生じると考えられる。
In the nonaqueous electrolyte secondary battery provided with the positive electrode containing LiNiO 2 as an active material, the collapse of the crystal structure of LiNiO 2 accompanying the progress of the charge / discharge cycle is caused by the following explanation. Likely to occur.

【0070】前記LiNiO2 のニッケル成分は価数が
2価になりやすい。2価のニッケルはその半径がリチウ
ムイオンのそれとほぼ等しいため、2価のニッケルが存
在すると前記LiNiO2 のリチウムサイトに混入す
る。このリチウムサイトに混入した2価のニッケルは充
放電時に前記LiNiO2 を移動するリチウムイオンに
対して障害となるため、リチウムイオンが前記LiNi
2 を移動する際の内部インピーダンスが増大する。そ
の結果、前記LiNiO2 に加わる過電圧及び内部応力
が増加するため、LiNiO2 の結晶構造が充放電サイ
クルの進行に伴って崩壊する。
The nickel component of LiNiO 2 tends to have two valences. Since the radius of divalent nickel is substantially equal to that of lithium ions, the presence of divalent nickel is mixed into the lithium sites of LiNiO 2 . The divalent nickel mixed into the lithium site hinders the lithium ions moving through the LiNiO 2 during charging and discharging.
The internal impedance when moving O 2 increases. As a result, since the over-voltage and the internal stress applied to the LiNiO 2 is increased, the crystal structure of LiNiO 2 collapses with the progress of charge and discharge cycles.

【0071】また、前記LiNiO2 はリチウムイオン
が吸蔵放出される際に構造相転移を生じ、これが結晶構
造の崩壊を招く。前記構造相転移は、Jahn−Tel
ler効果によるメカニズムが提案されている。すなわ
ち、前記LiNiO2 において、全てのリチウムサイト
にリチウムイオンが吸蔵された時、ニッケルサイトに存
在するニッケルの価数は3価である。一方、全てのリチ
ウムサイトからリチウムイオンが放出された時、ニッケ
ルサイトに存在するニッケルの価数は4価になる。3価
のニッケルはJahn−Teller効果により球形か
ら歪もうとする傾向がある。LiNiO2 の全てのリチ
ウムサイトにリチウムイオンが吸蔵された状態では、3
価のニッケルはこのリチウムイオンによって形が球形に
規制されている。リチウムイオンが放出されると、Li
NiO2 内に隙間が生じる、つまりリチウムイオンによ
る規制が解除されるため、3価のニッケルの歪みが増大
される。その結果、前記LiNiO2 は、そこからリチ
ウムイオンが放出されるに従って歪んでゆく。この歪み
は、前記LiNiO2 の全てのリチウムサイトからリチ
ウムイオンが放出されることによってニッケルが4価に
なり、Jahn−Teller効果が小さくなると、解
消される。従って、LiNiO2 に繰り返しリチウムイ
オンを吸蔵放出させると、この構造相転移が繰り返し行
われるため、LiNiO2 が脆くなって結晶構造が崩壊
する。
The LiNiO 2 undergoes a structural phase transition when lithium ions are absorbed and released, which causes the collapse of the crystal structure. The structural phase transition is defined by Jahn-Tel
A mechanism based on the ler effect has been proposed. That is, in LiNiO 2 , when lithium ions are occluded in all the lithium sites, the valence of nickel existing in the nickel sites is trivalent. On the other hand, when lithium ions are released from all the lithium sites, the valence of nickel existing at the nickel sites becomes tetravalent. Trivalent nickel tends to be distorted from a spherical shape due to the Jahn-Teller effect. In the state where lithium ions are occluded in all lithium sites of LiNiO 2 , 3
Valent nickel is regulated in spherical shape by this lithium ion. When lithium ions are released, Li
Since a gap is formed in NiO 2 , that is, the regulation by lithium ions is released, the distortion of trivalent nickel increases. As a result, the LiNiO 2 is distorted as lithium ions are released therefrom. This distortion is eliminated when nickel becomes tetravalent by releasing lithium ions from all lithium sites of the LiNiO 2 and the Jahn-Teller effect becomes small. Therefore, when lithium ions are repeatedly inserted into and released from LiNiO 2 , this structural phase transition is repeatedly performed, so that LiNiO 2 becomes brittle and the crystal structure is collapsed.

【0072】このようなLiNiO2 において、酸素原
子の一部をフッ素原子で置換すると、例えば組成式Li
x NiOw a (但し、0<x≦1.3,1.8≦w+
0.5a≦2.2,0.25≦a≦2である。)で表さ
れるようなフッ素含有複合酸化物となる。前記フッ素含
有複合酸化物では、アニオンの価数の合計が酸素原子の
一部をフッ素原子で置換した分、LiNiO2 のアニオ
ンの価数の合計に比べて小さくなっている。前記フッ素
含有複合酸化物はリチウム及びニッケルの原子比がLi
NiO2 のそれと同じであるため、このような負電荷の
減少に伴う正電荷の減少はニッケル成分の価数が3価か
ら2価に減少することでなされる。
In such LiNiO 2 , when a part of oxygen atoms is replaced by fluorine atoms, for example, the composition formula Li
x NiO w F a (where 0 <x ≦ 1.3, 1.8 ≦ w +
0.5a ≦ 2.2, 0.25 ≦ a ≦ 2. ) Is obtained. In the fluorine-containing composite oxide, the total valency of the anions is smaller than the total valency of the anions of LiNiO 2 because a part of the oxygen atoms is replaced by fluorine atoms. The fluorine-containing composite oxide has an atomic ratio of lithium and nickel of Li
Since it is the same as that of NiO 2 , such a decrease in the positive charge accompanying the decrease in the negative charge is made by a decrease in the valence of the nickel component from trivalent to divalent.

【0073】このため、前記フッ素含有複合酸化物は、
そのニッケル成分中に占める2価のニッケルの割合が多
くなり、リチウムイオンが吸蔵放出される際の内部イン
ピーダンスが増大する。しかも、前記フッ素含有複合酸
化物は、ニッケル成分の平均価数が3価未満になるた
め、リチウムイオンが放出される際、ニッケルサイトに
存在するニッケルのJahn−Teller効果による
歪み度合いが大きくなる。その結果、前記フッ素含有複
合酸化物を活物質として含む正極を備えた非水系二次電
池は、充放電の進行に伴って前記酸化物の結晶構造が崩
壊するため、充放電サイクル寿命が短くなる。
For this reason, the fluorine-containing composite oxide is
The proportion of divalent nickel in the nickel component increases, and the internal impedance at the time of inserting and extracting lithium ions increases. Moreover, since the average valence of the nickel component of the fluorine-containing composite oxide is less than 3, the degree of distortion due to the Jahn-Teller effect of nickel existing at nickel sites when lithium ions are released is increased. As a result, the non-aqueous secondary battery including the positive electrode including the fluorine-containing composite oxide as an active material has a reduced charge / discharge cycle life because the crystal structure of the oxide collapses with progress of charge / discharge. .

【0074】本願発明に係る組成式Li1+x Ni1-x
u-y y で表されるリチウム含有ニッケル酸化物は、L
iNiO2 の酸素原子の一部をフッ素原子に置換すると
共に、この置換により生じるアニオンの価数の合計の減
少分に見合ったカチオンの価数の合計の減少をニッケル
原子の一部をリチウム原子で置換することによって行っ
ているため、ニッケル成分に占める2価のニッケルの割
合を大幅に低減することができ、ニッケル成分の平均価
数を3価以上にすることができる。その結果、前記リチ
ウム含有ニッケル酸化物は、そのリチウムサイトに2価
のニッケルが混入することによって生じるリチウムイオ
ン吸蔵放出の際の内部インピーダンスの上昇を抑制する
ことができ、同時にリチウムイオンが放出される際、ニ
ッケルサイトに存在するニッケルのJahn−Tell
er効果による歪みを抑制することができる。また、フ
ッ素は電気陰性度が酸素に比べて高いため、フッ素とリ
チウムとのクーロン力は酸素とリチウムとのクーロン力
に比べて弱い。このため、前記リチウム含有ニッケル酸
化物は、リチウムイオンとの相互作用(クーロン力)を
前記酸化物のフッ素成分により軽減することができ、リ
チウムイオンが移動(吸蔵・放出)する際の内部インピ
ーダンスを低減することができる。
The composition formula Li 1 + x Ni 1-x O according to the present invention
The lithium-containing nickel oxide represented by uy F y is L
A part of the oxygen atom of iNiO 2 is replaced with a fluorine atom, and the reduction of the total valency of the cation corresponding to the reduction of the total valency of the anion caused by this substitution is performed by replacing a part of the nickel atom with a lithium atom. Since the substitution is performed, the proportion of divalent nickel in the nickel component can be significantly reduced, and the average valence of the nickel component can be increased to three or more. As a result, the lithium-containing nickel oxide can suppress an increase in internal impedance at the time of lithium ion occlusion and release caused by mixing of divalent nickel into the lithium site, and simultaneously release lithium ions. In this case, the nickel Jahn-Tell existing at the nickel site
The distortion due to the er effect can be suppressed. Further, since fluorine has a higher electronegativity than oxygen, the Coulomb force between fluorine and lithium is weaker than the Coulomb force between oxygen and lithium. For this reason, the lithium-containing nickel oxide can reduce the interaction (Coulomb force) with lithium ions by the fluorine component of the oxide, and reduce the internal impedance when lithium ions move (occlusion / release). Can be reduced.

【0075】従って、前記リチウム含有ニッケル酸化物
を活物質として含む正極を備えた非水電解液二次電池
は、充放電サイクルの進行に伴う前記酸化物の結晶構造
の崩壊を抑制ないし回避することができるため、放電容
量(初期容量)及び充放電サイクル寿命を向上すること
ができる。
Accordingly, the nonaqueous electrolyte secondary battery provided with the positive electrode containing the lithium-containing nickel oxide as an active material can suppress or avoid the collapse of the oxide crystal structure accompanying the progress of the charge / discharge cycle. Therefore, the discharge capacity (initial capacity) and the charge / discharge cycle life can be improved.

【0076】本発明に係る非水電解液二次電池の製造方
法は、正極と、負極と、非水電解液を具備する非水電解
液二次電池の製造方法であって、リチウム水酸化物、リ
チウム酸化物、リチウム炭酸塩及びリチウム硝酸塩から
選ばれる少なくとも1種の化合物と、ニッケル水酸化
物、ニッケル酸化物、ニッケル炭酸塩及びニッケル硝酸
塩から選ばれる少なくとも1種の化合物と、リチウムの
フッ化物とをモル比0.85〜1.0:0.8〜0.9
5:0.05〜0.35で混合する工程;得られた混合
物を酸素雰囲気中にて550℃〜600℃に保持する工
程;酸素雰囲気中にて600℃〜680℃で焼成する工
程;を具備する方法により前記正極を作製する。このよ
うな方法によれば、前述した組成式で表されるリチウム
含有ニッケル酸化物を主成分とする粒子を含む正極を備
えた非水電解液二次電池を製造することができるため、
放電容量(初期容量)及び充放電サイクル寿命が向上さ
れた非水電解液二次電池を提供することができる。
The method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention is a method for manufacturing a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, comprising a lithium hydroxide. , At least one compound selected from lithium oxide, lithium carbonate and lithium nitrate, at least one compound selected from nickel hydroxide, nickel oxide, nickel carbonate and nickel nitrate, and lithium fluoride And a molar ratio of 0.85 to 1.0: 0.8 to 0.9.
5: mixing at 0.05 to 0.35; maintaining the obtained mixture at 550 to 600 ° C. in an oxygen atmosphere; and firing at 600 to 680 ° C. in an oxygen atmosphere. The positive electrode is manufactured by the provided method. According to such a method, a non-aqueous electrolyte secondary battery including a positive electrode including particles containing lithium-containing nickel oxide as a main component represented by the above-described composition formula can be manufactured.
A nonaqueous electrolyte secondary battery with improved discharge capacity (initial capacity) and charge / discharge cycle life can be provided.

【0077】また、本発明に係る別の非水電解液二次電
池は、リチウム含有ニッケル酸化物を主成分とする粒子
及び前記粒子の表面の少なくとも一部に形成されたリチ
ウム含有酸化物を主成分とする膜を含む正極と、負極
と、非水電解液を備える。前記リチウム含有ニッケル酸
化物は、組成式がLi1+x Ni1-x u-y y 、但し、
前記x,前記y及び前記uは下記(4)〜(7)式を満
たす、 y/2≦x<(y+1)/3 …(4) 0<y …(5) 0.05≦x …(6) 1.9≦u≦2.1 …(7) で表される。また、前記リチウム含有酸化物は、組成式
LiMO2 (但し、前記MはAl,Co,Ni,Li,
Mn,Ga及びRuから選ばれる少なくとも1種の元素
からなる)で表される。
Another non-aqueous electrolyte secondary battery according to the present invention mainly comprises particles containing lithium-containing nickel oxide as a main component and a lithium-containing oxide formed on at least a part of the surface of the particles. A positive electrode including a film as a component, a negative electrode, and a non-aqueous electrolyte are provided. The lithium-containing nickel oxide has a composition formula of Li 1 + x Ni 1-x O uy F y ,
X, y, and u satisfy the following equations (4) to (7): y / 2 ≦ x <(y + 1) / 3 (4) 0 <y (5) 0.05 ≦ x ( 6) 1.9 ≦ u ≦ 2.1 (7) Further, the lithium-containing oxide has a composition formula of LiMO 2 (where M is Al, Co, Ni, Li,
And at least one element selected from Mn, Ga and Ru).

【0078】このような二次電池は、放電容量(初期容
量)及び充放電サイクル寿命を飛躍的に向上することが
できる。本発明に係る二次電池が高容量化及び長寿命化
を図れる理由は明らかではないが、以下に説明するメカ
ニズムによるものと推測される。
In such a secondary battery, the discharge capacity (initial capacity) and the charge / discharge cycle life can be significantly improved. It is not clear why the secondary battery according to the present invention can achieve high capacity and long life, but it is presumed to be due to the mechanism described below.

【0079】前記組成式Li1+x Ni1-x u-y y
表されるリチウム含有ニッケル酸化物は、酸素原子の一
部がフッ素原子で置換され、かつこの置換により生じる
負電荷の減少分に見合った正電荷の減少をニッケル原子
の一部をリチウム原子で置換することによってなされて
いるため、ニッケル成分中の2価のニッケルの割合を大
幅に低減することができる。その結果、前記リチウム含
有ニッケル酸化物を主成分とする粒子は、そのリチウム
サイトに2価のニッケルが混入することによって生じる
リチウムイオン吸蔵放出の際の内部インピーダンスの上
昇を抑制することができ、同時にリチウムイオンが放出
される際、ニッケルサイトに存在するニッケルのJah
n−Teller効果による歪みを抑制することができ
る。また、前記リチウム含有ニッケル酸化物を主成分と
する粒子は、フッ素成分によってリチウムイオンとの相
互作用を軽減することができるため、この相互作用に起
因するリチウムイオンの吸蔵放出の際の内部インピーダ
ンスを低減することができる。
The lithium-containing nickel oxide represented by the composition formula Li 1 + x Ni 1-x O uy F y has a structure in which a part of oxygen atoms are replaced by fluorine atoms, and a reduction in negative charges caused by the replacement is achieved. The proportionate reduction in positive charge is achieved by substituting some of the nickel atoms with lithium atoms, so that the proportion of divalent nickel in the nickel component can be significantly reduced. As a result, the particles containing the lithium-containing nickel oxide as a main component can suppress an increase in internal impedance at the time of lithium ion occlusion and release caused by mixing of divalent nickel into the lithium site, and at the same time, When lithium ions are released, Jah of nickel existing at nickel sites
Distortion due to the n-Teller effect can be suppressed. In addition, the particles containing the lithium-containing nickel oxide as a main component can reduce the interaction with lithium ions due to the fluorine component, and thus reduce the internal impedance at the time of insertion and extraction of lithium ions due to the interaction. Can be reduced.

【0080】更に、前記粒子の表面の少なくとも一部に
形成されたリチウム含有酸化物を主成分とする膜は、前
記粒子中のフッ素成分が電池構成部材(例えば、前記正
極中の導電剤、前記非水電解液)と反応するのを抑制な
いし回避することができ、つまりこの反応によって生じ
る負電荷の減少に伴う正電荷の減少、すなわち、ニッケ
ル成分の価数が3価から2価になるのを抑制ないし回避
することができる。このため、前述した酸化物膜形成粒
子は、充放電サイクルの進行に伴ってリチウム含有ニッ
ケル酸化物のニッケル成分中に占める2価のニッケルの
割合が増加するのを抑制ないし回避することができる。
Further, in the film mainly composed of a lithium-containing oxide formed on at least a part of the surface of the particles, the fluorine component in the particles is a component of a battery (for example, a conductive agent in the positive electrode, (A non-aqueous electrolyte) can be suppressed or avoided, that is, a decrease in positive charge accompanying a decrease in negative charge caused by this reaction, that is, a valence of the nickel component changes from trivalent to divalent Can be suppressed or avoided. For this reason, the above-mentioned oxide film forming particles can suppress or avoid an increase in the proportion of divalent nickel in the nickel component of the lithium-containing nickel oxide as the charge-discharge cycle progresses.

【0081】従って、リチウム含有酸化物を主成分とす
る膜が表面の少なくとも一部に形成されたリチウム含有
ニッケル酸化物を主成分とする粒子を含む正極を備えた
非水電解液二次電池は、長期間に亘り前記リチウム含有
ニッケル酸化物のニッケル成分に占める2価のニッケル
の割合を低い値に維持できるため、充放電サイクルの進
行に伴う前記リチウム含有ニッケル酸化物の結晶構造の
崩壊を抑制ないし回避することができ、放電容量(初期
容量)及び充放電サイクル寿命を飛躍的に向上すること
ができる。
Therefore, a non-aqueous electrolyte secondary battery provided with a positive electrode containing particles mainly composed of lithium-containing nickel oxide and having a film mainly composed of lithium-containing oxide formed on at least a part of the surface thereof is Since the ratio of divalent nickel in the nickel component of the lithium-containing nickel oxide can be maintained at a low value over a long period of time, the collapse of the crystal structure of the lithium-containing nickel oxide due to the progress of the charge / discharge cycle is suppressed. In addition, the discharge capacity (initial capacity) and the charge / discharge cycle life can be significantly improved.

【0082】また、前記リチウム含有ニッケル酸化物を
主成分とする粒子の表面の少なくとも一部にエピタキシ
ャル成長によってリチウム含有酸化物を主成分とする膜
を形成することによって、前記粒子の前記酸化物におけ
るリチウムイオンが吸蔵放出される方向と前記膜のリチ
ウム含有酸化物におけるリチウムイオンが吸蔵放出され
る方向を一致させることができるため、前記粒子は膜非
形成の粒子と変わりなくリチウムイオンを円滑、かつ速
やかに吸蔵放出させることができる。従って、このよう
な粒子を活物質として含む正極を備えた非水電解液二次
電池は、放電容量(初期容量)及び充放電サイクル寿命
を更に改善することができる。
Further, by forming a film mainly composed of a lithium-containing oxide by epitaxial growth on at least a part of the surface of the particle mainly composed of the lithium-containing nickel oxide, lithium in the oxide of the particle is obtained. Since the direction in which ions are inserted and released and the direction in which lithium ions in the lithium-containing oxide of the film are inserted and released can be made to match, the particles are able to smoothly and promptly disperse lithium ions as in the case of non-film-formed particles. Can be inserted and released. Therefore, a nonaqueous electrolyte secondary battery including a positive electrode containing such particles as an active material can further improve the discharge capacity (initial capacity) and the charge / discharge cycle life.

【0083】また、前記リチウム含有ニッケル酸化物を
主成分とする粒子の表面の少なくとも一部に形成された
前記膜の厚さを1nm〜50nmの範囲にすることによ
って、充放電サイクルの進行に伴う前記膜の剥離を抑制
ないし回避することができ、前記リチウム含有ニッケル
酸化物のフッ素成分が電池構成部材(例えば、前記正極
中の導電剤、前記非水電解液)と反応するのを前記膜に
より抑制ないし回避することができ、同時に前記正極の
容量を高い値に維持できる。従って、このような粒子を
活物質として含む正極を備えた非水電解液二次電池は、
放電容量(初期容量)及び充放電サイクル寿命を更に改
善することができる。
Further, by setting the thickness of the film formed on at least a part of the surface of the particles containing the lithium-containing nickel oxide as a main component to be in the range of 1 nm to 50 nm, the charge-discharge cycle is progressed. The peeling of the film can be suppressed or avoided, and the film prevents the fluorine component of the lithium-containing nickel oxide from reacting with a battery component (for example, the conductive agent in the positive electrode, the non-aqueous electrolyte). It can be suppressed or avoided, and at the same time, the capacity of the positive electrode can be maintained at a high value. Therefore, a non-aqueous electrolyte secondary battery provided with a positive electrode containing such particles as an active material,
The discharge capacity (initial capacity) and the charge / discharge cycle life can be further improved.

【0084】また、本発明に係る非水電解液二次電池の
製造方法は、正極と、負極と、非水電解液を具備する非
水電解液二次電池の製造方法であって、リチウム水酸化
物、リチウム酸化物、リチウム炭酸塩及びリチウム硝酸
塩から選ばれる少なくとも1種の化合物と、ニッケル水
酸化物、ニッケル酸化物、ニッケル炭酸塩及びニッケル
硝酸塩から選ばれる少なくとも1種の化合物と、リチウ
ムのフッ化物とをモル比0.85〜1.0:0.8〜
0.95:0.05〜0.35で混合する工程;得られ
た混合物を酸素雰囲気中にて550℃〜600℃に保持
する工程;酸素雰囲気中にて600℃〜680℃で焼成
することにより粒子を作製する工程;リチウム硝酸塩
か、またはリチウム有機酸塩のいずれか一方と、元素M
の硝酸塩か、または元素Mの有機酸塩のいずれか一方を
含む水溶液を前記粒子に含浸させる工程、前記MはA
l、Co、Ni、Li、Mn、Ga及びRuから選ばれ
る少なくとも1種である;酸素雰囲気中にて500〜6
00℃で焼成する工程;を具備する方法により前記正極
を作製する。このような方法によれば、前述した組成式
で表されるリチウム含有ニッケル酸化物を主成分とし、
表面の少なくとも一部に前記組成のリチウム含有酸化物
を主成分とする膜が形成された粒子を含む正極を備えた
非水電解液二次電池を製造することができるため、放電
容量(初期容量)及び充放電サイクル寿命が飛躍的に向
上された非水電解液二次電池を提供することができる。
The method of manufacturing a non-aqueous electrolyte secondary battery according to the present invention is a method of manufacturing a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. At least one compound selected from an oxide, lithium oxide, lithium carbonate and lithium nitrate, at least one compound selected from nickel hydroxide, nickel oxide, nickel carbonate and nickel nitrate, and lithium The molar ratio of fluoride to 0.85 to 1.0: 0.8 to
0.95: a step of mixing at 0.05 to 0.35; a step of maintaining the obtained mixture at 550 ° C. to 600 ° C. in an oxygen atmosphere; firing at 600 ° C. to 680 ° C. in an oxygen atmosphere. Producing particles by the following method: either lithium nitrate or lithium organic acid salt and the element M
Impregnating the particles with an aqueous solution containing either a nitrate or an organic acid salt of element M, wherein M is A
1, at least one member selected from the group consisting of Co, Ni, Li, Mn, Ga, and Ru;
Baking at 00 ° C. to produce the positive electrode. According to such a method, the lithium-containing nickel oxide represented by the above-described composition formula as a main component,
Since it is possible to manufacture a nonaqueous electrolyte secondary battery including a positive electrode including particles in which a film containing a lithium-containing oxide having the above composition as a main component is formed on at least a part of the surface, the discharge capacity (initial capacity) ) And a non-aqueous electrolyte secondary battery with significantly improved charge / discharge cycle life can be provided.

【0085】[0085]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。なお、本発明は下記の実施例に何ら限定さ
れるものではなくその要旨を変更しない範囲において適
宜変更して実施することが可能である。
Embodiments of the present invention will be described below in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments at all, and can be implemented with appropriate changes within a scope that does not change the gist of the present invention.

【0086】以下の実施例1〜9、37,39、48に
おいて正極活物質として使用するリチウム含有ニッケル
酸化物の組成式を下記表1に示す。また、これら酸化物
の組成の分布を図4に示す。
The composition formula of the lithium-containing nickel oxide used as the positive electrode active material in the following Examples 1 to 9, 37, 39 and 48 is shown in Table 1 below. FIG. 4 shows the distribution of the composition of these oxides.

【0087】[0087]

【表1】 [Table 1]

【0088】実施例1 <正極の作製>LiOH・H2 OとNi(OH)2 とL
iFをモル比1.0:0.95:0.05で混合し、純
水酸素1気圧中にて550℃に5時間保持し、650℃
で20時間焼成した後、メノウ乳鉢で粉砕することによ
り組成式がLi1.05Ni0.951.960.04で表されるリ
チウム含有ニッケル酸化物を主成分とする粒子を作製し
た。得られた粒子の平均粒径は8.5μmであった。得
られた粒子と、導電剤であるアセチレンブラックと、結
着剤としてのポリテトラフルオロエチレン粉末とを、重
量比率80:17:3で混合し正極合剤とした。前記正
極合剤を集電体としてのステンレス製網に張り付け、1
0mm角×0.5mmの正極を作製した。
Example 1 <Preparation of Positive Electrode> LiOH.H 2 O, Ni (OH) 2 and L
iF was mixed at a molar ratio of 1.0: 0.95: 0.05, and kept at 550 ° C. for 5 hours in 1 atm of pure water oxygen.
And crushed in an agate mortar to produce particles containing lithium-containing nickel oxide as a main component represented by a composition formula of Li 1.05 Ni 0.95 O 1.96 F 0.04 . The average particle size of the obtained particles was 8.5 μm. The obtained particles, acetylene black as a conductive agent, and polytetrafluoroethylene powder as a binder were mixed at a weight ratio of 80: 17: 3 to prepare a positive electrode mixture. Affixing the positive electrode mixture to a stainless steel net as a current collector,
A positive electrode of 0 mm square × 0.5 mm was produced.

【0089】<負極の作製>リチウムメタル箔を集電体
としてのステンレス製網に張り付け、20mm角の負極
を作製した。
<Preparation of Negative Electrode> A lithium metal foil was attached to a stainless steel net as a current collector to prepare a 20 mm square negative electrode.

【0090】<参照電極の作製>リチウムメタル箔を集
電体としてのステンレス製網に張り付け、10mm角の
参照電極を作製した。
<Preparation of Reference Electrode> A 10 mm square reference electrode was prepared by attaching a lithium metal foil to a stainless steel net as a current collector.

【0091】<非水電解液の調製>プロピレンカーボネ
ート及びジメトキシエタンからなる混合溶媒に電解質と
してのLiClO4 をその濃度が1mol/lになるよ
うに溶解させて非水電解液を調製した。
<Preparation of Nonaqueous Electrolyte> A nonaqueous electrolyte was prepared by dissolving LiClO 4 as an electrolyte at a concentration of 1 mol / l in a mixed solvent composed of propylene carbonate and dimethoxyethane.

【0092】<正極評価用電池の作製>得られた正極、
負極、参照電極及び非水電解液を十分に乾燥させた後、
アルゴン雰囲気中においてこれらの部材を用いて図5に
示すビーカー型ガラスセルを備えた評価用電池を組み立
てた。
<Preparation of Battery for Positive Electrode Evaluation>
After thoroughly drying the negative electrode, reference electrode and non-aqueous electrolyte,
Using these members in an argon atmosphere, an evaluation battery provided with a beaker-type glass cell shown in FIG. 5 was assembled.

【0093】すなわち、ガラスセル内21には、非水電
解液22が収容されている。正極23と袋状のセパレー
タに収納された負極24は、その間にセパレータ25を
介在して積層され、前記ガラスセル21内の前記電解液
22に浸漬されている。2枚の押さえ板26は、その間
に前記積層物を挟持している。袋状のセパレータに収納
された参照電極27は、前記ガラスセル21内の前記電
解液22に浸漬されている。3本のガラスフィルター2
8は、前記ガラスセル21の上面を貫通して一端が外部
にそれぞれ突出され、かつ他端が前記正極23、前記負
極24及び前記参照電極27にそれぞれ接続されてい
る。このようなガラスセル21には充放電試験時に大気
が侵入しないように密封処理が行われている。
That is, the non-aqueous electrolyte 22 is accommodated in the glass cell 21. The positive electrode 23 and the negative electrode 24 housed in the bag-shaped separator are stacked with a separator 25 interposed therebetween, and immersed in the electrolytic solution 22 in the glass cell 21. The two holding plates 26 sandwich the laminate between them. The reference electrode 27 accommodated in the bag-shaped separator is immersed in the electrolytic solution 22 in the glass cell 21. 3 glass filters 2
8 has one end protruding outside through the upper surface of the glass cell 21 and the other end connected to the positive electrode 23, the negative electrode 24, and the reference electrode 27, respectively. Such a glass cell 21 is subjected to a sealing treatment so that the atmosphere does not enter during the charge / discharge test.

【0094】実施例2 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.98:0.9:0.12で混合し、純水酸素1気圧
中にて550℃に5時間保持し、650℃で20時間焼
成した後、メノウ乳鉢で粉砕することにより組成式がL
1.1 Ni0.9 1.9 0.1 で表されるリチウム含有ニ
ッケル酸化物を主成分とし、平均粒径が8.5μmの粒
子を合成すること以外は、実施例1と同様な正極を作製
した。この正極と、実施例1と同様な負極、参照電極及
び非水電解液を用いて前述した図5に示す正極評価用電
池を組み立てた。
Example 2 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.98: 0.9: 0.12, and the mixture was heated to 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar, whereby the composition formula becomes L.
A positive electrode was produced in the same manner as in Example 1, except that lithium-containing nickel oxide represented by i 1.1 Ni 0.9 O 1.9 F 0.1 was used as a main component and particles having an average particle size of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0095】実施例3 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.98:0.85:0.17で混合し、純水酸素1気
圧中にて550℃に5時間保持し、650℃で20時間
焼成した後、メノウ乳鉢で粉砕することにより組成式が
Li1.15Ni0.851.850.15で表されるリチウム含有
ニッケル酸化物を主成分とし、平均粒径が8.5μmの
粒子を合成すること以外は、実施例1と同様な正極を作
製した。この正極と、実施例1と同様な負極、参照電極
及び非水電解液を用いて前述した図5に示す正極評価用
電池を組み立てた。
Example 3 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.98: 0.85: 0.17, and the mixture was heated to 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar to make a lithium-containing nickel oxide represented by a composition formula of Li 1.15 Ni 0.85 O 1.85 F 0.15 as a main component and an average particle size of 8. A positive electrode similar to that of Example 1 was prepared except that particles of 5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0096】実施例4 LiOH・H2 OとNi(OH)2 とLiFをモル比
1.14:0.8:0.06で混合し、純水酸素1気圧
中にて550℃に5時間保持し、650℃で20時間焼
成した後、メノウ乳鉢で粉砕することにより組成式がL
1.2 Ni0.8 1.950.05で表されるリチウム含有ニ
ッケル酸化物を主成分とし、平均粒径が8.5μmの粒
子を合成すること以外は、実施例1と同様な正極を作製
した。この正極と、実施例1と同様な負極、参照電極及
び非水電解液を用いて前述した図5に示す正極評価用電
池を組み立てた。
Example 4 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 1.14: 0.8: 0.06, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar, whereby the composition formula becomes L.
A positive electrode was produced in the same manner as in Example 1 except that lithium-containing nickel oxide represented by i 1.2 Ni 0.8 O 1.95 F 0.05 was used as a main component and particles having an average particle size of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0097】実施例5 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.95:0.8:0.25で混合し、純水酸素1気圧
中にて550℃に5時間保持し、650℃で20時間焼
成した後、メノウ乳鉢で粉砕することにより組成式がL
1.2 Ni0.8 1.8 0.2 で表されるリチウム含有ニ
ッケル酸化物を主成分とし、平均粒径が8.5μmの粒
子を合成すること以外は、実施例1と同様な正極を作製
した。この正極と、実施例1と同様な負極、参照電極及
び非水電解液を用いて前述した図5に示す正極評価用電
池を組み立てた。
Example 5 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.95: 0.8: 0.25, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar, whereby the composition formula becomes L.
A positive electrode was produced in the same manner as in Example 1, except that lithium-containing nickel oxide represented by i 1.2 Ni 0.8 O 1.8 F 0.2 was used as a main component and particles having an average particle size of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0098】実施例6 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.8:0.8:0.4で混合し、純水酸素1気圧中に
て550℃に5時間保持し、650℃で20時間焼成し
た後、メノウ乳鉢で粉砕することにより組成式がLi
1.2 Ni0.8 1.650.35で表されるリチウム含有ニッ
ケル酸化物を主成分とし、平均粒径が8.5μmの粒子
を合成すること以外は、実施例1と同様な正極を作製し
た。この正極と、実施例1と同様な負極、参照電極及び
非水電解液を用いて前述した図5に示す正極評価用電池
を組み立てた。
Example 6 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.8: 0.8: 0.4, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water oxygen. After being held and calcined at 650 ° C. for 20 hours, the composition formula is Li by grinding in an agate mortar.
A positive electrode similar to that of Example 1 was produced, except that lithium-containing nickel oxide represented by 1.2 Ni 0.8 O 1.65 F 0.35 was used as a main component and particles having an average particle size of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0099】実施例7 LiOH・H2 OとNi(OH)2 とLiFをモル比
1.0:0.85:0.15で混合し、純水酸素1気圧
中にて550℃に5時間保持し、650℃で20時間焼
成した後、メノウ乳鉢で粉砕することにより組成式がL
1.15Ni0.851.850.12で表されるリチウム含有ニ
ッケル酸化物を主成分とし、平均粒径が8.5μmの粒
子を合成すること以外は、実施例1と同様な正極を作製
した。この正極と、実施例1と同様な負極、参照電極及
び非水電解液を用いて前述した図5に示す正極評価用電
池を組み立てた。
Example 7 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 1.0: 0.85: 0.15, and the mixture was heated to 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar, whereby the composition formula becomes L.
A positive electrode was produced in the same manner as in Example 1 except that lithium-containing nickel oxide represented by i 1.15 Ni 0.85 O 1.85 F 0.12 was mainly used and particles having an average particle diameter of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0100】実施例8 LiOH・H2 OとNi(OH)2 とLiFをモル比
1.0:0.9:0.1で混合し、純水酸素1気圧中に
て550℃に5時間保持し、650℃で20時間焼成し
た後、メノウ乳鉢で粉砕することにより組成式がLi
1.1 Ni0.9 1.920.09で表されるリチウム含有ニッ
ケル酸化物を主成分とし、平均粒径が8.5μmの粒子
を合成すること以外は、実施例1と同様な正極を作製し
た。この正極と、実施例1と同様な負極、参照電極及び
非水電解液を用いて前述した図5に示す正極評価用電池
を組み立てた。
Example 8 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 1.0: 0.9: 0.1, and the mixture was heated to 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the composition formula is Li by grinding in an agate mortar.
A positive electrode similar to that of Example 1 was produced except that particles containing lithium nickel oxide represented by 1.1 Ni 0.9 O 1.92 F 0.09 as a main component and having an average particle diameter of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0101】実施例9 LiOH・H2 OとNi(OH)2 とLiFをモル比
1.0:0.8:0.2で混合し、純水酸素1気圧中に
て550℃に5時間保持し、650℃で20時間焼成し
た後、メノウ乳鉢で粉砕することにより組成式がLi
1.2 Ni0.8 1.770.19で表されるリチウム含有ニッ
ケル酸化物を主成分とし、平均粒径が8.5μmの粒子
を合成すること以外は、実施例1と同様な正極を作製し
た。この正極と、実施例1と同様な負極、参照電極及び
非水電解液を用いて前述した図5に示す正極評価用電池
を組み立てた。
Example 9 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 1.0: 0.8: 0.2, and the mixture was heated to 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the composition formula is Li by grinding in an agate mortar.
A positive electrode similar to that of Example 1 was produced, except that particles containing lithium-containing nickel oxide represented by 1.2 Ni 0.8 O 1.77 F 0.19 as a main component and having an average particle diameter of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0102】比較例1 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.83:1.0:0.17で混合し、純水酸素1気圧
中にて550℃に5時間保持し、650℃で20時間焼
成した後、メノウ乳鉢で粉砕することにより組成式がL
iNiO1.850. 15で表されるリチウム含有ニッケル酸
化物を主成分とし、平均粒径が8.5μmの粒子を合成
すること以外は、実施例1と同様な正極を作製した。こ
の正極と、実施例1と同様な負極、参照電極及び非水電
解液を用いて前述した図5に示す正極評価用電池を組み
立てた。
Comparative Example 1 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.83: 1.0: 0.17, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar, whereby the composition formula becomes L.
The lithium-containing nickel oxide represented by iNiO 1.85 F 0. 15 as a main component, the average particle size except to synthesize particles of 8.5 .mu.m, was produced in the same manner as positive electrode as in Example 1. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0103】比較例2 LiOH・H2 OとNi(OH)2 をモル比1.02
5:0.975で混合し、純水酸素1気圧中にて550
℃に5時間保持し、650℃で20時間焼成した後、メ
ノウ乳鉢で粉砕することにより組成式がLi1.025 Ni
0.975 2 で表されるリチウム含有ニッケル酸化物を主
成分とし、平均粒径が8.5μmの粒子を合成すること
以外は、実施例1と同様な正極を作製した。この正極
と、実施例1と同様な負極、参照電極及び非水電解液を
用いて前述した図5に示す正極評価用電池を組み立て
た。
Comparative Example 2 LiOH.H 2 O and Ni (OH) 2 in a molar ratio of 1.02
5: 0.975 and mixed in pure water at 1 atm.
° C. To 5 hours, after firing at 650 ° C. 20 hours, the composition formula by grinding in an agate mortar Li 1.025 Ni
A positive electrode was produced in the same manner as in Example 1, except that lithium-containing nickel oxide represented by 0.975 O 2 was a main component and particles having an average particle size of 8.5 μm were synthesized. Using the positive electrode, the negative electrode, the reference electrode, and the non-aqueous electrolyte similar to those in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0104】比較例3 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.85:0.95:0.2で混合し、純水酸素1気圧
中にて550℃に5時間保持し、650℃で20時間焼
成した後、メノウ乳鉢で粉砕することにより組成式がL
1.05Ni0.951.830.17で表されるリチウム含有ニ
ッケル酸化物を主成分とし、平均粒径が8.5μmの粒
子を合成すること以外は、実施例1と同様な正極を作製
した。この正極と、実施例1と同様な負極、参照電極及
び非水電解液を用いて前述した図5に示す正極評価用電
池を組み立てた。
Comparative Example 3 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.85: 0.95: 0.2, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar, whereby the composition formula becomes L.
A positive electrode similar to that of Example 1 was produced except that lithium-containing nickel oxide represented by i 1.05 Ni 0.95 O 1.83 F 0.17 was mainly used and particles having an average particle size of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0105】比較例4 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.85:0.9:0.25で混合し、純水酸素1気圧
中にて550℃に5時間保持し、650℃で20時間焼
成した後、メノウ乳鉢で粉砕することにより組成式がL
1.1 Ni0.9 1.790.21で表されるリチウム含有ニ
ッケル酸化物を主成分とし、平均粒径が8.5μmの粒
子を合成すること以外は、実施例1と同様な正極を作製
した。この正極と、実施例1と同様な負極、参照電極及
び非水電解液を用いて前述した図5に示す正極評価用電
池を組み立てた。
Comparative Example 4 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.85: 0.9: 0.25, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar, whereby the composition formula becomes L.
A positive electrode similar to that of Example 1 was produced except that lithium-containing nickel oxide represented by i 1.1 Ni 0.9 O 1.79 F 0.21 was mainly used and particles having an average particle size of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0106】比較例5 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.75:0.9:0.35で混合し、純水酸素1気圧
中にて550℃に5時間保持し、650℃で20時間焼
成した後、メノウ乳鉢で粉砕することにより組成式がL
1.1 Ni0.9 1.7 0.3 で表されるリチウム含有ニ
ッケル酸化物を主成分とし、平均粒径が8.5μmの粒
子を合成すること以外は、実施例1と同様な正極を作製
した。この正極と、実施例1と同様な負極、参照電極及
び非水電解液を用いて前述した図5に示す正極評価用電
池を組み立てた。
Comparative Example 5 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.75: 0.9: 0.35, and the mixture was heated to 550 ° C. for 5 hours in one atmosphere of pure water oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar, whereby the composition formula becomes L.
A positive electrode similar to that of Example 1 was produced except that lithium-containing nickel oxide represented by i 1.1 Ni 0.9 O 1.7 F 0.3 was used as a main component and particles having an average particle size of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0107】比較例6 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.75:0.85:0.4で混合し、純水酸素1気圧
中にて550℃に5時間保持し、650℃で20時間焼
成した後、メノウ乳鉢で粉砕することにより組成式がL
1.15Ni0.851.620.38で表されるリチウム含有ニ
ッケル酸化物を主成分とし、平均粒径が8.5μmの粒
子を合成すること以外は、実施例1と同様な正極を作製
した。この正極と、実施例1と同様な負極、参照電極及
び非水電解液を用いて前述した図5に示す正極評価用電
池を組み立てた。
Comparative Example 6 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.75: 0.85: 0.4, and the mixture was heated to 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar, whereby the composition formula becomes L.
A positive electrode was produced in the same manner as in Example 1 except that lithium-containing nickel oxide represented by i 1.15 Ni 0.85 O 1.62 F 0.38 was used as a main component and particles having an average particle size of 8.5 μm were synthesized. Using the positive electrode, the negative electrode, the reference electrode, and the non-aqueous electrolyte similar to those in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0108】比較例7 LiOH・H2 OとNi(OH)2 とをモル比1.1
5:0.85で混合し、純水酸素1気圧中にて550℃
に5時間保持し、650℃で20時間焼成した後、メノ
ウ乳鉢で粉砕することにより組成式がLi1.15Ni0.85
2 で表されるリチウム含有ニッケル酸化物を主成分と
し、平均粒径が8.5μmの粒子を合成すること以外
は、実施例1と同様な正極を作製した。この正極と、実
施例1と同様な負極、参照電極及び非水電解液を用いて
前述した図5に示す正極評価用電池を組み立てた。
Comparative Example 7 The molar ratio of LiOH.H 2 O to Ni (OH) 2 was 1.1.
5: 0.85, 550 ° C. in 1 atm of pure water oxygen
And calcined at 650 ° C. for 20 hours, and then pulverized in an agate mortar to obtain a composition formula of Li 1.15 Ni 0.85
A positive electrode was produced in the same manner as in Example 1, except that lithium-containing nickel oxide represented by O 2 was a main component and particles having an average particle size of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0109】比較例8 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.8:0.85:0.35で混合し、純水酸素1気圧
中にて550℃に5時間保持し、650℃で20時間焼
成した後、メノウ乳鉢で粉砕することにより組成式がL
1.15Ni0.851.7 0.3 で表されるリチウム含有ニ
ッケル酸化物を主成分とし、平均粒径が8.5μmの粒
子を合成すること以外は、実施例1と同様な正極を作製
した。この正極と、実施例1と同様な負極、参照電極及
び非水電解液を用いて前述した図5に示す正極評価用電
池を組み立てた。
Comparative Example 8 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.8: 0.85: 0.35, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After being held and calcined at 650 ° C. for 20 hours, the mixture is pulverized in an agate mortar, whereby the composition formula becomes L.
A positive electrode was produced in the same manner as in Example 1 except that lithium-containing nickel oxide represented by i 1.15 Ni 0.85 O 1.7 F 0.3 was used as a main component and particles having an average particle size of 8.5 μm were synthesized. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0110】実施例1〜9及び比較例1〜8の電池に充
電を電流値1mAで4.2Vに達するまで行った後、3
0分間電流を停止し、次に放電を電流値1mAで3.0
Vに達するまで行い、再び30分電流を停止するサイク
ルを繰り返し、そのサイクル回数による放電容量の変化
を測定し、初期充電容量と100サイクル目の放電容量
を下記表2に示す。
The batteries of Examples 1 to 9 and Comparative Examples 1 to 8 were charged until the current reached 4.2 V at a current value of 1 mA.
The current was stopped for 0 minutes, and then the discharge was performed at a current value of 1 mA for 3.0 minutes.
The cycle is repeated until the voltage reaches V, and the current is stopped again for 30 minutes. Changes in the discharge capacity according to the number of cycles are measured, and the initial charge capacity and the discharge capacity at the 100th cycle are shown in Table 2 below.

【0111】[0111]

【表2】 [Table 2]

【0112】表2から明らかなように、実施例1〜9の
電池は、比較例1〜8の電池に比べてサイクル寿命が優
れていることがわかる。これは、表1及び図5からわか
るように、実施例1〜9の電池は、正極活物質として組
成式Li1+x Ni1-x u-yy 、前記x,前記y及び
前記uが下記(1)〜(3)式を同時に満たす、 (y+0.05)/2≦x<(y+1)/3 …(1) y>0 …(2) 1.9≦u≦2.1 …(3) で表されるリチウム含有ニッケル酸化物を用いたためで
ある。
As is clear from Table 2, the batteries of Examples 1 to 9 have better cycle life than the batteries of Comparative Examples 1 to 8. As can be seen from Table 1 and FIG. 5, in the batteries of Examples 1 to 9, the composition formula Li 1 + x Ni 1-x O uy F y as the positive electrode active material, x, y, and u were used. (Y + 0.05) / 2 ≦ x <(y + 1) / 3 (1) y> 0 (2) 1.9 ≦ u ≦ 2.1 ((1) to (3)) 3) This is because a lithium-containing nickel oxide represented by the following formula was used.

【0113】これに対し、比較例1〜8の電池のサイク
ル寿命が短いのは、表1及び図4から明らかなように、
正極活物質として前記(1)〜(3)式を満たす領域か
ら外れる組成のリチウム含有複合酸化物を用いたからで
ある。
On the other hand, the short cycle life of the batteries of Comparative Examples 1 to 8 is apparent from Table 1 and FIG.
This is because, as the positive electrode active material, a lithium-containing composite oxide having a composition outside the range satisfying the above formulas (1) to (3) was used.

【0114】また、実施例1及び比較例2の電池につい
て、充電を電流値1mAで4.2Vに達するまで行った
後、30分間電流を停止し、次に放電を電流値1mAで
3.0Vに達するまで行い、再び30分電流を停止する
サイクルを繰り返し、30サイクル目までの放電容量を
測定し、その結果を図6に示す。
Further, after charging the batteries of Example 1 and Comparative Example 2 until the voltage reached 4.2 V at a current value of 1 mA, the current was stopped for 30 minutes, and then discharging was performed at a current value of 3.0 mA at a current value of 1 mA. , The cycle of stopping the current again for 30 minutes is repeated, and the discharge capacity up to the 30th cycle is measured. The result is shown in FIG.

【0115】図6から明らかなように、前述した組成式
Li1+x Ni1-x u-y y で表されるリチウム含有ニ
ッケル酸化物を含む正極を備えた実施例1の電池は、3
0サイクルに亘り高容量を維持できることがわかる。こ
れに対し、比較例2の電池は、初期容量は実施例1に比
べて高いものの、30サイクル目の放電容量が実施例1
に比べて低いことがわかる。これは、正極活物質として
Li1.025 Ni0.9752 を用いたからである。
As is apparent from FIG. 6, the battery of Example 1 provided with the positive electrode containing the lithium-containing nickel oxide represented by the above-described composition formula Li 1 + x Ni 1-x O Uy F y has a capacity of 3
It can be seen that high capacity can be maintained over 0 cycles. In contrast, the battery of Comparative Example 2 had a higher initial capacity than that of Example 1, but had a discharge capacity at the 30th cycle of Example 1.
It turns out that it is low compared with. This is because using the Li 1.025 Ni 0.975 O 2 as the positive electrode active material.

【0116】以下の実施例において正極活物質として使
用するリチウム含有ニッケル酸化物の組成式を下記表3
に示す。また、これら酸化物の組成の分布を図7に示
す。
The composition formula of the lithium-containing nickel oxide used as the positive electrode active material in the following examples is shown in Table 3 below.
Shown in FIG. 7 shows the distribution of the composition of these oxides.

【0117】[0117]

【表3】 [Table 3]

【0118】実施例10 LiOH・H2 OとNi(OH)2 とLiFをモル比
1.0:0.95:0.05で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.05Ni0.951.960.04で表されるリチウム含有ニ
ッケル酸化物を主成分とする粒子を作製した。得られた
粒子の平均粒径は8.5μmであった。一方、リチウム
硝酸塩及びコバルト硝酸塩からなる1モル/lの混合水
溶液を調製した。なお、この混合水溶液に含まれるリチ
ウムとコバルトのモル比は1:1にした。前記粒子1モ
ルに前記混合水溶液5ccを添加し、この溶液を前記粒
子に十分に染み込ませた後、純水酸素1気圧中にて55
0℃で20時間焼成することにより前記粒子の表面全体
にエピタキシャル成長によってLiCoO2 を主成分と
する膜(厚さが20nm)を形成した。前記膜のLiC
oO2 は、c軸の向きが前記Li1.05Ni0.951.96
0.04のc軸の向きと同じである結晶構造を有するもので
あった。
Example 10 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 1.0: 0.95: 0.05, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
Particles mainly composed of lithium-containing nickel oxide represented by i 1.05 Ni 0.95 O 1.96 F 0.04 were produced. The average particle size of the obtained particles was 8.5 μm. On the other hand, a 1 mol / l mixed aqueous solution composed of lithium nitrate and cobalt nitrate was prepared. The molar ratio of lithium and cobalt contained in the mixed aqueous solution was 1: 1. 5 mol of the mixed aqueous solution was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles.
By baking at 0 ° C. for 20 hours, a film (thickness: 20 nm) containing LiCoO 2 as a main component was formed on the entire surface of the particles by epitaxial growth. LiC of the film
oO 2 has a c-axis orientation of the above Li 1.05 Ni 0.95 O 1.96 F
It had the same crystal structure as the c-axis orientation of 0.04 .

【0119】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0120】実施例11 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.98:0.9:0.12で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.1 Ni0.9 1.9 0.1 で表されるリチウム含有ニ
ッケル酸化物を主成分とする粒子を作製した。得られた
粒子の平均粒径は8.5μmであった。前記粒子1モル
に実施例10と同様な組成の混合水溶液5ccを添加
し、この溶液を前記粒子に十分に染み込ませた後、純水
酸素1気圧中にて550℃で20時間焼成することによ
り前記粒子の表面全体にエピタキシャル成長によってL
iCoO2 を主成分とする膜(厚さが20nm)を形成
した。前記膜のLiCoO2 は、c軸の向きが前記Li
1.1 Ni0.9 1.9 0.1 のc軸の向きと同じである結
晶構造を有するものであった。
Example 11 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.98: 0.9: 0.12, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
Particles mainly composed of lithium-containing nickel oxide represented by i 1.1 Ni 0.9 O 1.9 F 0.1 were produced. The average particle size of the obtained particles was 8.5 μm. 5 mol of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atm of pure water oxygen. L is epitaxially grown on the entire surface of the particles.
A film (thickness: 20 nm) containing iCoO 2 as a main component was formed. LiCoO 2 of the film has a c-axis direction of Li
It had a crystal structure that was the same as the direction of the c-axis of 1.1 Ni 0.9 O 1.9 F 0.1 .

【0121】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0122】実施例12 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.9:0.9:0.2で混合し、純水酸素1気圧中に
て550℃で5時間保持した後、650℃で20時間焼
成し、メノウ乳鉢で粉砕することにより組成式がLi
1.1 Ni0.9 1.830.17で表されるリチウム含有ニッ
ケル酸化物を主成分とする粒子を作製した。得られた粒
子の平均粒径は8.5μmであった。前記粒子1モルに
実施例10と同様な組成の混合水溶液5ccを添加し、
この溶液を前記粒子に十分に染み込ませた後、純水酸素
1気圧中にて550℃で20時間焼成することによって
前記粒子の表面全体にエピタキシャル成長によってLi
CoO2 を主成分とする膜(厚さが20nm)を形成し
た。前記膜のLiCoO2 は、c軸の向きが前記Li1.
1 Ni0.9 1.830.17のc軸の向きと同じである結晶
構造を有するものであった。
Example 12 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.9: 0.9: 0.2, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, baked at 650 ° C. for 20 hours and pulverized in an agate mortar, whereby the composition formula is Li
Particles mainly composed of lithium-containing nickel oxide represented by 1.1 Ni 0.9 O 1.83 F 0.17 were produced. The average particle size of the obtained particles was 8.5 μm. 5 cc of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles,
After the solution is sufficiently impregnated into the particles, the particles are calcined at 550 ° C. for 20 hours in 1 atm of pure water and oxygen, and Li is epitaxially grown on the entire surface of the particles by Li.
A film (thickness: 20 nm) containing CoO 2 as a main component was formed. LiCoO 2 of the film has a c-axis orientation of the Li 1.
1 Ni 0.9 O 1.83 F 0.17 had the same crystal structure as the direction of the c-axis.

【0123】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was prepared in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0124】実施例13 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.98:0.85:0.17で混合し、純水酸素1気
圧中にて550℃で5時間保持した後、650℃で20
時間焼成し、メノウ乳鉢で粉砕することにより組成式が
Li1.15Ni0.851.850.15で表されるリチウム含有
ニッケル酸化物を主成分とする粒子を作製した。得られ
た粒子の平均粒径は8.5μmであった。前記粒子1モ
ルに実施例10と同様な組成の混合水溶液5ccを添加
し、この溶液を前記粒子に十分に染み込ませた後、純水
酸素1気圧中にて550℃で20時間焼成することによ
って前記粒子の表面全体にエピタキシャル成長によって
LiCoO2 を主成分とする膜(厚さが20nm)を形
成した。前記膜のLiCoO2 は、c軸の向きが前記L
1.15Ni0.851.850.15のc軸の向きと同じである
結晶構造を有するものであった。
Example 13 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.98: 0.85: 0.17, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, 20 minutes at 650 ° C
The particles were baked for a period of time and pulverized in an agate mortar to produce particles mainly composed of lithium-containing nickel oxide represented by a composition formula of Li 1.15 Ni 0.85 O 1.85 F 0.15 . The average particle size of the obtained particles was 8.5 μm. 5 mol of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atmosphere of pure water oxygen. A film (thickness: 20 nm) containing LiCoO 2 as a main component was formed on the entire surface of the particles by epitaxial growth. LiCoO 2 of the film has a c-axis orientation of the L
It had the same crystal structure as the direction of the c-axis of i 1.15 Ni 0.85 O 1.85 F 0.15 .

【0125】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0126】実施例14 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.8:0.85:0.35で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.15Ni0.851.7 0.3 で表されるリチウム含有ニ
ッケル酸化物を主成分とする粒子を作製した。得られた
粒子の平均粒径は8.5μmであった。前記粒子1モル
に実施例10と同様な組成の混合水溶液5ccを添加
し、この溶液を前記粒子に十分に染み込ませた後、純水
酸素1気圧中にて550℃で20時間焼成することによ
り前記粒子の表面全体にエピタキシャル成長によってL
iCoO2 を主成分とする膜(厚さが20nm)のを形
成した。前記膜のLiCoO2 は、c軸の向きが前記L
1.15Ni0.851.7 0.3 のc軸の向きと同じである
結晶構造を有するものであった。
Example 14 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.8: 0.85: 0.35, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
Particles mainly composed of lithium-containing nickel oxide represented by i 1.15 Ni 0.85 O 1.7 F 0.3 were produced. The average particle size of the obtained particles was 8.5 μm. 5 mol of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in one atmosphere of pure water oxygen. L is epitaxially grown on the entire surface of the particles.
A film (thickness: 20 nm) containing iCoO 2 as a main component was formed. LiCoO 2 of the film has a c-axis orientation of the L
It had the same crystal structure as the direction of the c-axis of i 1.15 Ni 0.85 O 1.7 F 0.3 .

【0127】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0128】実施例15 LiOH・H2 OとNi(OH)2 とLiFをモル比
1.14:0.8:0.06で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.2 Ni0.8 1.950.05で表されるリチウム含有ニ
ッケル酸化物を主成分とする粒子を作製した。得られた
粒子の平均粒径は8.5μmであった。前記粒子1モル
に実施例10と同様な組成の混合水溶液5ccを添加
し、この溶液を前記粒子に十分に染み込ませた後、純水
酸素1気圧中にて550℃で20時間焼成することによ
って前記粒子の表面全体にエピタキシャル成長によって
LiCoO2 を主成分とする膜(厚さが20nm)を形
成した。前記膜のLiCoO2 は、c軸の向きが前記L
1.2 Ni0.8 1.950.05のc軸の向きと同じである
結晶構造を有するものであった。
Example 15 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 1.14: 0.8: 0.06, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
Particles mainly composed of lithium-containing nickel oxide represented by i 1.2 Ni 0.8 O 1.95 F 0.05 were produced. The average particle size of the obtained particles was 8.5 μm. 5 mol of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atm of pure water oxygen. A film (thickness: 20 nm) containing LiCoO 2 as a main component was formed on the entire surface of the particles by epitaxial growth. LiCoO 2 of the film has a c-axis orientation of the L
It had the same crystal structure as the direction of the c-axis of i 1.2 Ni 0.8 O 1.95 F 0.05 .

【0129】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0130】実施例16 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.95:0.8:0.25で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.2 Ni0.8 1.8 0.2 で表されるリチウム含有ニ
ッケル酸化物を主成分とする粒子を作製した。得られた
粒子の平均粒径は8.5μmであった。前記粒子1モル
に実施例10と同様な組成の混合水溶液5ccを添加
し、この溶液を前記粒子に十分に染み込ませた後、純水
酸素1気圧中にて550℃で20時間焼成することによ
って前記粒子の表面全体にエピタキシャル成長によって
LiCoO2 を主成分とする膜(厚さが20nm)を形
成した。前記膜のLiCoO2 は、c軸の向きが前記L
1.2 Ni0.8 1.8 0.2 のc軸の向きと同じである
結晶構造を有するものであった。
Example 16 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.95: 0.8: 0.25, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
Particles mainly composed of lithium-containing nickel oxide represented by i 1.2 Ni 0.8 O 1.8 F 0.2 were produced. The average particle size of the obtained particles was 8.5 μm. 5 mol of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atm of pure water oxygen. A film (thickness: 20 nm) containing LiCoO 2 as a main component was formed on the entire surface of the particles by epitaxial growth. LiCoO 2 of the film has a c-axis orientation of the L
It had the same crystal structure as the direction of the c-axis of i 1.2 Ni 0.8 O 1.8 F 0.2 .

【0131】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0132】実施例17 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.8:0.8:0.4で混合し、純水酸素1気圧中に
て550℃で5時間保持した後、650℃で20時間焼
成し、メノウ乳鉢で粉砕することにより組成式がLi
1.2 Ni0.8 1.650.35で表されるリチウム含有ニッ
ケル酸化物を主成分とする粒子を作製した。得られた粒
子の平均粒径は8.5μmであった。前記粒子1モルに
実施例10と同様な組成の混合水溶液5ccを添加し、
この溶液を前記粒子に十分に染み込ませた後、純水酸素
1気圧中にて550℃で20時間焼成することにより前
記粒子の表面全体にエピタキシャル成長によってLiC
oO2 を主成分とする膜(厚さが20nm)を形成し
た。前記膜のLiCoO2 は、c軸の向きが前記Li
1.2Ni0.8 1.650.35のc軸の向きと同じである結
晶構造を有するものであった。
Example 17 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed in a molar ratio of 0.8: 0.8: 0.4, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, baked at 650 ° C. for 20 hours and pulverized in an agate mortar, whereby the composition formula is Li
Particles mainly composed of lithium-containing nickel oxide represented by 1.2 Ni 0.8 O 1.65 F 0.35 were produced. The average particle size of the obtained particles was 8.5 μm. 5 cc of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles,
After the solution is sufficiently impregnated into the particles, the particles are calcined at 550 ° C. for 20 hours in one atmosphere of pure water and oxygen, whereby LiC is epitaxially grown on the entire surface of the particles.
A film containing oO 2 as a main component (having a thickness of 20 nm) was formed. LiCoO 2 of the film has a c-axis direction of Li
It had the same crystal structure as the direction of the c-axis of 1.2 Ni 0.8 O 1.65 F 0.35 .

【0133】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0134】比較例9 LiOH・H2 OとNi(OH)2 をモル比1.15:
0.85で混合し、純水酸素1気圧中にて550℃で5
時間保持した後、650℃で20時間焼成し、メノウ乳
鉢で粉砕することにより組成式がLi1.15Ni0.852
で表されるリチウム含有ニッケル酸化物を主成分とする
粒子を作製した。得られた粒子の平均粒径は8.5μm
であった。前記粒子1モルに実施例10と同様な組成の
混合水溶液5ccを添加し、この溶液を前記粒子に十分
に染み込ませた後、純水酸素1気圧中にて550℃で2
0時間焼成することにより前記粒子の表面全体にエピタ
キシャル成長によってLiCoO2 を主成分とする膜
(厚さが20nm)を形成した。前記膜のLiCoO2
は、c軸の向きが前記Li1.15Ni0.852 c軸の向き
と同じである結晶構造を有するものであった。
Comparative Example 9 The molar ratio of LiOH.H 2 O to Ni (OH) 2 was 1.15:
0.85 and mixed at 550 ° C. in 1 atmosphere of pure water oxygen.
After holding for a period of time, the mixture was calcined at 650 ° C. for 20 hours and pulverized in an agate mortar to give a composition formula of Li 1.15 Ni 0.85 O 2
Particles containing a lithium-containing nickel oxide represented by the following formula as a main component were produced. The average particle size of the obtained particles is 8.5 μm.
Met. 5 mol of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles.
By firing for 0 hours, a film (thickness: 20 nm) containing LiCoO 2 as a main component was formed on the entire surface of the particles by epitaxial growth. LiCoO 2 of the film
Had a crystal structure in which the direction of the c-axis was the same as the direction of the Li 1.15 Ni 0.85 O 2 c-axis.

【0135】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0136】比較例10 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.85:1.0:0.15で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
iNiO1.850. 15で表されるリチウム含有ニッケル酸
化物を主成分とする粒子を作製した。得られた粒子の平
均粒径は8.5μmであった。前記粒子1モルに実施例
10と同様な組成の混合水溶液5ccを添加し、この溶
液を前記粒子に十分に染み込ませた後、純水酸素1気圧
中にて550℃で20時間焼成することにより前記粒子
の表面全体にエピタキシャル成長によってLiCoO2
を主成分とする膜(厚さが20nm)を形成した。前記
膜のLiCoO2 は、c軸の向きが前記LiNiO1. 85
0.15のc軸の向きと同じである結晶構造を有するもの
であった。
Comparative Example 10 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.85: 1.0: 0.15, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
The lithium-containing nickel oxide represented by iNiO 1.85 F 0. 15 to prepare particles consisting mainly. The average particle size of the obtained particles was 8.5 μm. 5 mol of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. LiCoO 2 is epitaxially grown on the entire surface of the particles.
Was formed (having a thickness of 20 nm). LiCoO 2 of the membrane, the orientation of the c-axis is the LiNiO 1. 85
The crystal had the same crystal structure as that of the c-axis of F 0.15 .

【0137】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0138】比較例11 LiOH・H2 OとNi(OH)2 をモル比1.02
5:0.975で混合し、純水酸素1気圧中にて550
℃で5時間保持した後、650℃で20時間焼成し、メ
ノウ乳鉢で粉砕することにより組成式がLi1.025 Ni
0.975 2 表されるリチウム含有ニッケル酸化物を主成
分とする粒子を作製した。得られた粒子の平均粒径は
8.5μmであった。前記粒子1モルに実施例10と同
様な組成の混合水溶液5ccを添加し、この溶液を前記
粒子に十分に染み込ませた後、純水酸素1気圧中にて6
50℃で20時間焼成することにより前記粒子の表面全
体にエピタキシャル成長によってLiCoO2 を主成分
とする膜(厚さが20nm)を形成した。前記膜のLi
CoO2 は、c軸の向きが前記Li1.025 Ni0.975
2 のc軸の向きと同じである結晶構造を有するものであ
った。
Comparative Example 11 The molar ratio of LiOH.H 2 O to Ni (OH) 2 was 1.02.
5: 0.975 and mixed in pure water at 1 atm.
After 5 hours at ° C., and calcined at 650 ° C. 20 hours, the composition formula by grinding in an agate mortar Li 1.025 Ni
Particles mainly composed of lithium-containing nickel oxide represented by 0.975 O 2 were produced. The average particle size of the obtained particles was 8.5 μm. 5 mol of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles.
By baking at 50 ° C. for 20 hours, a film (thickness: 20 nm) containing LiCoO 2 as a main component was formed on the entire surface of the particles by epitaxial growth. Li of the film
CoO 2 has a c-axis orientation of the above Li 1.025 Ni 0.975 O
It had the same crystal structure as the direction of the c-axis of 2 .

【0139】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0140】比較例12 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.85:0.95:0.2で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.05Ni0.951.830.17表されるリチウム含有ニッ
ケル酸化物を主成分とする粒子を作製した。得られた粒
子の平均粒径は8.5μmであった。前記粒子1モルに
実施例10と同様な組成の混合水溶液5ccを添加し、
この溶液を前記粒子に十分に染み込ませた後、純水酸素
1気圧中にて550℃で20時間焼成することにより前
記粒子の表面全体にエピタキシャル成長によってLiC
oO2 を主成分とする膜(厚さが20nm)を形成し
た。前記膜のLiCoO2 は、c軸の向きが前記Li1.
05Ni0.951.830.17のc軸の向きと同じである結晶
構造を有するものであった。
Comparative Example 12 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.85: 0.95: 0.2, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
Particles mainly composed of lithium-containing nickel oxide represented by i 1.05 Ni 0.95 O 1.83 F 0.17 were produced. The average particle size of the obtained particles was 8.5 μm. 5 cc of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles,
After the solution is sufficiently impregnated into the particles, the particles are calcined at 550 ° C. for 20 hours in one atmosphere of pure water and oxygen, whereby LiC is epitaxially grown on the entire surface of the particles.
A film containing oO 2 as a main component (having a thickness of 20 nm) was formed. LiCoO 2 of the film has a c-axis orientation of the Li 1.
05 Ni 0.95 O 1.83 F 0.17 had the same crystal structure as the c-axis direction.

【0141】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0142】比較例13 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.85:0.9:0.25で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.1 Ni0.9 1.790.21表されるリチウム含有ニッ
ケル酸化物を主成分とする粒子を作製した。得られた粒
子の平均粒径は8.5μmであった。前記粒子1モルに
実施例10と同様な組成の混合水溶液5ccを添加し、
この溶液を前記粒子に十分に染み込ませた後、純水酸素
1気圧中にて550℃で20時間焼成することにより前
記粒子の表面全体にエピタキシャル成長によってLiC
oO2 を主成分とする膜(厚さが20nm)を形成し
た。前記膜のLiCoO2 は、c軸の向きが前記Li1.
1 Ni0.9 1.790.21のc軸の向きと同じである結晶
構造を有するものであった。
Comparative Example 13 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.85: 0.9: 0.25, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
Particles mainly composed of lithium-containing nickel oxide represented by i 1.1 Ni 0.9 O 1.79 F 0.21 were produced. The average particle size of the obtained particles was 8.5 μm. 5 cc of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles,
After the solution is sufficiently impregnated into the particles, the particles are calcined at 550 ° C. for 20 hours in one atmosphere of pure water and oxygen, whereby LiC is epitaxially grown on the entire surface of the particles.
A film containing oO 2 as a main component (having a thickness of 20 nm) was formed. LiCoO 2 of the film has a c-axis orientation of the Li 1.
It had a crystal structure is the same as 1 Ni 0.9 O 1.79 F 0.21 c-axis orientation of the.

【0143】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0144】比較例14 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.75:0.9:0.35で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.1 Ni0.9 1.7 0.3 表されるリチウム含有ニッ
ケル酸化物を主成分とする粒子を作製した。得られた粒
子の平均粒径は8.5μmであった。前記粒子1モルに
実施例10と同様な組成の混合水溶液5ccを添加し、
この溶液を前記粒子に十分に染み込ませた後、純水酸素
1気圧中にて550℃で20時間焼成することにより前
記粒子の表面全体にエピタキシャル成長によってLiC
oO2 を主成分とする膜(厚さが20nm)を形成し
た。前記膜のLiCoO2 は、c軸の向きが前記Li1.
1 Ni0.9 1.7 0.3 のc軸の向きと同じである結晶
構造を有するものであった。
Comparative Example 14 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.75: 0.9: 0.35, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
Particles mainly composed of lithium-containing nickel oxide represented by i 1.1 Ni 0.9 O 1.7 F 0.3 were prepared. The average particle size of the obtained particles was 8.5 μm. 5 cc of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles,
After the solution is sufficiently impregnated into the particles, the particles are calcined at 550 ° C. for 20 hours in one atmosphere of pure water and oxygen, whereby LiC is epitaxially grown on the entire surface of the particles.
A film containing oO 2 as a main component (having a thickness of 20 nm) was formed. LiCoO 2 of the film has a c-axis orientation of the Li 1.
1 Ni 0.9 O 1.7 F 0.3 had the same crystal structure as the direction of the c-axis.

【0145】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0146】比較例15 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.75:0.85:0.4で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.15Ni0.851.620.38表されるリチウム含有ニッ
ケル酸化物を主成分とする粒子を作製した。得られた粒
子の平均粒径は8.5μmであった。前記粒子1モルに
実施例10と同様な組成の混合水溶液5ccを添加し、
この溶液を前記粒子に十分に染み込ませた後、純水酸素
1気圧中にて550℃で20時間焼成することにより前
記粒子の表面全体にエピタキシャル成長によってLiC
oO2 を主成分とする膜(厚さが20nm)を形成し
た。前記膜のLiCoO2 は、c軸の向きが前記Li1.
15Ni0.851.620.38のc軸の向きと同じである結晶
構造を有するものであった。
Comparative Example 15 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.75: 0.85: 0.4, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
i 1.15 Ni 0.85 O 1.62 F 0.38 Particles containing lithium-containing nickel oxide as a main component were prepared. The average particle size of the obtained particles was 8.5 μm. 5 cc of a mixed aqueous solution having the same composition as in Example 10 was added to 1 mol of the particles,
After the solution is sufficiently impregnated into the particles, the particles are calcined at 550 ° C. for 20 hours in one atmosphere of pure water and oxygen, whereby LiC is epitaxially grown on the entire surface of the particles.
A film containing oO 2 as a main component (having a thickness of 20 nm) was formed. LiCoO 2 of the film has a c-axis orientation of the Li 1.
It had a crystal structure is the same as the 15 Ni 0.85 O 1.62 F 0.38 c-axis orientation of the.

【0147】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0148】実施例10〜17及び比較例9〜15の電
池に充電を電流値1mAで4.2Vに達するまで行った
後、30分間電流を停止し、次に放電を電流値1mAで
3.0Vに達するまで行い、再び30分電流を停止する
サイクルを繰り返し、そのサイクル回数による放電容量
の変化を測定し、初期充電容量と100サイクル目の放
電容量を下記表4に示す。
After charging the batteries of Examples 10 to 17 and Comparative Examples 9 to 15 at 4.2 mA at a current value of 1 mA, the current was stopped for 30 minutes, and then discharging was performed at a current value of 1 mA. The cycle is repeated until the voltage reaches 0 V, and the current is stopped again for 30 minutes. Changes in the discharge capacity according to the number of cycles are measured. The initial charge capacity and the discharge capacity at the 100th cycle are shown in Table 4 below.

【0149】[0149]

【表4】 [Table 4]

【0150】表4から明らかなように、実施例10〜1
7の電池は、比較例9〜15の電池に比べて充放電サイ
クル寿命が優れていることがわかる。これは、表3及び
図7に示すように、実施例10〜17の電池の正極が2
つの特徴を満たす粒子、すなわち、前記(4)〜(7)
式を同時に満足する組成を有するリチウム含有ニッケル
酸化物を主体とし、表面全体にLiCoO2 を主成分と
する膜が形成された粒子を活物質として含むからであ
る。
As apparent from Table 4, Examples 10 to 1
It can be seen that the battery of No. 7 has a better charge / discharge cycle life than the batteries of Comparative Examples 9 to 15. This is because, as shown in Table 3 and FIG.
Particles satisfying the two characteristics, ie, the above (4) to (7)
This is because particles containing a lithium-containing nickel oxide having a composition that satisfies the formula at the same time as a main component, and a film having LiCoO 2 as a main component formed on the entire surface are included as an active material.

【0151】 y/2≦x<(y+1)/3 ……(4) y>0 ……(5) x≧0.05 ……(6) 1.9≦u≦2.1 ……(7) これに対し、比較例9〜15の電池のサイクル寿命が短
いのは、これらの電池の正極が前記(4)〜(7)式で
定められた領域から外れる組成を有するリチウム含有ニ
ッケル酸化物を主体とする粒子を含むからである。
Y / 2 ≦ x <(y + 1) / 3 (4) y> 0 (5) x ≧ 0.05 (6) 1.9 ≦ u ≦ 2.1 (7) On the other hand, the cycle life of the batteries of Comparative Examples 9 to 15 is short because the lithium-containing nickel oxide having a composition in which the positive electrodes of these batteries are out of the range defined by the above formulas (4) to (7) It is because particles mainly composed of

【0152】実施例18 実施例10と同様な方法により組成式がLi1.05Ni
0.951.960.04で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。一方、リチウム硝酸塩及びアルミニウム硝酸塩から
なる1モル/lの混合水溶液を調製した。なお、この混
合水溶液に含まれるリチウムとアルミニウムのモル比は
1:1にした。前記粒子1モルに前記混合水溶液5cc
を添加し、この溶液を前記粒子に十分に染み込ませた
後、純水酸素1気圧中にて550℃で20時間焼成する
ことにより前記粒子の表面全体にエピタキシャル成長に
よってLiAlO2 を主成分とする膜(厚さが20n
m)を形成した。前記膜のLiAlO2 は、c軸の向き
が前記Li1.05Ni0.951.960.04のc軸の向きと同
じである結晶構造を有するものであった。
Example 18 A composition formula of Li 1.05 Ni was obtained in the same manner as in Example 10.
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.95 O 1.96 F 0.04 as a main component were produced. On the other hand, a 1 mol / l mixed aqueous solution comprising lithium nitrate and aluminum nitrate was prepared. The molar ratio of lithium and aluminum contained in the mixed aqueous solution was 1: 1. 5 cc of the mixed aqueous solution per 1 mol of the particles
Is added, and this solution is sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atm of pure water and oxygen to form a film containing LiAlO 2 as a main component by epitaxial growth on the entire surface of the particles. (The thickness is 20n
m) was formed. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.05 Ni 0.95 O 1.96 F 0.04 .

【0153】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0154】実施例19 実施例11と同様な方法により組成式がLi1.1 Ni
0.9 1.9 0.1 で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLiAlO2 を主成分とする膜(厚さが
20nm)を形成した。前記膜のLiAlO2 は、c軸
の向きが前記Li1.1 Ni0.9 1.9 0.1 のc軸の向
きと同じである結晶構造を有するものであった。
Example 19 By a method similar to that in Example 11, the composition formula was Li 1.1 Ni
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.9 O 1.9 F 0.1 were prepared. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.1 Ni 0.9 O 1.9 F 0.1 .

【0155】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0156】実施例20 実施例12と同様な方法により組成式がLi1.1 Ni
0.9 1.830.17で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することによって前記粒子の表面全体にエピタキシ
ャル成長によってLiAlO2 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLiAlO2 は、c
軸の向きが前記Li1.1 Ni0.9 1.830.17のc軸の
向きと同じである結晶構造を有するものであった。
Example 20 A composition formula of Li 1.1 Ni was obtained in the same manner as in Example 12.
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.9 O 1.83 F 0.17 as a main component were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atm of pure water oxygen. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film is c
Axis orientation had a same a crystal structure and orientation of the c-axis of the Li 1.1 Ni 0.9 O 1.83 F 0.17 .

【0157】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0158】実施例21 実施例13と同様な方法により組成式がLi1.15Ni
0.851.850.15で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することによって前記粒子の表面全体にエピタキシ
ャル成長によってLiAlO2 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLiAlO2 は、c
軸の向きが前記Li1.15Ni0.851.850.15のc軸の
向きと同じである結晶構造を有するものであった。
Example 21 A composition formula of Li 1.15 Ni was obtained in the same manner as in Example 13.
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.85 O 1.85 F 0.15 were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film is c
It had a crystal structure in which the direction of the axis was the same as the direction of the c-axis of Li 1.15 Ni 0.85 O 1.85 F 0.15 .

【0159】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0160】実施例22 実施例14と同様な方法により組成式がLi1.15Ni
0.851.7 0.3 で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLiAlO2 を主成分とする膜(厚さが
20nm)を形成した。前記膜のLiAlO2 は、c軸
の向きが前記Li1.15Ni0.851.7 0.3 のc軸の向
きと同じである結晶構造を有するものであった。
Example 22 A composition formula of Li 1.15 Ni was obtained in the same manner as in Example 14.
Particles containing lithium-containing nickel oxide represented by 0.85 O 1.7 F 0.3 as a main component and having an average particle diameter of 8.5 μm were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.15 Ni 0.85 O 1.7 F 0.3 .

【0161】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was prepared in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0162】実施例23 実施例15と同様な方法により組成式がLi1.2 Ni
0.8 1.950.05で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することによって前記粒子の表面全体にエピタキシ
ャル成長によってLiAlO2 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLiAlO2 は、c
軸の向きが前記Li1.2 Ni0.8 1.950.05のc軸の
向きと同じである結晶構造を有するものであった。
Example 23 By a method similar to that in Example 15, the composition formula was Li 1.2 Ni
Particles containing lithium-containing nickel oxide represented by 0.8 O 1.95 F 0.05 as a main component and having an average particle diameter of 8.5 μm were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film is c
It had a crystal structure in which the direction of the axis was the same as the direction of the c-axis of Li 1.2 Ni 0.8 O 1.95 F 0.05 .

【0163】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0164】実施例24 実施例16と同様な方法により組成式がLi1.2 Ni
0.8 1.8 0.2 で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することによって前記粒子の表面全体にエピタキシ
ャル成長によってLiAlO2 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLiAlO2 は、c
軸の向きが前記Li1.2 Ni0.8 1.8 0.2 のc軸の
向きと同じである結晶構造を有するものであった。
Example 24 A composition formula of Li 1.2 Ni was obtained in the same manner as in Example 16.
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.8 O 1.8 F 0.2 were prepared. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film is c
It had a crystal structure in which the direction of the axis was the same as the direction of the c-axis of Li 1.2 Ni 0.8 O 1.8 F 0.2 .

【0165】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0166】実施例25 実施例17と同様な方法により組成式がLi1.2 Ni
0.8 1.650.35で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLiAlO2 を主成分とする膜(厚さが
20nm)を形成した。前記膜のLiAlO2 は、c軸
の向きが前記Li1.2 Ni0.8 1.650.35のc軸の向
きと同じである結晶構造を有するものであった。
Example 25 A composition formula of Li 1.2 Ni was obtained in the same manner as in Example 17.
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.8 O 1.65 F 0.35 as a main component were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atmosphere of pure water oxygen. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.2 Ni 0.8 O 1.65 F 0.35 .

【0167】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0168】比較例16 比較例9と同様な方法により組成式がLi1.15Ni0.85
2 で表されるリチウム含有ニッケル酸化物を主成分と
する平均粒径が8.5μmの粒子を作製した。前記粒子
1モルに実施例18と同様な組成の混合水溶液5ccを
添加し、この溶液を前記粒子に十分に染み込ませた後、
純水酸素1気圧中にて550℃で20時間焼成すること
により前記粒子の表面全体にエピタキシャル成長によっ
てLiAlO2 を主成分とする膜(厚さが20nm)を
形成した。前記膜のLiAlO2は、c軸の向きが前記
Liの1.15Ni0.852 c軸の向きと同じである結晶構
造を有するものであった。
Comparative Example 16 The composition formula was Li 1.15 Ni 0.85 in the same manner as in Comparative Example 9.
Particles mainly composed of lithium-containing nickel oxide represented by O 2 and having an average particle diameter of 8.5 μm were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles.
By firing at 550 ° C. for 20 hours in one atmosphere of pure water oxygen, a film (thickness: 20 nm) containing LiAlO 2 as a main component was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of 1.15 Ni 0.85 O 2 of Li.

【0169】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0170】比較例17 比較例10と同様な方法により組成式がLiNiO1.85
0.15で表されるリチウム含有ニッケル酸化物を主成分
とする平均粒径が8.5μmの粒子を作製した。前記粒
子1モルに実施例18と同様な組成の混合水溶液5cc
を添加し、この溶液を前記粒子に十分に染み込ませた
後、純水酸素1気圧中にて550℃で20時間焼成する
ことにより前記粒子の表面全体にエピタキシャル成長に
よってLiAlO2 を主成分とする膜(厚さが20n
m)を形成した。前記膜のLiAlO2 は、c軸の向き
が前記LiNiO1.850.15のc軸の向きと同じである
結晶構造を有するものであった。
Comparative Example 17 The composition formula was LiNiO 1.85 in the same manner as in Comparative Example 10.
Particles containing lithium-containing nickel oxide represented by F 0.15 as a main component and having an average particle size of 8.5 μm were produced. 5 cc of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles.
Is added, and this solution is sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atm of pure water and oxygen to form a film containing LiAlO 2 as a main component by epitaxial growth on the entire surface of the particles. (The thickness is 20n
m) was formed. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of LiNiO 1.85 F 0.15 .

【0171】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0172】比較例18 比較例11と同様な方法により組成式がLi1.025 Ni
0.975 2 表されるリチウム含有ニッケル酸化物を主成
分とする平均粒径が8.5μmの粒子を作製した。前記
粒子1モルに実施例18と同様な組成の混合水溶液5c
cを添加し、この溶液を前記粒子に十分に染み込ませた
後、純水酸素1気圧中にて550℃で20時間焼成する
ことにより前記粒子の表面全体にエピタキシャル成長に
よってLiAlO2 を主成分とする膜(厚さが20n
m)を形成した。前記膜のLiAlO2 は、c軸の向き
が前記Li1.025 Ni0.975 2 のc軸の向きと同じで
ある結晶構造を有するものであった。
Comparative Example 18 A composition formula of Li 1.025 Ni was obtained in the same manner as in Comparative Example 11.
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.975 O 2 were prepared. A mixed aqueous solution 5c having the same composition as in Example 18 was added to 1 mol of the particles.
After adding c, the solution is sufficiently impregnated into the particles, and baked at 550 ° C. for 20 hours in 1 atm of pure water and oxygen, whereby LiAlO 2 is a main component by epitaxial growth on the entire surface of the particles. Film (20n thickness)
m) was formed. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.025 Ni 0.975 O 2 .

【0173】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0174】比較例19 比較例12と同様な方法により組成式がLi1.05Ni
0.951.830.17表されるリチウム含有ニッケル酸化物
を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLiAlO2 を主成分とする膜(厚さが
20nm)を形成した。前記膜のLiAlO2 は、c軸
の向きが前記Li1.05Ni0.951.830.17のc軸の向
きと同じである結晶構造を有するものであった。
Comparative Example 19 The composition formula was Li 1.05 Ni in the same manner as in Comparative Example 12.
Particles having a mean particle size of 8.5 μm containing a lithium-containing nickel oxide represented by 0.95 O 1.83 F 0.17 as a main component were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atmosphere of pure water oxygen. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.05 Ni 0.95 O 1.83 F 0.17 .

【0175】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0176】比較例20 比較例13と同様な方法により組成式がLi1.1 Ni
0.9 1.790.21表されるリチウム含有ニッケル酸化物
を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLiAlO2 を主成分とする膜(厚さが
20nm)を形成した。前記膜のLiAlO2 は、c軸
の向きが前記Li1.1 Ni0.9 1.790.21のc軸の向
きと同じである結晶構造を有するものであった。
Comparative Example 20 The composition formula was Li 1.1 Ni in the same manner as in Comparative Example 13.
Particles containing lithium-containing nickel oxide represented by 0.9 O 1.79 F 0.21 as a main component and having an average particle diameter of 8.5 μm were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atmosphere of pure water oxygen. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.1 Ni 0.9 O 1.79 F 0.21 .

【0177】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0178】比較例21 比較例14と同様な方法により組成式がLi1.1 Ni
0.9 1.7 0.3 表されるリチウム含有ニッケル酸化物
を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLiAlO2 を主成分とする膜(厚さが
20nm)を形成した。前記膜のLiAlO2 は、c軸
の向きが前記Li1.1 Ni0.9 1.7 0.3 のc軸の向
きと同じである結晶構造を有するものであった。
Comparative Example 21 A composition formula of Li 1.1 Ni was obtained in the same manner as in Comparative Example 14.
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.9 O 1.7 F 0.3 as a main component were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.1 Ni 0.9 O 1.7 F 0.3 .

【0179】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was prepared in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0180】比較例22 比較例15と同様な方法により組成式がLi1.15Ni
0.851.620.38表されるリチウム含有ニッケル酸化物
を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例18と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLiAlO2 を主成分とする膜(厚さが
20nm)を形成した。前記膜のLiAlO2 は、c軸
の向きが前記Li1.15Ni0.851.620.38のc軸の向
きと同じである結晶構造を有するものであった。
Comparative Example 22 The composition formula was Li 1.15 Ni in the same manner as in Comparative Example 15.
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.85 O 1.62 F 0.38 as a main component were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 18 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of LiAlO 2 was formed on the entire surface of the particles by epitaxial growth. LiAlO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.15 Ni 0.85 O 1.62 F 0.38 .

【0181】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0182】実施例18〜25及び比較例16〜22の
電池に充電を電流値1mAで4.2Vに達するまで行っ
た後、30分間電流を停止し、次に放電を電流値1mA
で3.0Vに達するまで行い、再び30分電流を停止す
るサイクルを繰り返し、そのサイクル回数による放電容
量の変化を測定し、初期充電容量と100サイクル目の
放電容量を下記表5に示す。
After charging the batteries of Examples 18 to 25 and Comparative Examples 16 to 22 at 4.2 mA at a current value of 1 mA, the current was stopped for 30 minutes, and then discharging was performed at a current value of 1 mA.
The cycle is repeated until the voltage reaches 3.0 V, and the current is again stopped for 30 minutes. The change in the discharge capacity according to the number of cycles is measured. The initial charge capacity and the discharge capacity at the 100th cycle are shown in Table 5 below.

【0183】[0183]

【表5】 [Table 5]

【0184】表5から明らかなように、実施例18〜2
5の電池は、比較例16〜22の電池に比べて充放電サ
イクル寿命が優れていることがわかる。これは、表3及
び図7に示すように、実施例18〜25の電池の正極が
2つの特徴を満たす粒子、すなわち、前記(4)〜
(7)式を同時に満足する組成を有するリチウム含有ニ
ッケル酸化物を主体とし、表面全体にLiAlO2 を主
成分とする膜が形成された粒子を活物質として含むから
である。
As is clear from Table 5, Examples 18 to 2
It can be seen that the battery of No. 5 has better charge / discharge cycle life than the batteries of Comparative Examples 16 to 22. This is because, as shown in Table 3 and FIG. 7, the positive electrodes of the batteries of Examples 18 to 25 satisfy the two characteristics, that is, the above-described (4) to (4).
This is because particles containing lithium-containing nickel oxide having a composition that satisfies the expression (7) at the same time as a main component and having a film mainly composed of LiAlO 2 formed on the entire surface are included as an active material.

【0185】これに対し、比較例16〜22の電池のサ
イクル寿命が短いのは、これらの電池の正極が前記
(4)〜(7)式で定められた領域から外れる組成を有
するリチウム含有ニッケル酸化物を主体とする粒子を含
むからである。
On the other hand, the cycle life of the batteries of Comparative Examples 16 to 22 was short because the lithium-containing nickel having a composition in which the positive electrode of these batteries was out of the range defined by the above formulas (4) to (7). This is because it contains particles mainly composed of an oxide.

【0186】実施例26 実施例10と同様な方法により組成式がLi1.05Ni
0.951.960.04で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。一方、リチウム硝酸塩及びマンガン硝酸塩からなる
1モル/lの混合水溶液を調製した。なお、この混合水
溶液に含まれるリチウムとマンガンのモル比は2:1に
した。前記粒子1モルに前記混合水溶液5ccを添加
し、この溶液を前記粒子に十分に染み込ませた後、純水
酸素1気圧中にて550℃で20時間焼成することによ
り前記粒子の表面全体にエピタキシャル成長によってL
2 MnO3 を主成分とする膜(厚さが20nm)を形
成した。前記膜のLi2 MnO3 は、c軸の向きが前記
Li1.05Ni0.951.960.04のc軸の向きと同じであ
る結晶構造を有するものであった。
Example 26 By a method similar to that in Example 10, the composition formula was Li 1.05 Ni
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.95 O 1.96 F 0.04 as a main component were produced. On the other hand, a 1 mol / l mixed aqueous solution composed of lithium nitrate and manganese nitrate was prepared. The molar ratio of lithium and manganese contained in the mixed aqueous solution was 2: 1. 5 mol of the mixed aqueous solution is added to 1 mol of the particles, and the solution is sufficiently impregnated into the particles, and then baked at 550 ° C. for 20 hours in 1 atm of pure water and oxygen to epitaxially grow on the entire surface of the particles. By L
A film (thickness: 20 nm) containing i 2 MnO 3 as a main component was formed. Li 2 MnO 3 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.05 Ni 0.95 O 1.96 F 0.04 .

【0187】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0188】実施例27 実施例11と同様な方法により組成式がLi1.1 Ni
0.9 1.9 0.1 で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLi2 MnO3 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLi2 MnO3 は、
c軸の向きが前記Li1.1 Ni0.9 1.9 0.1 のc軸
の向きと同じである結晶構造を有するものであった。
Example 27 By a method similar to that in Example 11, the composition formula was Li 1.1 Ni
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.9 O 1.9 F 0.1 were prepared. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then fired at 550 ° C. for 20 hours in 1 atm of pure water oxygen. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO 3 of the film is:
orientation of the c-axis was achieved with the same a crystal structure and orientation of the c-axis of the Li 1.1 Ni 0.9 O 1.9 F 0.1 .

【0189】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0190】実施例28 実施例12と同様な方法により組成式がLi1.1 Ni
0.9 1.830.17で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することによって前記粒子の表面全体にエピタキシ
ャル成長によってLi2 MnO3 を主成分とする膜(厚
さが20nm)を形成した。前記膜のLi2 MnO
3 は、c軸の向きが前記Li1.1 Ni0.9 1.830.17
のc軸の向きと同じである結晶構造を有するものであっ
た。
Example 28 By a method similar to that in Example 12, the composition formula was Li 1.1 Ni
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.9 O 1.83 F 0.17 as a main component were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO of the film
3 indicates that the direction of the c-axis is Li 1.1 Ni 0.9 O 1.83 F 0.17
Has the same crystal structure as the direction of the c-axis.

【0191】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0192】実施例29 実施例13と同様な方法により組成式がLi1.15Ni
0.851.850.15で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することによって前記粒子の表面全体にエピタキシ
ャル成長によってLi2 MnO3 を主成分とする膜(厚
さが20nm)を形成した。前記膜のLi2 MnO
3 は、c軸の向きが前記Li1.15Ni0.851.850.15
のc軸の向きと同じである結晶構造を有するものであっ
た。
Example 29 By a method similar to that in Example 13, the composition formula was Li 1.15 Ni
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.85 O 1.85 F 0.15 were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO of the film
3 has a c-axis orientation of Li 1.15 Ni 0.85 O 1.85 F 0.15
Has the same crystal structure as the direction of the c-axis.

【0193】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0194】実施例30 実施例14と同様な方法により組成式がLi1.15Ni
0.851.7 0.3 で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLi2 MnO3 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLi2 MnO3 は、
c軸の向きが前記Li1.15Ni0.851.7 0.3 のc軸
の向きと同じである結晶構造を有するものであった。
Example 30 By a method similar to that in Example 14, the composition formula was Li 1.15 Ni
Particles containing lithium-containing nickel oxide represented by 0.85 O 1.7 F 0.3 as a main component and having an average particle diameter of 8.5 μm were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then fired at 550 ° C. for 20 hours in 1 atm of pure water oxygen. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO 3 of the film is:
It had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.15 Ni 0.85 O 1.7 F 0.3 .

【0195】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0196】実施例31 実施例15と同様な方法により組成式がLi1.2 Ni
0.8 1.950.05で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することによって前記粒子の表面全体にエピタキシ
ャル成長によってLi2 MnO3 を主成分とする膜(厚
さが20nm)を形成した。前記膜のLi2 MnO
3 は、c軸の向きが前記Li1.2 Ni0.8 1.950.05
のc軸の向きと同じである結晶構造を有するものであっ
た。
Example 31 By a method similar to that in Example 15, the composition formula was Li 1.2 Ni
Particles containing lithium-containing nickel oxide represented by 0.8 O 1.95 F 0.05 as a main component and having an average particle diameter of 8.5 μm were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO of the film
3 indicates that the direction of the c-axis is Li 1.2 Ni 0.8 O 1.95 F 0.05
Has the same crystal structure as the direction of the c-axis.

【0197】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0198】実施例32 実施例16と同様な方法により組成式がLi1.2 Ni
0.8 1.8 0.2 で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することによって前記粒子の表面全体にエピタキシ
ャル成長によってLi2 MnO3 を主成分とする膜(厚
さが20nm)を形成した。前記膜のLi2 MnO
3 は、c軸の向きが前記Li1.2 Ni0.8 1.8 0.2
のc軸の向きと同じである結晶構造を有するものであっ
た。
Example 32 By a method similar to that in Example 16, the composition formula was Li 1.2 Ni
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.8 O 1.8 F 0.2 were prepared. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO of the film
3 indicates that the direction of the c-axis is Li 1.2 Ni 0.8 O 1.8 F 0.2
Has the same crystal structure as the direction of the c-axis.

【0199】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0200】実施例33 実施例17と同様な方法により組成式がLi1.2 Ni
0.8 1.650.35で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLi2 MnO3 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLi2 MnO3 は、
c軸の向きが前記Li1.2 Ni0.8 1.650.35のc軸
の向きと同じである結晶構造を有するものであった。
Example 33 By a method similar to that in Example 17, the composition formula was Li 1.2 Ni
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.8 O 1.65 F 0.35 as a main component were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO 3 of the film is:
It had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.2 Ni 0.8 O 1.65 F 0.35 .

【0201】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0202】比較例23 比較例9と同様な方法により組成式がLi1.15Ni0.85
2 で表されるリチウム含有ニッケル酸化物を主成分と
する平均粒径が8.5μmの粒子を作製した。前記粒子
1モルに実施例26と同様な組成の混合水溶液5ccを
添加し、この溶液を前記粒子に十分に染み込ませた後、
純水酸素1気圧中にて550℃で20時間焼成すること
により前記粒子の表面全体にエピタキシャル成長によっ
てLi2MnO3 を主成分とする膜(厚さが20nm)
を形成した。前記膜のLi2 MnO3 は、c軸の向きが
前記Liの1.15Ni0.852 c軸の向きと同じである結
晶構造を有するものであった。
Comparative Example 23 By a method similar to that of Comparative Example 9, the composition formula was Li 1.15 Ni 0.85
Particles mainly composed of lithium-containing nickel oxide represented by O 2 and having an average particle diameter of 8.5 μm were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles.
A film mainly composed of Li 2 MnO 3 (thickness: 20 nm) is formed by baking at 550 ° C. for 20 hours in one atmosphere of pure water oxygen by epitaxial growth on the entire surface of the particles.
Was formed. Li 2 MnO 3 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the 1.15 Ni 0.85 O 2 c-axis of Li.

【0203】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0204】比較例24 比較例10と同様な方法により組成式がLiNiO1.85
0.15で表されるリチウム含有ニッケル酸化物を主成分
とする平均粒径が8.5μmの粒子を作製した。前記粒
子1モルに実施例26と同様な組成の混合水溶液5cc
を添加し、この溶液を前記粒子に十分に染み込ませた
後、純水酸素1気圧中にて550℃で20時間焼成する
ことにより前記粒子の表面全体にエピタキシャル成長に
よってLi2 MnO3 を主成分とする膜(厚さが20n
m)を形成した。前記膜のLi2 MnO3 は、c軸の向
きが前記LiNiO1.850.15のc軸の向きと同じであ
る結晶構造を有するものであった。
Comparative Example 24 A composition formula of LiNiO 1.85 was obtained in the same manner as in Comparative Example 10.
Particles containing lithium-containing nickel oxide represented by F 0.15 as a main component and having an average particle size of 8.5 μm were produced. 5 cc of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles.
Is added, and the solution is sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atm of pure water and oxygen, whereby Li 2 MnO 3 as a main component is epitaxially grown on the entire surface of the particles. Film (thickness is 20n)
m) was formed. Li 2 MnO 3 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of LiNiO 1.85 F 0.15 .

【0205】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0206】比較例25 比較例11と同様な方法により組成式がLi1.025 Ni
0.975 2 表されるリチウム含有ニッケル酸化物を主成
分とする平均粒径が8.5μmの粒子を作製した。前記
粒子1モルに実施例26と同様な組成の混合水溶液5c
cを添加し、この溶液を前記粒子に十分に染み込ませた
後、純水酸素1気圧中にて550℃で20時間焼成する
ことにより前記粒子の表面全体にエピタキシャル成長に
よってLi2 MnO3 を主成分とする膜(厚さが20n
m)を形成した。前記膜のLi2MnO3 は、c軸の向
きが前記Li1.025 Ni0.975 2 のc軸の向きと同じ
である結晶構造を有するものであった。
Comparative Example 25 A composition formula of Li 1.025 Ni was obtained in the same manner as in Comparative Example 11.
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.975 O 2 were prepared. A mixed aqueous solution 5c having the same composition as in Example 26 was added to 1 mol of the particles.
c, and the solution is sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atm of pure water and oxygen, whereby Li 2 MnO 3 is a main component by epitaxial growth on the entire surface of the particles. Film (thickness is 20n)
m) was formed. Li 2 MnO 3 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.025 Ni 0.975 O 2 .

【0207】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0208】比較例26 比較例12と同様な方法により組成式がLi1.05Ni
0.951.830.17表されるリチウム含有ニッケル酸化物
を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLi2 MnO3 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLi2 MnO3 は、
c軸の向きが前記Li1.05Ni0.951.830.17のc軸
の向きと同じである結晶構造を有するものであった。
Comparative Example 26 The composition formula was Li 1.05 Ni in the same manner as in Comparative Example 12.
Particles having a mean particle size of 8.5 μm containing a lithium-containing nickel oxide represented by 0.95 O 1.83 F 0.17 as a main component were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles, and then fired at 550 ° C. for 20 hours in 1 atm of pure water oxygen. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO 3 of the film is:
It had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.05 Ni 0.95 O 1.83 F 0.17 .

【0209】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0210】比較例27 比較例13と同様な方法により組成式がLi1.1 Ni
0.9 1.790.21表されるリチウム含有ニッケル酸化物
を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLi2 MnO3 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLi2 MnO3 は、
c軸の向きが前記Li1.1 Ni0.9 1.790.21のc軸
の向きと同じである結晶構造を有するものであった。
Comparative Example 27 A composition formula of Li 1.1 Ni was obtained in the same manner as in Comparative Example 13.
Particles containing lithium-containing nickel oxide represented by 0.9 O 1.79 F 0.21 as a main component and having an average particle diameter of 8.5 μm were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO 3 of the film is:
orientation of the c-axis was achieved with the same a crystal structure and orientation of the c-axis of the Li 1.1 Ni 0.9 O 1.79 F 0.21 .

【0211】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0212】比較例28 比較例14と同様な方法により組成式がLi1.1 Ni
0.9 1.7 0.3 表されるリチウム含有ニッケル酸化物
を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLi2 MnO3 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLi2 MnO3 は、
c軸の向きが前記Li1.1 Ni0.9 1.7 0.3 のc軸
の向きと同じである結晶構造を有するものであった。
Comparative Example 28 A composition formula of Li 1.1 Ni was obtained in the same manner as in Comparative Example 14.
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.9 O 1.7 F 0.3 as a main component were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO 3 of the film is:
orientation of the c-axis was achieved with the same a crystal structure and orientation of the c-axis of the Li 1.1 Ni 0.9 O 1.7 F 0.3 .

【0213】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0214】比較例29 比較例15と同様な方法により組成式がLi1.15Ni
0.851.620.38表されるリチウム含有ニッケル酸化物
を主成分とする平均粒径が8.5μmの粒子を作製し
た。前記粒子1モルに実施例26と同様な組成の混合水
溶液5ccを添加し、この溶液を前記粒子に十分に染み
込ませた後、純水酸素1気圧中にて550℃で20時間
焼成することにより前記粒子の表面全体にエピタキシャ
ル成長によってLi2 MnO3 を主成分とする膜(厚さ
が20nm)を形成した。前記膜のLi2 MnO3 は、
c軸の向きが前記Li1.15Ni0.851.620.38のc軸
の向きと同じである結晶構造を有するものであった。
Comparative Example 29 A composition formula of Li 1.15 Ni was obtained in the same manner as in Comparative Example 15.
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.85 O 1.62 F 0.38 as a main component were produced. 5 mol of a mixed aqueous solution having the same composition as in Example 26 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles. A film (thickness: 20 nm) mainly composed of Li 2 MnO 3 was formed on the entire surface of the particles by epitaxial growth. Li 2 MnO 3 of the film is:
It had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.15 Ni 0.85 O 1.62 F 0.38 .

【0215】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0216】実施例26〜33及び比較例23〜29の
電池に充電を電流値1mAで4.2Vに達するまで行っ
た後、30分間電流を停止し、次に放電を電流値1mA
で3.0Vに達するまで行い、再び30分電流を停止す
るサイクルを繰り返し、そのサイクル回数による放電容
量の変化を測定し、初期充電容量と100サイクル目の
放電容量を下記表6に示す。
After charging the batteries of Examples 26 to 33 and Comparative Examples 23 to 29 at 4.2 mA at a current value of 1 mA, the current was stopped for 30 minutes, and then discharging was performed at a current value of 1 mA.
The cycle is repeated until the voltage reaches 3.0 V, and the current is again stopped for 30 minutes. The change in the discharge capacity according to the number of cycles is measured, and the initial charge capacity and the discharge capacity at the 100th cycle are shown in Table 6 below.

【0217】[0219]

【表6】 [Table 6]

【0218】表6から明らかなように、実施例26〜3
3の電池は、比較例23〜29の電池に比べて充放電サ
イクル寿命が優れていることがわかる。これは、表3及
び図7に示すように、実施例26〜33の電池の正極が
2つの特徴を満たす粒子、すなわち、前記(4)〜
(7)式を同時に満足する組成を有するリチウム含有ニ
ッケル酸化物を主体とし、表面全体にLi2 MnO3
主成分とする膜が形成された粒子を活物質として含むか
らである。
As is clear from Table 6, Examples 26 to 3
It can be seen that the battery of No. 3 has better charge / discharge cycle life than the batteries of Comparative Examples 23 to 29. This is because, as shown in Table 3 and FIG. 7, the positive electrodes of the batteries of Examples 26 to 33 satisfy the two characteristics, that is, the particles (4) to (4) described above.
This is because particles containing a lithium-containing nickel oxide having a composition that satisfies the expression (7) at the same time as a main component, and a film having a film mainly composed of Li 2 MnO 3 formed on the entire surface are included as an active material.

【0219】これに対し、比較例23〜29の電池のサ
イクル寿命が短いのは、これらの電池の正極が前記
(4)〜(7)式で定められた領域から外れる組成を有
するリチウム含有ニッケル酸化物を主体とする粒子を含
むからである。
On the other hand, the cycle life of the batteries of Comparative Examples 23 to 29 was short because the lithium-containing nickel having a composition in which the positive electrode of these batteries was out of the range defined by the above formulas (4) to (7). This is because it contains particles mainly composed of an oxide.

【0220】実施例34 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.98:0.92:0.1で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.075 Ni0.92 5 1.9 0.1 で表されるリチウム含
有ニッケル酸化物を主成分とする粒子を作製した。得ら
れた粒子の平均粒径は8.5μmであった。一方、リチ
ウム硝酸塩及びコバルト硝酸塩からなる1モル/lの膜
形成水溶液を調製した。なお、この水溶液に含まれるリ
チウムとコバルトのモル比は1:1にした。前記粒子1
モルに前記水溶液5ccを添加し、この溶液を前記粒子
に十分に染み込ませた後、純水酸素1気圧中にて550
℃で20時間焼成することにより前記粒子の表面全体に
エピタキシャル成長によってLiCoO2 を主成分とす
る膜(厚さが10nm)を形成した。前記膜のLiCo
2 は、c軸の向きが前記Li1.075 Ni0.92 5 1.9
0.1 のc軸の向きと同じである結晶構造を有するもの
であった。
Example 34 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.98: 0.92: 0.1, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
The i 1.075 Ni 0.92 5 O 1.9 lithium-containing nickel oxide represented by F 0.1 to prepare particles consisting mainly. The average particle size of the obtained particles was 8.5 μm. On the other hand, a 1 mol / l film forming aqueous solution comprising lithium nitrate and cobalt nitrate was prepared. The molar ratio of lithium and cobalt contained in this aqueous solution was 1: 1. The particles 1
5 cc of the aqueous solution was added to the mole, and the solution was sufficiently impregnated into the particles.
By firing at 20 ° C. for 20 hours, a film (thickness: 10 nm) containing LiCoO 2 as a main component was formed on the entire surface of the particles by epitaxial growth. LiCo of the film
O 2, the orientation of the c-axis Li 1.075 Ni 0.92 5 O 1.9
It had a crystal structure is the same as the direction of the c axis of F 0.1.

【0221】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was prepared in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0222】実施例35 実施例34と同様な方法により組成式がLi1.075 Ni
0.925 1.9 0.1 で表されるリチウム含有ニッケル酸
化物を主成分とする平均粒径が8.5μmの粒子を作製
した。一方、リチウム硝酸塩及びコバルト硝酸塩からな
る0.4モル/lの混合水溶液を調製した。なお、この
混合水溶液に含まれるリチウムとコバルトのモル比は
1:1にした。前記粒子1モルに前記混合水溶液5cc
を添加し、この溶液を前記粒子に十分に染み込ませた
後、純水酸素1気圧中にて550℃で20時間焼成する
ことにより前記粒子の表面全体にエピタキシャル成長に
よってLiCoO2 を主成分とする膜(厚さが4nm)
を形成した。前記膜のLiCoO2 は、c軸の向きが前
記Li1.075 Ni0.925 1.9 0.1 のc軸の向きと同
じである結晶構造を有するものであった。
Example 35 By a method similar to that in Example 34, the composition formula was Li 1.075 Ni.
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.925 O 1.9 F 0.1 were prepared. On the other hand, a 0.4 mol / l mixed aqueous solution composed of lithium nitrate and cobalt nitrate was prepared. The molar ratio of lithium and cobalt contained in the mixed aqueous solution was 1: 1. 5 cc of the mixed aqueous solution per 1 mol of the particles
Is added, and the solution is sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atm of pure water and oxygen to form a film containing LiCoO 2 as a main component by epitaxial growth on the entire surface of the particles. (4 nm thick)
Was formed. LiCoO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.075 Ni 0.925 O 1.9 F 0.1 .

【0223】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0224】実施例36 実施例34と同様な方法により組成式がLi1.075 Ni
0.925 1.9 0.1 で表されるリチウム含有ニッケル酸
化物を主成分とする平均粒径が8.5μmの粒子を作製
した。一方、リチウム硝酸塩及びコバルト硝酸塩からな
る2モル/lの混合水溶液を調製した。なお、この混合
水溶液に含まれるリチウムとコバルトのモル比は1:1
にした。前記粒子1モルに前記混合水溶液5ccを添加
し、この溶液を前記粒子に十分に染み込ませた後、純水
酸素1気圧中にて550℃で20時間焼成することによ
り前記粒子の表面全体にエピタキシャル成長によってL
iCoO2 を主成分とする膜(厚さが20nm)を形成
した。前記膜のLiCoO2 は、c軸の向きが前記Li
1.075 Ni0.925 1.9 0.1 のc軸の向きと同じであ
る結晶構造を有するものであった。
Example 36 By a method similar to that in Example 34, the composition formula was Li 1.075 Ni.
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.925 O 1.9 F 0.1 were prepared. On the other hand, a 2 mol / l mixed aqueous solution comprising lithium nitrate and cobalt nitrate was prepared. The molar ratio of lithium and cobalt contained in the mixed aqueous solution was 1: 1.
I made it. 5 mol of the mixed aqueous solution is added to 1 mol of the particles, and the solution is sufficiently impregnated into the particles, and then baked at 550 ° C. for 20 hours in 1 atm of pure water and oxygen to epitaxially grow on the entire surface of the particles. By L
A film (thickness: 20 nm) containing iCoO 2 as a main component was formed. LiCoO 2 of the film has a c-axis direction of Li
The crystal had the same crystal structure as the direction of the c-axis of 1.075 Ni 0.925 O 1.9 F 0.1 .

【0225】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was prepared in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0226】実施例37 実施例34と同様な方法により組成式がLi1.075 Ni
0.925 1.9 0.1 で表されるリチウム含有ニッケル酸
化物を主成分とする平均粒径が8.5μmの粒子を作製
した。得られた粒子を用いること以外は、実施例1と同
様にして正極を作製した。この正極と、実施例1と同様
な負極、参照電極及び非水電解液を用いて前述した図5
に示す正極評価用電池を組み立てた。
Example 37 By a method similar to that in Example 34, the composition formula was Li 1.075 Ni.
Particles having a mean particle size of 8.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.925 O 1.9 F 0.1 were prepared. A positive electrode was produced in the same manner as in Example 1 except that the obtained particles were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, FIG.
The positive electrode evaluation battery shown in FIG.

【0227】比較例30 LiOH・H2 OとNi(OH)2 とをモル比1.0
3:0.97で混合し、純水酸素1気圧中にて550℃
で5時間保持した後、650℃で20時間焼成し、メノ
ウ乳鉢で粉砕することにより組成式がLi1.02Ni0.98
2.02で表されるリチウム含有ニッケル酸化物を主成分
とする粒子を作製した。得られた粒子の平均粒径は8.
5μmであった。実施例34と同様な組成の膜形成水溶
液5ccを前記粒子1モルに添加し、この溶液を前記粒
子に十分に染み込ませた後、純水酸素1気圧中にて55
0℃で20時間焼成することにより前記粒子の表面全体
にエピタキシャル成長によってLiCoO2 を主成分と
する膜(厚さが10nm)を形成した。前記膜のLiC
oO2 は、c軸の向きが前記Li1.02Ni0.982.02
c軸の向きと同じである結晶構造を有するものであっ
た。
Comparative Example 30 LiOH.H 2 O and Ni (OH) 2 were mixed at a molar ratio of 1.0.
3: Mixing at 0.97, 550 ° C. in 1 atm of pure water oxygen
And then calcined at 650 ° C. for 20 hours, and pulverized in an agate mortar to give a composition formula of Li 1.02 Ni 0.98
Particles containing lithium-containing nickel oxide represented by O 2.02 as a main component were produced. The average particle size of the obtained particles is 8.
It was 5 μm. 5 cc of a film-forming aqueous solution having the same composition as in Example 34 was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles.
By firing at 0 ° C. for 20 hours, a film (thickness: 10 nm) mainly composed of LiCoO 2 was formed on the entire surface of the particles by epitaxial growth. LiC of the film
oO 2 had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.02 Ni 0.98 O 2.02 .

【0228】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0229】比較例31 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.78:0.92:0.3で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.075 Ni0.92 5 1.7 0.29で表されるリチウム含
有ニッケル酸化物を主成分とする粒子を作製した。得ら
れた粒子の平均粒径は8.5μmであった。実施例34
と同様な組成の膜形成水溶液5ccを前記粒子1モルに
添加し、この溶液を前記粒子に十分に染み込ませた後、
純水酸素1気圧中にて550℃で20時間焼成すること
により前記粒子の表面全体にエピタキシャル成長によっ
てLiCoO2 を主成分とする膜(厚さが10nm)を
形成した。前記膜のLiCoO2 は、c軸の向きが前記
Li1.075 Ni0.925 1.7 0.29のc軸の向きと同じ
である結晶構造を有するものであった。
Comparative Example 31 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.78: 0.92: 0.3, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
The i 1.075 Ni 0.92 5 O 1.7 lithium-containing nickel oxide represented by F 0.29 to prepare particles consisting mainly. The average particle size of the obtained particles was 8.5 μm. Example 34
5 cc of a film forming aqueous solution having the same composition as described above was added to 1 mol of the particles, and this solution was sufficiently impregnated into the particles.
By firing at 550 ° C. for 20 hours in 1 atm of pure water oxygen, a film (thickness: 10 nm) containing LiCoO 2 as a main component was formed on the entire surface of the particles by epitaxial growth. LiCoO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.075 Ni 0.925 O 1.7 F 0.29 .

【0230】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0231】実施例34〜37及び比較例30〜31の
電池に充電を電流値1mAで4.2Vに達するまで行っ
た後、30分間電流を停止し、次に放電を電流値1mA
で3.0Vに達するまで行い、再び30分電流を停止す
るサイクルを繰り返し、そのサイクル回数による放電容
量の変化を測定し、初期充電容量と30サイクル目の放
電容量を下記表7に示す。
After charging the batteries of Examples 34 to 37 and Comparative Examples 30 to 31 at 4.2 mA at a current value of 1 mA, the current was stopped for 30 minutes, and then the discharge was performed at a current value of 1 mA.
The cycle is repeated until the current reaches 3.0 V, and the current is again stopped for 30 minutes. The change in the discharge capacity according to the number of cycles is measured. The initial charge capacity and the discharge capacity at the 30th cycle are shown in Table 7 below.

【0232】[0232]

【表7】 [Table 7]

【0233】表7から明らかなように、実施例34〜3
7の電池は、比較例30、31の電池に比べて充放電サ
イクル寿命が優れていることがわかる。中でも、2つの
特徴を満たす粒子、すなわち、前記(4)〜(7)式を
同時に満足する組成を有するリチウム含有ニッケル酸化
物を主体とし、表面全体にLiCoO2 を主成分とする
膜が形成された粒子を活物質として含む正極を備えた実
施例34〜36の電池は、優れたサイクル特性を有する
ことがわかる。
As is clear from Table 7, Examples 34 to 3
It can be seen that the battery of No. 7 has a better charge / discharge cycle life than the batteries of Comparative Examples 30 and 31. Among them, a film mainly containing lithium-containing nickel oxide having a composition that simultaneously satisfies the above formulas (4) to (7) and a film mainly containing LiCoO 2 is formed on the entire surface. It can be seen that the batteries of Examples 34 to 36 provided with the positive electrode containing the particles as the active material have excellent cycle characteristics.

【0234】これに対し、比較例30、31の電池のサ
イクル寿命が短いのは、これら電池の正極活物質として
用いられる粒子は、表面全体にLiCoO2 膜が形成さ
れているものの、前記(4)〜(7)式で定められた領
域から外れる組成を有するリチウム含有ニッケル酸化物
が主成分であることによる。
On the other hand, the cycle life of the batteries of Comparative Examples 30 and 31 was short because the particles used as the positive electrode active material of these batteries had the LiCoO 2 film formed on the entire surface, but the (4) ) To (7) because the main component is a lithium-containing nickel oxide having a composition outside the range defined by the formulas.

【0235】実施例38 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.96:0.9:0.15で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.1 Ni0.9 1.850.14で表されるリチウム含有ニ
ッケル酸化物を主成分とする粒子を作製した。得られた
粒子の平均粒径は8.5μmであった。実施例34と同
様な組成の膜形成水溶液5ccを前記粒子1モルに添加
し、この溶液を前記粒子に十分に染み込ませた後、純水
酸素1気圧中にて550℃で20時間焼成することによ
り前記粒子の表面全体にエピタキシャル成長によってL
iCoO2 を主成分とする膜(厚さが10nm)を形成
した。前記膜のLiCoO2 は、c軸の向きが前記Li
1.1 Ni0.9 1.850.14のc軸の向きと同じである結
晶構造を有するものであった。
Example 38 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.96: 0.9: 0.15, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
Particles mainly composed of lithium-containing nickel oxide represented by i 1.1 Ni 0.9 O 1.85 F 0.14 were produced. The average particle size of the obtained particles was 8.5 μm. 5 cc of a film-forming aqueous solution having the same composition as in Example 34 was added to 1 mol of the particles, and the solution was sufficiently impregnated into the particles, and then fired at 550 ° C. for 20 hours in 1 atm of pure water and oxygen. L on the entire surface of the particle by epitaxial growth
A film (thickness: 10 nm) containing iCoO 2 as a main component was formed. LiCoO 2 of the film has a c-axis direction of Li
It had the same crystal structure as the direction of the c-axis of 1.1 Ni 0.9 O 1.85 F 0.14 .

【0236】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0237】実施例39 実施例38と同様な方法により組成式がLi1.1 Ni
0.9 1.850.14で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。得られた粒子を用いること以外は、実施例1と同様
にして正極を作製した。この正極と、実施例1と同様な
負極、参照電極及び非水電解液を用いて前述した図5に
示す正極評価用電池を組み立てた。
Example 39 By a method similar to that in Example 38, the composition formula was Li 1.1 Ni
Particles containing lithium-containing nickel oxide represented by 0.9 O 1.85 F 0.14 as a main component and having an average particle diameter of 8.5 μm were produced. A positive electrode was produced in the same manner as in Example 1 except that the obtained particles were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0238】実施例38〜39の電池に充電を電流値1
mAで4.2Vに達するまで行った後、30分間電流を
停止し、次に放電を電流値1mAで3.0Vに達するま
で行い、再び30分電流を停止するサイクルを繰り返
し、そのサイクル回数による放電容量の変化を測定し、
初期充電容量と30サイクル目の放電容量を下記表8に
示す。なお、比較例30、31の電池の初期充電容量と
30サイクル目の放電容量を表8に併記する。
The batteries of Examples 38 to 39 were charged at a current value of 1.
After the current reached 4.2 V at mA, the current was stopped for 30 minutes, then the discharge was performed at a current value of 1 mA until the voltage reached 3.0 V, and the cycle of stopping the current again for 30 minutes was repeated. Measure the change in discharge capacity,
Table 8 below shows the initial charge capacity and the discharge capacity at the 30th cycle. Table 8 also shows the initial charge capacity and the discharge capacity at the 30th cycle of the batteries of Comparative Examples 30 and 31.

【0239】[0239]

【表8】 [Table 8]

【0240】表8から明らかなように、実施例38、3
9の電池は、比較例30、31の電池に比べてサイクル
寿命が優れていることがわかる。
As apparent from Table 8, Examples 38 and 3
It can be seen that the battery of No. 9 has better cycle life than the batteries of Comparative Examples 30 and 31.

【0241】実施例40 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.96:0.92:0.12で混合し、純水酸素1気
圧中にて550℃で5時間保持した後、650℃で20
時間焼成し、メノウ乳鉢で粉砕することにより組成式が
Li1.08Ni0.921.9 0.1 で表されるリチウム含有
ニッケル酸化物を主成分とする平均粒径が8.5μmの
粒子を作製した。得られた粒子を用いること以外は、実
施例1と同様にして正極を作製した。この正極と、実施
例1と同様な負極、参照電極及び非水電解液を用いて前
述した図5に示す正極評価用電池を組み立てた。
Example 40 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.96: 0.92: 0.12, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, 20 minutes at 650 ° C
By calcining for an hour and pulverizing in an agate mortar, particles having a composition formula of Li 1.08 Ni 0.92 O 1.9 F 0.1 and containing lithium-containing nickel oxide as a main component and having an average particle size of 8.5 μm were produced. A positive electrode was produced in the same manner as in Example 1 except that the obtained particles were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0242】実施例41 実施例40と同様な方法により組成式がLi1.08Ni
0.921.9 0.1 で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。一方、リチウム硝酸塩及びコバルト硝酸塩からなる
1モル/lの膜形成水溶液を調製した。なお、この水溶
液に含まれるリチウムとコバルトのモル比は1:1にし
た。前記粒子1モルに前記水溶液5ccを添加し、この
溶液を前記粒子に十分に染み込ませた後、純水酸素1気
圧中にて550℃で20時間焼成することにより前記粒
子の表面全体にエピタキシャル成長によってのLiCo
2を主成分とする膜(厚さが10nm)を形成した。
前記膜のLiCoO2 は、c軸の向きが前記Li1.08
0.921.9 0.1 のc軸の向きと同じである結晶構造
を有するものであった。
Example 41 By a method similar to that in Example 40, the composition formula was Li 1.08 Ni.
Particles having a mean particle size of 8.5 μm containing a lithium-containing nickel oxide represented by 0.92 O 1.9 F 0.1 as a main component were produced. On the other hand, a 1 mol / l film forming aqueous solution comprising lithium nitrate and cobalt nitrate was prepared. The molar ratio of lithium and cobalt contained in this aqueous solution was 1: 1. 5 mol of the aqueous solution is added to 1 mol of the particles, and the solution is sufficiently impregnated into the particles, and then baked at 550 ° C. for 20 hours in 1 atm of pure water oxygen to thereby epitaxially grow the entire surface of the particles. LiCo
A film containing O 2 as a main component (having a thickness of 10 nm) was formed.
LiCoO 2 of the film has a c-axis orientation of the Li 1.08 N
It had the same crystal structure as the direction of the c-axis of i 0.92 O 1.9 F 0.1 .

【0243】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0244】実施例42 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.96:0.92:0.12で混合し、純水酸素1気
圧中にて550℃で5時間保持した後、650℃で20
時間焼成し、メノウ乳鉢で粉砕することにより組成式が
Li1.08Ni0.921.9 0.1 で表されるリチウム含有
ニッケル酸化物を主成分とする平均粒径が4.5μmの
粒子を作製した。得られた粒子を用いること以外は、実
施例1と同様にして正極を作製した。この正極と、実施
例1と同様な負極、参照電極及び非水電解液を用いて前
述した図5に示す正極評価用電池を組み立てた。
Example 42 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.96: 0.92: 0.12, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, 20 minutes at 650 ° C
By calcining for a period of time and pulverizing in an agate mortar, particles having an average particle size of 4.5 μm and containing lithium-containing nickel oxide represented by the composition formula of Li 1.08 Ni 0.92 O 1.9 F 0.1 as a main component were produced. A positive electrode was produced in the same manner as in Example 1 except that the obtained particles were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0245】実施例43 実施例42と同様な方法により組成式がLi1.08Ni
0.921.9 0.1 で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が4.5μmの粒子を作製し
た。一方、リチウム硝酸塩及びコバルト硝酸塩からなる
2モル/lの膜形成水溶液を調製した。なお、この水溶
液に含まれるリチウムとコバルトのモル比は1:1にし
た。前記粒子1モルに前記水溶液5ccを添加し、この
溶液を前記粒子に十分に染み込ませた後、純水酸素1気
圧中にて550℃で20時間焼成することにより前記粒
子の表面全体にエピタキシャル成長によってLiCoO
2 を主成分とする膜(厚さが10nm)を形成した。前
記膜のLiCoO2 は、c軸の向きが前記Li1.08Ni
0.921.9 0.1 のc軸の向きと同じである結晶構造を
有するものであった。
Example 43 By a method similar to that in Example 42, the composition formula was Li 1.08 Ni
Particles having a mean particle size of 4.5 μm mainly composed of a lithium-containing nickel oxide represented by 0.92 O 1.9 F 0.1 were prepared. On the other hand, a 2 mol / l film forming aqueous solution comprising lithium nitrate and cobalt nitrate was prepared. The molar ratio of lithium and cobalt contained in this aqueous solution was 1: 1. 5 mol of the aqueous solution is added to 1 mol of the particles, and the solution is sufficiently impregnated into the particles, and then baked at 550 ° C. for 20 hours in 1 atm of pure water oxygen to thereby epitaxially grow the entire surface of the particles. LiCoO
A film mainly composed of 2 (having a thickness of 10 nm) was formed. The LiCoO 2 of the film has a c-axis orientation of the Li 1.08 Ni
It had a crystal structure that was the same as the direction of the c-axis of 0.92 O 1.9 F 0.1 .

【0246】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0247】比較例32 LiOH・H2 OとNi(OH)2 とをモル比1:1で
混合し、純水酸素1気圧中にて550℃で5時間保持し
た後、650℃で20時間焼成し、メノウ乳鉢で粉砕す
ることにより組成式がLiNiO2 で表されるリチウム
含有ニッケル酸化物を主成分とする平均粒径が8.5μ
mの粒子を作製した。得られた粒子を用いること以外
は、実施例1と同様にして正極を作製した。この正極
と、実施例1と同様な負極、参照電極及び非水電解液を
用いて前述した図5に示す正極評価用電池を組み立て
た。
Comparative Example 32 LiOH.H 2 O and Ni (OH) 2 were mixed at a molar ratio of 1: 1 and kept at 550 ° C. for 5 hours in 1 atm of pure water oxygen, and then at 650 ° C. for 20 hours. By baking and pulverizing in an agate mortar, the average particle diameter of which is mainly composed of a lithium-containing nickel oxide represented by a composition formula of LiNiO 2 is 8.5 μm.
m particles were produced. A positive electrode was produced in the same manner as in Example 1 except that the obtained particles were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0248】実施例40〜43及び比較例32の電池に
充電を電流値1mAで4.2Vに達するまで行った後、
30分間電流を停止し、次に放電を電流値1mAで3.
0Vに達するまで行い、再び30分電流を停止するサイ
クルを50サイクル繰り返し、各サイクルの放電容量を
測定し、その結果を図8に示す。
The batteries of Examples 40 to 43 and Comparative Example 32 were charged until the current reached 4.2 V at a current value of 1 mA.
The current was stopped for 30 minutes, and then discharge was performed at a current value of 1 mA.
The cycle is repeated until the voltage reaches 0 V, and the current is stopped again for 30 minutes. The cycle is repeated 50 times, and the discharge capacity of each cycle is measured. The result is shown in FIG.

【0249】図8から明らかなように、実施例40〜4
3の電池は、50サイクルに亘って高容量を維持できる
ことがわかる。これに対し、比較例32の電池は、初期
容量は実施例40〜43の電池に比べて高いものの、5
0サイクル目の放電容量が著しく低く、サイクル寿命が
実施例40〜43の電池にくらべて短いことがわかる。
As is apparent from FIG.
It can be seen that the battery of No. 3 can maintain a high capacity for 50 cycles. On the other hand, the initial capacity of the battery of Comparative Example 32 was higher than that of the batteries of Examples 40 to 43.
It can be seen that the discharge capacity at the 0th cycle is extremely low and the cycle life is shorter than those of the batteries of Examples 40 to 43.

【0250】実施例44 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.9:0.9:0.2で混合し、純水酸素1気圧中に
て550℃で5時間保持した後、650℃で20時間焼
成し、メノウ乳鉢で粉砕することにより組成式がLi
1.1 Ni0.9 1.830.17で表されるリチウム含有ニッ
ケル酸化物を主成分とする平均粒径が8.5μmの粒子
を作製した。一方、リチウム硝酸塩及びコバルト硝酸塩
からなる1モル/lの膜形成水溶液を調製した。なお、
この水溶液に含まれるリチウムとコバルトのモル比は
1:1にした。前記粒子1モルに前記水溶液5ccを添
加し、この溶液を前記粒子に十分に染み込ませた後、純
水酸素1気圧中にて550℃で20時間焼成することに
よって前記粒子の表面全体にエピタキシャル成長によっ
てLiCoO2 を主成分とする膜(厚さが10nm)を
形成した。前記膜のLiCoO2 は、c軸の向きが前記
Li1.1 Ni0.9 1.830.17のc軸の向きと同じであ
る結晶構造を有するものであった。
Example 44 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.9: 0.9: 0.2, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, baked at 650 ° C. for 20 hours and pulverized in an agate mortar, whereby the composition formula is Li
Particles containing lithium-containing nickel oxide represented by 1.1 Ni 0.9 O 1.83 F 0.17 as a main component and having an average particle diameter of 8.5 μm were produced. On the other hand, a 1 mol / l film forming aqueous solution comprising lithium nitrate and cobalt nitrate was prepared. In addition,
The molar ratio of lithium and cobalt contained in this aqueous solution was 1: 1. 5 mol of the aqueous solution is added to 1 mol of the particles, the solution is sufficiently impregnated into the particles, and then baked at 550 ° C. for 20 hours in 1 atm of pure water oxygen, thereby epitaxially growing the entire surface of the particles by epitaxial growth. A film (having a thickness of 10 nm) containing LiCoO 2 as a main component was formed. LiCoO 2 of the film had a crystal structure in which the direction of the c-axis was the same as the direction of the c-axis of Li 1.1 Ni 0.9 O 1.83 F 0.17 .

【0251】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0252】実施例45 実施例44と同様な方法により組成式がLi1.1 Ni
0.9 1.830.17で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。一方、リチウム硝酸塩及びコバルト硝酸塩からなる
1モル/lの膜形成水溶液を調製した。なお、この水溶
液に含まれるリチウムとコバルトのモル比は1:1にし
た。前記粒子1モルに前記水溶液15ccを添加し、こ
の溶液を前記粒子に十分に染み込ませた後、純水酸素1
気圧中にて550℃で20時間焼成することによって前
記粒子の表面全体にエピタキシャル成長によってLiC
oO2 を主成分とする膜(厚さが30nm)を形成し
た。前記膜のLiCoO2 は、c軸の向きが前記Li
1.1 Ni0.9 1.830.17のc軸の向きと同じである結
晶構造を有するものであった。
Example 45 By a method similar to that in Example 44, the composition formula was Li 1.1 Ni.
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.9 O 1.83 F 0.17 as a main component were produced. On the other hand, a 1 mol / l film forming aqueous solution comprising lithium nitrate and cobalt nitrate was prepared. The molar ratio of lithium and cobalt contained in this aqueous solution was 1: 1. 15 cc of the aqueous solution was added to 1 mol of the particles, and the solution was sufficiently impregnated into the particles.
By baking at 550 ° C. for 20 hours in the atmosphere, LiC is epitaxially grown on the entire surface of the particles.
A film (thickness: 30 nm) containing oO 2 as a main component was formed. LiCoO 2 of the film has a c-axis direction of Li
It had the same crystal structure as the direction of the c-axis of 1.1 Ni 0.9 O 1.83 F 0.17 .

【0253】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1 except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0254】実施例46 実施例44と同様な方法により組成式がLi1.1 Ni
0.9 1.830.17で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。一方、リチウム硝酸塩及びコバルト硝酸塩からなる
2モル/lの膜形成水溶液を調製した。なお、この水溶
液に含まれるリチウムとコバルトのモル比は1:1にし
た。前記粒子1モルに前記水溶液12.5ccを添加
し、この溶液を前記粒子に十分に染み込ませた後、純水
酸素1気圧中にて550℃で20時間焼成することによ
って前記粒子の表面全体にエピタキシャル成長によって
LiCoO2 を主成分とする膜(厚さが50nm)を形
成した。前記膜のLiCoO2は、c軸の向きが前記L
1.1 Ni0.9 1.830.17のc軸の向きと同じである
結晶構造を有するものであった。
Example 46 By a method similar to that in Example 44, the composition formula was Li 1.1 Ni.
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.9 O 1.83 F 0.17 as a main component were produced. On the other hand, a 2 mol / l film forming aqueous solution comprising lithium nitrate and cobalt nitrate was prepared. The molar ratio of lithium and cobalt contained in this aqueous solution was 1: 1. 12.5 cc of the aqueous solution was added to 1 mol of the particles, and the solution was sufficiently impregnated into the particles, and then calcined at 550 ° C. for 20 hours in 1 atm of pure water and oxygen to cover the entire surface of the particles. A film (thickness: 50 nm) containing LiCoO 2 as a main component was formed by epitaxial growth. LiCoO 2 of the film has a c-axis orientation of the L
It had the same crystal structure as the direction of the c-axis of i 1.1 Ni 0.9 O 1.83 F 0.17 .

【0255】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0256】実施例47 実施例44と同様な方法により組成式がLi1.1 Ni
0.9 1.830.17で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。一方、リチウム硝酸塩及びコバルト硝酸塩からなる
2モル/lの膜形成水溶液を調製した。なお、この水溶
液に含まれるリチウムとコバルトのモル比は1:1にし
た。前記粒子1モルに前記水溶液25ccを添加し、こ
の溶液を前記粒子に十分に染み込ませた後、純水酸素1
気圧中にて550℃で20時間焼成することによって前
記粒子の表面全体にエピタキシャル成長によってLiC
oO2 を主成分とする膜(厚さが100nm)を形成し
た。前記膜のLiCoO2 は、c軸の向きが前記Li
1.1 Ni0.9 1.830.17のc軸の向きと同じである結
晶構造を有するものであった。
Example 47 By a method similar to that in Example 44, the composition formula was Li 1.1 Ni
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 0.9 O 1.83 F 0.17 as a main component were produced. On the other hand, a 2 mol / l film forming aqueous solution comprising lithium nitrate and cobalt nitrate was prepared. The molar ratio of lithium and cobalt contained in this aqueous solution was 1: 1. 25 mol of the aqueous solution was added to 1 mol of the particles, and the solution was sufficiently impregnated into the particles.
By baking at 550 ° C. for 20 hours in the atmosphere, LiC is epitaxially grown on the entire surface of the particles.
A film (having a thickness of 100 nm) containing oO 2 as a main component was formed. LiCoO 2 of the film has a c-axis direction of Li
It had the same crystal structure as the direction of the c-axis of 1.1 Ni 0.9 O 1.83 F 0.17 .

【0257】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例1と同様な負極、参照電極及び非水電解液
を用いて前述した図5に示す正極評価用電池を組み立て
た。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using this positive electrode, the same negative electrode, reference electrode and non-aqueous electrolyte as in Example 1, the above-described positive electrode evaluation battery shown in FIG. 5 was assembled.

【0258】比較例33 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.9:0.9:0.2で混合し、純水酸素1気圧中に
て550℃で5時間保持した後、650℃で20時間焼
成し、メノウ乳鉢で粉砕することにより組成式がLi
1.1 Ni0.9 1.830.17で表されるリチウム含有ニッ
ケル酸化物を主成分とする平均粒径が8.5μmの粒子
を作製した。得られた粒子を用いること以外は、実施例
1と同様にして正極を作製した。この正極と、実施例1
と同様な負極、参照電極及び非水電解液を用いて前述し
た図5に示す正極評価用電池を組み立てた。
Comparative Example 33 LiOH.H 2 O, Ni (OH) 2, and LiF were mixed at a molar ratio of 0.9: 0.9: 0.2, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, baked at 650 ° C. for 20 hours and pulverized in an agate mortar, whereby the composition formula is Li
Particles containing lithium-containing nickel oxide represented by 1.1 Ni 0.9 O 1.83 F 0.17 as a main component and having an average particle diameter of 8.5 μm were produced. A positive electrode was produced in the same manner as in Example 1 except that the obtained particles were used. This positive electrode and Example 1
Using the same negative electrode, reference electrode and non-aqueous electrolyte as described above, the positive electrode evaluation battery shown in FIG. 5 was assembled.

【0259】得られた実施例44〜47及び比較例33
の電池に充電を電流値1mAで4.2Vに達するまで行
った後、30分間電流を停止し、次に放電を電流値1m
Aで3.0Vに達するまで行い、再び30分電流を停止
するサイクルを繰り返し、そのサイクル回数による放電
容量の変化を測定し、初期充電容量と100サイクル目
の放電容量を下記表9に示す。なお、実施例12の電池
の初期充電容量と100サイクル目の放電容量を表9に
併記する。
The obtained Examples 44 to 47 and Comparative Example 33
Was charged at a current value of 1 mA until it reached 4.2 V, the current was stopped for 30 minutes, and then the battery was discharged at a current value of 1 m.
The cycle is repeated until the voltage reaches 3.0 V at A, and the current is stopped again for 30 minutes. The change in the discharge capacity according to the number of cycles is measured. Table 9 also shows the initial charge capacity and the discharge capacity at the 100th cycle of the battery of Example 12.

【0260】[0260]

【表9】 [Table 9]

【0261】表9から明らかなように、実施例12、4
4〜47の電池は、比較例33に比べて充放電サイクル
寿命が長いことがわかる。特に、LiCoO2 を主成分
とする膜の厚さが20〜50nmの実施例12、45、
46の電池は、実施例44、47の電池に比べてサイク
ル特性が優れていることがわかる。
As apparent from Table 9, Examples 12 and 4
It can be seen that the batteries Nos. 4 to 47 have a longer charge / discharge cycle life than Comparative Example 33. In particular, Examples 12 and 45 in which the thickness of the film containing LiCoO 2 as a main component is 20 to 50 nm,
It can be seen that the battery of No. 46 has better cycle characteristics than the batteries of Examples 44 and 47.

【0262】実施例48 <正極の作製>LiOH・H2 OとNi(OH)2 とL
iFをモル比0.96:0.92:0.12で混合し、
純水酸素1気圧中にて550℃で5時間保持した後、6
50℃で20時間焼成し、メノウ乳鉢で粉砕することに
より組成式がLi1.08Ni0.921.9 0.1 で表される
リチウム含有ニッケル酸化物を主成分とする粒子を作製
した。得られた粒子の平均粒径は8.5μmであった。
Example 48 <Preparation of Positive Electrode> LiOH.H 2 O, Ni (OH) 2 and L
mixing iF in a molar ratio of 0.96: 0.92: 0.12,
After holding at 550 ° C. for 5 hours in one atmosphere of pure water oxygen, 6
The particles were baked at 50 ° C. for 20 hours and pulverized in an agate mortar to produce particles containing lithium-containing nickel oxide as a main component represented by a composition formula of Li 1.08 Ni 0.92 O 1.9 F 0.1 . The average particle size of the obtained particles was 8.5 μm.

【0263】得られた粒子、アセチレンブラック、ポリ
フッ化ビニリデン及びN−メチル2−ピロリドンを重量
比85:5:10:90で混合した後、分散させてスラ
リーを調製した。前記スラリーを厚さ20μmのアルミ
ニウム基板に塗布し、150℃で乾燥させ、ロールプレ
ス機によりプレスすることによって、厚さが200μm
の正極を作製した。
The obtained particles, acetylene black, polyvinylidene fluoride and N-methyl 2-pyrrolidone were mixed at a weight ratio of 85: 5: 10: 90, and then dispersed to prepare a slurry. The slurry was applied to an aluminum substrate having a thickness of 20 μm, dried at 150 ° C., and pressed by a roll press to obtain a thickness of 200 μm.
Was produced.

【0264】<負極の作製>メソフェーズカーボンファ
イバー、ポリフッ化ビニリデン及びN−メチル2−ピロ
リドンを重量比300:24:216で混合し、分散さ
せてスラリーを調製した。前記スラリーを厚さ20μm
の銅基板に塗布し、150℃で乾燥させ、ロールプレス
機によりプレスすることによって、厚さが200μmの
負極を作製した。
<Preparation of Negative Electrode> Mesophase carbon fiber, polyvinylidene fluoride and N-methyl 2-pyrrolidone were mixed at a weight ratio of 300: 24: 216 and dispersed to prepare a slurry. The slurry is 20 μm thick.
Was dried at 150 ° C. and pressed by a roll press machine to produce a negative electrode having a thickness of 200 μm.

【0265】前記正極、ポリエチレン製多孔質フィルム
からなるセパレ―タおよび前記負極をそれぞれこの順序
で積層した後、前記負極が外側に位置するように渦巻き
状に巻回して電極群を作製した。
After laminating the positive electrode, the separator made of a porous film made of polyethylene, and the negative electrode in this order, they were spirally wound so that the negative electrode was located outside, thereby producing an electrode group.

【0266】<電解液の調製>エチレンカーボネートと
エチルメチルカーボネートの混合溶媒(混合体積比率
1:1)に六フッ化リン酸リチウム(LiPF6 )を1
モル/1溶解して非水電解液を調製した。
<Preparation of Electrolyte Solution> Lithium hexafluorophosphate (LiPF 6 ) was added to a mixed solvent of ethylene carbonate and ethyl methyl carbonate (mixing volume ratio 1: 1).
A non-aqueous electrolyte was prepared by dissolving at a molar ratio of 1: 1.

【0267】前記電極群及び前記電解液をステンレス製
の有底円筒状容器内にそれぞれ収納して前述した図1に
示す構造を有し、直径が18mmで、高さが65mmの
円筒形非水電解液二次電池を組み立てた。
The electrode group and the electrolytic solution were housed in stainless steel bottomed cylindrical containers, respectively, and had the structure shown in FIG. 1 described above, and had a diameter of 18 mm and a height of 65 mm. An electrolyte secondary battery was assembled.

【0268】実施例49 実施例48と同様な方法により組成式がLi1.08Ni
0.921.9 0.1 で表されるリチウム含有ニッケル酸化
物を主成分とする平均粒径が8.5μmの粒子を作製し
た。一方、リチウム硝酸塩及びコバルト硝酸塩からなる
1モル/lの膜形成水溶液を調製した。なお、この水溶
液に含まれるリチウムとコバルトのモル比は1:1にし
た。前記粒子1モルに前記水溶液5ccを添加し、この
溶液を前記粒子に十分に染み込ませた後、純水酸素1気
圧中にて550℃で20時間焼成することによって前記
粒子の表面全体にエピタキシャル成長によってLiCo
2を主成分とする膜(厚さが10nm)を形成した。
前記膜のLiCoO2 は、c軸の向きが前記Li1.08
0.921.9 0.1 のc軸の向きと同じである結晶構造
を有するものであった。
Example 49 By a method similar to that in Example 48, the composition formula was Li 1.08 Ni
Particles having a mean particle size of 8.5 μm containing a lithium-containing nickel oxide represented by 0.92 O 1.9 F 0.1 as a main component were produced. On the other hand, a 1 mol / l film forming aqueous solution comprising lithium nitrate and cobalt nitrate was prepared. The molar ratio of lithium and cobalt contained in this aqueous solution was 1: 1. 5 mol of the aqueous solution is added to 1 mol of the particles, and the solution is sufficiently impregnated into the particles. The particles are baked at 550 ° C. for 20 hours in 1 atm of pure water oxygen to thereby epitaxially grow the entire surface of the particles. LiCo
A film containing O 2 as a main component (having a thickness of 10 nm) was formed.
LiCoO 2 of the film has a c-axis orientation of the Li 1.08 N
It had the same crystal structure as the direction of the c-axis of i 0.92 O 1.9 F 0.1 .

【0269】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例48と同様な負極、セパレータ及び非水電
解液を用いて前述した図1に示す非水電解液二次電池を
組み立てた。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte similar to those in Example 48, the above-described non-aqueous electrolyte secondary battery shown in FIG. 1 was assembled.

【0270】比較例34 LiOH・H2 OとNi(OH)2 とをモル比1.02
5:1で混合し、純水酸素1気圧中にて550℃で5時
間保持した後、650℃で20時間焼成し、メノウ乳鉢
で粉砕することにより組成式がLi1.025 Ni0.975
2 で表されるリチウム含有ニッケル酸化物を主成分とす
る平均粒径が8.5μmの粒子を作製した。
Comparative Example 34 LiOH.H 2 O and Ni (OH) 2 in a molar ratio of 1.02
After mixing at 5: 1 and maintaining at 550 ° C. for 5 hours in 1 atm of pure water oxygen, the mixture was calcined at 650 ° C. for 20 hours and pulverized in an agate mortar to obtain a composition formula of Li 1.025 Ni 0.975 O
Particles having a mean particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by 2 as a main component were produced.

【0271】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例48と同様な負極、セパレータ及び非水電
解液を用いて前述した図1に示す非水電解液二次電池を
組み立てた。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte similar to those in Example 48, the above-described non-aqueous electrolyte secondary battery shown in FIG. 1 was assembled.

【0272】比較例35 LiOH・H2 OとNi(OH)2 とLiFをモル比
0.75:0.9:0.35で混合し、純水酸素1気圧
中にて550℃で5時間保持した後、650℃で20時
間焼成し、メノウ乳鉢で粉砕することにより組成式がL
1.1 Ni0.9 1.7 0.3 で表されるリチウム含有ニ
ッケル酸化物を主成分とする平均粒径が8.5μmの粒
子を作製した。
Comparative Example 35 LiOH.H 2 O, Ni (OH) 2 and LiF were mixed at a molar ratio of 0.75: 0.9: 0.35, and the mixture was heated at 550 ° C. for 5 hours in one atmosphere of pure water and oxygen. After holding, the mixture was baked at 650 ° C. for 20 hours, and crushed in an agate mortar, whereby the composition formula was L.
Particles having an average particle size of 8.5 μm and containing a lithium-containing nickel oxide represented by i 1.1 Ni 0.9 O 1.7 F 0.3 as a main component were produced.

【0273】このようにして得られた粒子を用いること
以外は、実施例1と同様にして正極を作製した。この正
極と、実施例48と同様な負極、セパレータ及び非水電
解液を用いて前述した図1に示す非水電解液二次電池を
組み立てた。
A positive electrode was produced in the same manner as in Example 1, except that the particles thus obtained were used. Using the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte similar to those in Example 48, the above-described non-aqueous electrolyte secondary battery shown in FIG. 1 was assembled.

【0274】得られた実施例48〜49及び比較例34
〜35の電池に充電を電流値1000mAで4.2Vに
達するまで行った後、定電圧モードで30分間充電し、
次に放電を電流値1000mAで2.7Vに達するまで
行い、30分電流を停止するサイクルを繰り返し、その
サイクル回数による放電容量の変化を測定し、初期充電
容量と300サイクル目の放電容量を下記表10に示
す。
The obtained Examples 48 to 49 and Comparative Example 34
After charging the batteries of ~ 35 at a current value of 1000 mA until reaching 4.2 V, the batteries were charged in a constant voltage mode for 30 minutes,
Next, discharge was performed at a current value of 1000 mA until the voltage reached 2.7 V, and a cycle of stopping the current for 30 minutes was repeated. Changes in the discharge capacity according to the number of cycles were measured, and the initial charge capacity and the discharge capacity at the 300th cycle were calculated as follows. It is shown in Table 10.

【0275】[0275]

【表10】 [Table 10]

【0276】表10から明らかなように、実施例48〜
49の二次電池は、初期容量及びサイクル寿命の双方が
優れていることがわかる。これに対し、比較例34の二
次電池は、初期容量が高いものの、サイクル寿命が短い
ことがわかる。また、比較例35の二次電池は、初期容
量及びサイクル寿命のいずれも劣ることがわかる。
As is clear from Table 10, Examples 48 to
It can be seen that the secondary battery of No. 49 has excellent both initial capacity and cycle life. In contrast, the secondary battery of Comparative Example 34 has a high initial capacity but a short cycle life. Further, it can be seen that the secondary battery of Comparative Example 35 is inferior in both the initial capacity and the cycle life.

【0277】[0277]

【発明の効果】以上説明したように、本発明によれば、
放電容量及びサイクル寿命が向上された非水電解液二次
電池及びその製造方法を提供することができる。
As described above, according to the present invention,
A non-aqueous electrolyte secondary battery with improved discharge capacity and cycle life and a method for manufacturing the same can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解液二次電池を示す断面
図。
FIG. 1 is a cross-sectional view showing a non-aqueous electrolyte secondary battery according to the present invention.

【図2】本発明に係る非水電解液二次電池に含まれるリ
チウム含有ニッケル酸化物の組成式におけるxとyの関
係を示す特性図。
FIG. 2 is a characteristic diagram showing a relationship between x and y in a composition formula of a lithium-containing nickel oxide contained in a nonaqueous electrolyte secondary battery according to the present invention.

【図3】本発明に係る別の非水電解液二次電池に含まれ
るリチウム含有ニッケル酸化物の組成式におけるxとy
の関係を示す特性図。
FIG. 3 shows x and y in the composition formula of lithium-containing nickel oxide contained in another nonaqueous electrolyte secondary battery according to the present invention.
FIG.

【図4】本発明の実施例1〜9,37,39,48の電
池に含まれるリチウム含有ニッケル酸化物の組成を示す
特性図。
FIG. 4 is a characteristic diagram showing a composition of a lithium-containing nickel oxide included in the batteries of Examples 1 to 9, 37, 39, and 48 of the present invention.

【図5】本発明の実施例1〜47で用いられる正極評価
用電池を示す模式図。
FIG. 5 is a schematic diagram showing a positive electrode evaluation battery used in Examples 1 to 47 of the present invention.

【図6】本発明の実施例1の電池におけるサイクル数と
放電容量との関係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the number of cycles and the discharge capacity in the battery of Example 1 of the present invention.

【図7】本発明の実施例10〜36,38,44〜4
7,49の電池に含まれるリチウム含有ニッケル酸化物
の組成を示す特性図。
FIG. 7 shows Examples 10 to 36, 38, 44 to 4 of the present invention.
7 is a characteristic diagram showing the composition of a lithium-containing nickel oxide included in the batteries of Nos. 7 and 49.

【図8】本発明の実施例40〜43の電池におけるサイ
クル数と放電容量との関係を示す特性図。
FIG. 8 is a characteristic diagram showing the relationship between the number of cycles and the discharge capacity in the batteries of Examples 40 to 43 of the present invention.

【符号の説明】[Explanation of symbols]

1…容器、3…電極群、4…正極、5…セパレータ、6
…負極、8…封口板。
DESCRIPTION OF SYMBOLS 1 ... container, 3 ... electrode group, 4 ... positive electrode, 5 ... separator, 6
... negative electrode, 8 ... sealing plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒井 真次 神奈川県川崎市幸区堀川町72番地 株式 会社東芝川崎事業所内 (72)発明者 神田 基 神奈川県川崎市幸区堀川町72番地 株式 会社東芝川崎事業所内 (56)参考文献 特開 平7−153466(JP,A) 特開 平4−237970(JP,A) 特開 平8−195200(JP,A) 特開 平9−147867(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/58 H01M 4/02 H01M 10/40 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shinji Arai 72 Horikawa-cho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Inside the Toshiba Kawasaki Office (72) Inventor Motoki Kanda 72 Horikawacho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Stock Company (56) References JP-A-7-153466 (JP, A) JP-A-4-237970 (JP, A) JP-A 8-195200 (JP, A) JP-A 9-147867 (JP) , A) (58) Field surveyed (Int. Cl. 6 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と、負極と、非水電解液とを具備
し、 前記正極は組成式がLi1+x Ni1-x u-y y で表さ
れるリチウム含有ニッケル酸化物を含み、前記x,前記
y及び前記uは下記(1)〜(3)式を満足する (y+0.05)/2≦x<(y+1)/3 ……(1) y>0 ……(2) 1.9≦u≦2.1 ……(3) ことを特徴とする非水電解液二次電池。
A positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode includes a lithium-containing nickel oxide represented by a composition formula of Li 1 + x Ni 1-x O uy F y , X, y, and u satisfy the following expressions (1) to (3): (y + 0.05) / 2 ≦ x <(y + 1) / 3 (1) y> 0 (2) 1 .9 ≦ u ≦ 2.1 (3) A non-aqueous electrolyte secondary battery characterized by the following:
【請求項2】 正極と、負極と、非水電解液を具備する
非水電解液二次電池の製造方法であって、 リチウム水酸化物、リチウム酸化物、リチウム炭酸塩及
びリチウム硝酸塩から選ばれる少なくとも1種の化合物
と、ニッケル水酸化物、ニッケル酸化物、ニッケル炭酸
塩及びニッケル硝酸塩から選ばれる少なくとも1種の化
合物と、リチウムのフッ化物とをモル比0.85〜1.
0:0.8〜0.95:0.05〜0.35で混合する
工程;得られた混合物を酸素雰囲気中にて550℃〜6
00℃に保持する工程;酸素雰囲気中にて600℃〜6
80℃で焼成する工程;を具備する方法により前記正極
を作製することを特徴とする非水電解液二次電池の製造
方法。
2. A method for manufacturing a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the method is selected from lithium hydroxide, lithium oxide, lithium carbonate, and lithium nitrate. The molar ratio of at least one compound, at least one compound selected from nickel hydroxide, nickel oxide, nickel carbonate and nickel nitrate, and lithium fluoride is 0.85 to 1.
0: 0.8 to 0.95: mixing at 0.05 to 0.35; 550 ° C. to 6 at 550 ° C. in an oxygen atmosphere.
Step of maintaining at 00 ° C; 600 ° C to 6 in an oxygen atmosphere
Baking at 80 ° C .; producing the positive electrode by a method comprising: baking at 80 ° C.
【請求項3】 リチウム含有ニッケル酸化物を主成分と
する粒子及び前記粒子表面の少なくとも一部に形成され
たリチウム含有酸化物を主成分とする膜を含む正極と、
負極と、非水電解液を具備し、 前記リチウム含有ニッケル酸化物は組成式がLi1+x
1-x u-y y で表され、前記x,前記y及び前記u
は下記(4)〜(7)式を満足し、 y/2≦x<(y+1)/3 ……(4) y>0 ……(5) x≧0.05 ……(6) 1.9≦u≦2.1 ……(7) 前記リチウム含有酸化物は、組成式がLiMO2 (但
し、前記MはAl、Co、Ni、Li、Mn、Ga及び
Ruから選ばれる少なくとも1種の元素である)で表さ
れることを特徴とする非水電解液二次電池。
3. A positive electrode comprising particles containing lithium-containing nickel oxide as a main component and a film containing lithium-containing oxide as a main component formed on at least a part of the particle surface;
A negative electrode and a non-aqueous electrolyte, wherein the lithium-containing nickel oxide has a composition formula of Li 1 + x N
i 1-x O uy F y, where x, y and u
Satisfies the following equations (4) to (7); y / 2 ≦ x <(y + 1) / 3 (4) y> 0 (5) x ≧ 0.05 (6) 9 ≦ u ≦ 2.1 (7) The lithium-containing oxide has a composition formula of LiMO 2 (where M is at least one kind selected from Al, Co, Ni, Li, Mn, Ga and Ru). A non-aqueous electrolyte secondary battery characterized by being represented by the following formula:
【請求項4】 前記リチウム含有酸化物を主成分とする
膜は、前記リチウム含有ニッケル酸化物を主成分とする
粒子の表面の少なくとも一部にエピタキシャル成長によ
り形成される請求項3記載の非水電解液二次電池。
4. The non-aqueous electrolysis according to claim 3, wherein the film containing lithium-containing oxide as a main component is formed on at least a part of the surface of the particles containing lithium-containing nickel oxide as a main component by epitaxial growth. Liquid secondary battery.
【請求項5】 正極と、負極と、非水電解液を具備する
非水電解液二次電池の製造方法であって、 リチウム水酸化物、リチウム酸化物、リチウム炭酸塩及
びリチウム硝酸塩から選ばれる少なくとも1種の化合物
と、ニッケル水酸化物、ニッケル酸化物、ニッケル炭酸
塩及びニッケル硝酸塩から選ばれる少なくとも1種の化
合物と、リチウムのフッ化物とをモル比0.85〜1.
0:0.8〜0.95:0.05〜0.35で混合する
工程;得られた混合物を酸素雰囲気中にて550℃〜6
00℃に保持する工程;酸素雰囲気中にて600℃〜6
80℃で焼成することにより粒子を作製する工程;リチ
ウム硝酸塩か、またはリチウム有機酸塩のいずれか一方
と、元素Mの硝酸塩か、または元素Mの有機酸塩のいず
れか一方を含む水溶液を前記粒子に含浸させる工程、前
記MはAl、Co、Ni、Li、Mn、Ga及びRuか
ら選ばれる少なくとも一種である;酸素雰囲気中にて5
00〜600℃で焼成する工程;を具備する方法により
前記正極を作製することを特徴とする非水電解液二次電
池の製造方法。
5. A method for producing a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the method is selected from lithium hydroxide, lithium oxide, lithium carbonate and lithium nitrate. The molar ratio of at least one compound, at least one compound selected from nickel hydroxide, nickel oxide, nickel carbonate and nickel nitrate, and lithium fluoride is 0.85 to 1.
0: 0.8 to 0.95: mixing at 0.05 to 0.35; 550 ° C. to 6 at 550 ° C. in an oxygen atmosphere.
Step of maintaining at 00 ° C; 600 ° C to 6 in an oxygen atmosphere
Baking the particles at 80 ° C. to produce particles; an aqueous solution containing either a lithium nitrate or a lithium organic acid salt and either the element M nitrate or the element M organic acid salt is mixed with the aqueous solution. Impregnating the particles, wherein M is at least one selected from the group consisting of Al, Co, Ni, Li, Mn, Ga and Ru;
Baking at a temperature of from 00 to 600 ° C .; and producing the positive electrode by a method comprising:
JP8213570A 1995-08-23 1996-08-13 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Lifetime JP2967051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8213570A JP2967051B2 (en) 1995-08-23 1996-08-13 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21474295 1995-08-23
JP7-214742 1995-08-23
JP8213570A JP2967051B2 (en) 1995-08-23 1996-08-13 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09120815A JPH09120815A (en) 1997-05-06
JP2967051B2 true JP2967051B2 (en) 1999-10-25

Family

ID=26519868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8213570A Expired - Lifetime JP2967051B2 (en) 1995-08-23 1996-08-13 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2967051B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016156B1 (en) * 1997-06-27 2003-08-27 Lg Chemical Limited Lithium ion secondary battery and manufacturing method of the same
KR100309769B1 (en) * 1999-06-17 2001-11-01 김순택 Positive active material for lithium secondary battery and method of preparing the same
KR100307164B1 (en) * 1999-06-12 2001-11-01 김순택 Positive active material for lithium secondary battery and lithium secondary battery comprising the same
JP5036100B2 (en) * 2001-03-30 2012-09-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4237074B2 (en) 2004-02-16 2009-03-11 ソニー株式会社 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5470669B2 (en) * 2005-05-13 2014-04-16 日産自動車株式会社 Cathode material for non-aqueous electrolysis lithium ion battery, battery using the same, and method for producing cathode material for non-aqueous electrolysis lithium ion battery
JP5195049B2 (en) * 2008-06-06 2013-05-08 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
WO2010039732A2 (en) * 2008-09-30 2010-04-08 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
JP6087042B2 (en) 2010-09-30 2017-03-01 日立化成株式会社 Method for manufacturing sintered member
JP2012216391A (en) * 2011-03-31 2012-11-08 Daikin Ind Ltd Electrochemical device and nonaqueous electrolyte for electrochemical device
CN104241623A (en) * 2013-06-14 2014-12-24 上海绿孚新能源科技有限公司 Cathode active substance and secondary battery
JP6737586B2 (en) 2015-11-30 2020-08-12 トヨタ自動車株式会社 Positive electrode active material and lithium ion secondary battery using the same
JP2020087810A (en) * 2018-11-29 2020-06-04 セイコーエプソン株式会社 Active material, method for producing active material, electrode complex, secondary battery and electronic equipment

Also Published As

Publication number Publication date
JPH09120815A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US8153295B2 (en) Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
EP0720247B1 (en) Manufacturing processes of positive active materials for lithium secondary batteries and lithium secondary batteries comprising the same
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
KR100570616B1 (en) Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
US5773168A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP3032757B1 (en) Non-aqueous electrolyte secondary battery
KR20180077081A (en) Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
US20130260249A1 (en) Lithium ion secondary battery and method for preparing the same
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4767484B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
JP2002075367A (en) Positive electrode active material for lithium battery, manufacturing method for the active material, and secondary battery using it
JP2000128539A (en) Lithium transition metal based halogenated oxide and its production and its utilization
US11973179B2 (en) Cathode active material for lithium secondary battery and method of manufacturing the same
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP6930015B1 (en) Precursor, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2014072025A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2024516811A (en) Positive electrode active material, its manufacturing method, and lithium secondary battery including positive electrode containing the same
JPWO2012032709A1 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP2000077072A (en) Nonaqueous electrolyte secondary battery
JP3625679B2 (en) Lithium secondary battery
JP2022521083A (en) A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

EXPY Cancellation because of completion of term