JPH10289731A - Nonaqueous electrolytic battery - Google Patents

Nonaqueous electrolytic battery

Info

Publication number
JPH10289731A
JPH10289731A JP9097239A JP9723997A JPH10289731A JP H10289731 A JPH10289731 A JP H10289731A JP 9097239 A JP9097239 A JP 9097239A JP 9723997 A JP9723997 A JP 9723997A JP H10289731 A JPH10289731 A JP H10289731A
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
electrode material
solute
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9097239A
Other languages
Japanese (ja)
Inventor
Ryuji Oshita
竜司 大下
Takuya Sunakawa
拓也 砂川
Hiroshi Watanabe
浩志 渡辺
Masahisa Fujimoto
正久 藤本
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9097239A priority Critical patent/JPH10289731A/en
Priority to CA002234874A priority patent/CA2234874C/en
Priority to DE69819395T priority patent/DE69819395T2/en
Priority to US09/059,701 priority patent/US6040090A/en
Priority to EP98106725A priority patent/EP0872450B9/en
Publication of JPH10289731A publication Critical patent/JPH10289731A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To form a film on a positive electrode material at an interface with a nonaqueous electrolyte, and restrain reaction between the positive electrode material and the nonaqueous electrolyte by using a composite oxide of lithium transition metal containing at least Co and Mn as the positive electrode material, as well as a nonaqueous electrolyte composed of a solute containing at least one type of fluorine contained compound dissolved in a solvent which contains ethylene carbonate. SOLUTION: A positive electrode material is made of a compound/ expressed by the formula of Lia Cob Mno Md Ni1-(b+o+d) O2 where M stands for B, Al, Si, Ti, Fe, V, Cr, Cu, Zn, Ga and W, 0<(a)<1.2, 0.1<=(b)<1.0, 0.05<=(c)<1.0, 0.05<=(c)<1, 0<=(d)<1, and 0.15<=(b+c+d)<1. A negative electrode is made of a carbonaceous material. Furthermore, a solvent is preferably prepared by mixing another solvent with ethylene carbonate, and LiPF4 , LiBF4 , LiN (C2 F5 S02 )2 or the like is preferable as a fluoride compound for the solute of a nonaqueous electrolyte. As a result, a nonaqueous electrolytic battery with a high preservation characteristic and a high cycle characteristic can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、正極材料にリチ
ウム遷移金属複合酸化物を用いた正極と、負極と、非水
電解液とを備えた非水電解液電池において、非水電解液
が正極における正極材料や負極における負極材料と反応
して、保存特性やサイクル特性が低下するということの
少ない非水電解液電池に関するものである。
The present invention relates to a non-aqueous electrolyte battery comprising a positive electrode using a lithium transition metal composite oxide as a positive electrode material, a negative electrode, and a non-aqueous electrolyte. The present invention relates to a nonaqueous electrolyte battery in which storage characteristics and cycle characteristics are less likely to be reduced by reacting with a positive electrode material and a negative electrode material in a negative electrode.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
電池の一つとして、電解液に非水電解液を用い、リチウ
ムの酸化,還元を利用した高起電力の非水電解液電池が
利用されるようになった。
2. Description of the Related Art In recent years, a non-aqueous electrolyte battery using a non-aqueous electrolyte as an electrolyte and utilizing the oxidation and reduction of lithium has been used as one of new batteries with high output and high energy density. It was started.

【0003】ここで、このような非水電解液電池におい
ては、一般にその正極における正極材料として、比較的
高電圧が得られるリチウム遷移金属複合酸化物が用いら
れていた。
[0003] In such a non-aqueous electrolyte battery, a lithium transition metal composite oxide capable of obtaining a relatively high voltage has been generally used as a positive electrode material for the positive electrode.

【0004】しかし、このようなリチウム遷移金属複合
酸化物を正極材料に使用した場合、この正極材料と非水
電解液とが反応して非水電解液が分解し、保存特性やサ
イクル特性が悪くなるという問題があった。
However, when such a lithium transition metal composite oxide is used as a cathode material, the cathode material reacts with the non-aqueous electrolyte to decompose the non-aqueous electrolyte, resulting in poor storage characteristics and cycle characteristics. There was a problem of becoming.

【0005】このため、近年においては、特開平4−1
84872号公報に示されるように、その非水電解液に
おける溶媒に炭酸プロピレンと炭酸ジエチルの混合溶媒
を使用し、上記のようなリチウム遷移金属複合酸化物と
非水電解液とが反応するのを抑制するようにしたものが
考えられた。
For this reason, in recent years, Japanese Patent Laid-Open No.
As shown in Japanese Patent No. 84872, a mixed solvent of propylene carbonate and diethyl carbonate is used as a solvent in the non-aqueous electrolyte to prevent the above-mentioned reaction between the lithium transition metal composite oxide and the non-aqueous electrolyte. The thing which tried to suppress was thought.

【0006】しかし、Co,Ni,Mn等の遷移金属を
含むリチウム遷移金属複合酸化物を正極材料に用いた場
合、特に、充電状態において、この正極材料が上記の非
水電解液と依然として反応し、充電保存特性が悪くなる
という問題があった。
However, when a lithium transition metal composite oxide containing a transition metal such as Co, Ni, or Mn is used as a cathode material, particularly in a charged state, the cathode material still reacts with the nonaqueous electrolyte. However, there is a problem that the charge storage characteristics deteriorate.

【0007】[0007]

【発明が解決しようとする課題】この発明は、正極材料
にリチウム遷移金属複合酸化物を用いた正極と、負極
と、非水電解液とを備えた非水電解液電池における上記
のような問題を解決することを課題とするものであり、
Co,Mn,Ni等の遷移金属を含むリチウム遷移金属
複合酸化物を正極材料に用いた場合においても、この正
極材料と非水電解液とが反応するのが十分に抑制され、
保存特性やサイクル特性に優れた非水電解液電池が得ら
れるようにすることを課題とするものである。
SUMMARY OF THE INVENTION The present invention relates to a non-aqueous electrolyte battery comprising a positive electrode using a lithium transition metal composite oxide as a positive electrode material, a negative electrode, and a non-aqueous electrolyte. Is to solve the problem,
Even when a lithium transition metal composite oxide containing a transition metal such as Co, Mn, or Ni is used for the cathode material, the reaction between the cathode material and the non-aqueous electrolyte is sufficiently suppressed,
An object of the present invention is to provide a nonaqueous electrolyte battery having excellent storage characteristics and cycle characteristics.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1にお
ける非水電解液電池においては、上記のような課題を解
決するため、正極材料にリチウム遷移金属複合酸化物を
用いた正極と、負極と、非水電解液とを備えた非水電解
液電池において、上記の正極材料に、少なくともCoと
MnとNiとを含むリチウム遷移金属複合酸化物を用い
る一方、上記の非水電解液に、エチレンカーボネートを
含む溶媒を用いると共に少なくとも一種の含フッ素化合
物を含む溶質を用いるようにしたのである。
According to a first aspect of the present invention, there is provided a nonaqueous electrolyte battery comprising: a positive electrode using a lithium transition metal composite oxide as a positive electrode material; And, in a non-aqueous electrolyte battery comprising a non-aqueous electrolyte, the positive electrode material, while using a lithium transition metal composite oxide containing at least Co, Mn and Ni, the above-mentioned non-aqueous electrolyte, A solvent containing ethylene carbonate is used, and a solute containing at least one fluorine-containing compound is used.

【0009】そして、この請求項1における非水電解液
電池のように、正極材料に、少なくともCoとMnとN
iとを含むリチウム遷移金属複合酸化物を用いる一方、
非水電解液に、エチレンカーボネートを含む溶媒を用い
ると共に少なくとも一種の含フッ素系化合物を含む溶質
を用いると、非水電解液との界面において上記の正極材
料に被膜が形成されるようになり、この被膜によって充
電状態においても正極材料と非水電解液とが反応するの
が抑制され、非水電解液電池における保存特性やサイク
ル特性が向上する。
Further, as in the non-aqueous electrolyte battery according to the first aspect, at least Co, Mn and N
While using a lithium transition metal composite oxide containing i
When a solute containing at least one fluorine-containing compound is used together with a solvent containing ethylene carbonate for the non-aqueous electrolyte, a film is formed on the positive electrode material at the interface with the non-aqueous electrolyte, This coating suppresses the reaction between the positive electrode material and the non-aqueous electrolyte even in the charged state, and improves the storage characteristics and cycle characteristics of the non-aqueous electrolyte battery.

【0010】ここで、上記のように少なくともCoとM
nとNiとを含むニッケル遷移金属複合酸化物を正極材
料に用いるにあたり、このリチウム遷移金属複合酸化物
として、請求項2に示すように、Lia Cob Mnc
d Ni1-(b+c+d) 2 (MはB,Al,Si,Ti,F
e,V,Cr,Cu,Zn,Ga,Wから選択される少
なくとも一種の金属であり、0<a<1.2、0.1≦
b<1、0.05≦c<1、0≦d<1、0.15≦b
+c+d<1の条件を満たす。)を用いた場合には、よ
り非水電解液との反応が抑制されて、更に保存特性やサ
イクル特性が向上する。
Here, as described above, at least Co and M
When a nickel transition metal composite oxide containing n and Ni is used for a positive electrode material, as the lithium transition metal composite oxide, Li a Co b M n c M
d Ni 1- (b + c + d) O 2 (M is B, Al, Si, Ti, F
e, at least one metal selected from V, Cr, Cu, Zn, Ga and W, and 0 <a <1.2, 0.1 ≦
b <1, 0.05 ≦ c <1, 0 ≦ d <1, 0.15 ≦ b
The condition of + c + d <1 is satisfied. When () is used, the reaction with the non-aqueous electrolyte is further suppressed, and the storage characteristics and the cycle characteristics are further improved.

【0011】また、この発明における非水電解液電池に
おいて、その負極に使用する負極材料としては、従来よ
り一般に使用されている公知の負極材料を使用すること
ができるが、特に、黒鉛やコークス等の炭素材料のよう
に表面積が大きく、非水電解液と反応性が高いものにお
いては、上記のような非水電解液とを組み合わせること
により、この非水電解液と負極材料である炭素材料との
反応も抑制されて、更にサイクル特性や保存特性が向上
されるようになる。
In the non-aqueous electrolyte battery according to the present invention, as the negative electrode material used for the negative electrode, a known negative electrode material generally used conventionally can be used. In particular, graphite, coke and the like can be used. In the case of a carbon material having a large surface area and a high reactivity with a non-aqueous electrolyte, by combining the non-aqueous electrolyte as described above, the non-aqueous electrolyte and the carbon material as a negative electrode material Is also suppressed, and the cycle characteristics and storage characteristics are further improved.

【0012】また、この発明における非水電解液電池に
おいて、その非水電解液における溶媒としては、上記の
ように少なくともエチレンカーボネートを含有した溶媒
を使用すればよく、このエチレンカーボネートに他の公
知の溶媒を混合させて使用することが好ましい。
Further, in the nonaqueous electrolyte battery according to the present invention, the solvent in the nonaqueous electrolyte may be a solvent containing at least ethylene carbonate as described above. It is preferable to use a mixture of solvents.

【0013】ここで、このようにエチレンカーボネート
に他の溶媒を混合させるにあたっては、このエチレンカ
ーボネートの量が少ないと、非水電解液におけるイオン
伝導性が悪くなり、またエチレンカーボネートの量が多
くなり過ぎると、非水電解液の粘度が高くなって、この
場合にもイオン伝導性が低下するため、溶媒中における
エチレンカーボネートの量が体積比で20〜80vol
%の範囲になるようにすることが好ましい。
Here, when mixing the ethylene carbonate with another solvent as described above, if the amount of the ethylene carbonate is small, the ionic conductivity in the non-aqueous electrolyte becomes poor, and the amount of the ethylene carbonate increases. If too long, the viscosity of the non-aqueous electrolyte increases, and the ionic conductivity also decreases in this case. Therefore, the amount of ethylene carbonate in the solvent is 20 to 80 vol by volume.
%.

【0014】また、上記の非水電解液における溶質も、
上記のように少なくとも一種の含フッ素化合物が使用さ
れていればよく、この含フッ素化合物としては、溶質と
して一般に使用されている公知の含フッ素化合物を用い
ることができ、例えば、LiPF6 ,LiBF4 ,Li
N(C2 5 SO2 2 ,LiAsF6 等を使用するこ
とができ、またこのような含フッ素化合物と他の公知の
溶質とを組み合わせて使用することも可能である。
Further, the solute in the non-aqueous electrolyte described above also
As long as at least one fluorine-containing compound is used as described above, a known fluorine-containing compound generally used as a solute can be used as the fluorine-containing compound. For example, LiPF 6 , LiBF 4 , Li
N (C 2 F 5 SO 2 ) 2 , LiAsF 6 or the like can be used, and such a fluorine-containing compound can be used in combination with another known solute.

【0015】ここで、非水電解液に少なくとも一種の含
フッ素化合物を含む溶質を加えるにあたり、加える溶質
の量が多くなり過ぎても少なくなり過ぎても、非水電解
液におけるイオン伝導性が低下するため、好ましくは、
非水電解液中における溶質全体の量が0.5〜2.0m
ol/lの範囲になるようにする。
Here, when adding the solute containing at least one fluorine-containing compound to the non-aqueous electrolyte, if the amount of the solute added is too large or too small, the ionic conductivity of the non-aqueous electrolyte decreases. To do so, preferably
The total amount of solute in the non-aqueous electrolyte is 0.5 to 2.0 m
ol / l.

【0016】[0016]

【実施例】以下、この発明の非水電解液電池について、
実施例を挙げて具体的に説明すると共に、この実施例の
非水電解液電池においては、充電状態で保存した場合に
おける放電容量の低下が少なくなると共に、サイクル特
性が向上することを比較例を挙げて明らかにする。な
お、この発明における非水電解液電池は、下記の実施例
に示したものに限定されず、その要旨を変更しない範囲
において適宜変更して実施できるものである。
The non-aqueous electrolyte battery of the present invention will be described below.
A specific example will be described with reference to examples, and in the non-aqueous electrolyte battery of this example, a decrease in the discharge capacity when stored in a charged state is reduced and the cycle characteristics are improved. I will clarify it. The non-aqueous electrolyte battery according to the present invention is not limited to those shown in the following examples, but can be implemented by appropriately changing the scope of the invention without changing its gist.

【0017】(実施例1〜8及び比較例1〜3)これら
の実施例においては、下記のようにして作製した正極と
負極と非水電解液とを用い、図1に示すようなAAサイ
ズの円筒型のリチウム二次電池を作製した。
(Examples 1 to 8 and Comparative Examples 1 to 3) In these examples, a positive electrode, a negative electrode and a non-aqueous electrolyte prepared as described below were used, and an AA size as shown in FIG. Was manufactured.

【0018】[正極の作製]正極を作製するにあたって
は、正極材料としてLiNi0.7 Co0.2 Mn0.12
粉末を用い、この正極材料と導電剤である人造黒鉛とを
混合させた後、この混合物に対して、結着剤であるポリ
フッ化ビニリデンをN−メチル−2−ピロリドン(NM
P)に溶解させた溶液を加え、上記の正極材料と人造黒
鉛とポリフッ化ビニリデンとが85:10:5の重量比
になるように混練してスラリーを調製し、このスラリー
を正極集電体であるアルミニウム箔の両面にドクターブ
レード法により塗布し、これを乾燥させて正極を作製し
た。
[Preparation of Positive Electrode] In preparing the positive electrode, LiNi 0.7 Co 0.2 Mn 0.1 O 2 was used as a positive electrode material.
After mixing the positive electrode material with artificial graphite as a conductive agent using powder, polyvinylidene fluoride as a binder is mixed with N-methyl-2-pyrrolidone (NM).
A solution dissolved in P) is added, and the above positive electrode material, artificial graphite, and polyvinylidene fluoride are kneaded at a weight ratio of 85: 10: 5 to prepare a slurry. Was coated on both sides of an aluminum foil by a doctor blade method and dried to prepare a positive electrode.

【0019】[負極の作製]負極を作製するにあたって
は、負極材料として、格子面(002)における面間隔
002 が3.35Åの天然黒鉛粉末を用い、この天然黒
鉛粉末に対して、結着剤であるポリフッ化ビニリデンを
上記のNMPに溶解させた溶液を加え、天然黒鉛粉末と
ポリフッ化ビニリデンとの重量比が95:5になるよう
に混練してスラリーを調製し、このスラリーを負極集電
体である銅箔の両面にドクターブレード法により塗布
し、これを乾燥させて負極を作製した。
[0019] The order to prepare the Preparation of Negative Electrode] negative electrode, as an anode material, using natural graphite powder surface spacing d 002 in the lattice plane (002) is 3.35 Å, with respect to the natural graphite powder, a binder A solution prepared by dissolving polyvinylidene fluoride as an agent in the above NMP is added, and the mixture is kneaded so that the weight ratio of natural graphite powder and polyvinylidene fluoride becomes 95: 5 to prepare a slurry. A negative electrode was prepared by applying the powder to both surfaces of a copper foil as an electric body by a doctor blade method and drying the applied copper foil.

【0020】[非水電解液の作製]非水電解液を作製す
るにあたり、実施例1〜7においては、下記の表1に示
すように、その溶媒に少なくともエチレンカーボネート
を用いると共に、その溶質に少なくとも一種の含フッ素
化合物を用いるようにした。
[Preparation of Non-Aqueous Electrolyte] In preparing a non-aqueous electrolyte, in Examples 1 to 7, as shown in Table 1 below, at least ethylene carbonate was used as a solvent and a solute was used. At least one fluorine-containing compound was used.

【0021】ここで、実施例1においてはエチレンカー
ボネート(EC)とジエチルカーボネート(DEC)と
を50:50の体積比で混合させた混合溶媒に溶質とし
てLiPF6 を1mol/lの割合で溶解させ、実施例
2においては実施例1と同じ混合溶媒に溶質としてLi
BF4 を1mol/lの割合で溶解させ、実施例3にお
いては実施例1と同じ混合溶媒に溶質としてLiN(C
2 5 SO2 2 を1mol/lの割合で溶解させ、実
施例4においては実施例1と同じ混合溶媒に溶質として
LiAsF6 を1mol/lの割合で溶解させ、実施例
5においてはECとジメチルカーボネート(DMC)と
を50:50の体積比で混合させた混合溶媒に溶質とし
てLiPF6 を1mol/lの割合で溶解させ、実施例
6においてはECとγ−ブチロラクトン(G−BL)と
を50:50の体積比で混合させた混合溶媒にLiPF
6 を1mol/lの割合で溶解させ、実施例7において
は実施例1と同じ混合溶媒にLiPF6 とLiClO4
をそれぞれ0.5mol/lの割合で溶解させ、実施例
8においてはECとプロピレンカーボネート(PC)と
DECとを25:25:50の体積比で混合させた混合
溶媒にLiPF6 を1mol/lの割合で溶解させて、
各非水電解液を作製した。
Here, in Example 1, LiPF 6 as a solute was dissolved at a ratio of 1 mol / l in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of 50:50. In Example 2, Li was used as a solute in the same mixed solvent as in Example 1.
BF 4 was dissolved at a rate of 1 mol / l, and in Example 3, LiN (C
2 F 5 SO 2 ) 2 was dissolved at a rate of 1 mol / l. In Example 4, LiAsF 6 was dissolved as a solute in the same mixed solvent as in Example 1 at a rate of 1 mol / l. And dimethyl carbonate (DMC) were mixed at a volume ratio of 50:50 to dissolve LiPF 6 as a solute at a ratio of 1 mol / l. In Example 6, EC and γ-butyrolactone (G-BL) were dissolved. And LiPF at a volume ratio of 50:50.
6 was dissolved at a rate of 1 mol / l. In Example 7, LiPF 6 and LiClO 4 were mixed in the same mixed solvent as in Example 1.
Was dissolved at a ratio of 0.5 mol / l, and in Example 8, 1 mol / l of LiPF 6 was added to a mixed solvent in which EC, propylene carbonate (PC), and DEC were mixed at a volume ratio of 25:25:50. Dissolve in the proportion of
Each non-aqueous electrolyte was prepared.

【0022】一方、比較例1においては実施例1と同じ
ECとDECの混合溶媒に溶質としてLiClO4 を1
mol/lの割合で溶解させ、比較例2においてはPC
とDECとを50:50の体積比で混合させた混合溶媒
にLiPF6 を1mol/lの割合で溶解させ、比較例
3においてはPCと1,2−ジメトキシエタン(DM
E)とを1:1の体積比で混合させた混合溶媒にLiP
6 を1mol/lの割合で溶解させて、各非水電解液
を作製した。
On the other hand, in Comparative Example 1, 1 LiClO 4 was used as a solute in the same mixed solvent of EC and DEC as in Example 1.
mol / l, and in Comparative Example 2, PC
And DEC were mixed at a volume ratio of 50:50 to dissolve LiPF 6 at a ratio of 1 mol / l. In Comparative Example 3, PC and 1,2-dimethoxyethane (DM
E) and LiP at a 1: 1 volume ratio.
F 6 was dissolved at a rate of 1 mol / l to prepare each non-aqueous electrolyte.

【0023】[電池の作製]電池を作製するにあたって
は、図1に示すように、上記のようにして作製した正極
1と負極2との間に、セパレータ3としてリチウムイオ
ン透過性の微多孔膜を介在させ、これらをスパイラル状
に巻いて電池缶4内に収容させた後、この電池缶4内に
上記のようにして作製した各非水電解液をそれぞれ注液
して封口し、正極1を正極リード5を介して正極外部端
子6に接続させると共に負極2を負極リード7を介して
電池缶4に接続させ、正極外部端子6と電池缶4とを絶
縁パッキン8により電気的に分離させた。
[Preparation of Battery] In preparing the battery, as shown in FIG. 1, a lithium ion-permeable microporous membrane as a separator 3 was placed between the positive electrode 1 and the negative electrode 2 prepared as described above. After winding these in a spiral shape and accommodating them in the battery can 4, each of the non-aqueous electrolyte solutions prepared as described above is injected into the battery can 4 and sealed, and the positive electrode 1 is closed. Is connected to a positive electrode external terminal 6 via a positive electrode lead 5, the negative electrode 2 is connected to a battery can 4 via a negative electrode lead 7, and the positive electrode external terminal 6 and the battery can 4 are electrically separated by an insulating packing 8. Was.

【0024】次に、上記のようにして作製した実施例1
〜8及び比較例1〜3の各リチウム二次電池について、
それぞれ充電電流200mAで充電終止電圧4.2Vま
で充電させた後、放電電流200mAで放電終止電圧
2.75Vまで放電を行ない、保存前の各リチウム二次
電池における放電容量を測定し、その後、上記の各リチ
ウム二次電池をそれぞれ充電電流200mAで充電終止
電圧4.2Vまで充電させ、このように充電された各リ
チウム二次電池を60℃の雰囲気下において20日間保
存した後、各リチウム二次電池を室温に戻して、それぞ
れ放電電流200mAで放電終止電圧2.75Vまで放
電を行ない、保存後における放電容量を測定すると共
に、保存後における容量残存率を求め、これらの結果を
下記の表1に合わせて示した。
Next, the first embodiment manufactured as described above was used.
-8 and each of the lithium secondary batteries of Comparative Examples 1 to 3,
After each battery was charged to a charge end voltage of 4.2 V at a charge current of 200 mA, the battery was discharged to a discharge end voltage of 2.75 V at a discharge current of 200 mA, and the discharge capacity of each lithium secondary battery before storage was measured. Are charged at a charging current of 200 mA to a charging end voltage of 4.2 V, and the thus charged lithium secondary batteries are stored in a 60 ° C. atmosphere for 20 days, and then each lithium secondary battery is charged. After the battery was returned to room temperature, discharge was performed at a discharge current of 200 mA to a discharge end voltage of 2.75 V, the discharge capacity after storage was measured, and the capacity remaining rate after storage was obtained. Indicated according to

【0025】[0025]

【表1】 [Table 1]

【0026】この結果から明らかなように、正極にNi
とCoとMnを含むリチウム遷移金属複合酸化物を使用
した場合において、非水電解液の溶媒にエチレンカーボ
ネートを含む溶媒を使用すると共に溶質に含フッ素系化
合物を含む溶質を使用した実施例1〜8の各リチウム二
次電池は、非水電解液における溶質に含フッ素化合物を
含まない比較例1のリチウム二次電池や、非水電解液に
おける溶媒にエチレンカーボネートを含まない比較例
2,3のリチウム二次電池に比べて、いずれも保存後に
おける放電容量の低下が少なく、容量残存率が著しく向
上していた。
As is evident from the results, Ni was added to the positive electrode.
In the case where a lithium transition metal composite oxide containing Co and Mn was used, Examples 1 to 3 in which a solvent containing ethylene carbonate was used as a solvent of the non-aqueous electrolyte and a solute containing a fluorinated compound was used as the solute 8 are the lithium secondary batteries of Comparative Example 1 in which the solute in the non-aqueous electrolyte does not contain the fluorine-containing compound, and the lithium secondary batteries of Comparative Examples 2 and 3 in which the solvent in the non-aqueous electrolyte does not contain ethylene carbonate. As compared with the lithium secondary batteries, the reduction in the discharge capacity after storage was small, and the residual capacity ratio was significantly improved.

【0027】また、上記の実施例1〜8のリチウム二次
電池を比較した場合、非水電解液における溶質に含フッ
素化合物だけを使用した実施例1〜6,8の各リチウム
二次電池は、含フッ素化合物とこれ以外の溶質とを加え
た実施例7のリチウム二次電池に比べて保存後における
放電容量の低下が少なくなっており、特に、溶質にLi
PF6 、LiBF4 、LiN(C2 5 SO2 2 を用
いた各リチウム二次電池は、溶質にLiAsF6 を用い
た実施例4のリチウム二次電池に比べて更に保存後にお
ける放電容量の低下が少なくなっていた。
When comparing the lithium secondary batteries of Examples 1 to 8 above, the lithium secondary batteries of Examples 1 to 6 and 8 using only a fluorine-containing compound as a solute in the non-aqueous electrolytic solution are: The decrease in discharge capacity after storage was smaller than that of the lithium secondary battery of Example 7 in which a fluorine-containing compound and other solutes were added.
Each lithium secondary battery using PF 6 , LiBF 4 , and LiN (C 2 F 5 SO 2 ) 2 has a discharge capacity after further storage compared to the lithium secondary battery of Example 4 using LiAsF 6 as a solute. The decline of the was reduced.

【0028】(実施例9〜17及び比較例4〜9)これ
らの実施例及び比較例においては、上記の実施例1のリ
チウム二次電池の場合と正極に使用する正極材料だけを
変更させ、負極における負極材料に上記の天然黒鉛を用
い、また非水電解液にECとDECを50:50の体積
比で混合させた混合溶媒にLiPF6 を1mol/lの
割合で溶解させたものを用いて、それぞれ上記の実施例
1の場合と同様にして各リチウム二次電池を作製した。
(Examples 9 to 17 and Comparative Examples 4 to 9) In these Examples and Comparative Examples, only the positive electrode material used for the positive electrode and the lithium secondary battery of Example 1 were changed. The above-mentioned natural graphite was used as the negative electrode material of the negative electrode, and LiPF 6 dissolved at a ratio of 1 mol / l in a mixed solvent in which EC and DEC were mixed at a volume ratio of 50:50 with a non-aqueous electrolyte was used. Each lithium secondary battery was produced in the same manner as in Example 1 described above.

【0029】ここで、これらの実施例及び比較例におい
ては、その正極材料として、下記の表2に示すように、
LiとNiとCoとMnとが同表に示す割合になったも
のを用いるようにし、比較例4〜9のものにおいては、
NiとCoとMnの少なくとも一つが含まれないものを
使用するようにした。
Here, in these Examples and Comparative Examples, as shown in Table 2 below,
Li, Ni, Co, and Mn were used in the proportions shown in the same table. In Comparative Examples 4 to 9,
A material that does not include at least one of Ni, Co, and Mn is used.

【0030】そして、このような正極材料を用いて作製
した実施例9〜17及び比較例4〜9の各リチウム二次
電池についても、上記の場合と同様にして、保存前にお
ける放電容量と保存後における放電容量とを測定すると
共に、保存後における容量残存率を求め、これらの結果
を下記の表2に合わせて示した。
The lithium secondary batteries of Examples 9 to 17 and Comparative Examples 4 to 9 manufactured using such a positive electrode material also had the same discharge capacity and storage capacity as before in the same manner as described above. The discharge capacity after storage was measured, and the remaining capacity ratio after storage was determined. The results are shown in Table 2 below.

【0031】[0031]

【表2】 [Table 2]

【0032】この結果から明らかなように、エチレンカ
ーボネートを含む溶媒に含フッ素系化合物を含む溶質を
溶解させた非水電解液を使用した場合において、その正
極における正極材料に、NiとCoとMnとを含むリチ
ウム遷移金属複合酸化物を使用した実施例9〜17の各
リチウム二次電池は、NiとCoとMnの何れか一つ以
上が含まれていないリチウム遷移金属複合酸化物を正極
材料に使用した比較例4〜9の各リチウム二次電池に比
べて、いずれも保存後における放電容量の低下が少な
く、容量残存率が向上していた。
As is apparent from the results, when a non-aqueous electrolyte in which a solute containing a fluorinated compound is dissolved in a solvent containing ethylene carbonate is used, Ni, Co, and Mn are used as the positive electrode material in the positive electrode. Each of the lithium secondary batteries of Examples 9 to 17 using the lithium transition metal composite oxide containing: a lithium transition metal composite oxide not containing at least one of Ni, Co, and Mn as a positive electrode material. As compared with each of the lithium secondary batteries of Comparative Examples 4 to 9 used in Example 1, the decrease in the discharge capacity after storage was small, and the residual capacity ratio was improved.

【0033】また、上記の実施例9〜17のリチウム二
次電池を比較した場合、前記の請求項2に示す正極材料
Lia Cob Mnc d Ni1-(b+c+d) 2 (MはB,
Al,Si,Ti,Fe,V,Cr,Cu,Zn,G
a,Wから選択される少なくとも一種の金属であり、0
<a<1.2、0.1≦b<1、0.05≦c<1、0
≦d<1、0.15≦b+c+d<1の条件を満た
す。)であって、Mが含まれずdが0になった正極材料
を使用した実施例9〜16の各リチウム二次電池は、こ
の条件を満たさない正極材料を使用した実施例17のリ
チウム二次電池に比べて、さらに保存後における放電容
量の低下が少なくなって、容量残存率が著しく向上して
いた。
Further, when comparing the lithium secondary batteries of Examples 9 to 17, the positive electrode material Li shown in claim 2 above a Co b Mn c M d Ni 1- (b + c + d) O 2 (M is B,
Al, Si, Ti, Fe, V, Cr, Cu, Zn, G
a, at least one metal selected from W,
<A <1.2, 0.1 ≦ b <1, 0.05 ≦ c <1, 0
<D <1, 0.15 ≦ b + c + d <1. ) Wherein each of the lithium secondary batteries of Examples 9 to 16 using a positive electrode material containing no M and having d equal to 0 is the same as the lithium secondary battery of Example 17 using a positive electrode material that does not satisfy this condition. As compared with the battery, the decrease in the discharge capacity after storage was further reduced, and the remaining capacity ratio was significantly improved.

【0034】(実施例18〜28)これらの実施例にお
いても、上記の実施例1のリチウム二次電池の場合と正
極に使用する正極材料だけを変更させ、負極における負
極材料に上記の天然黒鉛を用い、また非水電解液にEC
とDECを50:50の体積比で混合させた混合溶媒に
LiPF6 を1mol/lの割合で溶解させたものを用
いて、それぞれ上記の実施例1の場合と同様にして各リ
チウム二次電池を作製した。
(Examples 18 to 28) In these examples, only the positive electrode material used for the positive electrode and the case of the lithium secondary battery of Example 1 were changed, and the above-mentioned natural graphite was used as the negative electrode material in the negative electrode. And use EC for non-aqueous electrolyte
And DEC in a volume ratio of 50:50, in which LiPF 6 was dissolved at a ratio of 1 mol / l, and each lithium secondary battery was used in the same manner as in Example 1 above. Was prepared.

【0035】ここで、これらの実施例及び比較例におい
ては、その正極材料としてLiNi 0.6 Co0.2 Mn
0.1 0.1 2 の式で示され、この式中におけるMの金
属の種類を下記の表3に示すように変更させたものを用
いるようにした。
Here, in these examples and comparative examples,
LiNi as the cathode material 0.6Co0.2Mn
0.1M0.1OTwoWhere M is the gold of the formula
Use the genus type changed as shown in Table 3 below
I was there.

【0036】そして、このような正極材料を用いて作製
した実施例18〜28の各リチウム二次電池について
も、上記の場合と同様にして、保存前における放電容量
と保存後における放電容量とを測定すると共に、保存後
における容量残存率を求め、これらの結果を下記の表3
に合わせて示した。
Then, in each of the lithium secondary batteries of Examples 18 to 28 produced using such a positive electrode material, the discharge capacity before storage and the discharge capacity after storage were determined in the same manner as described above. In addition to the measurement, the residual capacity ratio after storage was determined.
Indicated according to

【0037】[0037]

【表3】 [Table 3]

【0038】この結果から明らかなように、実施例18
〜28の各リチウム二次電池のように、正極材料にNi
とCoとMnの他に上記のMで示される金属を含むリチ
ウム遷移金属複合酸化物を使用した場合においても、エ
チレンカーボネートを含む溶媒に含フッ素系化合物を含
む溶質を溶解させた非水電解液を使用すると、前記の各
比較例のリチウム二次電池に比べて、保存後における放
電容量の低下が少なくなって、容量残存率が著しく向上
していた。
As is clear from the results, Example 18
As in each of the lithium secondary batteries of Nos.
A non-aqueous electrolytic solution in which a solute containing a fluorinated compound is dissolved in a solvent containing ethylene carbonate even when a lithium transition metal composite oxide containing a metal represented by M is used in addition to Co and Mn. When used, the decrease in discharge capacity after storage was smaller than that of the lithium secondary batteries of the comparative examples described above, and the residual capacity ratio was significantly improved.

【0039】次に、上記の実施例1〜16、実施例18
〜28及び比較例2,3の各リチウム二次電池につい
て、それぞれ60℃の雰囲気下において、充電電流20
0mAで充電終止電圧4.2Vまで充電させた後、放電
電流200mAで放電終止電圧2.75Vまで放電を行
ない、これを1サイクルとして充放電を繰り返して行な
い、各リチウム二次電池におけるサイクル数と放電容量
との関係を調べ、その結果を図2に示した。
Next, the above-mentioned embodiments 1 to 16 and embodiment 18
Of each of the lithium secondary batteries of Comparative Examples 2 to 3 and Comparative Examples 2 and 3 under a 60 ° C. atmosphere, respectively.
After charging at 0 mA to a charging end voltage of 4.2 V, discharging was performed at a discharging current of 200 mA to a discharging end voltage of 2.75 V, and charging and discharging were repeated as one cycle, and the number of cycles in each lithium secondary battery was determined. The relationship with the discharge capacity was examined, and the results are shown in FIG.

【0040】この結果、上記の実施例1〜16及び実施
例18〜28の各リチウム二次電池は、比較例2,3の
各リチウム二次電池に比べて、サイクル数の増加に伴う
放電容量の低下が少なくなっており、リチウム二次電池
におけるサイクル特性が向上していた。
As a result, each of the lithium secondary batteries of Examples 1 to 16 and Examples 18 to 28 has a discharge capacity with an increase in the number of cycles, as compared with the lithium secondary batteries of Comparative Examples 2 and 3. And the cycle characteristics of the lithium secondary battery were improved.

【0041】[0041]

【発明の効果】以上詳述したように、この発明の請求項
1における非水電解液電池においては、正極材料に少な
くともCoとMnとNiとを含むリチウム遷移金属複合
酸化物を用いると共に、エチレンカーボネートを含む溶
媒に少なくとも一種の含フッ素系化合物を含む溶質を溶
解させた非水電解液を用いるようにしたため、非水電解
液との界面において上記の正極材料に被膜が形成され、
この被膜によって充電状態においても正極材料と非水電
解液とが反応するのが抑制され、非水電解液電池におけ
る保存特性やサイクル特性が著しく向上した。
As described above in detail, in the nonaqueous electrolyte battery according to the first aspect of the present invention, a lithium transition metal composite oxide containing at least Co, Mn, and Ni is used for a positive electrode material, and ethylene oxide is used. Because a non-aqueous electrolyte in which a solute containing at least one fluorine-containing compound is dissolved in a solvent containing carbonate is used, a film is formed on the positive electrode material at the interface with the non-aqueous electrolyte,
This coating suppressed the reaction between the positive electrode material and the non-aqueous electrolyte even in the charged state, and significantly improved the storage characteristics and cycle characteristics of the non-aqueous electrolyte battery.

【0042】また、リチウム遷移金属複合酸化物として
請求項2に示すLia Cob Mncd Ni1-(b+c+d)
2 (MはB,Al,Si,Ti,Fe,V,Cr,C
u,Zn,Ga,Wから選択される少なくとも一種の金
属であり、0<a<1.2、0.1≦b<1、0.05
≦c<1、0≦d<1、0.15≦b+c+d<1の条
件を満たす。)を正極材料に使用した場合には、より非
水電解液との反応が抑制されて、更に非水電解液電池に
おける保存特性やサイクル特性が向上した。
Further, Li a Co b Mn c M d Ni 1- (b + c + d) indicating a lithium transition metal composite oxide in claim 2
O 2 (M is B, Al, Si, Ti, Fe, V, Cr, C
at least one metal selected from u, Zn, Ga, and W, and 0 <a <1.2, 0.1 ≦ b <1, 0.05
Satisfies the conditions of ≦ c <1, 0 ≦ d <1, and 0.15 ≦ b + c + d <1. When) was used as the positive electrode material, the reaction with the non-aqueous electrolyte was further suppressed, and the storage characteristics and cycle characteristics of the non-aqueous electrolyte battery were further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例及び比較例において作製した
各非水電解質二次電池の内部構造を示した断面説明図で
ある。
FIG. 1 is an explanatory cross-sectional view showing the internal structure of each nonaqueous electrolyte secondary battery produced in an example of the present invention and a comparative example.

【図2】実施例1〜16、実施例18〜28及び比較例
2,3の各リチウム二次電池について、充放電のサイク
ル数と放電容量との関係を示した図である。
FIG. 2 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity of each of the lithium secondary batteries of Examples 1 to 16, Examples 18 to 28, and Comparative Examples 2 and 3.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 正久 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahisa Fujimoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshiyuki Noma 2-chome Keihanhondori, Moriguchi-shi, Osaka No.5-5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極材料にリチウム遷移金属複合酸化物
を用いた正極と、負極と、非水電解液とを備えた非水電
解液電池において、上記の正極材料に、少なくともCo
とMnとNiとを含むリチウム遷移金属複合酸化物を用
いる一方、上記の非水電解液に、エチレンカーボネート
を含む溶媒を用いると共に少なくとも一種の含フッ素化
合物を含む溶質を用いたことを特徴とする非水電解液電
池。
1. A non-aqueous electrolyte battery comprising a positive electrode using a lithium transition metal composite oxide as a positive electrode material, a negative electrode, and a non-aqueous electrolyte, wherein at least Co is added to the positive electrode material.
And a lithium transition metal composite oxide containing Mn and Ni, while using a solvent containing ethylene carbonate and a solute containing at least one fluorine-containing compound in the nonaqueous electrolyte. Non-aqueous electrolyte battery.
【請求項2】 請求項1に記載した非水電解液電池にお
いて、上記の正極材料として、Lia Cob Mnc d
Ni1-(b+c+d) 2 (MはB,Al,Si,Ti,F
e,V,Cr,Cu,Zn,Ga,Wから選択される少
なくとも一種の金属であり、0<a<1.2、0.1≦
b<1、0.05≦c<1、0≦d<1、0.15≦b
+c+d<1の条件を満たす。)を用いたことを特徴と
する非水電解液電池。
2. A non-aqueous electrolyte cell according to claim 1, as the positive electrode material, Li a Co b Mn c M d
Ni 1- (b + c + d) O 2 (M is B, Al, Si, Ti, F
e, at least one metal selected from V, Cr, Cu, Zn, Ga and W, and 0 <a <1.2, 0.1 ≦
b <1, 0.05 ≦ c <1, 0 ≦ d <1, 0.15 ≦ b
The condition of + c + d <1 is satisfied. A non-aqueous electrolyte battery characterized by using (1).
【請求項3】 請求項1又は2に記載した非水電解液電
池において、負極における負極材料に炭素材料を用いた
ことを特徴とする非水電解液電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein a carbon material is used as a negative electrode material in the negative electrode.
JP9097239A 1997-04-15 1997-04-15 Nonaqueous electrolytic battery Pending JPH10289731A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9097239A JPH10289731A (en) 1997-04-15 1997-04-15 Nonaqueous electrolytic battery
CA002234874A CA2234874C (en) 1997-04-15 1998-04-14 Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery
DE69819395T DE69819395T2 (en) 1997-04-15 1998-04-14 Positive electrode material for use of the non-aqueous electrolyte-containing battery and method of manufacturing the same and the non-aqueous electrolyte-containing battery
US09/059,701 US6040090A (en) 1997-04-15 1998-04-14 Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery
EP98106725A EP0872450B9 (en) 1997-04-15 1998-04-14 Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9097239A JPH10289731A (en) 1997-04-15 1997-04-15 Nonaqueous electrolytic battery

Publications (1)

Publication Number Publication Date
JPH10289731A true JPH10289731A (en) 1998-10-27

Family

ID=14187071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9097239A Pending JPH10289731A (en) 1997-04-15 1997-04-15 Nonaqueous electrolytic battery

Country Status (1)

Country Link
JP (1) JPH10289731A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338250A (en) * 2001-05-17 2002-11-27 Mitsubishi Chemicals Corp Method for producing layered lithium-nickel-manganese composite oxide
JP2003068298A (en) * 2001-08-24 2003-03-07 Seimi Chem Co Ltd Lithium containing transition metal composite oxide and its producing method
WO2003021707A1 (en) * 2001-09-06 2003-03-13 E Square Technologies Co., Ltd. Nonaqueous electrolyte
WO2003081698A1 (en) * 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
JPWO2002086993A1 (en) * 2001-04-20 2004-08-12 株式会社ユアサコーポレーション Positive electrode active material and method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US6811925B2 (en) 2000-11-20 2004-11-02 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and a tungsten or molybdenum substituted lithium positive electrode active material
US6893776B2 (en) 2000-11-14 2005-05-17 Japan Storage Battery Co., Ltd. Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
JP2006062911A (en) * 2004-08-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Multiple oxide material and positive-electrode active material for lithium secondary battery
JP2006107818A (en) * 2004-10-01 2006-04-20 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this and its manufacturing method
JP2007073425A (en) * 2005-09-08 2007-03-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008261669A (en) * 2007-04-10 2008-10-30 Sanyo Electric Co Ltd Battery full-charge capacity detection method
CN100454618C (en) * 2002-03-27 2009-01-21 株式会社杰士汤浅 Active substance of positive electrode and nonaqueous electrolyte battery containing the same
JP2010085243A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Method of detecting full charge capacity of backup battery
JP2013033759A (en) * 2012-11-07 2013-02-14 Mitsubishi Chemicals Corp Layered lithium nickel manganese complex oxide
US8801960B2 (en) 2000-11-16 2014-08-12 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
JP2014197552A (en) * 2014-06-18 2014-10-16 三菱化学株式会社 Lamellar lithium nickel manganese complex oxide
JP2014225430A (en) * 2013-05-14 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Lithium secondary battery
US10153512B2 (en) 2015-05-25 2018-12-11 Panasonic Intellectual Property Management Co., Ltd. Electrolyte solution and battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893776B2 (en) 2000-11-14 2005-05-17 Japan Storage Battery Co., Ltd. Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
US8801960B2 (en) 2000-11-16 2014-08-12 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
US6811925B2 (en) 2000-11-20 2004-11-02 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and a tungsten or molybdenum substituted lithium positive electrode active material
JP4556377B2 (en) * 2001-04-20 2010-10-06 株式会社Gsユアサ Positive electrode active material and manufacturing method thereof, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2002086993A1 (en) * 2001-04-20 2004-08-12 株式会社ユアサコーポレーション Positive electrode active material and method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2008293988A (en) * 2001-04-20 2008-12-04 Gs Yuasa Corporation:Kk Positive electrode active material and method of manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery
JP2002338250A (en) * 2001-05-17 2002-11-27 Mitsubishi Chemicals Corp Method for producing layered lithium-nickel-manganese composite oxide
JP2003068298A (en) * 2001-08-24 2003-03-07 Seimi Chem Co Ltd Lithium containing transition metal composite oxide and its producing method
WO2003021707A1 (en) * 2001-09-06 2003-03-13 E Square Technologies Co., Ltd. Nonaqueous electrolyte
US7422827B2 (en) 2001-09-06 2008-09-09 E Square Technologies Co., Ltd. Nonaqueous electrolyte
JP4541709B2 (en) * 2002-03-27 2010-09-08 株式会社Gsユアサ Positive electrode active material and non-aqueous electrolyte battery using the same
WO2003081698A1 (en) * 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
JPWO2003081698A1 (en) * 2002-03-27 2005-07-28 株式会社ユアサコーポレーション Positive electrode active material and non-aqueous electrolyte battery using the same
CN100454618C (en) * 2002-03-27 2009-01-21 株式会社杰士汤浅 Active substance of positive electrode and nonaqueous electrolyte battery containing the same
US7691535B2 (en) * 2002-03-27 2010-04-06 Gs Yuasa Corporation Active substance of positive electrode and non-aqueous electrolyte battery containing the same
JP2006062911A (en) * 2004-08-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Multiple oxide material and positive-electrode active material for lithium secondary battery
JP2006107818A (en) * 2004-10-01 2006-04-20 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this and its manufacturing method
JP2007073425A (en) * 2005-09-08 2007-03-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008261669A (en) * 2007-04-10 2008-10-30 Sanyo Electric Co Ltd Battery full-charge capacity detection method
JP2010085243A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Method of detecting full charge capacity of backup battery
JP2013033759A (en) * 2012-11-07 2013-02-14 Mitsubishi Chemicals Corp Layered lithium nickel manganese complex oxide
JP2014225430A (en) * 2013-05-14 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Lithium secondary battery
US10361459B2 (en) 2013-05-14 2019-07-23 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2014197552A (en) * 2014-06-18 2014-10-16 三菱化学株式会社 Lamellar lithium nickel manganese complex oxide
US10153512B2 (en) 2015-05-25 2018-12-11 Panasonic Intellectual Property Management Co., Ltd. Electrolyte solution and battery

Similar Documents

Publication Publication Date Title
JP3685500B2 (en) Nonaqueous electrolyte secondary battery
JP4798964B2 (en) Nonaqueous electrolyte secondary battery
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JPH10289731A (en) Nonaqueous electrolytic battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JPH0864237A (en) Nonaqueous electrolyte battery
JPH09147913A (en) Nonaqueous electrolyte battery
JPH07320779A (en) Nonaqueous electrolytic battery
JP2007250440A (en) Nonaqueous electrolyte secondary battery
JPH11312518A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2000235866A (en) Nonaqueous electrolyte secondary battery
JPH11111332A (en) Nonaqueous electrolyte battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP3349399B2 (en) Lithium secondary battery
JP2000243437A (en) Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP3223111B2 (en) Non-aqueous electrolyte battery
JP2001222995A (en) Lithium ion secondary battery
JP3831550B2 (en) Non-aqueous electrolyte battery
JP2003031259A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH09320596A (en) Nonaqueous electrolytic battery
JP4636650B2 (en) Non-aqueous secondary battery
JPH117977A (en) Non-aqueous electrolyte battery
JP3619702B2 (en) Lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery