JP2001222995A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP2001222995A
JP2001222995A JP2000030095A JP2000030095A JP2001222995A JP 2001222995 A JP2001222995 A JP 2001222995A JP 2000030095 A JP2000030095 A JP 2000030095A JP 2000030095 A JP2000030095 A JP 2000030095A JP 2001222995 A JP2001222995 A JP 2001222995A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
ion secondary
battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000030095A
Other languages
Japanese (ja)
Other versions
JP3580209B2 (en
Inventor
Tomohiro Iguchi
智博 井口
Yoshimasa Koishikawa
佳正 小石川
Kenji Hara
賢二 原
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000030095A priority Critical patent/JP3580209B2/en
Priority to US09/773,484 priority patent/US6733925B2/en
Priority to TW090102594A priority patent/TW480763B/en
Priority to EP01103016A priority patent/EP1126538B1/en
Priority to DE60105076T priority patent/DE60105076T2/en
Publication of JP2001222995A publication Critical patent/JP2001222995A/en
Application granted granted Critical
Publication of JP3580209B2 publication Critical patent/JP3580209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery featured in battery property at higher temperatures, especially, with high efficiency in the output. SOLUTION: The void ratio of positive electrode mixture, void volume ratio in the positive electrode mixture is made 21%-31%, with the density of 2.58 g/cm3-2.72 g/cm3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池に係り、特に、化学式LiMn(xは0.
4≦x≦1.35、yは0.65≦y≦1)で表されリ
チウムイオンの吸蔵・放出が可能な複合酸化物、を含む
正極合剤を集電体に塗着した正極と、リチウムイオンの
吸蔵・放出が可能な炭素材を活物質とする負極と、をリ
チウム塩を電解質とする非水電解液に浸潤させたリチウ
ムイオン二次電池に関する。
The present invention relates to relates to lithium ion secondary batteries, in particular, the chemical formula Li x Mn y O 2 (x 0.
4 ≦ x ≦ 1.35, y is 0.65 ≦ y ≦ 1) a composite oxide capable of inserting and extracting lithium ions, and a positive electrode mixture coated on a current collector; and The present invention relates to a lithium ion secondary battery in which a negative electrode using a carbon material capable of inserting and extracting lithium ions as an active material and a nonaqueous electrolyte using a lithium salt as an electrolyte are infiltrated.

【0002】[0002]

【従来の技術】従来、負極に金属リチウムやリチウム合
金を用いるリチウム二次電池は、充電時にデンドライト
状のリチウムが負極に析出し、正極と内部短絡を起こす
等の問題点を生じたため、近時、コバルト酸リチウム
(LiCoO)、ニッケル酸リチウム(LiNi
)、マンガン酸リチウム(LiMn)等の、
リチウムと遷移金属との複合酸化物を正極活物質として
使用し、炭素材を負極活物質として使用した、リチウム
イオン二次電池の開発がなされるに至った。リチウムイ
オン二次電池は、高エネルギー密度であることから、V
TR一体型カメラ、ノート型パソコン、携帯電話等のポ
ータブル機器に広く使用されている。
2. Description of the Related Art Conventionally, lithium secondary batteries using metallic lithium or a lithium alloy for the negative electrode have had problems such as dendrite-like lithium depositing on the negative electrode during charging and causing an internal short circuit with the positive electrode. , Lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNi
O 2 ), lithium manganate (LiMn 2 O 4 ), etc.
The development of a lithium ion secondary battery using a composite oxide of lithium and a transition metal as a positive electrode active material and using a carbon material as a negative electrode active material has been achieved. Since a lithium ion secondary battery has a high energy density,
It is widely used in portable devices such as TR-integrated cameras, notebook computers, and mobile phones.

【0003】上述した各種の正極活物質の中でもマンガ
ンを用いた複合酸化物は、コバルトを用いた複合酸化物
等に比べ資源量が多いことからコストパフォーマンスに
優れ、また、安全性の点でも優れるので、最近特にリチ
ウムイオン二次電池への利用が注目されている。
[0003] Among the various positive electrode active materials described above, a composite oxide using manganese is superior in cost performance due to a large amount of resources as compared with a composite oxide using cobalt and the like, and is also excellent in safety. Therefore, recently, its use in lithium ion secondary batteries has attracted attention.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、化学式
LiMn(xは0.4≦x≦1.35、yは
0.65≦y≦1)で表される複合酸化物を正極活物質
として用いる場合には、リチウムイオン二次電池の充放
電サイクル寿命が短く、出力特性が低くなる、という問
題点があった。特に、50°C以上の高温で使用される
場合には、正極からマンガンが溶出し、負極表面に不導
体被膜を形成するので、サイクル寿命特性及び出力特性
が悪くなる、という問題点がある。
[SUMMARY OF THE INVENTION However, the chemical formula Li x Mn y O 2 positive electrode and (x is 0.4 ≦ x ≦ 1.35, y is 0.65 ≦ y ≦ 1) composite oxide represented by When used as an active material, there is a problem that the charge / discharge cycle life of a lithium ion secondary battery is short and output characteristics are low. In particular, when used at a high temperature of 50 ° C. or higher, manganese elutes from the positive electrode, and a nonconductive film is formed on the negative electrode surface, so that there is a problem that cycle life characteristics and output characteristics are deteriorated.

【0005】本発明は上記問題点を解決し、高温での電
池特性、特に出力特性に優れたリチウムイオン二次電池
を提供することを課題とする。
[0005] It is an object of the present invention to solve the above problems and to provide a lithium ion secondary battery excellent in battery characteristics at high temperature, particularly excellent output characteristics.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、化学式LiMn(xは0.4≦
x≦1.35、yは0.65≦y≦1)で表されリチウ
ムイオンの吸蔵・放出が可能な複合酸化物、を含む正極
合剤を集電体に塗着した正極と、リチウムイオンの吸蔵
・放出が可能な炭素材を活物質とする負極と、をリチウ
ム塩を電解質とする非水電解液に浸潤させたリチウムイ
オン二次電池において、前記正極合剤の空隙率は21%
〜31%であることを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a chemical compound of the formula Li x Mny y O 2 (x is 0.4 ≦
x ≦ 1.35, y is 0.65 ≦ y ≦ 1) a positive electrode prepared by applying a positive electrode mixture containing a composite oxide capable of inserting and extracting lithium ions to a current collector; In a lithium ion secondary battery in which a negative electrode containing a carbon material capable of occluding and releasing hydrogen as an active material and a non-aqueous electrolyte solution using a lithium salt as an electrolyte, a porosity of the positive electrode mixture is 21%
3131%.

【0007】本発明では、正極合剤の空隙率を21%〜
31%としたので、電解液の浸透性及び充放電に伴うイ
オンの拡散性と伝導性が良好に行われる。従って、出力
特性に優れたリチウムイオン二次電池を実現することが
できる。この場合において、正極合剤の密度は2.58
g/cm〜2.72g/cmであることが好まし
く、正極合剤に含有される複合酸化物の配合比を、80
重量%乃至90重量%とすることが好ましい。
In the present invention, the porosity of the positive electrode mixture is set to 21% or less.
Since it is 31%, the permeability of the electrolytic solution and the diffusivity and conductivity of ions accompanying charge / discharge are excellently performed. Therefore, a lithium ion secondary battery having excellent output characteristics can be realized. In this case, the density of the positive electrode mixture was 2.58
is preferably g / cm 3 ~2.72g / cm 3 , the compounding ratio of the composite oxide contained in the positive electrode mixture, 80
It is preferable that the content be in the range of 90% by weight to 90% by weight.

【0008】[0008]

【発明の実施の形態】以下、本発明を円筒形リチウムイ
オン二次電池に適用した実施の形態について具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments in which the present invention is applied to a cylindrical lithium ion secondary battery will be specifically described below.

【0009】(電池の作製)まず、本実施形態の円筒形
リチウムイオン二次電池の作製手順について、正極、負
極、電池の組み立て、非水電解液の順に説明する。
(Production of Battery) First, the procedure for producing the cylindrical lithium ion secondary battery of the present embodiment will be described in the order of the positive electrode, the negative electrode, the assembly of the battery, and the non-aqueous electrolyte.

【0010】<正極>平均粒径が10μmで、リチウム
イオンの吸蔵・放出が可能なリチウムとマンガンとの複
合酸化物、すなわち、リチウムマンガン複酸化物として
LiMn 、導電助剤としてカーボンブラック(以
下、CBと略す。)と黒鉛系炭素材、結着剤としてポリ
フッ化ビニリデン(呉羽化学工業株式会社製、商品名:
KF#1120、以下、PVdFと略す。)を、後述す
る所定配合比(重量比)で混合し、溶媒であるN-メチ
ル-2-ピロリドン(以下、NMPと略す。)に分散させ
て、スラリを作製する。このスラリを、厚さが20μm
のアルミニウム箔(正極集電体)の両面に、ロール・ツ
ー・ロール法転写により塗布する。スラリの塗布の際に
は、アルミニウム箔の長寸方向に対して、側縁の一方に
幅50mmの未塗布部分を残した。塗着した溶剤の乾燥
を行い、プレス圧により正極合剤密度が2.58g/c
〜2.72g/cmとなるまで圧縮して一体化す
る。そして、幅82mmの所定長さに切断して正極を作
製した。
<Positive electrode> The average particle diameter is 10 μm, and lithium
Complex of lithium and manganese that can store and release ions
As a composite oxide, that is, a lithium manganese double oxide
LiMn2O 4, Carbon black (hereinafter referred to as conductive assistant)
Below, abbreviated as CB. ) And graphite-based carbon material, poly as binder
Vinylidene fluoride (Kureha Chemical Industry Co., Ltd., trade name:
KF # 1120, hereinafter abbreviated as PVdF. )
Mixed at a predetermined mixing ratio (weight ratio),
Disperse in 2-pyrrolidone (hereinafter abbreviated as NMP)
To make a slurry. This slurry is 20 μm thick
Roll on both sides of aluminum foil (positive electrode current collector)
-Apply by roll method transfer. When applying slurry
Is on one side of the aluminum foil in the longitudinal direction.
An uncoated portion having a width of 50 mm was left. Drying of applied solvent
And the positive electrode mixture density is 2.58 g / c by press pressure.
m3~ 2.72 g / cm3Compression and integration until
You. Then, it is cut into a predetermined length of 82 mm in width to make a positive electrode.
Made.

【0011】その後、アルミニウム箔に形成された幅5
0mmの未塗布部の一部を除去し(切り欠き)、矩形状
の部分を形成して集電用のリード片(正極タブ)とし
た。なお、リード片の幅は約10mmとし、隣り合うリ
ード片の間隔を約20mmとした。
Then, the width 5 formed on the aluminum foil
A part of the uncoated portion of 0 mm was removed (notch), and a rectangular portion was formed to form a current collecting lead piece (positive electrode tab). The width of the lead pieces was set to about 10 mm, and the interval between adjacent lead pieces was set to about 20 mm.

【0012】<負極>リチウムイオンを吸蔵・放出が可
能な平均粒径20μmの炭素材としての非晶質炭素、結
着剤としてPVdF混合し、そこへ分散溶媒となるNM
Pを適量加えて十分に混練し、分散させてスラリにす
る。このスラリを厚さが10μmの銅箔(負極集電体)
の両面にロール・ツー・ロール法転写により塗布する。
スラリの塗布の際には、銅箔の長寸方向に対して、側縁
の一方に幅50mmの未塗布部分を残した。次に、乾燥
させた後、プレスして一体化する。プレス後の合剤密度
は1g/cmとした。その後、幅が86mm、長さが
正極板よりも120mm長くなるように切断して負極を
作製した。
<Negative Electrode> Amorphous carbon as a carbon material having an average particle diameter of 20 μm capable of inserting and extracting lithium ions, and PVdF as a binder mixed with NM as a dispersion solvent
An appropriate amount of P is added, kneaded well, and dispersed to form a slurry. This slurry is copper foil with a thickness of 10 μm (negative electrode current collector)
Is applied on both sides by a roll-to-roll method transfer.
When the slurry was applied, an uncoated portion having a width of 50 mm was left on one of the side edges in the longitudinal direction of the copper foil. Next, after drying, it is integrated by pressing. The mixture density after pressing was 1 g / cm 3 . Then, it cut | disconnected so that width was 86 mm and length was 120 mm longer than the positive electrode plate, and the negative electrode was produced.

【0013】銅箔に形成された幅50mmの未塗布部の
一部を除去し(切り欠き)、矩形状の部分を形成して集
電用のリード片(負極タブ)とした。なお、リード片の
幅は約10mmとし、隣り合うリード片の間隔を約20
mmとした。
A portion of the uncoated portion having a width of 50 mm formed on the copper foil was removed (notched), and a rectangular portion was formed to form a current collecting lead piece (negative electrode tab). The width of the lead piece is about 10 mm, and the interval between adjacent lead pieces is about 20 mm.
mm.

【0014】<電池の組立>作製した短冊状の正極と負
極とを、厚さが40μm、幅が90mmのポリエチレン
多孔膜からなるセパレータを介して渦巻き状に巻いて電
極群を作製する。捲回群の銅箔からなる負極タブは負極
集電リングに溶接した後、負極集電リングと負極タブ端
子とを溶接し、この負極タブ端子の他端を電池缶の底部
に溶接する。捲回群のもう一方から導出されたアルミニ
ウム箔からなる正極タブは正極集電体リングに溶接した
後、正極集電リングと正極タブ端子を溶接し、正極タブ
端子の他端を正極キャップに溶接する。そして、正極キ
ャップを絶縁性のガスケットを介して電池缶の上部に配
置し、電池缶内に、詳細を後述する非水電解液を40m
l注液した。正極キャップ、絶縁性のガスケットと電池
缶をかしめて密閉し、直径が40mm、高さが108m
mで、後述する設計容量を有する円筒型リチウムイオン
二次電池を組み立てた。なお、正極キャップ内には、電
池内圧の上昇に応じて作動する電流遮断機構(圧力スイ
ッチ)と、この圧力よりも高い圧力で作動する安全弁が
組み込まれている。
<Assembly of Battery> The prepared strip-shaped positive electrode and negative electrode are spirally wound through a separator made of a porous polyethylene film having a thickness of 40 μm and a width of 90 mm to form an electrode group. After the negative electrode tab made of the copper foil of the winding group is welded to the negative electrode current collecting ring, the negative electrode current collecting ring and the negative electrode tab terminal are welded, and the other end of the negative electrode tab terminal is welded to the bottom of the battery can. The positive electrode tab made of aluminum foil derived from the other side of the winding group is welded to the positive electrode current collector ring, then the positive electrode current collector ring and the positive electrode tab terminal are welded, and the other end of the positive electrode tab terminal is welded to the positive electrode cap I do. Then, the positive electrode cap is disposed on the upper portion of the battery can via an insulating gasket, and a non-aqueous electrolyte solution (to be described in detail later) is placed in the battery can for 40 m.
1 was injected. The positive electrode cap, the insulating gasket and the battery can are caulked and sealed, and the diameter is 40 mm and the height is 108 m
At m, a cylindrical lithium ion secondary battery having a design capacity described below was assembled. In addition, a current cut-off mechanism (pressure switch) that operates according to an increase in battery internal pressure and a safety valve that operates at a pressure higher than this pressure are incorporated in the positive electrode cap.

【0015】<非水電解液>本実施形態では、上述した
非水電解液に、エチレンカーボネート(EC)とジメチ
ルカーボネート(DMC)とジエチルカーボネート(D
EC)とを、体積比でEC:DMC:DEC=1:1:
1とした混合溶媒に、電解質としてLiPF を1モル
/リットル溶解させたものを用いた。
<Non-Aqueous Electrolyte> In the present embodiment, the aforementioned
Ethylene carbonate (EC) and dimethyl
Leucarbonate (DMC) and diethyl carbonate (D
EC) with EC: DMC: DEC = 1: 1: by volume ratio.
LiPF as the electrolyte in the mixed solvent 61 mole
Per liter was used.

【0016】(実施例)次に、上述した正極のLiMn
:CB:黒鉛系炭素:PVdFの配合比(以下、
正極配合比という。)、正極合剤密度及び空隙率につい
て詳述すると共に、これらを種々変更して作製した実施
例の電池について説明する。なお、実施例の電池と比較
するために作製した比較例の電池についても併記する。
(Example) Next, the LiMn of the above-described positive electrode was used.
2 O 4 : CB: graphite-based carbon: PVdF compounding ratio
It is called the positive electrode compounding ratio. ), The density of the positive electrode mixture and the porosity will be described in detail, and the batteries of Examples produced by changing them in various ways will be described. Note that a battery of a comparative example manufactured for comparison with the battery of the example is also described.

【0017】<実施例1>下表1に示すように、実施例
1では、正極配合比を80.0:10.0:2.0:
8.0とし、正極合剤密度を2.65g/cmとした
正極を作製した。この正極合剤の空隙率、すなわち、正
極合剤中の空孔容積比は、22.56%である。そし
て、設計容量3.85Ahの円筒形リチウムイオン二次
電池(以下、実施例1の電池という。以下の実施例及び
比較例においても同じ。)を組み立てた。
<Example 1> As shown in Table 1 below, in Example 1, the mixing ratio of the positive electrode was 80.0: 10.0: 2.0:
8.0 and a positive electrode mixture density of 2.65 g / cm 3 was produced. The porosity of this positive electrode mixture, that is, the pore volume ratio in the positive electrode mixture is 22.56%. Then, a cylindrical lithium ion secondary battery having a design capacity of 3.85 Ah (hereinafter, referred to as a battery of Example 1; the same applies to the following Examples and Comparative Examples) was assembled.

【0018】[0018]

【表1】 [Table 1]

【0019】<実施例2、3>表1に示すように、実施
例2の正極配合比は85.0:9.0:2.0:4.0
とし、実施例3では87.6:7.0:1.4:4.0
とした。実施例2、3では、実施例1と同様に、正極合
剤密度が2.65g/cmとなるまで圧縮した正極を
用いて電池を組み立てた。実施例2の正極合剤の空隙率
は26.64%であり、電池設計容量は3.89Ahで
ある。また、実施例3の正極合剤の空隙率は28.62
であり、電池設計容量は3.96Ahである。
Examples 2 and 3 As shown in Table 1, the compounding ratio of the positive electrode in Example 2 was 85.0: 9.0: 2.0: 4.0.
In the third embodiment, 87.6: 7.0: 1.4: 4.0
And In Examples 2 and 3, as in Example 1, batteries were assembled using the positive electrode compressed to a positive electrode mixture density of 2.65 g / cm 3 . The porosity of the positive electrode mixture of Example 2 was 26.64%, and the battery design capacity was 3.89 Ah. The porosity of the positive electrode mixture of Example 3 was 28.62.
And the battery design capacity is 3.96 Ah.

【0020】<実施例4、5>表1に示すように、実施
例4及び実施例5では、実施例2と同じ正極配合比とし
た。正極合剤密度を、実施例4では2.58g/cm
とし、実施例5では2.72g/cmとして電池を組
み立てた。実施例4の正極合剤の空隙率は28.58%
であり、実施例5では24.70%である。なお、これ
らの電池の設計容量は共に3.87Ahである。
Examples 4 and 5 As shown in Table 1, in Examples 4 and 5, the same positive electrode compounding ratio as in Example 2 was used. The positive electrode mixture density was set to 2.58 g / cm 3 in Example 4.
In Example 5, the battery was assembled at 2.72 g / cm 3 . The porosity of the positive electrode mixture of Example 4 is 28.58%
In Example 5, it is 24.70%. The design capacity of each of these batteries is 3.87 Ah.

【0021】<比較例1、2>比較例1及び比較例2で
は、実施例1〜実施例3と同様に、正極合剤密度を2.
65g/cmとして正極を作製した。正極配合比を、
比較例1では77.6:12.0:2.4:8.0と
し、比較例2では91.5:3.75:0.75:4.
0とした。比較例1の正極合剤の空隙率は20.86%
であり、電池設計容量は3.80Ahである。また、比
較例2の正極合剤の空隙率は31.38%であり、電池
設計容量は4.00Ahである。
<Comparative Examples 1 and 2> In Comparative Examples 1 and 2, similarly to Examples 1 to 3, the positive electrode mixture density was 2.
A positive electrode was produced at 65 g / cm 3 . Positive electrode mixing ratio,
In Comparative Example 1, it is 77.6: 12.0: 2.4: 8.0, and in Comparative Example 2, 91.5: 3.75: 0.75: 4.
0 was set. The porosity of the positive electrode mixture of Comparative Example 1 was 20.86%
And the battery design capacity is 3.80 Ah. The porosity of the positive electrode mixture of Comparative Example 2 was 31.38%, and the battery design capacity was 4.00 Ah.

【0022】(試験)次に、組み立てた複数の実施例及
び比較例の各電池について、下記の通り、充電を行い、
初期放電容量測定後、常温(室温)/高温環境下で充放
電パルスサイクル試験を実施し、放電容量と出力とを測
定した。
(Test) Next, each of the assembled batteries of Examples and Comparative Examples was charged as follows.
After measuring the initial discharge capacity, a charge / discharge pulse cycle test was performed in a normal temperature (room temperature) / high temperature environment, and the discharge capacity and output were measured.

【0023】<試験内容の詳細> (1)充電:周囲温度25°C、4.1Vの定電圧(た
だし、制限電流1CA)で5時間充電した。 (2)初期放電容量測定:周囲温度25°C、1CAの
定電流で終止電圧2.7Vまで放電して初期の放電容量
を測定した。 (3)充放電パルスサイクル試験:初期放電容量測定
後、25°C又は50°Cの恒温槽内で、電流値10C
Aで放電(放電終止電圧2.7V)と、電流値10CAで
の充電(充電終止電圧4.1V)とを繰り返した。 (4)測定:充放電パルスサイクル試験で10万サイク
ル経過後の各電池の充放電容量(Ah)及び出力(W)
を測定した。
<Details of Test Content> (1) Charging: The battery was charged for 5 hours at a constant temperature of 25 ° C. and a constant voltage of 4.1 V (however, a limited current of 1 CA). (2) Initial discharge capacity measurement: An initial discharge capacity was measured by discharging to a final voltage of 2.7 V at an ambient temperature of 25 ° C. and a constant current of 1 CA. (3) Charge / discharge pulse cycle test: After measuring the initial discharge capacity, in a 25 ° C or 50 ° C constant temperature bath, the current value is 10C.
The discharge at A (discharge end voltage 2.7 V) and the charging at a current value of 10 CA (charge end voltage 4.1 V) were repeated. (4) Measurement: charge / discharge capacity (Ah) and output (W) of each battery after 100,000 cycles in the charge / discharge pulse cycle test
Was measured.

【0024】(試験結果及び評価)下表2に、充放電パ
ルスサイクル試験で10サイクル経過後の各電池の常温
(25°C)及び高温(50°C)での放電容量及び出
力測定結果を示す。
(Test Results and Evaluation) Table 2 below shows the discharge capacity and output measurement results at room temperature (25 ° C.) and high temperature (50 ° C.) of each battery after 10 cycles in the charge / discharge pulse cycle test. Show.

【0025】[0025]

【表2】 [Table 2]

【0026】表2に示すように、実施例1〜5の電池
は、正極合剤の空隙率が20.86%の比較例1の電池
に比べて、常温及び高温環境下共に、放電容量及び出力
に優れている。一方、表1に示したように、比較例2の
電池は正極合剤中の正極活物質LiMnの配合比
が91.5wt%と実施例1〜5の電池に比べて高い
が、正極合剤の空隙率が31%を超えているので、10
万サイクル後の放電容量及び出力が常温及び高温環境下
共に低下している。従って、正極合剤の空隙率を21%
〜31%とすることにより常温及び高温環境下でサイク
ル寿命特性及び出力特性を向上させることができること
が分かる。このように実施例1〜実施例5の電池がサイ
クル寿命特性及び出力特性に優れる理由は、電解液の浸
透性及び充放電に伴うイオンの拡散性と伝導性が良好に
行われるからである。試験結果を更に検討すると、実施
例2の電池が最も良好なサイクル寿命特性及び出力特性
を示している。表1に示したように、実施例2の電池の
正極合剤の空隙率は26.64%である。従って、正極
合剤の空隙率は26%付近であることが分かる。他の実
施例の電池のサイクル寿命特性及び出力特性も考慮する
と、より好ましい正極合剤の空隙率の範囲は、25%〜
27%と考えられる。
As shown in Table 2, the batteries of Examples 1 to 5 had a higher discharge capacity and a higher capacity at room temperature and in a high temperature environment than the battery of Comparative Example 1 in which the porosity of the positive electrode mixture was 20.86%. Excellent output. On the other hand, as shown in Table 1, the battery of Comparative Example 2 had a compounding ratio of the positive electrode active material LiMn 2 O 4 in the positive electrode mixture of 91.5 wt%, which was higher than the batteries of Examples 1 to 5, Since the porosity of the positive electrode mixture exceeds 31%, 10%
The discharge capacity and output after 10,000 cycles have been reduced under both normal temperature and high temperature environments. Therefore, the porosity of the positive electrode mixture is 21%
It can be seen that the cycle life characteristics and the output characteristics can be improved under normal temperature and high temperature environments by setting the content to 31%. The reason why the batteries of Examples 1 to 5 are excellent in the cycle life characteristics and the output characteristics is that the permeability of the electrolytic solution and the diffusivity and conductivity of ions accompanying charge / discharge are excellent. When the test results are further examined, the battery of Example 2 shows the best cycle life characteristics and output characteristics. As shown in Table 1, the porosity of the positive electrode mixture of the battery of Example 2 was 26.64%. Therefore, it can be seen that the porosity of the positive electrode mixture is around 26%. Considering the cycle life characteristics and the output characteristics of the batteries of the other examples, the more preferable range of the porosity of the positive electrode mixture is from 25% to
Probably 27%.

【0027】また、表1に示したように、実施例1〜5
の電池の正極合剤密度は2.58g/cm〜2.72
g/cmの範囲にある。従って、正極合剤密度は2.
58g/cm〜2.72g/cmとするのが好まし
いが、同じ配合比の実施例2、4、5の電池を比較する
と、実施例2の電池が最も好適であることから、正極合
剤密度を2.65g/cm近辺とすることがより好ま
しいことが分かる。
Further, as shown in Table 1, Examples 1 to 5
Of the positive electrode mixture of the battery of 2.58 g / cm 3 to 2.72
g / cm 3 . Therefore, the positive electrode mixture density is 2.
When it is preferred to an 58g / cm 3 ~2.72g / cm 3 , to compare the battery of Example 2, 4 and 5 of the same compounding ratio, since the battery of Example 2 is most preferred, the positive electrode It can be seen that it is more preferable that the agent density be around 2.65 g / cm 3 .

【0028】更に、実施例1〜5の電池の正極配合比を
検討すると、正極合剤に含有される正極活物質量は80
〜90wt%とすることが好ましいことも分かる。
Further, when examining the mixing ratio of the positive electrodes of the batteries of Examples 1 to 5, the amount of the positive electrode active material contained in the positive electrode mixture was 80%.
It is also understood that it is preferable to set the content to 90 wt%.

【0029】そして、実施例1〜5の電池は、常温(2
5°C)及び高温(50°C)の環境下共に、10万サ
イクル後の放電容量維持率(10万サイクル後の放電容
量を初期放電容量で除した百分率)は、比較例1の電池
とほぼ同じであり、比較例2の電池より優れ、また、1
0万サイクル後の出力維持率(10サイクル後の出力を
初期出力で除した百分率)においては、比較例1及び2
の電池より優れている。
The batteries of Examples 1 to 5 were tested at room temperature (2
The discharge capacity retention rate after 100,000 cycles (percentage obtained by dividing the discharge capacity after 100,000 cycles by the initial discharge capacity) under the environment of 5 ° C. and high temperature (50 ° C.) is equal to that of the battery of Comparative Example 1. Approximately the same, superior to the battery of Comparative Example 2, and
In the output retention ratio after the 100,000 cycles (percentage of the output after the 10th cycle divided by the initial output), Comparative Examples 1 and 2
Better than batteries.

【0030】なお、本実施形態では、正極活物質にLi
Mnを例示したが、化学式LiMn(x
は0.4≦x≦1.35、yは0.65≦y≦1)で表
される他のリチウムマンガン複酸化物を用いても、上述
した試験結果と同様の結果を得ることができる。このよ
うなリチウムマンガン複酸化物には、例えば、LiMn
、LiMn、LiMn12、Li
MnO、LiMn12、LiMn等を
挙げることができる。また、Li、Al、V、Cr、F
e、Co、Ni、Mo、W、Zn、B、Mgから選ばれ
る少なくとも1種類以上の金属で、リチウムマンガン複
酸化物のマンガンサイト又はリチウムサイトを置換した
ものでもよい。
In this embodiment, the positive electrode active material is Li
Was exemplified Mn 2 O 4, the chemical formula Li x Mn y O 2 (x
Is 0.4 ≦ x ≦ 1.35, and y is 0.65 ≦ y ≦ 1) The same result as the above-described test result can be obtained by using another lithium manganese double oxide represented by the following formula: . Such a lithium manganese double oxide includes, for example, LiMn.
O 2 , Li 2 Mn 4 O 9 , Li 4 Mn 5 O 12 , Li 2
MnO 3 , Li 7 Mn 5 O 12 , Li 5 Mn 4 O 9 and the like can be mentioned. Li, Al, V, Cr, F
The manganese site or lithium site of the lithium-manganese double oxide may be substituted with at least one metal selected from e, Co, Ni, Mo, W, Zn, B, and Mg.

【0031】また、本実施形態では、負極活物質である
炭素材に非晶質炭素を例示したが、他の負極活物質とし
ては、例えば、リチウムイオンをドープ・脱ドープする
ことが可能な、グラファイト、活性炭、炭素繊維、カー
ボンブラック、メソカーボンマイクロビーズ等の炭素材
料を用いるようにしてもよい。
In this embodiment, the carbon material as the negative electrode active material is exemplified by amorphous carbon. However, as another negative electrode active material, for example, lithium ions can be doped and dedoped. A carbon material such as graphite, activated carbon, carbon fiber, carbon black, and mesocarbon microbeads may be used.

【0032】更に、本実施形態では、EC、DMC及び
DECを混合した混合溶媒を非水電解液の非水溶媒に用
いた例を示したが、他の混合溶媒として例えば、環状炭
酸エステル、鎖状炭酸エステル、環状エステル、鎖状エ
ステル、環状エーテル、鎖状エーテル等を用いるように
してもよい。
Further, in the present embodiment, an example is shown in which a mixed solvent obtained by mixing EC, DMC and DEC is used as the non-aqueous solvent of the non-aqueous electrolytic solution. Carbonic ester, cyclic ester, chain ester, cyclic ether, chain ether and the like may be used.

【0033】すなわち、環状炭酸エステルとしては、エ
チレンカーボネート、プロピレンカーボネート、ブチレ
ンカーボネート、ビニレンカーボネートなどが、鎖状炭
酸エステルとしては、ジメチルカーボネート、メチルエ
チルカーボネート、ジエチルカーボネート、メチルプロ
ピルカーボネート、メチルイソプロピルカーボネートな
どが、環状エステルとしては、γ-ブチロラクトン、γ-
バレロラクトン、3-メチル-γ-ブチロラクトン、2-メ
チル-γ-ブチロラクトンなどが一般的に用いられてい
る。鎖状エステルとしては、蟻酸メチル、蟻酸エチル、
酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸
メチル、酪酸メチル、吉草酸メチルなどが、環状エーテ
ルとしては、1,4-ジオキサン、1,3-ジオキソラン、
テトラヒドロフラン、2-メチルテトラヒドロフラン、
3-メチル-1,3-ジオキソラン、2-メチル-1,3-ジオ
キソランなどが一般的に用いられている。鎖状エーテル
としては、1,2-ジメトキシエタン、1,2-ジエトキシ
エタン、ジエチルエーテル、ジメチルエーテル、メチル
エチルエーテル、ジプロピルエーテルなどが一般的に用
いられている。また、これら各種の非水溶媒を2種類以
上を混合して使用するようにしてもよい。
That is, cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate and the like, and chain carbonates include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like. However, as the cyclic ester, γ-butyrolactone, γ-
Valerolactone, 3-methyl-γ-butyrolactone, 2-methyl-γ-butyrolactone and the like are generally used. As the chain ester, methyl formate, ethyl formate,
Methyl acetate, ethyl acetate, propyl acetate, methyl propionate, methyl butyrate, methyl valerate and the like, as cyclic ethers, 1,4-dioxane, 1,3-dioxolane,
Tetrahydrofuran, 2-methyltetrahydrofuran,
3-Methyl-1,3-dioxolan, 2-methyl-1,3-dioxolan and the like are generally used. As the chain ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, dimethyl ether, methyl ethyl ether, dipropyl ether and the like are generally used. Further, two or more of these various non-aqueous solvents may be used in combination.

【0034】また、本実施形態では、LiPFを電解
質に例示したが、他に例えば、LiBF、LiClO
、LiAsF、LiOSOCF、LiN(SO
CF、LiC(SOCF等を用いるよ
うにしてもよい。そして、これらの電解質は、2種類以
上組み合わせて用いるようにしてもよい。なお、これら
の電解質は、何れも非水電解液中で解離して、リチウム
イオンを生ずるものであり、通常0.5モル/リットル
〜2モル/リットル、好ましくは0.7モル/リットル
から1.5モル/リットルの範囲で非水電解液中に含ま
れている。
In the present embodiment, LiPF 6 is exemplified as the electrolyte, but other examples include LiBF 4 and LiClO 4 .
4 , LiAsF 6 , LiOSO 2 CF 3 , LiN (SO
2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3, or the like may be used. These electrolytes may be used in combination of two or more. These electrolytes dissociate in a non-aqueous electrolyte to generate lithium ions, and are usually 0.5 mol / l to 2 mol / l, preferably 0.7 mol / l to 1 mol / l. It is contained in the non-aqueous electrolyte within a range of 0.5 mol / liter.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
正極合剤の空隙率を21%〜31%としたので、電解液
の浸透性及び充放電に伴うイオンの拡散性と伝導性が良
好に行われることから、出力特性に優れたリチウムイオ
ン二次電池を実現することができる、という効果を得る
ことができる。
As described above, according to the present invention,
Since the porosity of the positive electrode mixture is set to 21% to 31%, the permeability of the electrolyte and the diffusivity and conductivity of the ions accompanying charge / discharge are excellent, so that the lithium ion secondary having excellent output characteristics is obtained. The effect that a battery can be realized can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 賢二 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ02 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 HJ01 HJ02 HJ09 5H050 AA05 BA17 CA09 CB07 DA02 HA01 HA02 HA08 HA09  ──────────────────────────────────────────────────続 き Continued on the front page (72) Kenji Hara 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Co., Ltd. (72) Kensuke Hironaka 2-87 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. (reference) 5H029 AJ02 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 HJ01 HJ02 HJ09 5H050 AA05 BA17 CA09 CB07 DA02 HA01 HA02 HA08 HA09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化学式LiMn(xは0.4≦
x≦1.35、yは0.65≦y≦1)で表されリチウ
ムイオンの吸蔵・放出が可能な複合酸化物、を含む正極
合剤を集電体に塗着した正極と、リチウムイオンの吸蔵
・放出が可能な炭素材を活物質とする負極と、をリチウ
ム塩を電解質とする非水電解液に浸潤させたリチウムイ
オン二次電池において、前記正極合剤の空隙率は21%
〜31%であることを特徴とするリチウムイオン二次電
池。
The chemical formula Li x Mn y O 2 (x is 0.4 ≦
x ≦ 1.35, y is 0.65 ≦ y ≦ 1) a positive electrode prepared by applying a positive electrode mixture containing a composite oxide capable of inserting and extracting lithium ions to a current collector; In a lithium ion secondary battery in which a negative electrode containing a carbon material capable of occluding and releasing hydrogen as an active material and a non-aqueous electrolyte solution using a lithium salt as an electrolyte, a porosity of the positive electrode mixture is 21%
To 31%.
【請求項2】 前記正極合剤の密度は2.58g/cm
〜2.72g/cmであることを特徴とする請求項
1に記載のリチウムイオン二次電池。
2. The density of the positive electrode mixture is 2.58 g / cm.
Lithium-ion secondary battery according to claim 1, characterized in that the 3 ~2.72g / cm 3.
【請求項3】 前記正極合剤中に含有される前記複合酸
化物の配合比は、80重量%乃至90重量%であること
を特徴とする請求項1又は請求項2に記載のリチウムイ
オン二次電池。
3. The lithium ion secondary battery according to claim 1, wherein the compounding ratio of the composite oxide contained in the positive electrode mixture is 80% by weight to 90% by weight. Next battery.
JP2000030095A 2000-02-08 2000-02-08 Lithium ion secondary battery Expired - Fee Related JP3580209B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000030095A JP3580209B2 (en) 2000-02-08 2000-02-08 Lithium ion secondary battery
US09/773,484 US6733925B2 (en) 2000-02-08 2001-02-02 Non-aqueous electrolytic solution secondary battery with electrodes having a specific thickness and porosity
TW090102594A TW480763B (en) 2000-02-08 2001-02-07 Non-aqueous electrolytic solution secondary battery
EP01103016A EP1126538B1 (en) 2000-02-08 2001-02-08 Non-aqueous electrolyte secondary battery
DE60105076T DE60105076T2 (en) 2000-02-08 2001-02-08 Secondary battery with non-aqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030095A JP3580209B2 (en) 2000-02-08 2000-02-08 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2001222995A true JP2001222995A (en) 2001-08-17
JP3580209B2 JP3580209B2 (en) 2004-10-20

Family

ID=18555154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030095A Expired - Fee Related JP3580209B2 (en) 2000-02-08 2000-02-08 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3580209B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050357A (en) * 2000-08-01 2002-02-15 Mitsubishi Electric Corp Battery
WO2005001963A1 (en) * 2003-06-27 2005-01-06 Zeon Corporation Active material for cathode film, polyether polymer composition for cathode film, cathode film, and method for producing cathode film
WO2006129756A1 (en) * 2005-06-02 2006-12-07 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and automobile, power tool or stationary device equipped with same
JP2009054598A (en) * 2006-05-23 2009-03-12 Sony Corp Secondary battery
JPWO2008023622A1 (en) * 2006-08-21 2010-01-07 独立行政法人産業技術総合研究所 Method for producing lithium manganese composite oxide
EP2212964A1 (en) * 2007-09-12 2010-08-04 LG Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US7976973B2 (en) 2006-05-23 2011-07-12 Sony Corporation Spirally wound battery
WO2011108119A1 (en) * 2010-03-05 2011-09-09 トヨタ自動車株式会社 Lithium secondary battery and separator for use in said battery
JP2012164638A (en) * 2011-01-19 2012-08-30 Gs Yuasa Corp Negative electrode, electrode body, and electrical storage device
JP2014116303A (en) * 2012-12-07 2014-06-26 Samsung Fine Chemicals Co Ltd Cathode active material, method for preparing the same, and lithium secondary batteries including the same
US9225008B2 (en) 2010-10-15 2015-12-29 Toyota Jidosha Kabushiki Kaisha Secondary battery
WO2018143576A1 (en) * 2017-02-02 2018-08-09 삼성에스디아이 주식회사 Lithium secondary battery
WO2019065151A1 (en) * 2017-09-29 2019-04-04 マクセルホールディングス株式会社 Non-aqueous secondary cell, non-aqueous electrolyte used in same, and method for manufacturing non-aqueous secondary cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272049A (en) * 1988-04-21 1989-10-31 Sony Corp Lithium secondary battery
JPH09213366A (en) * 1996-01-30 1997-08-15 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09245769A (en) * 1996-03-08 1997-09-19 Hitachi Maxell Ltd Wound lithium ion secondary battery
JPH10321227A (en) * 1997-05-23 1998-12-04 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272049A (en) * 1988-04-21 1989-10-31 Sony Corp Lithium secondary battery
JPH09213366A (en) * 1996-01-30 1997-08-15 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09245769A (en) * 1996-03-08 1997-09-19 Hitachi Maxell Ltd Wound lithium ion secondary battery
JPH10321227A (en) * 1997-05-23 1998-12-04 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050357A (en) * 2000-08-01 2002-02-15 Mitsubishi Electric Corp Battery
WO2005001963A1 (en) * 2003-06-27 2005-01-06 Zeon Corporation Active material for cathode film, polyether polymer composition for cathode film, cathode film, and method for producing cathode film
JP5060289B2 (en) * 2005-06-02 2012-10-31 パナソニック株式会社 Nonaqueous electrolyte secondary battery electrode, nonaqueous electrolyte secondary battery, and automobile, electric tool or stationary device equipped with the same
WO2006129756A1 (en) * 2005-06-02 2006-12-07 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and automobile, power tool or stationary device equipped with same
US7976973B2 (en) 2006-05-23 2011-07-12 Sony Corporation Spirally wound battery
JP2009054598A (en) * 2006-05-23 2009-03-12 Sony Corp Secondary battery
JP4997609B2 (en) * 2006-08-21 2012-08-08 独立行政法人産業技術総合研究所 Method for producing lithium manganese composite oxide
JPWO2008023622A1 (en) * 2006-08-21 2010-01-07 独立行政法人産業技術総合研究所 Method for producing lithium manganese composite oxide
EP2212964A1 (en) * 2007-09-12 2010-08-04 LG Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US9105943B2 (en) 2007-09-12 2015-08-11 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
EP2212964A4 (en) * 2007-09-12 2011-12-14 Lg Chemical Ltd Non-aqueous electrolyte lithium secondary battery
US9246191B2 (en) 2007-09-12 2016-01-26 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US8546024B2 (en) 2007-09-12 2013-10-01 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
WO2011108119A1 (en) * 2010-03-05 2011-09-09 トヨタ自動車株式会社 Lithium secondary battery and separator for use in said battery
US9225008B2 (en) 2010-10-15 2015-12-29 Toyota Jidosha Kabushiki Kaisha Secondary battery
JP2012164638A (en) * 2011-01-19 2012-08-30 Gs Yuasa Corp Negative electrode, electrode body, and electrical storage device
US9449764B2 (en) 2011-01-19 2016-09-20 Gs Yuasa International Ltd. Electric storage device
JP2014116303A (en) * 2012-12-07 2014-06-26 Samsung Fine Chemicals Co Ltd Cathode active material, method for preparing the same, and lithium secondary batteries including the same
WO2018143576A1 (en) * 2017-02-02 2018-08-09 삼성에스디아이 주식회사 Lithium secondary battery
WO2019065151A1 (en) * 2017-09-29 2019-04-04 マクセルホールディングス株式会社 Non-aqueous secondary cell, non-aqueous electrolyte used in same, and method for manufacturing non-aqueous secondary cell
JPWO2019065151A1 (en) * 2017-09-29 2020-04-30 マクセルホールディングス株式会社 Non-aqueous secondary battery, non-aqueous electrolyte used therein, and method for manufacturing the non-aqueous secondary battery
JP7069189B2 (en) 2017-09-29 2022-05-17 マクセル株式会社 Non-water secondary battery, non-water electrolyte used for it, and method for manufacturing the non-water secondary battery.

Also Published As

Publication number Publication date
JP3580209B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
KR100794051B1 (en) Lithium Secondary Cell
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
KR20040018154A (en) Nonaqueous electrolyte secondary battery
JP2011034893A (en) Nonaqueous electrolyte secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
KR20180088283A (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP3580209B2 (en) Lithium ion secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5078330B2 (en) Negative electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this negative electrode plate
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2000195548A (en) Nonaqueous electrolyte secondary battery
JP2004327078A (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP3714259B2 (en) Nonaqueous electrolyte secondary battery
JP2000195553A (en) Nonaqueous electrolyte secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP7403474B2 (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP2002025626A (en) Aging method for lithium secondary battery
JP2004063269A (en) Nonaqueous electrolyte battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2001015168A (en) Lithium secondary battery
JP3775107B2 (en) Lithium secondary battery
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees