JP4109847B2 - Lithium-containing transition metal composite oxide and method for producing the same - Google Patents

Lithium-containing transition metal composite oxide and method for producing the same Download PDF

Info

Publication number
JP4109847B2
JP4109847B2 JP2001253916A JP2001253916A JP4109847B2 JP 4109847 B2 JP4109847 B2 JP 4109847B2 JP 2001253916 A JP2001253916 A JP 2001253916A JP 2001253916 A JP2001253916 A JP 2001253916A JP 4109847 B2 JP4109847 B2 JP 4109847B2
Authority
JP
Japan
Prior art keywords
lithium
nickel
cobalt
composite oxide
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001253916A
Other languages
Japanese (ja)
Other versions
JP2003068298A (en
Inventor
学 数原
卓也 三原
良紀 藤江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Original Assignee
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd, AGC Seimi Chemical Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2001253916A priority Critical patent/JP4109847B2/en
Publication of JP2003068298A publication Critical patent/JP2003068298A/en
Application granted granted Critical
Publication of JP4109847B2 publication Critical patent/JP4109847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池の正極活物質として用いられる改良されたリチウム含有遷移金属複合酸化物に関する。
【0002】
【従来の技術】
近年、機器のポータブル化、コードレス化が進むにつれ、小型、軽量でかつ高エネルギー密度を有する非水電解液二次電池に対する期待が高まっている。非水電解液二次電池用の活物質には、LiCoO,LiNi0.8Co0.2,LiMnなどのリチウムと遷移金属の複合酸化物が知られている。
【0003】
一般に、非水電解液二次電池に用いられる正極活物質は、主活物質であるリチウムにコバルト,ニッケル,マンガンをはじめとする遷移金属を固溶させた複合酸化物からなる。その用いられる遷移金属の種類によって、電気容量、可逆性、作動電圧、安全性などの電極特性が異なる。
【0004】
その中でも、特に最近では、安全性が高くかつ安価な材料として、リチウムとニッケルとコバルトとマンガンからなる複合酸化物の研究が盛んに行なわれており、これらを正極活物質に用いて、リチウムを吸蔵、放出することができる炭素材料等の負極活物質とを組み合わせることによる、高電圧、高エネルギー密度の非水電解液二次電池の開発が進められている。
【0005】
例えば、LiNi0.34Co0.33Mn0.33のように、コバルトとニッケルとマンガンを固溶させたR−3m菱面体層状複合酸化物を正極活物質に用いた非水電解液二次電池は、LiCoO,LiNiOあるいはLiNi0.8CoOより安全性が高い特徴があり、かつ、約155mAh/gと比較的高い容量密度を達成できるとともに、2.7〜4.3Vといった高い電圧域で良好な可逆性を示す。
【0006】
【発明が解決しようとする課題】
しかしながら、電池の内部抵抗が高く、大電流放電特性や低温放電特性がLiNiOあるいはLiNi0.8Co0.2と同様に、LiCoOより劣るという問題がある。
【0007】
特開平8−37007号公報には、LiMnCozNi1−(y+z)(0<y+z≦0.5)の提案があるが、ニッケルが多いために安全性に乏しく、内部抵抗や大電流放電特性や低温放電特性が不満足なものであり、さらに共沈原料を用いていないので電池容量の発現が劣る問題があった。
【0008】
特開平11−25957号公報には、LiCoMnNi1−(b+c+d)(0.15≦b+c+d≦0.50であり、金属元素MとしてB,Al,Fe,Ga等)の提案がなされているが、これもニッケルが多いために安全性に乏しく、内部抵抗や大電流放電特性や低温放電特性が不満足なものであり、共沈原料を用いていないので電池容量の発現が劣る難点がある。
【0009】
特開平11−307094号公報には、LiNi1−(b+c+d)MnCo(金属元素Mとして1a族、2a族、2b族、3b族、4b族および遷移元素のいずれか)の提案がなされているが、やはり内部抵抗や大電流放電特性や低温放電特性が不満足なものであり、容量が低い難点がある。
【0010】
また、特開2001−106534号公報には、固溶/共沈水酸化ニッケルの粒子表面に水酸化物または酸化物が被覆された原料複合金属水酸化物を用いて得られる、例えばLiNi0.65Co0.20Mn0.10Al0.05等において、アルミニウムを表面に偏在させる提案もあるが、安全性、大電流放電特性および重量当たりの容量は不満足なものであった。
【0011】
このように現在までのところ、内部抵抗,大電流放電特性,低温放電特性それに重量あたり容量,体積あたり容量,充放電サイクル耐久性および安全性のいずれも満足するものは得られていない。
【0012】
本発明は、このような課題を解決するためになされたもので、その目的は、内部抵抗,大電流放電特性および低温放電特性に優れているとともに、重量,体積あたりの容量が高く、しかも充放電サイクル耐久性に優れた高安全性の非水電解液二次電池用正極材料を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明は、一般式LiNiCoMn(ただし、1.00≦a≦1.20,0.20≦x<0.50,0.20<y≦0.45,0.20≦z≦0.50,0.0005≦p≦0.05、かつ、x+y+z+p=1である。)で表され、上記金属元素Mが粒子表面に偏在していることを特徴とするリチウム二次電池正極活物質用のリチウム含有遷移金属複合酸化物(以下、「本発明の複合酸化物」とも言う。)を提供する。
【0014】
金属元素Mは、周期表第4(4a)族、第5(5b)族のいずれかの金属元素原子であるのが内部抵抗の低下が図れるので好ましい。金属元素Mの添加量pは0.0005≦p≦0.05であり、好ましくは0.002≦p≦0.02である。特には0.30≦x≦0.40,0.25≦y≦0.35,0.30≦z≦0.42であるのが好ましい。金属元素MがTi,Nb,Taのいずれかから選択されるのが好ましい。
【0015】
また、本発明の複合酸化物の比表面積は、2m/g以下であることが好ましい。比表面積が2m/gを超えると、緻密な正極電極層の形成が困難となり容量低下を招くので好ましくない。特に、負極に炭素材料を用いるいわゆるロッキングチェアー型のリチウムイオン電池においては、電池容量が経時的に低下するので好ましくない。比表面積は1m/g以下が特に好ましい。
【0016】
本発明の複合酸化物は、特に充放電サイクル耐久性の面から、R−3m菱面体構造を有する活物質であることが好ましい。さらに、R−3m菱面体構造におけるa軸の格子定数が2.830〜2.890Å(特には、2.850〜2.880Å)であり、c軸の格子定数が14.150〜14.290Å(特には、14.190〜14.280Å)であることが好ましい。格子定数が、この範囲を外れると電池の安全性等が低下するので好ましくない。
【0017】
また、金属元素Mがニッケル、コバルト、マンガンと同様に均一に存在すると内部抵抗低減効果が乏しくなるので好ましくない。
【0018】
リチウム含有遷移金属複合酸化物を合成するために、ニッケル化合物、コバルト化合物およびマンガン化合物を用い、リチウム化合物と金属元素Mからなる化合物を混合し焼成する方法も考えられるが、このようにすると、得られるリチウム含有遷移金属複合酸化物におけるニッケル−コバルト−マンガン元素の均一性が乏しくなる結果、電池性能が発現しがたいので好ましくない。
【0019】
本発明の効果を発現させるためには、あらかじめニッケル−コバルト−マンガン複合共沈化合物を原料とし、この原料と、金属元素Mの化合物さらにはリチウム化合物を混合・焼成してリチウム含有遷移金属複合酸化物を合成することが好ましい。
【0020】
そのため、本発明は、リチウム含有遷移金属複合酸化物を製造する方法であって、ニッケル−コバルト−マンガン共沈複合化合物と、リチウム化合物と、金属元素Mからなる化合物とを混合し、この混合物を酸素含有雰囲気下800〜1000℃で焼成することを特徴とするリチウム含有遷移金属複合酸化物の製造方法を提供する。
【0021】
上記製造方法で用いられるニッケル−コバルト−マンガン共沈複合化合物としては、▲1▼ニッケル−コバルト−マンガン共沈複合炭酸塩もしくは共沈複合炭酸塩水酸化物、または▲2▼上記共沈複合水酸化物に酸化剤を作用させて得られるニッケル−コバルト−マンガン共沈複合オキシ水酸化物、または▲3▼上記共沈複合水酸化物もしくは上記ニッケル−コバルト−マンガン共沈複合オキシ水酸化物を焼成して得られるニッケル−コバルト−マンガン共沈複合酸化物のいずれかであることが特に好ましい。
【0022】
また、本発明は、原料としての上記金属元素Mからなる化合物が、酸化物または水酸化物であることを特徴とするリチウム含有遷移金属複合酸化物の製造方法を提供する。
【0023】
【発明の実施の形態】
本発明の複合酸化物は、例えばニッケル−コバルト−マンガン共沈複合水酸化物、ニッケル−コバルト−マンガン共沈複合オキシ水酸化物あるいはニッケル−コバルト−マンガン共沈複合酸化物から選ばれるニッケル−コバルト−マンガン共沈化合物粉末と、金属元素Mからなる化合物と、リチウム化合物粉末(好ましくは、水酸化リチウム、炭酸リチウム、酸化リチウム)との混合物を酸素含有雰囲気下で固相法800〜1000℃にて5〜40時間焼成することにより得られる。
【0024】
本発明の複合酸化物の粉末に、アセチレンブラック、黒鉛、ケッチエンブラック等のカーボン系導電材と、結合材とを混合することにより、正極合剤が形成される。結合材には、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。本発明の複合酸化物の粉末と導電材と結合材ならびに結合材の溶媒または分散媒からなるスラリーをアルミニウム箔等の正極集電体に塗工・乾燥およびプレス圧延せしめて正極活物質層を正極集電体上に形成する。
【0025】
本発明の複合酸化物を正極活物質として用いたリチウム電池において、電解質溶液の溶媒としては炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしてはプロピレンカーボネート、エチレンカーボネート等が例示される。鎖状炭酸エステルとしてはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート等が例示される。
【0026】
上記炭酸エステルを単独でも2種以上を混合して使用してもよい。また、他の溶媒と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性、サイクル耐久性、充放電効率が改良できる場合がある。また、これらの有機溶媒にフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(例えばアトケム社製カイナー)、フッ化ビニリデン−パーフルオロプロピルビニルエーテル共重合体を添加し、下記の溶質を加えることによりゲルポリマー電解質としてもよい。
【0027】
溶質としては、ClO−,CFSO−,BF−,PF−,AsF−,SbF−,CFCO−,(CFSON−等をアニオンとするリチウム塩のいずれか1種以上を使用することが好ましい。上記の電解質溶液またはポリマー電解質は、リチウム塩からなる電解質を上記溶媒または溶媒含有ポリマーに0.2〜2.0mol/Lの濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。より好ましくは0.5〜1.5mol/Lが選定される。セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルムが使用される。
【0028】
負極活物質には、リチウムイオンを吸蔵、放出可能な材料が用いられる。負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とした酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙げられる。
【0029】
炭素材料としては、様々な熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔等が用いられる。
【0030】
正極および負極は、活物質を有機溶媒と混練してスラリーとし、このスラリーを金属箔集電体に塗布、乾燥、プレスして得ることが好ましい。本発明の複合酸化物を用いるリチウム電池の形状に特に制約はない。シート状(いわゆるフイルム状)、折り畳み状、巻回型有底円筒形、ボタン形等が適宜用途に応じて選択される。
【0031】
【実施例】
次に、本発明の具体的な実施例1〜5および比較例1について説明するが、本発明は、これらの実施例に限定されない。
【0032】
《実施例1》
硫酸ニッケルと硫酸コバルトと硫酸マンガンを含有する金属硫酸塩水溶液、アンモニア水溶液、苛性ソーダ水溶液をpHが11になるように反応槽内に連続的に供給した。温度は50℃に保持した。反応後、スラリーを濾過・水洗・乾燥して、球状で平均粒径8μmのニッケル−コバルト−マンガン共沈水酸化物粉体(Ni/Co/Mn原子比=0.34/0.33/0.33)を得た。このニッケル−コバルト−マンガン共沈水酸化物粉体を550℃で大気中で焼成・粉砕し、ニッケル−コバルト−マンガン共沈酸化物粉末を得た。
このニッケル−コバルト−マンガン共沈酸化物粉末と、酸化二オブ粉末と、水酸化リチウム粉末とを混合し、大気中900℃で焼成・粉砕して平均粒径7μmのLi(Ni0.34Co0.33Mn0.330.99Nb0.01を合成した。この活物質粉末のCuKαによるX線回折分析の結果、R−3m菱面体層状岩塩型構造であることが分かった。リートベルト解析により、a軸の格子定数は2.853Å,c軸の格子定数は14.235Åであった。BET法で求めた比表面積は1.5m/gであった。また、この活物質粉末の断面についてEPMA(電子線プローブマイクロアナライザー)により、粒子内のニッケル、コバルト、マンガン、二オブについて線分析を行ったところ、ニッケル−コバルト−マンガン相互の比率は一定であったが、二オブは粒子中心部の存在量が少なく、粒子外側での二オブの存在量が多いことが分かった。さらに、オージェ電子分光法により複合酸化物粒子表面から深さ0.1μmまでのニオブ/(ニッケル+コバルト+マンガン)原子比を求めたところ0.04以上であった。
このLi(Ni0.34Co0.33Mn0.330.99Nb0.01粉末と、アセチレンブラックと、ポリフッ化ビニリデンとを83/10/7の重量比でN−メチルピロリドンを加えつつボールミル混合し、スラリーとした。このスラリーを厚さ20μmのアルミニウム箔正極集電体上に塗布し、150℃にて乾燥してN−メチルピロリドンを除去した。しかる後に、ロールプレス圧延をして正極体を得た。セパレータには厚さ25μmの多孔質ポリエチレンを用い、負極には厚さ300μmの金属リチウム箔を用い、負極集電体にニッケル箔を使用し、電解液には1M LiPF/EC+DEC(1:1)を用いてコインセル2030型をアルゴングローブボックス内で組立てた。
そして、25℃の温度雰囲気下で、正極活物質1gにつき30mAで4.3Vまで定電流充電し、正極活物質1gにつき30mAにて2.7Vまで定電流放電して充放電サイクル試験を50回行ない、2回充放電後の放電容量と50回充放電後の放電容量との比率から容量維持率を求めた。その結果、初期容量は156mAh/g、容量維持率は94%であった。
また、一方で、このようにして得たLi(Ni0.34Co0.33Mn0.330.99Nb0.01粉末と、アセチレンブラックと、ポリテトラフルオロエチレン粉末とを80/16/4の重量比で混合し、トルエンを添加しつつ混練、乾燥し、厚さ150μmの正極板を作製した。
そして、厚さ20μmのアルミニウム箔を正極集電体とし、セパレータには厚さ25μmの多孔質ポリプロピレンを用いた。厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを使用し、電解液には1M LiPF/EC+DEC(1:1)を用いてステンレス製簡易密閉セル型電池をアルゴングローブボックス内で組み立てた。
この電池を用い、25℃にて正極活物質1gにつき30mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき30mAの負荷電流にて2.5Vまで放電し、再度30mAの負荷電流で4.3Vまで充電し、25℃における10mHz〜100KHzにおける交流インピーダンスを測定した。その結果、セルの交流インピーダンスは12.9Ωであった。
【0033】
《実施例2》
実施例1において、酸化二オブ粉末の代わりに酸化チタン粉末を添加した他は実施例1と同様にして平均粒径7μのLi(Ni0.34Co0.33Mn0.330.99Ti0.01粉末を合成した。リーベルト解析の結果、a軸の格子定数は2.854Å、c軸の格子定数は14.239Åであった。BET法で求めた比表面積は1.6m/gであった。また、この活物質粉末の断面についてEPMAにより、粒子内のニッケル、コバルト、マンガン、チタンについて線分析を行ったところ、ニッケル−コバルト−マンガン相互の比率は一定であったが、チタンは粒子中心部の存在量が少なく、粒子外側でのチタンの存在量が多いことが分かった。実施例1と同様にして電池性能を評価した結果、初期容量は156mAh/g、容量維持率は95%であった。また、交流インピーダンスは13.4Ωであった。
【0034】
《実施例3》
実施例1において、酸化二オブ粉末の代わりに酸化タンタル粉末を添加した他は実施例1と同様にして平均粒径7μのLi(Ni0.34Co0.33Mn0.330.99Ta0.01粉末を合成した。リーベルト解析の結果、a軸の格子定数は2.853Å、c軸の格子定数は14.242Åであった。BET法で求めた比表面積は1.5m/gであった。また、この活物質粉末の断面についてEPMAにより、粒子内のニッケル、コバルト、マンガン、タンタルについて線分析を行ったところ、ニッケル−コバルト−マンガン相互の比率は一定であったが、タンタルは粒子中心部の存在量が少なく、粒子外側でのタンタルの存在量が多いことが分かった。実施例1と同様にして電池性能を評価した結果、初期容量は156mAh/g、容量維持率は94%であった。また、交流インピーダンスは13.0Ωであった。
【0035】
《実施例4》
実施例1において、酸化二オブ粉末の添加量を減じた他は実施例1と同様にして平均粒径7μのLi(Ni0.34Co0.33Mn0.330.998Nb0.002粉末を合成した。リーベルト解析の結果、a軸の格子定数は2.865Å、c軸の格子定数は14.244Åであった。BET法で求めた比表面積は1.5m/gであった。また、この活物質粉末の断面についてEPMAにより、粒子内のニッケル、コバルト、マンガン、二オブについて線分析を行ったところ、ニッケル−コバルト−マンガン相互の比率は一定であったが、二オブは粒子中心部の存在量が少なく、粒子外側での二オブの存在量が多いことが分かった。実施例1と同様にして電池性能を評価した結果、初期容量は156mAh/g、容量維持率は93%であった。また、交流インピーダンスは15.1Ωであった。
【0036】
《実施例5》
実施例1において、硫酸ニッケルと硫酸コバルトと硫酸マンガンの濃度比を変えた他は実施例1と同様にして球状で平均粒径8μmのニッケル−コバルト−マンガン共沈水酸化物粉体(Ni/Co/Mn原子比=0.375/0.25/0.375)を得た。このニッケル−コバルト−マンガン共沈水酸化物粉体を550℃で大気中で焼成・粉砕し、ニッケル−コバルト−マンガン共沈酸化物粉末を得た。
実施例1と同様にして、このニッケル−コバルト−マンガン共沈酸化物粉末と酸化二オブ粉末と水酸化リチウム粉末とを混合し、大気中900℃で焼成・粉砕して平均粒径7μmのLi(Ni0.375Co0.25Mn0.3750.99Nb0.01を合成した。リーベルト解析の結果、a軸の格子定数は2.877Å、c軸の格子定数は14.248Åであった。BET法で求めた比表面積は1.5m/gであった。また、この活物質粉末の断面についてEPMAにより、粒子内のニッケル、コバルト、マンガン、ニオブについて、線分析を行ったところ、ニッケル−コバルト−マンガン相互の比率は一定であったが、ニオブは粒子中心部の存在量が少なく、粒子外側でのニオブの存在量が多いことが分かった。実施例1と同様にして電池性能を評価した結果、初期容量は154mAh/g、容量維持率は96%であった。また、交流インピーダンスは13.0Ωであった。
【0037】
《比較例1》
実施例1において、酸化二オブ粉末を添加しなかったほかは実施例1と同様にして平均粒径7μのLiNi0.34Co0.33Mn0.33粉末を合成した。リーベルト解析の結果、a軸の格子定数は2.875Å、c軸の格子定数は14.255Åであった。BET法で求めた比表面積は1.4m/gであった。実施例1と同様にして電池性能を評価した結果、初期容量は156mAh/g、容量維持率は92%であった。また、交流インピーダンスは17.7Ωであった。
【0038】
参考として、上記実施例1〜5および比較例1で測定した比表面積(m/g)、a軸,c軸の各格子定数(Å)、初期容量(mAh/g)、容量維持率(%)および交流インピーダンス(Ω)を表1に示す。
【0039】
【表1】

Figure 0004109847
【0040】
【発明の効果】
本発明のリチウム含有ニッケル−コバルト−マンガン−金属元素M複合酸化物(Mは周期表第4(4a)族、第5(5b)族から選択される。)を、リチウム二次電池の正極活物質として用いることにより、使用可能な電圧範囲が広く、充放電サイクル耐久性が良好であるとともに、容量ならびに安全性が高く、かつ内部抵抗の低い電池が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved lithium-containing transition metal composite oxide used as a positive electrode active material for a lithium secondary battery.
[0002]
[Prior art]
In recent years, as devices become portable and cordless, expectations for non-aqueous electrolyte secondary batteries that are small, lightweight, and have high energy density are increasing. As active materials for non-aqueous electrolyte secondary batteries, composite oxides of lithium and transition metals such as LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 are known.
[0003]
In general, a positive electrode active material used for a non-aqueous electrolyte secondary battery is made of a composite oxide in which transition metals such as cobalt, nickel, and manganese are solid-dissolved in lithium as a main active material. Depending on the type of transition metal used, electrode characteristics such as electric capacity, reversibility, operating voltage, and safety are different.
[0004]
In particular, recently, as a highly safe and inexpensive material, composite oxides composed of lithium, nickel, cobalt, and manganese have been actively researched. Development of a high-voltage, high-energy density non-aqueous electrolyte secondary battery by combining a negative electrode active material such as a carbon material that can be occluded and released has been underway.
[0005]
For example, a non-aqueous electrolyte using an R-3m rhombohedral layered complex oxide in which cobalt, nickel, and manganese are solid-solved, such as LiNi 0.34 Co 0.33 Mn 0.33 O 2 , as a positive electrode active material The secondary battery is characterized by higher safety than LiCoO 2 , LiNiO 2, or LiNi 0.8 CoO 2 , and can achieve a relatively high capacity density of about 155 mAh / g and 2.7 to 4.3 V. It shows good reversibility in the high voltage range.
[0006]
[Problems to be solved by the invention]
However, there is a problem that the internal resistance of the battery is high and the large current discharge characteristics and the low temperature discharge characteristics are inferior to LiCoO 2 , like LiNiO 2 or LiNi 0.8 Co 0.2 O 2 .
[0007]
In Japanese Patent Laid-Open No. 8-37007, there is a proposal of Li x Mn y CozNi 1- (y + z) O 2 (0 <y + z ≦ 0.5). The large current discharge characteristics and the low temperature discharge characteristics are unsatisfactory, and further, there is a problem that the expression of the battery capacity is inferior because no coprecipitation raw material is used.
[0008]
JP-A-11-25957, LiCo b Mn c M d Ni 1- (b + c + d) O 2 ( a 0.15 ≦ b + c + d ≦ 0.50, B as metal elements M, Al, Fe, Ga, etc.) However, this is also unsatisfactory in safety due to the large amount of nickel, and is unsatisfactory in internal resistance, large current discharge characteristics and low temperature discharge characteristics. There is a disadvantage that is inferior.
[0009]
JP-A-11-307094, LiNi 1- (b + c + d) Mn b Co c M d O 2 (1a Group as the metallic element M, 2a Group, 2b group, 3b group, any of Group 4b and transition elements) However, the internal resistance, large current discharge characteristics, and low temperature discharge characteristics are still unsatisfactory, and there is a problem that the capacity is low.
[0010]
Japanese Patent Application Laid-Open No. 2001-106534 discloses a raw material composite metal hydroxide obtained by coating a solid solution / coprecipitated nickel hydroxide particle surface with a hydroxide or oxide, for example, LiNi 0.65. In Co 0.20 Mn 0.10 Al 0.05 O 2 and the like, there is also a proposal to make aluminum unevenly distributed on the surface, but safety, large current discharge characteristics, and capacity per weight were unsatisfactory.
[0011]
Thus, to date, none satisfying all of internal resistance, large current discharge characteristics, low temperature discharge characteristics, capacity per weight, capacity per volume, charge / discharge cycle durability and safety have been obtained.
[0012]
The present invention has been made to solve such problems, and its purpose is excellent in internal resistance, large-current discharge characteristics and low-temperature discharge characteristics, and has a high capacity per weight and volume, and is also charged. An object of the present invention is to provide a highly safe positive electrode material for a non-aqueous electrolyte secondary battery excellent in discharge cycle durability.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a general formula Li a Ni x Co y Mn z M p O 2 (where 1.00 ≦ a ≦ 1.20, 0.20 ≦ x <0.50, 0. 20 <y ≦ 0.45, 0.20 ≦ z ≦ 0.50, 0.0005 ≦ p ≦ 0.05, and x + y + z + p = 1), and the metal element M is unevenly distributed on the particle surface. lithium-containing transition metal composite oxide for a lithium secondary battery positive electrode active material, characterized in that it is (hereinafter, also referred to as "composite oxide of the present invention".) provides.
[0014]
The metal element M is preferably a metal element atom of Group 4 (4a) or Group 5 (5b) of the periodic table because the internal resistance can be reduced. The addition amount p of the metal element M is 0.0005 ≦ p ≦ 0.05, preferably 0.002 ≦ p ≦ 0.02. In particular, it is preferable that 0.30 ≦ x ≦ 0.40, 0.25 ≦ y ≦ 0.35, 0.30 ≦ z ≦ 0.42. The metal element M is preferably selected from Ti, Nb, and Ta.
[0015]
The specific surface area of the composite oxide of the present invention is preferably 2 m 2 / g or less. When the specific surface area exceeds 2 m 2 / g, it is difficult to form a dense positive electrode layer and the capacity is reduced, which is not preferable. In particular, a so-called rocking chair type lithium ion battery using a carbon material for the negative electrode is not preferable because the battery capacity decreases with time. The specific surface area is particularly preferably 1 m 2 / g or less.
[0016]
The composite oxide of the present invention is preferably an active material having an R-3m rhombohedral structure, particularly from the viewpoint of charge / discharge cycle durability. Further, in the R-3m rhombohedral structure, the a-axis lattice constant is 2.830 to 2.890 Å (particularly 2.850 to 2.880 Å), and the c-axis lattice constant is 14.150 to 14.290 Å. (Particularly, 14.190 to 14.280cm) is preferable. If the lattice constant is out of this range, the safety of the battery is lowered, which is not preferable.
[0017]
Also, undesirable metallic element M is nickel, cobalt, since the internal resistance reduction effect becomes poor when present uniformly in the same manner and manganese.
[0018]
In order to synthesize a lithium-containing transition metal composite oxide, a method in which a nickel compound, a cobalt compound, and a manganese compound are used and a compound composed of a lithium compound and a metal element M is mixed and fired can be considered. As a result of the poor uniformity of the nickel-cobalt-manganese element in the lithium-containing transition metal composite oxide obtained, the battery performance is difficult to develop, which is not preferable.
[0019]
In order to achieve the effect of the present invention, a nickel-cobalt-manganese composite coprecipitation compound is used as a raw material in advance, and this raw material, a compound of the metal element M and further a lithium compound are mixed and fired to obtain a lithium-containing transition metal composite oxidation. It is preferable to synthesize the product.
[0020]
Therefore, the present invention is a method for producing a lithium-containing transition metal composite oxide, in which a nickel-cobalt-manganese coprecipitate composite compound, a lithium compound, and a compound comprising a metal element M are mixed, and this mixture is mixed. Provided is a method for producing a lithium-containing transition metal composite oxide, characterized by firing at 800 to 1000 ° C. in an oxygen-containing atmosphere.
[0021]
The nickel-cobalt-manganese coprecipitation composite compound used in the above production method includes (1) nickel-cobalt-manganese coprecipitation composite carbonate or coprecipitation composite carbonate hydroxide, or (2) the coprecipitation composite hydroxide. A nickel-cobalt-manganese coprecipitation composite oxyhydroxide obtained by allowing an oxidant to act on the product, or (3) firing the coprecipitation composite hydroxide or the nickel-cobalt-manganese coprecipitation composite oxyhydroxide The nickel-cobalt-manganese coprecipitated composite oxide is particularly preferable.
[0022]
The present invention also provides a method for producing a lithium-containing transition metal composite oxide, wherein the compound comprising the metal element M as a raw material is an oxide or a hydroxide.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The composite oxide of the present invention is, for example, nickel-cobalt-manganese coprecipitated composite hydroxide, nickel-cobalt-manganese coprecipitated composite oxyhydroxide or nickel-cobalt-manganese coprecipitated composite oxide. -Mixture of manganese coprecipitated compound powder, compound of metal element M, and lithium compound powder (preferably lithium hydroxide, lithium carbonate, lithium oxide) at a solid phase method of 800-1000 ° C in an oxygen-containing atmosphere. For 5 to 40 hours.
[0024]
A positive electrode mixture is formed by mixing the composite oxide powder of the present invention with a carbon-based conductive material such as acetylene black, graphite, and Ketchen black, and a binder. As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is used. The composite oxide powder of the present invention, a conductive material, a binder, and a slurry comprising a binder or a solvent or dispersion medium are applied to a positive electrode current collector such as an aluminum foil, dried and press-rolled to form a positive electrode active material layer as a positive electrode Formed on the current collector.
[0025]
In the lithium battery using the composite oxide of the present invention as the positive electrode active material, a carbonate is preferable as the solvent of the electrolyte solution. The carbonate ester can be either cyclic or chain. Examples of cyclic carbonates include propylene carbonate and ethylene carbonate. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.
[0026]
You may use the said carbonate ester individually or in mixture of 2 or more types. Moreover, you may mix and use with another solvent. Moreover, depending on the material of the negative electrode active material, when a chain carbonate ester and a cyclic carbonate ester are used in combination, discharge characteristics, cycle durability, and charge / discharge efficiency may be improved. Further, by adding a vinylidene fluoride-hexafluoropropylene copolymer (for example, Kyner manufactured by Atchem Co.) or a vinylidene fluoride-perfluoropropyl vinyl ether copolymer to these organic solvents, and adding the following solute, the gel polymer electrolyte is added. It is good.
[0027]
As solutes, ClO 4 −, CF 3 SO 3 −, BF 4 −, PF 6 −, AsF 6 −, SbF 6 −, CF 3 CO 2 −, (CF 3 SO 2 ) 2 N— and the like are used as anions. It is preferable to use any one or more of lithium salts. In the above electrolyte solution or polymer electrolyte, an electrolyte composed of a lithium salt is preferably added to the solvent or solvent-containing polymer at a concentration of 0.2 to 2.0 mol / L. If it deviates from this range, the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. More preferably, 0.5 to 1.5 mol / L is selected. For the separator, porous polyethylene or porous polypropylene film is used.
[0028]
For the negative electrode active material, a material capable of inserting and extracting lithium ions is used. The material for forming the negative electrode active material is not particularly limited. For example, lithium metal, lithium alloy, carbon material, periodic table 14, oxides mainly composed of group 15 metal, carbon compound, silicon carbide compound, silicon oxide compound, sulfide Examples include titanium and boron carbide compounds.
[0029]
As the carbon material, those obtained by pyrolyzing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, scale-like graphite, and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil or the like is used.
[0030]
The positive electrode and the negative electrode are preferably obtained by kneading an active material with an organic solvent to form a slurry, and applying, drying, and pressing the slurry onto a metal foil current collector. There is no restriction | limiting in particular in the shape of the lithium battery using the complex oxide of this invention. A sheet shape (so-called film shape), a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is appropriately selected according to the application.
[0031]
【Example】
Next, although specific Examples 1 to 5 and Comparative Example 1 of the present invention will be described, the present invention is not limited to these Examples.
[0032]
Example 1
A metal sulfate aqueous solution, an aqueous ammonia solution and an aqueous caustic soda solution containing nickel sulfate, cobalt sulfate and manganese sulfate were continuously fed into the reaction vessel so that the pH was 11. The temperature was kept at 50 ° C. After the reaction, the slurry was filtered, washed with water, and dried to obtain a spherical nickel-cobalt-manganese coprecipitated hydroxide powder having an average particle size of 8 μm (Ni / Co / Mn atomic ratio = 0.34 / 0.33 / 0. 33) was obtained. The nickel-cobalt-manganese coprecipitated hydroxide powder was fired and pulverized in the air at 550 ° C. to obtain a nickel-cobalt-manganese coprecipitated oxide powder.
This nickel-cobalt-manganese coprecipitated oxide powder, niobium oxide powder, and lithium hydroxide powder are mixed, calcined and pulverized in the atmosphere at 900 ° C., and Li (Ni 0.34 Co) having an average particle diameter of 7 μm. 0.33 Mn 0.33 ) 0.99 Nb 0.01 O 2 was synthesized. As a result of X-ray diffraction analysis of this active material powder by CuKα, it was found to be an R-3m rhombohedral layered rock salt structure. According to Rietveld analysis, the a-axis lattice constant was 2.853 Å, and the c-axis lattice constant was 14.235 Å. The specific surface area determined by the BET method was 1.5 m 2 / g. Further, when the cross section of the active material powder was subjected to line analysis for nickel, cobalt, manganese, and niobium in the particles by EPMA (electron probe microanalyzer), the ratio of nickel-cobalt-manganese was constant. However, it was found that niobium has a small amount in the center of the particle and a large amount of niobium on the outside of the particle. Furthermore, when the niobium / (nickel + cobalt + manganese) atomic ratio from the surface of the composite oxide particle to a depth of 0.1 μm was determined by Auger electron spectroscopy, it was 0.04 or more.
This Li (Ni 0.34 Co 0.33 Mn 0.33 ) 0.99 Nb 0.01 O 2 powder, acetylene black, and polyvinylidene fluoride in a weight ratio of 83/10/7 is N-methylpyrrolidone. Was added to the ball mill to form a slurry. This slurry was applied onto an aluminum foil positive electrode current collector having a thickness of 20 μm and dried at 150 ° C. to remove N-methylpyrrolidone. Thereafter, roll press rolling was performed to obtain a positive electrode body. 25 μm thick porous polyethylene is used for the separator, 300 μm thick metal lithium foil is used for the negative electrode, nickel foil is used for the negative electrode current collector, and 1M LiPF 6 / EC + DEC (1: 1) is used for the electrolyte. ) Was used to assemble a coin cell type 2030 in an argon glove box.
Then, under a temperature atmosphere of 25 ° C., constant current charging to 4.3 V was performed at 30 mA per 1 g of the positive electrode active material, and constant current discharging was performed up to 2.7 V at 30 mA per 1 g of the positive electrode active material. The capacity maintenance rate was calculated from the ratio of the discharge capacity after the second charge / discharge and the discharge capacity after the 50th charge / discharge. As a result, the initial capacity was 156 mAh / g, and the capacity retention rate was 94%.
On the other hand, Li (Ni 0.34 Co 0.33 Mn 0.33 ) 0.99 Nb 0.01 O 2 powder obtained in this way, acetylene black, and polytetrafluoroethylene powder were mixed with 80 The mixture was mixed at a weight ratio of / 16/4, kneaded while adding toluene, and dried to prepare a positive electrode plate having a thickness of 150 μm.
An aluminum foil having a thickness of 20 μm was used as a positive electrode current collector, and a porous polypropylene having a thickness of 25 μm was used as a separator. Using a lithium metal foil with a thickness of 500 μm as the negative electrode, a nickel foil of 20 μm as the negative electrode current collector, and 1M LiPF 6 / EC + DEC (1: 1) as the electrolyte, a stainless steel simple sealed cell type battery is made of argon. Assembled in a glove box.
Using this battery, it was charged to 4.3 V at a load current of 30 mA per 1 g of the positive electrode active material at 25 ° C., discharged to 2.5 V at a load current of 30 mA per 1 g of the positive electrode active material, and again at a load current of 30 mA. It charged to 4.3V and measured the alternating current impedance in 10mHz-100KHz in 25 degreeC. As a result, the AC impedance of the cell was 12.9Ω.
[0033]
Example 2
In Example 1, Li (Ni 0.34 Co 0.33 Mn 0.33 ) 0.99 with an average particle size of 7 μm was used in the same manner as in Example 1 except that titanium oxide powder was added instead of niobium oxide powder. Ti 0.01 O 2 powder was synthesized. As a result of the Liberty analysis, the lattice constant of the a axis was 2.854Å, and the lattice constant of the c axis was 14.239Å. The specific surface area determined by the BET method was 1.6 m 2 / g. Further, when the cross-section of this active material powder was analyzed by EPMA for nickel, cobalt, manganese and titanium in the particles, the ratio of nickel-cobalt-manganese was constant. It was found that the abundance of titanium was small and the abundance of titanium outside the particles was large. As a result of evaluating the battery performance in the same manner as in Example 1, the initial capacity was 156 mAh / g, and the capacity retention rate was 95%. The AC impedance was 13.4Ω.
[0034]
Example 3
In Example 1, Li (Ni 0.34 Co 0.33 Mn 0.33 ) 0.99 having an average particle diameter of 7 μm was obtained in the same manner as in Example 1 except that tantalum oxide powder was added instead of niobium oxide powder. Ta 0.01 O 2 powder was synthesized. As a result of the Liberty analysis, the lattice constant of the a axis was 2.853 Å, and the lattice constant of the c axis was 14.242 Å. The specific surface area determined by the BET method was 1.5 m 2 / g. Further, when the cross-section of this active material powder was subjected to line analysis for nickel, cobalt, manganese, and tantalum in EPMA by EPMA, the ratio of nickel-cobalt-manganese was constant. It was found that the abundance of tantalum was small and the abundance of tantalum on the outside of the particles was large. As a result of evaluating the battery performance in the same manner as in Example 1, the initial capacity was 156 mAh / g, and the capacity retention rate was 94%. The AC impedance was 13.0Ω.
[0035]
Example 4
In Example 1, Li (Ni 0.34 Co 0.33 Mn 0.33 ) 0.998 Nb 0. 0 with an average particle size of 7 μm was obtained in the same manner as in Example 1 except that the addition amount of the niobium oxide powder was reduced . A 002 O 2 powder was synthesized. As a result of the Liberty analysis, the lattice constant of the a axis was 2.865Å and the lattice constant of the c axis was 14.244Å. The specific surface area determined by the BET method was 1.5 m 2 / g. Further, when the cross-section of this active material powder was analyzed by EPMA for nickel, cobalt, manganese, and niobium in the particles, the ratio of nickel-cobalt-manganese was constant. It was found that the abundance of niobium on the outside of the particle was large with a small abundance at the center. As a result of evaluating the battery performance in the same manner as in Example 1, the initial capacity was 156 mAh / g, and the capacity retention rate was 93%. The AC impedance was 15.1Ω.
[0036]
Example 5
In Example 1, nickel-cobalt-manganese coprecipitated hydroxide powder (Ni / Co) having a spherical shape and an average particle diameter of 8 μm was obtained in the same manner as in Example 1 except that the concentration ratio of nickel sulfate, cobalt sulfate and manganese sulfate was changed. / Mn atomic ratio = 0.375 / 0.25 / 0.375). The nickel-cobalt-manganese coprecipitated hydroxide powder was fired and pulverized in the air at 550 ° C. to obtain a nickel-cobalt-manganese coprecipitated oxide powder.
In the same manner as in Example 1, this nickel-cobalt-manganese coprecipitated oxide powder, niobium oxide powder, and lithium hydroxide powder were mixed, calcined and pulverized at 900 ° C. in the atmosphere, and Li having an average particle size of 7 μm. (Ni 0.375 Co 0.25 Mn 0.375 ) 0.99 Nb 0.01 O 2 was synthesized. As a result of the Liberty analysis, the lattice constant of the a axis was 2.877 mm, and the lattice constant of the c axis was 14.248 mm. The specific surface area determined by the BET method was 1.5 m 2 / g. Further, when the cross-section of this active material powder was analyzed by EPMA for nickel, cobalt, manganese and niobium in the particles, the ratio of nickel-cobalt-manganese was constant. It was found that the abundance of part was small and the abundance of niobium outside the particle was large. As a result of evaluating the battery performance in the same manner as in Example 1, the initial capacity was 154 mAh / g, and the capacity retention rate was 96%. The AC impedance was 13.0Ω.
[0037]
<< Comparative Example 1 >>
In Example 1, LiNi 0.34 Co 0.33 Mn 0.33 O 2 powder having an average particle size of 7 μs was synthesized in the same manner as in Example 1 except that the niobium oxide powder was not added. As a result of the Liberty analysis, the lattice constant of the a axis was 2.875 and the lattice constant of the c axis was 14.255. The specific surface area determined by the BET method was 1.4 m 2 / g. As a result of evaluating the battery performance in the same manner as in Example 1, the initial capacity was 156 mAh / g, and the capacity retention rate was 92%. The AC impedance was 17.7Ω.
[0038]
For reference, specific surface areas (m 2 / g), lattice constants (上 記) of a-axis and c-axis, initial capacity (mAh / g), capacity maintenance ratio (measured in Examples 1 to 5 and Comparative Example 1) %) And AC impedance (Ω) are shown in Table 1.
[0039]
[Table 1]
Figure 0004109847
[0040]
【The invention's effect】
The lithium-containing nickel-cobalt-manganese-metal element M composite oxide (M is selected from Group 4 (4a) and Group 5 (5b) of the periodic table) of the present invention is used as the positive electrode active of the lithium secondary battery. By using as a substance, a battery having a wide usable voltage range, good charge / discharge cycle durability, high capacity and safety, and low internal resistance can be obtained.

Claims (5)

一般式LiNiCoMn(ただし、1.00≦a≦1.20,0.20≦x<0.50,0.20<y≦0.45,0.20≦z≦0.50,0.0005≦p≦0.05、かつ、x+y+z+p=1である。Mは周期表第4(4a)族、第5(5b)族のいずれかから選択される金属元素。)で表され、上記金属元素Mが粒子表面に偏在していることを特徴とするリチウム二次電池正極活物質用のリチウム含有遷移金属複合酸化物。Formula Li a Ni x Co y Mn z M p O 2 ( however, 1.00 ≦ a ≦ 1.20,0.20 ≦ x <0.50,0.20 <y ≦ 0.45,0.20 ≦ z ≦ 0.50, 0.0005 ≦ p ≦ 0.05, and x + y + z + p = 1, where M is a metal selected from Group 4 (4a) or Group 5 (5b) of the periodic table A lithium-containing transition metal composite oxide for a positive electrode active material of a lithium secondary battery , wherein the metal element M is unevenly distributed on the particle surface . 0.30≦x≦0.40,0.25≦y≦0.35,0.30≦z≦0.42,0.002≦p≦0.02であり、上記金属元素MがTi,Nb,Taのいずれかから選択される、金属元素R−3m菱面体構造かつ比表面積が2m/g以下であることを特徴とする請求項1に記載のリチウム含有遷移金属複合酸化物。0.30 ≦ x ≦ 0.40, 0.25 ≦ y ≦ 0.35, 0.30 ≦ z ≦ 0.42, 0.002 ≦ p ≦ 0.02, and the metal element M is Ti, Nb 2. The lithium-containing transition metal composite oxide according to claim 1, wherein the lithium-containing transition metal composite oxide is selected from any one of Ta and Ta and has a R 3 m rhombohedral structure and a specific surface area of 2 m 2 / g or less. a軸の格子定数が2.830〜2.890Åであり、c軸の格子定数が14.150〜14.290Åであることを特徴とする請求項1または2に記載のリチウム含有遷移金属複合酸化物。  3. The lithium-containing transition metal composite oxidation according to claim 1, wherein the a-axis lattice constant is 2.830 to 2.890 Å, and the c-axis lattice constant is 14.150 to 14.290 請求. object. 請求項1ないしのいずれか1項に記載のリチウム含有遷移金属複合酸化物を製造する方法であって、ニッケル−コバルト−マンガン共沈複合化合物と、リチウム化合物と、金属元素Mからなる化合物とを混合し、この混合物を酸素含有雰囲気下800〜1000℃で焼成することを特徴とするリチウム含有遷移金属複合酸化物の製造方法。A method for producing a lithium-containing transition metal composite oxide according to any one of claims 1 to 3 , comprising a nickel-cobalt-manganese coprecipitate composite compound, a lithium compound, and a compound comprising a metal element M And the mixture is fired at 800 to 1000 ° C. in an oxygen-containing atmosphere. 上記ニッケル−コバルト−マンガン共沈複合化合物および上記金属元素Mからなる化合物が、酸化物または水酸化物であることを特徴とする請求項に記載のリチウム含有遷移金属複合酸化物の製造方法。The method for producing a lithium-containing transition metal composite oxide according to claim 4 , wherein the nickel-cobalt-manganese coprecipitation composite compound and the compound comprising the metal element M are oxides or hydroxides.
JP2001253916A 2001-08-24 2001-08-24 Lithium-containing transition metal composite oxide and method for producing the same Expired - Lifetime JP4109847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253916A JP4109847B2 (en) 2001-08-24 2001-08-24 Lithium-containing transition metal composite oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253916A JP4109847B2 (en) 2001-08-24 2001-08-24 Lithium-containing transition metal composite oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003068298A JP2003068298A (en) 2003-03-07
JP4109847B2 true JP4109847B2 (en) 2008-07-02

Family

ID=19082161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253916A Expired - Lifetime JP4109847B2 (en) 2001-08-24 2001-08-24 Lithium-containing transition metal composite oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP4109847B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102702A1 (en) * 2003-05-13 2004-11-25 Mitsubishi Chemical Corporation Layered lithium nickel composite oxide powder and process for producing the same
FR2860922B1 (en) * 2003-10-10 2009-07-31 Cit Alcatel ELECTROCHEMICALLY ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE ELECTROCHEMICAL ELECTROCHEMICAL GENERATOR POSITIVE ELECTRODE
CN100438154C (en) 2004-04-30 2008-11-26 清美化学股份有限公司 Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
CN100431209C (en) * 2004-05-14 2008-11-05 清美化学股份有限公司 Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
JP4877898B2 (en) * 2005-01-21 2012-02-15 日立マクセルエナジー株式会社 Nonaqueous electrolyte secondary battery
JP4868381B2 (en) * 2005-03-02 2012-02-01 日立マクセルエナジー株式会社 Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR100660759B1 (en) 2005-03-11 2006-12-22 제일모직주식회사 A Cathode Material for Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
WO2006136050A1 (en) * 2005-06-20 2006-12-28 Shenzhen Bak Battery Co., Ltd A multicomponent composite lithium oxide containing nickel and cobalt, a method for producing the same, the use thereof as a positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2007095534A (en) * 2005-09-29 2007-04-12 Matsushita Electric Ind Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
US8535829B2 (en) 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
KR100815583B1 (en) 2006-10-13 2008-03-20 한양대학교 산학협력단 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2008235148A (en) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2008288005A (en) * 2007-05-17 2008-11-27 Hitachi Maxell Ltd Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
EP2202828B1 (en) 2007-09-04 2013-12-11 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder, method for manufacturing the same and lithium secondary battery positive electrode and lithium secondary battery using the same
JP4766040B2 (en) * 2007-12-07 2011-09-07 日亜化学工業株式会社 A positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
EP2264814A4 (en) 2008-04-17 2016-08-17 Jx Nippon Mining & Metals Corp Positive electrode active material for lithium ion battery, positive electrode for rechargeable battery, and lithium ion battery
CN101626080B (en) 2008-10-17 2011-02-09 成都晶元新材料技术有限公司 Nickel-cobalt-manganese multiplex doped lithium ion battery anode material and preparation method thereof
JP5675128B2 (en) 2009-08-28 2015-02-25 三洋電機株式会社 Lithium ion secondary battery
US8986570B2 (en) * 2009-12-14 2015-03-24 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery and use thereof
WO2011135953A1 (en) * 2010-04-30 2011-11-03 株式会社 村田製作所 Electrode active material and non-aqueous electrolyte secondary battery provided with same
WO2012121220A1 (en) * 2011-03-07 2012-09-13 旭硝子株式会社 Positive electrode active material for lithium ion secondary battery, and process for producing same
JP2012238581A (en) * 2011-04-28 2012-12-06 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery
US10050267B2 (en) 2013-07-17 2018-08-14 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, process for producing the positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the positive electrode active material for non-aqueous electrolyte secondary battery
CN105493334B (en) * 2013-09-30 2018-07-31 三洋电机株式会社 Platypelloid type non-aqueous electrolyte secondary battery and use its battery pack
JP6578635B2 (en) * 2013-11-22 2019-09-25 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6578634B2 (en) * 2013-11-22 2019-09-25 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
WO2015076323A1 (en) * 2013-11-22 2015-05-28 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
US10522830B2 (en) 2013-11-22 2019-12-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery
JP6848181B2 (en) * 2015-11-27 2021-03-24 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
CN106684323B (en) * 2016-12-22 2018-06-01 广州朝锂新能源科技有限公司 A kind of activating oxide improves ternary cathode material of lithium ion battery and preparation method thereof
US11735726B2 (en) 2016-12-26 2023-08-22 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2018169004A1 (en) * 2017-03-16 2018-09-20 国立研究開発法人産業技術総合研究所 Nickel-manganese-based composite oxide and method for producing same
US11139476B2 (en) 2019-03-12 2021-10-05 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3064655B2 (en) * 1992-02-07 2000-07-12 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3561607B2 (en) * 1997-05-08 2004-09-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method for producing positive electrode material
JPH10289731A (en) * 1997-04-15 1998-10-27 Sanyo Electric Co Ltd Nonaqueous electrolytic battery
JP3032757B1 (en) * 1999-02-18 2000-04-17 株式会社東芝 Non-aqueous electrolyte secondary battery
JP2001068109A (en) * 1999-08-25 2001-03-16 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP4951824B2 (en) * 2001-07-27 2012-06-13 三菱化学株式会社 Electrode active material-containing composition, and electrode and lithium secondary battery using the same

Also Published As

Publication number Publication date
JP2003068298A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP4092064B2 (en) Lithium secondary battery
JP5044467B2 (en) Lithium transition metal composite oxide
US7384706B2 (en) Lithium-nickel-cobalt-maganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP4943145B2 (en) Positive electrode active material powder for lithium secondary battery
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4444117B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2004119218A (en) Positive active material for lithium secondary battery and its manufacturing method
JP2004220897A (en) Positive electrode active substance powder for lithium secondary battery
JP2002100356A (en) Lithium secondary battery
JP4777543B2 (en) Method for producing lithium cobalt composite oxide
JP4773636B2 (en) Method for producing lithium cobalt composite oxide
JP4519220B2 (en) Lithium secondary battery
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4318270B2 (en) Method for manufacturing lithium secondary battery
JP4082855B2 (en) Lithium secondary battery
JP4199506B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4209646B2 (en) Method for producing lithium cobalt composite oxide for positive electrode of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4109847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350