JP4318002B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4318002B2
JP4318002B2 JP10299999A JP10299999A JP4318002B2 JP 4318002 B2 JP4318002 B2 JP 4318002B2 JP 10299999 A JP10299999 A JP 10299999A JP 10299999 A JP10299999 A JP 10299999A JP 4318002 B2 JP4318002 B2 JP 4318002B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10299999A
Other languages
Japanese (ja)
Other versions
JP2000294242A (en
Inventor
誠 能代
学 数原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Original Assignee
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd, AGC Seimi Chemical Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP10299999A priority Critical patent/JP4318002B2/en
Publication of JP2000294242A publication Critical patent/JP2000294242A/en
Application granted granted Critical
Publication of JP4318002B2 publication Critical patent/JP4318002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池用正極活物質の製造方法に関する。
【0002】
【従来の技術】
近年、機器のポータブル化、コードレス化が進むにつれ、小型、軽量、かつ高エネルギ密度の非水電解液二次電池に対する期待が高まっている。非水電解液二次電池用の正極活物質には、LiCoO2、LiNiO2、LiMn24、LiMnO2等のリチウムと遷移金属との複合酸化物が知られている。これらの正極活物質と、リチウムを吸蔵、放出できる炭素材料等の負極活物質とを組み合わせた、高電圧、高エネルギ密度の非水電解液二次電池の開発が進められている。なかでも特に最近では、安価な材料のマンガンを用いた、リチウムとマンガンの複合酸化物の研究がさかんに進められている。
【0003】
一般に、非水電解液二次電池に用いられる正極活物質は、コバルト、ニッケル、マンガン等の遷移金属とリチウムとの複合酸化物からなり、用いられる遷移金属の種類によって電気容量、可逆性、作動電圧等の電極特性が異なる。
【0004】
例えば、LiCoO2、及びLiNi0.8Co0.22等の層状岩塩型構造の複合酸化物を正極活物質に用いた非水電解液二次電池では、容量密度はそれぞれ140〜160mAh/g及び190〜210mAh/gと比較的高く、2.5〜4.3Vの高い電圧領域ではリチウムの吸蔵、放出に対し良好な可逆性を示す。しかし、原料となるコバルトやニッケルが高価であり、また2V以下の電圧領域ではリチウムの吸蔵、放出が可逆的に起こらなくなる問題がある。
【0005】
一方、比較的安価なマンガンを原料とするLiMn24からなるスピネル型複合酸化物を正極活物質に用いる非水電解液二次電池は、容量密度が100〜120mAh/gであり上述のコバルトやニッケルを含む活物質に比べて低い。また、充放電サイクル耐久性が低く、さらに3V未満の低い電圧領域で急速に劣化する問題がある。これに対し、同じくマンガンを原料とするLiMnO2を活物質に用いる非水電解液二次電池は、2V前後の低い電圧領域まで作動できるのでLiMn24より高い容量が期待できるが、充放電サイクル耐久性がLiMn24よりさらに低い問題がある。
【0006】
LiMnO2としては、β−NaMnO2型構造の斜方晶LiMnO2とα−NaMnO2型構造である層状岩塩型構造の単斜晶LiMnO2が知られている。斜方晶LiMnO2は、充放電の繰り返しにより徐々にスピネル相に転移するため、充放電サイクル耐久性が著しく低い。
【0007】
単斜晶LiMnO2は、通常の固相反応法で合成したα−NaMnO2をLiイオンを含む非水溶液中で、300℃以下の温度でイオン交換することにより合成される(A.R.Armstrong and P.G.Bruce,NATURE,Vol.381,P499,1996)。また、リチウム以外のアルカリ金属の水酸化物を含むリチウム塩水溶液中で、マンガン酸化物を水熱処理することにより合成することも報告されている(特開平11−21128)。しかし、これらの方法で合成された単斜晶LiMnO2を正極活物質とすると、充放電サイクル耐久性は改良されるものの、LiCoO2、LiNi0.8Co0.22等を正極活物質に用いた非水電解液二次電池に比べれば充放電サイクル耐久性が劣っており、実用電池への採用が困難であった。
【0008】
一方、LiMnO2にFe、Ni、Co、Cr又はAlを添加した複合酸化物が特開平10−134812に開示されているが、該複合酸化物はいずれもX線回折のチャートがJCPDSの35−749と類似していることから斜方晶LiMnO2構造であると認められ、充放電サイクル耐久性は不充分である。
【0009】
【発明が解決しようとする課題】
そこで本発明は、広い電圧領域で使用でき、電気容量が大きく、充放電サイクル耐久性に優れていて、かつ安価な非水電解液二次電池用正極活物質の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、単斜晶層状岩塩型構造を有し、LixMny1-y2で表される(ただし、Mは、Al、Fe、Co、Ni及びCrからなる群から選ばれる1種以上の元素であり、0<x≦1.1、0.5≦y<1である。)非水電解液二次電池用正極活物質の製造方法であって、水溶性リチウム化合物と水酸化カリウム若しくは水酸化ナトリウムが溶解している強塩基性水溶液中で、マンガン化合物と元素Mを含む化合物とを130〜300℃にて水熱処理することを特徴とする製造方法を提供する。
【0011】
LixMny1-y2は、結晶構造として斜方晶と単斜晶の2種の構造を取りうるが、本発明では単斜晶の層状岩塩型構造を有している。単斜晶のものを非水電解液二次電池の正極活物質として用いると、充放電サイクル耐久性が優れている。ただし、本発明ではLixMny1-y2は単斜晶のみからなるものではなく、多少の斜方晶のものが混在していてもよい。
【0012】
本発明では、LixMny1-y2において0.5≦y<1である。yが0.5未満であると単斜晶層状岩塩構造を維持できなくなる。好ましくは0.65≦y≦0.99が採用される。また、MはAl、Fe、Co、Ni及びCrからなる群から選ばれる1種以上の元素であるが、特にAlであると本発明の正極活物質を用いた非水電解液二次電池の電気容量が高くなるので好ましい。
【0013】
本発明の製造方法では、上記LixMny1-y2を得るために水溶性リチウム化合物と水酸化カリウム若しくは水酸化ナトリウムが溶解している強塩基性水溶液中で、マンガン化合物(以下、Mn源原料という)と元素Mを含む化合物(以下、M源原料という)とを130〜300℃にて水熱処理する。上記強塩基性水溶液へのMn源原料及びM源原料の添加方法としては、以下の2とおりの方法が好ましく採用される。
1)あらかじめ、Mn源原料とM源原料とを均一に混合してから添加する。
2)水溶性リチウム化合物と水酸化カリウム若しくは水酸化ナトリウムが溶解している強塩基性水溶液にM源原料を溶解し、その水溶液中にMn源原料を加える。
【0014】
1)の方法によれば、得られる正極活物質においてMnとMが均一に分布しやすいの好ましい。特に、Mn源原料及びM源原料とを共沈して得られる水酸化物、酸化物又はオキシ水酸化物としてから上記強塩基性水溶液中に含有させると、MnとMがより均一に分布するので好ましい。また、2)の方法も、M源原料が水溶液中に溶解しているためMn源原料と反応しやすいので、得られる正極活物質にはMnとMが均一に分布する。
【0015】
MがAlである場合は2)の方法が好ましく、NaAlO2、KAlO2、LiAlO2等を原料として強塩基性水溶液中に溶解させると均質なLiMnxAl1-x2を合成できるので好ましい。
【0016】
また、本発明の製造方法においては、作業性や得られる複合酸化物の結晶の均一性から、水溶性のリチウム化合物を強塩基性水溶液に溶解させるが、水溶性リチウム化合物としては特に水酸化リチウムが好ましい。
【0017】
本発明における強塩基性水溶液は、pH11以上であることが好ましい。強塩基性水溶液には、得られる正極活物質中に不純物が残存しにくいことから、水酸化カリウム又は水酸化ナトリウム溶解させる。水酸化カリウムと水酸化ナトリウムは単独で使用しても、混合して使用してもよい。また、強塩基性水溶液中にはアニオンとして、水酸イオンの他に、塩素イオン、臭素イオン、硝酸イオン、酢酸イオン、シュウ酸イオン等が含まれていてもよい。
【0018】
本発明の製造方法において、Mn源原料としては、酸化物(Mn23、MnO、MnO2等)、酸化物の水和物、オキシ水酸化物等が挙げられるが、3価のマンガンの化合物であることが好ましい。これらのMn源原料は、単独で使用しても、2種以上を混合して使用してもよい。
【0019】
本発明の製造方法において、M源原料としては、金属M、水酸化物、酸化物、オキシ水酸化物、塩化物、硝酸塩等が使用される。これらのM源原料は、単独で使用してもよく、2種以上を併用してもよい。
【0020】
本発明の製造方法としては、例えば純水1kgあたりに水酸化リチウム、塩化リチウム等のリチウム化合物0.05〜5モルと水酸化カリウム若しくは水酸化ナトリウム5〜100モルとを溶解して強塩基性水溶液を調製する。次いでこの水溶液にMn源原料とM源原料を加え、混合した後、得られた混合物をオートクレーブ等の水熱反応装置に設置して、水熱反応させる。水熱反応条件としては、通常130〜300℃の温度で0.5時間〜14日間反応させることが好ましく、特に200〜250℃の温度で1〜48時間反応させることが好ましい。
【0021】
本発明の製造方法では、強塩基性水溶液100mLに対し、Mn源原料は通常0.1〜10g程度加えることが好ましく、特に0.5〜3g加えることが好ましい。また、M源原料は通常0.02〜5g程度加えることが好ましく、特に0.1〜1g加えることが好ましい。
【0022】
水熱反応終了後、残存する水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の未反応原料を除去するため、反応生成物をエタノールで洗浄し濾過し、乾燥することにより、所望の単斜晶層状岩塩型構造のLixMny1-y2が得られる。
【0023】
本発明における非水電解液二次電池の正極は、上記正極活物質と導電材と結合材とを含む成形体である。結合材としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン(以下、PTFEという)、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が好ましい。導電材としては、アセチレンブラック、黒鉛、ケッチェンブラック等のカーボン系導電材が好ましい。上記正極活物質と導電材と結合材との混合物と該結合材を溶解又は分散できる溶媒とからなるスラリ、又は前記混合物に有機溶媒を加えて混練してなる混練物を、アルミニウム箔、ステンレス箔等の正極集電体に塗布又は担持させて正極を成形することが好ましい。
【0024】
本発明における非水電解液二次電池において、電解液の溶媒としては炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしてはプロピレンカーボネート、エチレンカーボネート等が例示される。鎖状炭酸エステルとしてはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート等が例示される。本発明では上記炭酸エステルを単独で又は2種以上を混合して使用することが好ましく、また上記炭酸エステルを他の溶媒と混合して使用してもよい。
【0025】
また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルの混合物を使用すると、放電特性、サイクル耐久性、充放電効率が改良できる場合がある。溶質としては、ClO4 -、CF3SO3 -、BF4 -、PF6 -、AsF6 -、SbF6 -、CF3CO2 -、(CF3SO22-等をアニオンとするリチウム塩を使用することが好ましい。
【0026】
さらに、上記電解液の溶媒にフッ化ビニリデン/ヘキサフルオロプロピレン共重合体(例えばアトケム社製カイナー(商品名))、特開平10−294131に開示されたフッ化ビニリデン/パーフルオロ(プロピルビニルエーテル)共重合体を添加し、上記の溶質を加えることによりゲル状のポリマー電解質を作製し、電解液のかわりにポリマー電解質を使用してもよい。
【0027】
上記の電解液又はポリマー電解質には、リチウム塩が0.2〜2.0mol/L含まれていることが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電気伝導度が低下する。より好ましくは0.5〜1.5mol/Lである。
【0028】
本発明における負極活物質は、リチウムイオンを吸蔵、放出できる材料である。負極活物質は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とした酸化物、炭化ケイ素、酸化ケイ素、硫化チタン、炭化ホウ素等が挙げられる。炭素材料としては、様々な熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛等を使用でき、上記酸化物としては、酸化スズを主体とする化合物が使用できる。また、負極集電体としては銅箔、ニッケル箔等が用いられる。
【0029】
本発明における負極は、負極活物質と結合材とからなることが好ましく、負極活物質と結合材との混合物に有機溶媒を加えてスラリとし、該スラリを金属箔集電体に塗布、乾燥、プレスして得ることが好ましい。
また、正極と負極の間に介在されるセパレータには、多孔質ポリエチレン、多孔質ポリプロピレンフィルム等が好ましく使用される。
また、本発明における非水電解液二次電池の形状は特に限定されない。シート状(いわゆるフィルム状)、折り畳み状、巻回型有底円筒形、ボタン形等が用途に応じて選択される。
【0030】
【実施例】
以下に実施例により本発明を具体的に説明するが、本発明はこれらに限定されない。
【0031】
[例1]
PTFE製有底円筒容器に、水酸化カリウム100gと水酸化リチウム一水和物1.6gと純水140gとを仕込み、撹拌し溶解させた後、厚さ100μmのアルミニウム箔0.21gを投入し溶解させた。続いて酸化マンガン(Mn23)粉末1.4gを添加し、さらに撹拌した。次いで溶液が仕込まれている上記円筒容器をステンレス製オートクレーブ内に収納し、オートクレーブ内を窒素ガスで置換した後、密閉系で225℃で10時間水熱処理した。反応終了後、オートクレーブを冷却してスラリ状の内容物を取り出して濾過し、濾滓をエタノールで洗浄して水酸化リチウム、水酸化カリウム等を除去し、乾燥して正極活物質粉末を得た。
【0032】
上記粉末のCuKα線によるX線回折分析の結果、2θ=18度、37度、39度、45度、62度、65度、67度に回折ピークが認められ、上記粉末は単斜晶相の層状岩塩型LiMnO2構造を有していることがわかった。また、2θ=15度に微量の斜方晶相のLiMnO2構造に基づく回折ピークが認められた。また、粉末の元素分析により、LiMn0.75Al0.252であることがわかった。
【0033】
上記のLiMn0.75Al0.252粉末とアセチレンブラックとPTFE粉末とを80:16:4の重量比で混合し、トルエンを添加しつつ混練してシート状に成形した後、乾燥して厚さ150μmの正極を作製し、正極集電体には厚さ20μmのアルミニウム箔を用いた。セパレータには厚さ25μmの多孔質ポリエチレンを用いた。また、厚さ500μmの金属リチウム箔を負極とし、負極集電体にはニッケル箔を用いた。電解液には、エチレンカーボネートとジエチルカーボネートとの容積比で1:1の混合溶媒に1mol/LのLiPF6を溶解した溶液を用いた。
【0034】
アルゴングローブボックス中で、上記正極と上記負極とをセパレータを介して対向させ、電解液とともにステンレス製簡易セルに収容し密閉して非水電解液二次電池を得た。0.2mA/cm2の定電流で4.3Vまで充電した後、2.0Vまで放電して初期放電容量を求めた。さらに0.2mA/cm2の定電流で充放電サイクルを50回繰り返した。2.0〜4.3Vにおける初期放電容量は160mAh/gであり、50回充放電サイクル後の容量は152mAh/gであった。
【0035】
[例2]
水酸化カリウム100gのかわりに水酸化ナトリウム71gを使用し、アルミニウム箔0.21gのかわりに水酸化アルミニウム0.36gを使用した以外は例1と同様に正極活物質粉末を合成した。例1と同様にX線回折分析を行ったところ、単斜晶の層状岩塩型LiMnO2構造を有し、また2θ=15度に微量の斜方晶からなるLiMnO2構造に基づく回折ピークが認められた。また、元素分析によりLiMn0.85Al0.152であることがわかった。
【0036】
上記正極活物質を用いた以外は例1と同様にして非水電解液二次電池を作製し、例1と同様に評価したところ、初期放電容量は156mAh/gであり、50回充放電サイクル後の容量は140mAh/gであった。
【0037】
[例3]
容積1LのPTFE製有底円筒容器を用い、硝酸マンガンと硝酸アルミニウムとを3:1のモル比で含む水溶液に水酸化アンモニウム水溶液を加えて共沈させ、150℃で加熱・乾燥して、マンガン−アルミニウム共沈水酸化物(マンガンとアルミニウムの原子比は3:1)10gを得た。
【0038】
酸化マンガン粉末とアルミニウム箔のかわりに、上記マンガン−アルミニウム共沈水酸化物粉末1.4gを仕込んだ以外は例1と同様にして合成し、正極活物質粉末を得た。例1と同様にX線回折分析を行ったところ、単斜晶の層状岩塩型LiMnO2構造を有し、また2θ=15度に微量の斜方晶からなるLiMnO2構造に基づく回折ピークが認められた。また、元素分析によりLiMn0.75Al0.252であることがわかった。
【0039】
上記正極活物質を用いた以外は例1と同様にして非水電解液二次電池を作製し、例1と同様に評価したところ、初期放電容量は157mAh/gであり、50回充放電サイクル後の容量は150mAh/gであった。
【0040】
[例4]
硝酸アルミニウムのかわりに硝酸コバルトを使用した以外は例3と同様にしてマンガン−コバルト共沈水酸化物(マンガンとコバルトの原子比は3:1)を得て、例3と同様に正極活物質粉末を合成した。例1と同様にX線回折分析を行ったところ、単斜晶の層状岩塩型LiMnO2構造を有し、また2θ=15度に微量の斜方晶からなるLiMnO2構造に基づく回折ピークが認められた。また、元素分析によりLiMn0.75Co0.252であることがわかった。
【0041】
上記正極活物質を用いた以外は例1と同様にして非水電解液二次電池を作製し、例1と同様に評価したところ、初期放電容量は152mAh/gであり、50回充放電サイクル後の容量は135mAh/gであった。
【0042】
[例5]
硝酸アルミニウムのかわりに硝酸ニッケルを使用した以外は例3と同様にしてマンガン−ニッケル共沈水酸化物(マンガンとニッケルの原子比は3:1)を得て、例3と同様に正極活物質粉末を合成した。例1と同様にX線回折分析を行ったところ、単斜晶の層状岩塩型LiMnO2構造を有し、また2θ=15度に微量の斜方晶からなるLiMnO2構造に基づく回折ピークが認められた。また、元素分析によりLiMn0.75Ni0.252であることがわかった。
【0043】
上記正極活物質を用いた以外は例1と同様にして非水電解液二次電池を作製し、例1と同様に評価したところ、初期放電容量は158mAh/gであり、50回充放電サイクル後の容量は137mAh/gであった。
【0044】
[例6]
硝酸アルミニウムのかわりに硝酸鉄を使用した以外は例3と同様にしてマンガン−鉄共沈水酸化物(マンガンと鉄の原子比は3:1)を得て、例3と同様に正極活物質粉末を合成した。例1と同様にX線回折分析を行ったところ、単斜晶の層状岩塩型LiMnO2構造を有し、また2θ=15度に微量の斜方晶からなるLiMnO2構造に基づく回折ピークが認められた。また、元素分析によりLiMn0.75Fe0.252であることがわかった。
【0045】
上記正極活物質を用いた以外は例1と同様にして非水電解液二次電池を作製し、例1と同様に評価したところ、初期放電容量は155mAh/gであり、50回充放電サイクル後の容量は130mAh/gであった。
【0046】
[例7]
硝酸アルミニウムのかわりに硝酸クロムを使用した以外は例3と同様にしてマンガン−クロム共沈水酸化物(マンガンとクロムの原子比は3:1)を得て、例3と同様に正極活物質粉末を合成した。例1と同様にX線回折分析を行ったところ、単斜晶の層状岩塩型LiMnO2構造を有し、また2θ=15度に微量の斜方晶からなるLiMnO2構造に基づく回折ピークが認められた。また、元素分析によりLiMn0.75Cr0.252であることがわかった。
【0047】
上記正極活物質を用いた以外は例1と同様にして非水電解液二次電池を作製し、例1と同様に評価したところ、初期放電容量は157mAh/gであり、50回充放電サイクル後の容量は135mAh/gであった。
【0048】
[例8]
硝酸マンガンと硝酸コバルトとのモル比を17:3として混合した以外は例4と同様にしてマンガン−コバルト共沈水酸化物(マンガンとコバルトの原子比は17:3)を得た後、該共沈水酸化物を550℃で焼成して混合酸化物とし、この混合酸化物を用いて例3と同様にして正極活物質粉末を合成した。例1と同様にX線回折分析を行ったところ、単斜晶の層状岩塩型LiMnO2構造を有し、また2θ=15度に微量の斜方晶からなるLiMnO2構造に基づく回折ピークが認められた。また、元素分析によりLiMn0.85Co0.152であることがわかった。
【0049】
上記正極活物質を用いた以外は例1と同様にして非水電解液二次電池を作製し、例1と同様に評価したところ、初期放電容量は159mAh/gであり、50回充放電サイクル後の容量は140mAh/gであった。
【0050】
[例9(比較例)]
硝酸アルミニウムを添加しなかった以外は例3と同様にして正極活物質粉末を合成した。例1と同様にX線回折分析を行ったところ、単斜晶の層状岩塩型LiMnO2構造を有し、また2θ=15度に微量の斜方晶からなるLiMnO2構造に基づく回折ピークが認められた。また、元素分析によりLiMnO2であることがわかった。
【0051】
上記正極活物質を用いた以外は例1と同様にして非水電解液二次電池を作製し、例1と同様に評価したところ、初期放電容量は150mAh/gであり、50回充放電サイクル後の容量は90mAh/gであった。
【0052】
【発明の効果】
本発明で製造される正極活物質を有する非水電解液二次電池は、広い電圧領域で使用でき、容量が大きく、充放電サイクル耐久性に優れている。また、本発明で製造される正極活物質は、従来より使用されているコバルトやニッケルのかわりに安価なマンガンを用いているため、低コストで得られる。
[0001]
BACKGROUND OF THE INVENTION
The present invention is related to method for producing a positive electrode active substance for a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, as devices become portable and cordless, expectations for non-aqueous electrolyte secondary batteries of small size, light weight, and high energy density are increasing. Known positive electrode active materials for non-aqueous electrolyte secondary batteries include complex oxides of lithium and transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and LiMnO 2 . Development of high-voltage, high-energy density non-aqueous electrolyte secondary batteries in which these positive electrode active materials are combined with a negative electrode active material such as a carbon material capable of occluding and releasing lithium has been underway. In particular, recently, research on complex oxides of lithium and manganese using inexpensive manganese has been promoted.
[0003]
In general, the positive electrode active material used for non-aqueous electrolyte secondary batteries is composed of a complex oxide of lithium and transition metals such as cobalt, nickel, manganese, etc., depending on the type of transition metal used, the capacitance, reversibility, operation The electrode characteristics such as voltage are different.
[0004]
For example, in a nonaqueous electrolyte secondary battery using a composite oxide having a layered rock salt structure such as LiCoO 2 and LiNi 0.8 Co 0.2 O 2 as a positive electrode active material, the capacity density is 140 to 160 mAh / g and 190 to 190 respectively. It is relatively high at 210 mAh / g, and in the high voltage range of 2.5 to 4.3 V, it shows a good reversibility with respect to insertion and extraction of lithium. However, cobalt and nickel as raw materials are expensive, and there is a problem that insertion and extraction of lithium do not occur reversibly in a voltage range of 2 V or less.
[0005]
On the other hand, a non-aqueous electrolyte secondary battery using a spinel-type composite oxide composed of LiMn 2 O 4 made of relatively inexpensive manganese as a positive electrode active material has a capacity density of 100 to 120 mAh / g and has the above-mentioned cobalt. Compared to active materials containing nickel and nickel. In addition, the charge / discharge cycle durability is low, and there is a problem of rapid deterioration in a low voltage region of less than 3V. On the other hand, a non-aqueous electrolyte secondary battery using LiMnO 2 made of manganese as an active material can operate up to a low voltage range of around 2 V, and thus can be expected to have a higher capacity than LiMn 2 O 4. There is a problem that the cycle durability is lower than that of LiMn 2 O 4 .
[0006]
The LiMnO 2, monoclinic LiMnO 2 of layered rock-salt structure is orthorhombic LiMnO 2 and alpha-NaMnO 2 type structure of beta-NaMnO 2 type structure is known. Since orthorhombic LiMnO 2 gradually transitions to the spinel phase by repeated charge and discharge, the charge and discharge cycle durability is extremely low.
[0007]
Monoclinic LiMnO 2 is synthesized by ion exchange of α-NaMnO 2 synthesized by a normal solid phase reaction method in a non-aqueous solution containing Li ions at a temperature of 300 ° C. or less (ARArmstrong and PGBruce, NATURE , Vol. 381, P499, 1996). It has also been reported that manganese oxide is synthesized by hydrothermal treatment in an aqueous lithium salt solution containing an alkali metal hydroxide other than lithium (Japanese Patent Laid-Open No. 11-21128). However, when monoclinic LiMnO 2 synthesized by these methods is used as the positive electrode active material, the charge / discharge cycle durability is improved, but LiCoO 2 , LiNi 0.8 Co 0.2 O 2 or the like is used as the positive electrode active material. Compared with the water electrolyte secondary battery, the charge / discharge cycle durability was inferior, and it was difficult to adopt it in a practical battery.
[0008]
On the other hand, Fe in LiMnO 2, Ni, Co, composite oxide doped with Cr or Al is has been disclosed in JP-A-10-134812, both the composite oxide of the X-ray diffraction chart of JCPDS 35- Since it is similar to 749, it is recognized as an orthorhombic LiMnO 2 structure, and the charge / discharge cycle durability is insufficient.
[0009]
[Problems to be solved by the invention]
The present invention can be used in a wide voltage range, the electric capacity is increased, to provide a manufacturing method of the charge-discharge cycle and durable, and inexpensive non-aqueous electrolyte cathode active substance for a secondary battery It shall be the purpose.
[0010]
[Means for Solving the Problems]
The present invention has a monoclinic layered rock-salt structure, represented by Li x Mn y M 1-y O 2 ( however, M is selected Al, Fe, Co, from the group consisting of Ni and Cr 1 or more elements, and 0 <x ≦ 1.1 and 0.5 ≦ y <1) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a water-soluble lithium compound and Provided is a production method characterized by hydrothermally treating a manganese compound and a compound containing the element M at 130 to 300 ° C. in a strongly basic aqueous solution in which potassium hydroxide or sodium hydroxide is dissolved .
[0011]
Li x Mn y M 1-y O 2 can take two kinds of structure of the orthorhombic and monoclinic as a crystal structure, but in the present invention has a layered rock-salt structure of monoclinic. When a monoclinic crystal is used as a positive electrode active material of a non-aqueous electrolyte secondary battery, charge / discharge cycle durability is excellent. However, Li x Mn y M 1- y O 2 in the present invention is not composed of only monoclinic, it may coexist those slight orthorhombic.
[0012]
In the present invention, it is 0.5 ≦ y <1 in Li x Mn y M 1-y O 2. When y is less than 0.5, the monoclinic layered rock salt structure cannot be maintained. Preferably, 0.65 ≦ y ≦ 0.99 is employed. M is one or more elements selected from the group consisting of Al, Fe, Co, Ni, and Cr. In particular, when M is Al, the nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention is used. It is preferable because the electric capacity becomes high.
[0013]
In the production method of the present invention, in the Li x Mn y M 1-y O 2 potassium hydroxide with a water-soluble lithium compound in order to obtain or strongly basic aqueous solution of sodium hydroxide is dissolved, manganese compound (hereinafter And a compound containing element M (hereinafter referred to as M source material) are hydrothermally treated at 130 to 300 ° C. As the method for adding the Mn source material and the M source material to the strongly basic aqueous solution, the following two methods are preferably employed.
1) Add Mn source material and M source material after mixing them in advance.
2) The M source material is dissolved in a strongly basic aqueous solution in which the water-soluble lithium compound and potassium hydroxide or sodium hydroxide are dissolved , and the Mn source material is added to the aqueous solution.
[0014]
According to the method of 1), it preferred as easy to Mn and M is uniformly distributed in the resulting positive electrode active material. In particular, when a hydroxide, oxide or oxyhydroxide obtained by coprecipitation of the Mn source material and the M source material is contained in the strong basic aqueous solution, Mn and M are more uniformly distributed. Therefore, it is preferable. In the method 2), since the M source material is dissolved in the aqueous solution, it easily reacts with the Mn source material, so that Mn and M are uniformly distributed in the obtained positive electrode active material.
[0015]
When M is Al, the method of 2) is preferable, and it is preferable to dissolve NaAlO 2 , KAlO 2 , LiAlO 2 or the like in a strongly basic aqueous solution because homogeneous LiMn x Al 1-x O 2 can be synthesized. .
[0016]
Further, in the manufacturing method of the present invention, the uniformity of the crystal working resistance and composite oxide obtained, but dissolving the water-soluble lithium compound in a strongly basic aqueous solution, in particular water-soluble lithium compound hydroxide Lithium is preferred.
[0017]
The strongly basic aqueous solution in the present invention preferably has a pH of 11 or more. The strongly basic solution, since the impurities are less likely to remain in the resulting positive electrode active material, causing dissolved water potassium oxide or sodium hydroxide. Potassium hydroxide and sodium hydroxide may be used alone or in combination. Further, the strong basic aqueous solution may contain chlorine ions, bromine ions, nitrate ions, acetate ions, oxalate ions and the like in addition to the hydroxide ions as anions.
[0018]
In the production method of the present invention, examples of the Mn source material include oxides (Mn 2 O 3 , MnO, MnO 2, etc.), oxide hydrates, oxyhydroxides, and the like. A compound is preferred. These Mn source materials may be used alone or in combination of two or more.
[0019]
In the production method of the present invention, metal M, hydroxide, oxide, oxyhydroxide, chloride, nitrate, etc. are used as the M source material. These M source materials may be used alone or in combination of two or more.
[0020]
As a production method of the present invention, for example, 0.05 to 5 mol of a lithium compound such as lithium hydroxide and lithium chloride and 5 to 100 mol of potassium hydroxide or sodium hydroxide are dissolved per 1 kg of pure water so as to be strongly basic. Prepare an aqueous solution. Next, after adding and mixing the Mn source material and the M source material to this aqueous solution, the obtained mixture is placed in a hydrothermal reactor such as an autoclave and subjected to a hydrothermal reaction. As hydrothermal reaction conditions, it is usually preferable to react at a temperature of 130 to 300 ° C for 0.5 hour to 14 days, and it is particularly preferable to react at a temperature of 200 to 250 ° C for 1 to 48 hours.
[0021]
In the production method of the present invention, it is usually preferable to add about 0.1 to 10 g of the Mn source material to 100 mL of the strongly basic aqueous solution, and particularly preferably 0.5 to 3 g. Moreover, it is preferable to add about 0.02-5g normally, and it is preferable to add 0.1-1g especially M source raw material.
[0022]
After completion of the hydrothermal reaction, in order to remove the remaining unreacted raw materials such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, the reaction product is washed with ethanol, filtered, and dried to obtain a desired monoclinic crystal. Li x Mn y M 1-y O 2 of the layered rock-salt structure.
[0023]
The positive electrode of the nonaqueous electrolyte secondary battery in the present invention is a molded body containing the positive electrode active material, a conductive material, and a binder. As the binder, polyvinylidene fluoride, polytetrafluoroethylene (hereinafter referred to as PTFE), polyamide, carboxymethyl cellulose, acrylic resin, and the like are preferable. As the conductive material, carbon-based conductive materials such as acetylene black, graphite, and ketjen black are preferable. A slurry comprising a mixture of the positive electrode active material, a conductive material and a binder and a solvent capable of dissolving or dispersing the binder, or a kneaded material obtained by kneading the mixture with an organic solvent added thereto is an aluminum foil or a stainless steel foil. It is preferable to form the positive electrode by applying or supporting the positive electrode current collector such as the above.
[0024]
In the non-aqueous electrolyte secondary battery in the present invention, a carbonate is preferable as a solvent for the electrolyte. The carbonate ester can be either cyclic or chain. Examples of cyclic carbonates include propylene carbonate and ethylene carbonate. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like. In this invention, it is preferable to use the said carbonate ester individually or in mixture of 2 or more types, and you may mix and use the said carbonate ester with another solvent.
[0025]
Depending on the material of the negative electrode active material, when a mixture of a chain carbonate ester and a cyclic carbonate ester is used, discharge characteristics, cycle durability, and charge / discharge efficiency may be improved. As solutes, ClO 4 , CF 3 SO 3 , BF 4 , PF 6 , AsF 6 , SbF 6 , CF 3 CO 2 , (CF 3 SO 2 ) 2 N − and the like are used as anions. Preference is given to using lithium salts.
[0026]
Further, a vinylidene fluoride / hexafluoropropylene copolymer (for example, Kyner (trade name) manufactured by Atchem Co.), vinylidene fluoride / perfluoro (propyl vinyl ether) disclosed in JP-A-10-294131 is used as a solvent for the electrolyte solution. A gel polymer electrolyte may be prepared by adding a polymer and adding the above solute, and the polymer electrolyte may be used instead of the electrolytic solution.
[0027]
It is preferable that 0.2-2.0 mol / L of lithium salt is contained in said electrolyte solution or polymer electrolyte. When deviating from this range, the ionic conductivity is lowered and the electrical conductivity is lowered. More preferably, it is 0.5-1.5 mol / L.
[0028]
The negative electrode active material in the present invention is a material that can occlude and release lithium ions. The negative electrode active material is not particularly limited, and examples thereof include lithium metal, lithium alloy, carbon material, periodic table 14 and group 15 oxide, silicon carbide, silicon oxide, titanium sulfide, boron carbide, and the like. As the carbon material, those obtained by pyrolyzing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, scale-like graphite, etc. can be used, and the oxide mainly comprises tin oxide. Compounds can be used. Moreover, copper foil, nickel foil, etc. are used as a negative electrode collector.
[0029]
Anode in the present invention is preferably made of a negative electrode active material and a binder, by adding an organic solvent to thereby prepare a slurry in a mixture of negative electrode active material and a binder, applying the slurry to the metallic foil collector, dried, It is preferable to obtain by pressing.
Moreover, a porous polyethylene, a porous polypropylene film, etc. are used preferably for the separator interposed between a positive electrode and a negative electrode.
Moreover, the shape of the nonaqueous electrolyte secondary battery in the present invention is not particularly limited. A sheet shape (so-called film shape), a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
[0030]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
[0031]
[Example 1]
A bottomed cylindrical container made of PTFE was charged with 100 g of potassium hydroxide, 1.6 g of lithium hydroxide monohydrate and 140 g of pure water, stirred and dissolved, and then 0.21 g of 100 μm thick aluminum foil was added. Dissolved. Subsequently, 1.4 g of manganese oxide (Mn 2 O 3 ) powder was added and further stirred. Next, the cylindrical container in which the solution was charged was housed in a stainless steel autoclave, the inside of the autoclave was replaced with nitrogen gas, and then hydrothermally treated at 225 ° C. for 10 hours in a closed system. After completion of the reaction, the autoclave was cooled and the slurry-like contents were taken out and filtered. The filter cake was washed with ethanol to remove lithium hydroxide, potassium hydroxide, etc., and dried to obtain a positive electrode active material powder. .
[0032]
As a result of X-ray diffraction analysis of the powder by CuKα rays, diffraction peaks were observed at 2θ = 18 degrees, 37 degrees, 39 degrees, 45 degrees, 62 degrees, 65 degrees, and 67 degrees, and the powder was in a monoclinic phase. It was found to have a layered rock salt type LiMnO 2 structure. In addition, a diffraction peak based on the LiMnO 2 structure of a small amount of orthorhombic phase was observed at 2θ = 15 degrees. In addition, elemental analysis of the powder revealed that it was LiMn 0.75 Al 0.25 O 2 .
[0033]
The above LiMn 0.75 Al 0.25 O 2 powder, acetylene black, and PTFE powder were mixed at a weight ratio of 80: 16: 4, kneaded while adding toluene to form a sheet, and then dried to a thickness of 150 μm. A 20 μm thick aluminum foil was used as the positive electrode current collector. For the separator, porous polyethylene having a thickness of 25 μm was used. A metal lithium foil having a thickness of 500 μm was used as a negative electrode, and a nickel foil was used as a negative electrode current collector. As the electrolytic solution, a solution in which 1 mol / L LiPF 6 was dissolved in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate was used.
[0034]
In the argon glove box, the positive electrode and the negative electrode were opposed to each other with a separator interposed between them and housed in a simple stainless steel cell together with the electrolytic solution to obtain a non-aqueous electrolyte secondary battery. After charging to 4.3 V with a constant current of 0.2 mA / cm 2, the battery was discharged to 2.0 V to determine the initial discharge capacity. Further, the charge / discharge cycle was repeated 50 times at a constant current of 0.2 mA / cm 2 . The initial discharge capacity at 2.0 to 4.3 V was 160 mAh / g, and the capacity after 50 charge / discharge cycles was 152 mAh / g.
[0035]
[Example 2]
A positive electrode active material powder was synthesized in the same manner as in Example 1 except that 71 g of sodium hydroxide was used instead of 100 g of potassium hydroxide and 0.36 g of aluminum hydroxide was used instead of 0.21 g of aluminum foil. X-ray diffraction analysis was performed in the same manner as in Example 1. As a result, a diffraction peak based on a LiMnO 2 structure having a monoclinic layered rock salt type LiMnO 2 structure and a trace amount of orthorhombic crystals at 2θ = 15 degrees was observed. It was. Elemental analysis revealed that it was LiMn 0.85 Al 0.15 O 2 .
[0036]
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material was used, and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 156 mAh / g, and 50 charge / discharge cycles were performed. The latter capacity was 140 mAh / g.
[0037]
[Example 3]
Using a 1 L PTFE bottomed cylindrical container, an aqueous ammonium hydroxide solution was added to an aqueous solution containing manganese nitrate and aluminum nitrate at a molar ratio of 3: 1 to coprecipitate, heated and dried at 150 ° C. -10 g of aluminum coprecipitated hydroxide (atomic ratio of manganese to aluminum is 3: 1) was obtained.
[0038]
A positive electrode active material powder was obtained in the same manner as in Example 1 except that 1.4 g of the manganese-aluminum coprecipitated hydroxide powder was used instead of the manganese oxide powder and the aluminum foil. X-ray diffraction analysis was performed in the same manner as in Example 1. As a result, a diffraction peak based on a LiMnO 2 structure having a monoclinic layered rock salt type LiMnO 2 structure and a trace amount of orthorhombic crystals at 2θ = 15 degrees was observed. It was. It was also found by elemental analysis that LiMn 0.75 Al 0.25 O 2 .
[0039]
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material was used, and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 157 mAh / g, and the charge / discharge cycle was 50 times. The latter capacity was 150 mAh / g.
[0040]
[Example 4]
Manganese-cobalt coprecipitated hydroxide (atomic ratio of manganese to cobalt is 3: 1) was obtained in the same manner as in Example 3 except that cobalt nitrate was used instead of aluminum nitrate. Was synthesized. X-ray diffraction analysis was performed in the same manner as in Example 1. As a result, a diffraction peak based on a LiMnO 2 structure having a monoclinic layered rock salt type LiMnO 2 structure and a trace amount of orthorhombic crystals at 2θ = 15 degrees was observed. It was. Further, it was found by elemental analysis to be LiMn 0.75 Co 0.25 O 2 .
[0041]
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material was used, and was evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 152 mAh / g, and 50 charge / discharge cycles were performed. The latter capacity was 135 mAh / g.
[0042]
[Example 5]
Manganese-nickel coprecipitated hydroxide (atomic ratio of manganese to nickel was 3: 1) was obtained in the same manner as in Example 3 except that nickel nitrate was used instead of aluminum nitrate. Was synthesized. X-ray diffraction analysis was performed in the same manner as in Example 1. As a result, a diffraction peak based on a LiMnO 2 structure having a monoclinic layered rock salt type LiMnO 2 structure and a trace amount of orthorhombic crystals at 2θ = 15 degrees was observed. It was. It was also found by elemental analysis that LiMn 0.75 Ni 0.25 O 2 .
[0043]
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material was used, and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 158 mAh / g, and 50 charge / discharge cycles were performed. The latter capacity was 137 mAh / g.
[0044]
[Example 6]
Manganese-iron coprecipitated hydroxide was obtained in the same manner as in Example 3 except that iron nitrate was used instead of aluminum nitrate (the atomic ratio of manganese to iron was 3: 1). Was synthesized. X-ray diffraction analysis was performed in the same manner as in Example 1. As a result, a diffraction peak based on a LiMnO 2 structure having a monoclinic layered rock salt type LiMnO 2 structure and a trace amount of orthorhombic crystals at 2θ = 15 degrees was observed. It was. It was also found by elemental analysis to be LiMn 0.75 Fe 0.25 O 2 .
[0045]
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material was used, and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 155 mAh / g, and 50 charge / discharge cycles were performed. The latter capacity was 130 mAh / g.
[0046]
[Example 7]
Manganese-chromium coprecipitated hydroxide was obtained in the same manner as in Example 3 except that chromium nitrate was used instead of aluminum nitrate (the atomic ratio of manganese to chromium was 3: 1). Was synthesized. X-ray diffraction analysis was performed in the same manner as in Example 1. As a result, a diffraction peak based on a LiMnO 2 structure having a monoclinic layered rock salt type LiMnO 2 structure and a trace amount of orthorhombic crystals at 2θ = 15 degrees was observed. It was. It was also found by elemental analysis that LiMn 0.75 Cr 0.25 O 2 .
[0047]
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material was used, and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 157 mAh / g, and the charge / discharge cycle was 50 times. The latter capacity was 135 mAh / g.
[0048]
[Example 8]
Manganese-cobalt coprecipitated hydroxide (atomic ratio of manganese to cobalt is 17: 3) was obtained in the same manner as in Example 4 except that the molar ratio of manganese nitrate to cobalt nitrate was mixed at 17: 3. The precipitated hydroxide was fired at 550 ° C. to obtain a mixed oxide, and a positive electrode active material powder was synthesized in the same manner as in Example 3 using this mixed oxide. X-ray diffraction analysis was performed in the same manner as in Example 1. As a result, a diffraction peak based on a LiMnO 2 structure having a monoclinic layered rock salt type LiMnO 2 structure and a trace amount of orthorhombic crystals at 2θ = 15 degrees was observed. It was. Elemental analysis revealed that it was LiMn 0.85 Co 0.15 O 2 .
[0049]
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material was used, and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 159 mAh / g, and 50 charge / discharge cycles were performed. The latter capacity was 140 mAh / g.
[0050]
[Example 9 (comparative example)]
A positive electrode active material powder was synthesized in the same manner as in Example 3 except that no aluminum nitrate was added. X-ray diffraction analysis was performed in the same manner as in Example 1. As a result, a diffraction peak based on a LiMnO 2 structure having a monoclinic layered rock salt type LiMnO 2 structure and a trace amount of orthorhombic crystals at 2θ = 15 degrees was observed. It was. It was also found by elemental analysis to be LiMnO 2 .
[0051]
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material was used, and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 150 mAh / g, and 50 charge / discharge cycles were performed. The latter capacity was 90 mAh / g.
[0052]
【The invention's effect】
The nonaqueous electrolyte secondary battery having a positive electrode active material produced in the present invention can be used in a wide voltage range, has a large capacity, and is excellent in charge / discharge cycle durability. Moreover, since the positive electrode active material manufactured by this invention uses cheap manganese instead of conventionally used cobalt and nickel, it is obtained at low cost.

Claims (4)

単斜晶層状岩塩型構造を有し、LixMny1-y2で表される(ただし、Mは、Al、Fe、Co、Ni及びCrからなる群から選ばれる1種以上の元素であり、0<x≦1.1、0.5≦y<1である。)非水電解液二次電池用正極活物質の製造方法であって、水溶性リチウム化合物と水酸化カリウム若しくは水酸化ナトリウムとが溶解している強塩基性水溶液中で、マンガン化合物と元素Mを含む化合物とを130〜300℃にて水熱処理することを特徴とする製造方法。Has a monoclinic layered rock-salt structure, represented by Li x Mn y M 1-y O 2 ( however, M is, Al, Fe, Co, 1 or more selected from the group consisting of Ni and Cr Element, 0 <x ≦ 1.1, 0.5 ≦ y <1)) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a water-soluble lithium compound and potassium hydroxide or A production method comprising hydrothermally treating a manganese compound and a compound containing the element M at 130 to 300 ° C in a strongly basic aqueous solution in which sodium hydroxide is dissolved . 前記マンガン化合物と前記元素Mを含む化合物は、共沈して水酸化物、酸化物又はオキシ水酸化物とされてから前記強塩基性水溶液に含有される請求項1に記載の製造方法。  The manufacturing method according to claim 1, wherein the compound containing the manganese compound and the element M is coprecipitated to be a hydroxide, an oxide, or an oxyhydroxide and then contained in the strongly basic aqueous solution. 前記強塩基性水溶液には、前記元素Mを含む化合物を溶解させた後、前記マンガン化合物を加える請求項1に記載の製造方法。  The manufacturing method according to claim 1, wherein the manganese compound is added to the strong basic aqueous solution after the compound containing the element M is dissolved. 前記水溶性リチウム化合物が水酸化リチウムである請求項1、2又は3に記載の製造方法。The manufacturing method according to claim 1 , wherein the water-soluble lithium compound is lithium hydroxide.
JP10299999A 1999-04-09 1999-04-09 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP4318002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10299999A JP4318002B2 (en) 1999-04-09 1999-04-09 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10299999A JP4318002B2 (en) 1999-04-09 1999-04-09 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000294242A JP2000294242A (en) 2000-10-20
JP4318002B2 true JP4318002B2 (en) 2009-08-19

Family

ID=14342392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10299999A Expired - Fee Related JP4318002B2 (en) 1999-04-09 1999-04-09 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4318002B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524821B2 (en) * 1999-10-27 2010-08-18 堺化学工業株式会社 Lithium manganese composite oxide particulate composition, method for producing the same, and secondary battery
JP2001223008A (en) * 1999-12-02 2001-08-17 Honjo Chemical Corp Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP3500424B2 (en) 2000-08-31 2004-02-23 独立行政法人産業技術総合研究所 Single-phase lithium ferrite composite oxide
JP4555948B2 (en) * 2000-10-11 2010-10-06 独立行政法人産業技術総合研究所 Lithium-iron-manganese composite oxide having a layered rock salt structure and method for producing the same
US7351500B2 (en) 2000-11-16 2008-04-01 Hitachi Maxell, Ltd. Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same
JP4556377B2 (en) 2001-04-20 2010-10-06 株式会社Gsユアサ Positive electrode active material and manufacturing method thereof, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP4882160B2 (en) * 2001-04-27 2012-02-22 堺化学工業株式会社 Lithium ion secondary battery and positive electrode active material therefor
JP3588338B2 (en) 2001-05-31 2004-11-10 三洋電機株式会社 Non-aqueous electrolyte secondary battery
GB0117235D0 (en) * 2001-07-14 2001-09-05 Univ St Andrews Improvements in or relating to electrochemical cells
AU2002355544A1 (en) * 2001-08-07 2003-02-24 3M Innovative Properties Company Cathode compositions for lithium ion batteries
WO2004078653A1 (en) * 2003-03-06 2004-09-16 Nara Machinery Co., Ltd. Process for producing powder of orthorhombic lithium manganate
JP4189486B2 (en) * 2003-09-22 2008-12-03 独立行政法人産業技術総合研究所 Method for producing lithium-iron-manganese composite oxide
JP4604237B2 (en) * 2003-10-01 2011-01-05 独立行政法人産業技術総合研究所 Lithium-iron-manganese composite oxide having a layered rock salt structure, positive electrode material for lithium ion secondary battery, lithium ion secondary battery
JP4539816B2 (en) * 2004-02-20 2010-09-08 日本電気株式会社 Positive electrode for lithium secondary battery and lithium secondary battery
CN102044673B (en) 2006-04-07 2012-11-21 三菱化学株式会社 Lithium nickel manganese cobalt series compound oxide powder for positive electrode material in lithium rechargeable battery
CN102769130A (en) 2007-09-04 2012-11-07 三菱化学株式会社 Lithium transition metal-type compound powder
CN102239587B (en) 2008-12-24 2015-11-25 日本碍子株式会社 The manufacture method of the platy particles of the positive active material of lithium secondary battery, the positive electrode active material films of lithium secondary battery, their manufacture method, the positive active material of lithium secondary battery and lithium secondary battery
WO2010074298A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material, as well as lithium secondary batteries
CN102171864A (en) 2008-12-24 2011-08-31 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries

Also Published As

Publication number Publication date
JP2000294242A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR100694567B1 (en) Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP4137635B2 (en) Positive electrode active material and non-aqueous secondary battery
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP4092064B2 (en) Lithium secondary battery
JP4691228B2 (en) Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery
JP4833058B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
WO2005028371A1 (en) Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
JP7207261B2 (en) Method for manufacturing positive electrode active material, and method for manufacturing lithium ion battery
JPH11135119A (en) Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
CN1187265A (en) Positive electrode materials for rechargeable electrochemical cells and methods of making same
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP4519220B2 (en) Lithium secondary battery
JP2002100356A (en) Lithium secondary battery
JP4318270B2 (en) Method for manufacturing lithium secondary battery
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2003002661A (en) Method for producing lithium cobalt composite oxide
JP4082855B2 (en) Lithium secondary battery
KR101529951B1 (en) Spinel-type lithium-manganese composite oxide
JP2013060319A (en) Lithium manganese (iv) nickel (iii)-based oxide, positive electrode active material for lithium ion secondary battery containing the oxide, lithium ion secondary battery using the material, and vehicle carrying the battery
JP5447452B2 (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery using the positive electrode active material, and method for producing lithium manganese silver composite oxide
JP4189457B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051229

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees