WO2019065151A1 - Non-aqueous secondary cell, non-aqueous electrolyte used in same, and method for manufacturing non-aqueous secondary cell - Google Patents

Non-aqueous secondary cell, non-aqueous electrolyte used in same, and method for manufacturing non-aqueous secondary cell Download PDF

Info

Publication number
WO2019065151A1
WO2019065151A1 PCT/JP2018/033101 JP2018033101W WO2019065151A1 WO 2019065151 A1 WO2019065151 A1 WO 2019065151A1 JP 2018033101 W JP2018033101 W JP 2018033101W WO 2019065151 A1 WO2019065151 A1 WO 2019065151A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
aqueous
secondary battery
aqueous secondary
component
Prior art date
Application number
PCT/JP2018/033101
Other languages
French (fr)
Japanese (ja)
Inventor
喜多房次
水野悠
Original Assignee
マクセルホールディングス株式会社
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社, 三井化学株式会社 filed Critical マクセルホールディングス株式会社
Priority to JP2019544506A priority Critical patent/JP7069189B2/en
Publication of WO2019065151A1 publication Critical patent/WO2019065151A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous secondary battery, a non-aqueous electrolyte used therefor, and a method of manufacturing the non-aqueous secondary battery.
  • the further high capacity-ization and high energy density formation of the non-aqueous secondary battery are calculated
  • One of methods for achieving high capacity and high energy density of the non-aqueous secondary battery is to charge the positive electrode active material with high voltage and use it.
  • the increase in energy density and voltage of non-aqueous secondary batteries the decrease in charge-discharge cycle characteristics of the batteries has become remarkable.
  • the positive electrode active material in order to suppress the decrease in charge-discharge cycle characteristics under high voltage, it has been proposed to make the positive electrode active material form a solid solution of different metals and coat the surface of the positive electrode with metal oxide. There is a problem that the stability is poor and the film is degraded due to the interaction between the film and the electrolyte. Further, for the same purpose, various studies have been made to coat the surface of the positive electrode with an organic substance, an alkali metal salt or an alkaline earth salt. However, in the case of a film made of an organic compound, unless a film is generally formed using a high voltage resistant material such as a fluorine compound, it can not withstand use as a film for high voltage.
  • Non-Patent Document 1 describes an example in which a positive electrode active material is coated with an inorganic oxide. Thereby, the side reaction of the active material can be suppressed, but there is a possibility that the electron conductivity of the surface of the active material is inhibited.
  • Patent Document 1 describes an example in which the surface of an active material is coated with a polyvalent fluorine-containing organic lithium salt, and by covering with a fluorine compound that is resistant to high voltage, the electrolyte is subjected to high voltage. Although the reaction is suppressed, it is not a simple method, and there is also concern about an increase in resistance.
  • Patent Document 2 proposes that a protective film material is added to the positive electrode paint, and a thermally actuated protective film is formed on the surface of the positive electrode material to improve the safety of the battery. Due to the addition, the resistance of the electrode may be increased.
  • Patent Document 3 proposes that a porous protective film is formed on the surface of an electrode (in particular, a negative electrode), it is considered to be less effective in suppressing the reaction between an electrolytic solution and a positive electrode because it is porous. Moreover, the specific example which forms a protective film in the positive electrode surface in patent document 3 is not described.
  • Patent Document 4 proposes a non-aqueous secondary battery which can be used even under high voltage, and describes the use of a compound having two or more nitrile groups in the molecule as an electrolytic solution additive of the battery, Specifically, the use of dinitriles such as succinonitrile is described.
  • the addition amount of the compound having two or more nitrile groups in the molecule is in a desirable range of 1% by mass or less.
  • Patent Document 5 proposes a non-aqueous electrolyte secondary battery using a dinitrile such as glutaronitrile at a high concentration as an electrolyte additive.
  • a dinitrile such as glutaronitrile at a high concentration as an electrolyte additive.
  • Patent Document 5 describes the improvement of charge and discharge cycle characteristics, evaluation of the charge and discharge cycle characteristics is performed using lithium metal as a counter electrode, and there is a problem in the reaction of the negative electrode.
  • nitriles have an effect of suppressing battery swelling and the like, but there is a problem in the reactivity of the negative electrode, and it is known that the charge and discharge cycle characteristics also have a problem in our examination.
  • JP 2012-243696 A JP, 2010-157512, A JP, 2009-301765, A JP 2008-108586 A Unexamined-Japanese-Patent No. 9-161845 gazette
  • the present invention solves the above problems, and provides a non-aqueous secondary battery excellent in charge and discharge cycle characteristics at high voltage, a non-aqueous electrolyte used therefor, and a method of manufacturing the non-aqueous secondary battery. It is.
  • the first non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the surface of the positive electrode is at least one selected from Component 1, Component 2 and Component 3. It is characterized in that it is coated with one component, the component 1 is a sugar analog compound, the component 2 is a metal salt, and the component 3 is a nitrogen-containing compound.
  • the second non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolytic solution, and the non-aqueous electrolytic solution or the positive electrode contains a fluorine-containing compound or a carbonic acid compound.
  • the non-aqueous electrolyte contains an additive other than vinylene carbonate, and the concentration of the additive in the non-aqueous electrolyte is 0.05% by mass or more and 3% by mass or less.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention, characterized in that it contains at least one selected from a fluorine-containing compound and a carbonic acid compound.
  • the first method for producing a non-aqueous secondary battery according to the present invention is a method for producing the non-aqueous secondary battery according to the present invention, wherein at least one component selected from Component 1, Component 2 and Component 3 And a step of applying the treatment liquid to the surface of the positive electrode, wherein the component 1 is a sugar analog compound, the component 2 is a metal salt, and the component 3 is a step of preparing the treatment solution A nitrogen-containing compound, and the positive electrode is a positive electrode after pressing.
  • the second method for producing a non-aqueous secondary battery according to the present invention is a method for producing the non-aqueous secondary battery according to the present invention, wherein at least one component selected from component 1, component 2 and component 3 Comprising the steps of: preparing a non-aqueous electrolyte containing the following; assembling a battery using the positive electrode, the negative electrode, and the non-aqueous electrolyte; and charging and discharging the assembled battery, wherein
  • the compound is a compound, the component 2 is a metal salt, and the component 3 is a nitrogen-containing compound.
  • non-aqueous secondary battery excellent in charge and discharge cycle characteristics at high voltage, a non-aqueous electrolyte used therefor, and a method of manufacturing the non-aqueous secondary battery.
  • FIG. 1 is a plan view showing an example of the non-aqueous secondary battery.
  • the first embodiment of the non-aqueous secondary battery of the present invention comprises a positive electrode, a negative electrode and a non-aqueous electrolyte, and the surface of the positive electrode is coated with at least one component selected from component 1, component 2 and component 3.
  • the component 1 is a sugar analog compound
  • the component 2 is a metal salt
  • the component 3 is a nitrogen-containing compound.
  • a stable film can be formed on the surface of the positive electrode even under high voltage, and the contact between the positive electrode and the non-aqueous electrolyte can be reduced to perform charge and discharge cycles under high voltage. Characteristics can be improved.
  • the present inventors consider coating the surface of the positive electrode with the above components, and by setting the surface of the positive electrode to a specific surface state, the additive effect of the electrolytic solution can be further improved, which is high. It was confirmed that the charge and discharge cycle characteristics under voltage could be improved with certainty.
  • the positive electrode after discharging to 3 V with a 1/3 C current is washed with methylethyl carbonate and then vacuum dried, and then the above
  • the content ratio of oxygen atoms is Ro (atomic%)
  • the content ratio of fluorine atoms is Rf (atomic%)
  • the binding energy of 1s orbital on the surface of the positive electrode Rf / Ro is 0.05 or more and 1.3 or less
  • Rc / Ro is 0.05 or more and 0.75 or less
  • Rc (atomic%) is a carbon atom content ratio of 289 to 291 eV
  • the surface condition proved to be favorable.
  • the sugar analogues (component 1) have an OH group
  • the nitrogen-containing compounds (component 3) have a nitrogen atom moiety which is susceptible to oxidation, and conventionally they are used under high voltage It is not usually used with the positive electrode.
  • the present inventors confirmed that they are effective in improving the charge and discharge cycle characteristics under high voltage.
  • the components 1 to 3 exhibit the effect by containing the positive electrode as a component other than a binder, but the effect is exhibited particularly by causing the surface to be present in large amounts on the surface of the positive electrode, and the surface of the positive electrode is selected from component 1, component 2 and component 3. Coating with at least one component is most effective.
  • magnesium lignin sulfonate is a sugar analog compound (component 1), and Since it is also a metal salt (component 2), it is a preferable component.
  • Component 1 above is a sugar analog compound.
  • the above sugar analogues include sugars and related substances.
  • the above saccharides include monosaccharides such as glucose, polysaccharides such as sucrose, starch, amylose, amylopectin, glycogen, cellulose, pectin, glucomannan and the like.
  • ⁇ -, ⁇ -, ⁇ -cyclodextrin, deoxyribose, fucose, rhamnose, glucuronic acid, galacturonic acid, glucosamine, galactosamine, glycerin, xylitol, sorbitol, ascorbic acid (vitamin C), glucuronolactone, gluconolactone Etc. are also included in the saccharides.
  • related substances of the above-mentioned saccharides include lignin, lignin derivative, alginic acid, alginate and the like which are compounds having a plurality of OH groups, and compounds having a plurality of OH groups include carboxymethylcellulose and hydroxymethylcellulose etc. .
  • polysaccharides such as sucrose
  • carboxymethylcellulose, hydroxymethylcellulose, lignin compounds (lignin, lignin derivative), alginic acid, and alginate are desirable.
  • the molecular weight of the above-mentioned sugar analog compound is preferably 200 or more, more preferably 500 or more, and most preferably 1000 or more so as to be difficult to dissolve in the electrolytic solution.
  • Component 2 is a metal salt, preferably an alkali metal salt or an alkaline earth metal salt, more preferably a magnesium salt or a sodium salt. Further, phosphorus-based salts, sulfates and carboxylates are desirable, and phosphorus-based salts are particularly desirable.
  • the salt of the phosphorus-based for example, monofluorophosphate (M A2 PO 3 F), metaphosphate ((M A PO 3) n ), pyrophosphate (M A4 P 2 O 7) .
  • M A in the above chemical formula represents a metal element, and the valence is 1 to 3.
  • a poly-acid salt is also desirable.
  • the above-mentioned poly acid salt is a designation indicating a salt containing a molecule represented by the chemical formula [M x O y ] n- (where M is Mo, V, W, Ti, Al, Nb, etc.).
  • M is Mo, V, W, Ti, Al, Nb, etc.
  • salts of tungstic acid, molybdic acid, vanadic acid, manganic acid and the like can be mentioned.
  • the above-mentioned phosphorus-based salts and poly-acid salts are desirable because they are stable even at high voltage and difficult to dissolve in the electrolyte.
  • Component 3 is a nitrogen-containing compound. It is desirable that the nitrogen-containing compound be partially in the form of a salt. This is because the nitrogen-containing compound becomes water soluble and the electrode processing becomes easy. In general, nitrogen-containing compounds are believed to be weak at high voltages and prone to battery degradation. However, many nitrogen-containing compounds are likely to be reactive at high voltages, but often exhibit good coverage after reaction.
  • the nitrogen-containing compound examples include amines, amides, imides, amino acids and proteins.
  • the above nitrogen-containing compound may not sufficiently obtain a coating effect when it is dissolved in a non-aqueous electrolytic solution, it may be a salt or a compound having a molecular weight of 200 or more so as not to dissolve easily. Desirably, the salt is more desirable.
  • the anion moiety of the nitrogen-containing compound salt is preferably a carboxylic acid group, a sulfonic acid group or a phosphoric acid group.
  • nitrogen-containing compound salts examples include diethylenetriaminepentaacetic acid salts such as diethylenetriaminepentaacetic acid pentasodium, ethylenediaminetetraacetic acid salts such as ethylenediaminetetraacetic acid tetrasodium, other magnesium salts, and polypeptides such as sodium polyglutamate and the like Examples include salts, proteins, aspartate, sodium hyaluronate (derived from chicken crown), polyimide salts, polyamide salts, polyallylamine and the like. It is desirable for the compound to have a plurality of salt portions in one molecule, more desirably 4 or more portions, and most desirably 5 or more portions of the salt. More preferably, the nitrogen-containing compound salt is an acetate of an amine.
  • the coating of the positive electrode is performed with the components 1 to 3 as at least a main component.
  • an insulating material such as alumina or an additive can be added as a secondary component, if the secondary component is increased, the electrolytic solution may infiltrate from the part of the secondary component and the protective effect of the coating may be impaired.
  • a specific method of coating the positive electrode can be carried out by applying a treatment liquid containing at least the components 1 to 3 on the surface of the positive electrode. In that case, the proportion of the solid content of the components 1 to 3 in the treatment liquid is desirably 50% by mass or more, more desirably 70% by mass or more, and most desirably 90% by mass or more.
  • the said positive electrode after making the said components 1 to 3 contain in a positive electrode active material, or making the said components 1 to 3 contain in a non-aqueous electrolyte, and assembling a battery, There is a method to charge and discharge.
  • a film is formed on the surface of the positive electrode.
  • the film may be formed by the action of the coating of the positive electrode with the components 1 to 3 described above, or may be formed by the action of a specific component or a specific additive contained in the non-aqueous electrolyte described later.
  • the Rf / Ro is preferably 0.05 or more, more preferably 0.1 or more, and preferably 1.3 or less, more preferably 1.0 or less, and most preferably 0.5 or less.
  • the Rc / Ro is preferably 0.05 or more, more preferably 0.1 or more, and preferably 0.75 or less, more preferably 0.6 or less, and most preferably 0.5 or less.
  • the above Rf / Ro and the above Rc / Ro are within the above range, but the surface of the positive electrode is formed in a state of containing various compounds containing oxygen (eg, active Oxygen of substance, oxygen of electrolyte decomposition product etc.).
  • oxygen eg, active Oxygen of substance, oxygen of electrolyte decomposition product etc.
  • the content of oxygen is also second highest to carbon, while oxygen is an important element for ion migration and electrode protection.
  • oxygen is a constituent element of the active material, and is involved in ion transport and reactivity.
  • the product formed on the surface of the positive electrode is also an important component for film formation such as a carbonic acid compound (carbonate, carbonate etc.), a phosphoric acid compound, a sulfuric acid compound, an alcoholate, an ether compound etc. and its formation reaction.
  • the above Rf / Ro and the above Rc / Ro are within the above range, a good protective film is formed in a specific state on the surface of the positive electrode, and the 1s orbital binding energy is 289 to 291 eV carbon atom It is considered to mean that it is possible to suppress formation of the product of the decomposition of the electrolytic solution such as the carbon-containing compound or the fluorine compound contained on the surface of the positive electrode. That is, the above carbon-containing compound is mainly considered to be a carbonic acid compound, and may generate CO 2 under high voltage, so it is not preferable to add too much.
  • the fluorine present on the surface of the positive electrode is derived from the fluorine compound component such as LiPF 6 in the electrolytic solution and the fluorine compound component contained in the positive electrode, when a large amount of this fluorine is present on the surface of the positive electrode It is difficult to do so, the battery characteristics are degraded, and the non-uniform reaction also occurs, and the high voltage cycle characteristics may also be degraded.
  • the above carbon-containing compounds and fluorine compounds are also involved in electrode protection and ion transport, it is presumed that the absence of a small amount affects the electrical characteristics.
  • the total content of cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe) on the surface of the positive electrode is reduced by the formation of the film. If it is too low, the electrical properties will be impaired. Therefore, when the surface of the positive electrode is subjected to XPS analysis, the total content ratio of Co, Ni, Mn and Fe on the surface of the positive electrode is preferably 0.1 atomic% or more, more preferably 0.2 atomic% or more. 0.5 atomic% or more is most preferable, 15 atomic% or less is preferable, 5 atomic% or less is more preferable, and 3 atomic% or less is most preferable.
  • each content ratio of Ti, Al, Nb, etc., and nitrogen (N) be in a specific range.
  • the content of each of S, metal components (Mo, V, W, Ti, Al, Nb, etc.) and N is preferably 0.1 atomic% or more. 0.2 atomic% or more is more desirable, 0.5 atomic% or more is the most desirable, and 1 atomic% or less is desirable, and 0.5 atomic% or less is more desirable.
  • the content of P is preferably 0.5 atomic percent or more, more preferably 1 atomic percent or more, most preferably 2 percent or more, and most preferably 10 atomic percent or less, and 5 atomic percent or less. More desirable. When these values are too large, the electrode protection performance of the formed film tends to be low. When the values are too small, the electrode protection performance is high, but the electrical characteristics due to the increase in resistance tend to be deteriorated.
  • the XPS analysis of the surface of the positive electrode described that after charging the battery to 4.5 V with a current of 1/3 C, the positive electrode after discharging to 3 V with a current of 1/3 C was washed with methyl ethyl carbonate Although later performed after vacuum drying, the washing of the positive electrode is usually performed in an inert atmosphere.
  • the XPS measurement apparatus uses, for example, an XPS measurement apparatus "AXIS-NOVA" manufactured by Kratos Co., Ltd., and performs observation in the range of 700 ⁇ m ⁇ 300 ⁇ m as an X-ray source using monochromatized AlK ⁇ (1486.6 eV).
  • a transfer vessel it is preferable to use a transfer vessel so that the sample is kept as free from moisture as possible.
  • the lithium ion battery includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator.
  • ⁇ Positive electrode> for the positive electrode, for example, one having a structure having a positive electrode mixture layer containing a positive electrode active material, a conductive additive, a binder and the like on one side or both sides of a current collector can be used.
  • lithium-containing transition metal oxide or the like capable of inserting and extracting lithium ions.
  • lithium-containing transition metal oxides include those used in conventionally known lithium ion batteries. Specifically, Li y CoO 2 (where 0 ⁇ y ⁇ 1.1), Li z NiO 2 (where 0 ⁇ z ⁇ 1.1), Li p MnO 2 (wherein is 0 ⁇ p ⁇ 1.1.), Li q Co r M 2 1-r O 2 (where, M 2 is, Mg, Mn, Fe, Ni , Cu, Zn, Al, Ti, from Ge and Cr At least one metal element selected from the group consisting of 0 ⁇ q ⁇ 1.1, 0 ⁇ r ⁇ 1.0), Li s Ni 1-t M 3 t O 2 (where M is an integer) 3 is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Cu, Zn, Al, Ti, Ge and Cr, and 0 ⁇ s
  • binder for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyacrylate, polyimide, polyamideimide, etc. are suitably used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • polyacrylate polyimide
  • polyamideimide polyamideimide
  • Graphite graphite carbon materials
  • natural graphite sculpt graphite etc.
  • artificial graphite etc . Acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black And carbon materials such as carbon black; carbon fibers; and the like.
  • the positive electrode is prepared, for example, by preparing a paste- or slurry-like positive electrode mixture-containing coating material in which the positive electrode active material, the binder, and the conductive auxiliary agent are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the composition is applied to one side or both sides of the current collector, dried and then subjected to a pressing process as required.
  • the positive electrode is not limited to one manufactured by the above manufacturing method, and may be manufactured by another manufacturing method.
  • the thickness of the positive electrode mixture layer is preferably, for example, 10 to 100 ⁇ m per side of the current collector.
  • the density of the positive electrode mixture layer is calculated from the mass and thickness of the positive electrode mixture layer per unit area stacked on the current collector, and is preferably 3.0 to 4.5 g / cm 3 .
  • the quantity of a positive electrode active material is 60-95 mass%, for example, it is preferable that the quantity of a binder is 1-15 mass%, and the quantity of a conductive support agent is The content is preferably 3 to 20% by mass.
  • the porosity of the positive electrode mixture layer is preferably 22% or more and 25% or more. More preferably, 28% or more is most desirable, 35% or less is desirable, 32% or less is more desirable, and 29% or less is most desirable. If the porosity of the positive electrode mixture layer is too large, most of the treatment solution will infiltrate into the positive electrode and the covering effect on the surface becomes low, and if too small, the covering formed by the above components Is limited to the surface, and the coating strength is reduced.
  • the same one as conventionally used for the positive electrode of a lithium ion battery can be used, and it is made of, for example, aluminum, stainless steel, nickel, titanium or their alloys.
  • a foil, a punched metal, an expanded metal, a net, etc. may be mentioned, and usually, an aluminum foil having a thickness of 10 to 30 ⁇ m is suitably used.
  • a negative electrode mixture layer containing a negative electrode active material, a binder and the like can be used on one side or both sides of the current collector.
  • the negative electrode active material contained in the above-mentioned negative electrode mixture layer a compound which can deintercalate lithium or a material containing an element which can be alloyed with lithium can be used, but a graphitic carbon material is preferably used.
  • a graphitic carbon material those used in conventionally known lithium ion batteries are suitable.
  • natural graphite such as scale-like graphite; pyrolytic carbons, mesophase carbon microbeads (MCMB), Artificial graphite obtained by graphitizing a graphitizable carbon such as carbon fiber at 2800 ° C. or higher.
  • a material containing an element capable of alloying with lithium a metal (Si, Sn, etc.) capable of being alloyed with lithium or an alloy thereof may be mentioned, but the general composition formula SiO x (however, atomic ratio of O to Si) A material containing Si and O represented by x) as 0.5 ⁇ x ⁇ 1.5 can also be used.
  • binder used for the said negative mix layer the same thing as the binder illustrated as a binder of the positive electrode mentioned above can be used.
  • a conductive material may be further added to the negative electrode mixture layer as a conductive aid.
  • the conductive material is not particularly limited as long as it does not cause a chemical change in the lithium ion battery.
  • various carbon blacks such as acetylene black and ketjen black, carbon nanotubes, carbon fibers and the like may be used.
  • a species or two or more species can be used.
  • the negative electrode is prepared, for example, by preparing a paste-like or slurry-like negative electrode mixture-containing coating material in which a negative electrode active material and a binder, and further, if necessary, a conductive auxiliary agent is dispersed in a solvent such as NMP or water.
  • the composition is applied to one side or both sides of the current collector, dried, and then subjected to a pressing process as required.
  • the negative electrode is not limited to those manufactured by the above manufacturing method, and may be manufactured by another manufacturing method.
  • the thickness of the negative electrode mixture layer is preferably, for example, 10 to 100 ⁇ m per side of the current collector.
  • the density of the negative electrode mixture layer is preferably 1.0 to 1.9 g / cm 3 .
  • the amount of the negative electrode active material is preferably 80 to 99% by mass
  • the amount of the binder is preferably 1 to 20% by mass
  • the conductive auxiliary agent is used. It is preferable that the conductive aid be used in such a range that the amount of the negative electrode active material and the amount of the binder satisfy the above-mentioned suitable values.
  • the current collector of the negative electrode a foil made of copper or nickel, a punching metal, a net, an expanded metal or the like may be used, but a copper foil is usually used.
  • the upper limit of the thickness of the negative electrode current collector is preferably 30 ⁇ m when the thickness of the entire negative electrode is reduced to obtain a battery of high energy density, and the lower limit of the thickness is 5 ⁇ m to ensure mechanical strength. Is preferred.
  • Non-aqueous electrolytic solution a non-aqueous electrolytic solution in which an electrolyte salt such as an inorganic lithium salt or an organic lithium salt is dissolved in an organic solvent is used.
  • organic solvent examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC) ⁇ -butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric triester , Trimethoxymethane, dioxolane derivatives, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, diethyl Ethers, include aprotic organic solvents such as 1,3-propane sultone, it may be used
  • Examples of the inorganic lithium salt LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic carboxylic acids Li, LiAlCl 4, LiCl, LiBr And LiI, chloroborane Li, tetraphenylborate Li and the like, and these may be used alone or in combination of two or more.
  • organic lithium salt examples include LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and LiC n1 F 2n1 + 1 SO 3 (2 ⁇ n1 ⁇ 7), LiN (Rf 1 OSO 2 ) 2 [wherein, Rf 1 is a fluoroalkyl group. And the like, and these may be used alone or in combination of two or more.
  • the concentration of the electrolyte salt in the nonaqueous electrolyte solution for example, preferably from 0.2 ⁇ 3.0mol / dm 3, more preferably from 0.5 ⁇ 1.5mol / dm 3, 0 . More preferably, it is 9 to 1.3 mol / dm 3 .
  • the non-aqueous electrolyte preferably contains a fluorine-containing compound as the lithium salt, and preferably contains a carbonic acid compound as the organic solvent.
  • the non-aqueous electrolyte may include at least one of the fluorine-containing compound and the carbonic acid compound, but preferably contains both the fluorine-containing compound and the carbonic acid compound.
  • the said fluorine-containing compound and the said carbonic acid compound may be contained in the positive electrode.
  • non-aqueous electrolytic solution for obtaining the surface state of the above positive electrode, at least one linear carbonate selected from dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, and at least one cyclic selected from ethylene carbonate and propylene carbonate It is particularly preferable to use a non-aqueous electrolytic solution in which LiPF 6 (lithium hexafluorophosphate) is dissolved in a solvent containing carbonate.
  • LiPF 6 lithium hexafluorophosphate
  • the non-aqueous electrolyte can contain the following additives as appropriate.
  • the additive include an acid anhydride, a sulfonic acid ester, dinitrile, 1,3-propanesultone, diphenyl disulfide, cyclohexylbenzene, vinylene carbonate (VC), biphenyl, fluorobenzene, t-butylbenzene, cyclic fluorinated Carbonate [trifluoropropylene carbonate (TFPC), fluoroethylene carbonate (FEC), etc.] or linear fluorinated carbonate [trifluorodimethyl carbonate (TFDMC), trifluorodiethyl carbonate (TFDEC), trifluoroethyl methyl carbonate (TFE MC) Etc.], fluorinated ethers [Rf 2 -OR 4 (where Rf 2 is a fluorine-containing
  • An additive that is effective in improving charge / discharge cycle characteristics under high voltage when used in combination with the above-mentioned positive electrode coating is a compound having two or more nitrile groups in the molecule.
  • the compound having two or more nitrile groups in the molecule include succinonitrile, glutaronitrile, adiponitrile, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, 1,7 8-dicyanooctane, 1,9-dicyanononane, 1,10-dicyanodecane, 1,12-dicyanododecane, tetramethyl succinonitrile, 2-methylglutaronitrile, 4-dicyanopentane, 2,6-dicyanoheptane, Examples thereof include dinitriles such as 2,7-dicyanooctane, 2,8-dicyanononane, 1,6-dicyanodecane and 1,
  • the concentration of the compound having two or more nitrile groups in the molecule in the non-aqueous electrolyte is preferably 0.1% by mass or more, more preferably 2% by mass or more, and most preferably 10% by mass or more. % By mass or less is desirable, 30% by mass or less is more desirable, and 20% by mass or less is the most desirable.
  • the separator preferably has sufficient strength and can hold a large amount of non-aqueous electrolytic solution, for example, polyethylene (PE) or polypropylene (PP) having a thickness of 5 to 50 ⁇ m and an opening ratio of 30 to 70%. And the like can be used.
  • the microporous membrane constituting the separator may be, for example, one using only PE or one using PP, may contain an ethylene-propylene copolymer, and may be made of PE It may be a laminate of a porous membrane and a microporous membrane made of PP.
  • the porous layer (A) is mainly for securing the shutdown function, and when the internal temperature of the lithium ion battery reaches the melting point of the resin which is the main component of the porous layer (A). The resin according to the porous layer (A) melts to close the pores of the separator, resulting in a shutdown that suppresses the progress of the electrochemical reaction.
  • the porous layer (B) has a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode even when the internal temperature of the lithium ion battery rises, and has a melting point of 150.degree.
  • the function is ensured by the resin or the inorganic filler having a heat resistant temperature of 150 ° C. or higher. That is, when the battery becomes high temperature, the positive and negative electrodes may be generated directly when the separator is thermally shrunk by the porous layer (B) which is hardly shrunk even when the grip porous layer (A) is shrunk. It is possible to prevent a short circuit due to contact.
  • the heat-resistant porous layer (B) acts as a skeleton of the separator, the heat shrinkage of the porous layer (A), that is, the heat shrinkage itself of the whole separator can be suppressed.
  • the "melting point” means a melting temperature measured using a differential scanning calorimeter (DSC) according to the Japanese Industrial Standard (JIS) K7121, and "the heat resistant temperature is 150 ° C or higher" Means that no deformation such as softening is observed at least at 150 ° C.
  • the thickness of the above-mentioned separator is more preferably 10 to 30 ⁇ m.
  • Electrode body As an electrode body used for the non-aqueous secondary battery of the present embodiment, a laminated electrode body in which the positive electrode and the negative electrode are laminated via the separator, or winding in which the laminated electrode body is further wound in a spiral shape An electrode body is mentioned.
  • the form of the lithium ion battery is not particularly limited.
  • the charge voltage of the non-aqueous secondary battery of the present embodiment is preferably 4.35 V or more, more preferably 4.45 V or more, and most preferably 4.55 V or more based on lithium. It is because the electrode protection effect by the positive electrode coating of this embodiment works more effectively as the charging voltage becomes higher. Moreover, as for the said charging voltage, 5.5 V or less is desirable. If the charging voltage is too high, there is a risk of decomposition of the protective film itself.
  • the charge voltage of the lithium ion battery is preferably 4.4 V or more, more preferably 4.55 V or more based on lithium, the continuous heat generation state of the battery starts from a lower temperature, so the electrolysis containing the above-mentioned dinitrile The combination with the solution is more optimal.
  • the capacity maintenance ratio ratio RH / RL can be 0.75 or more.
  • the above capacity retention ratio: RH / RL is more preferably 0.8 or more, and most preferably 0.9 or more.
  • the decrease in charge-discharge cycle characteristics can be suppressed to a low level even under high voltage.
  • the capacity retention ratio in the charge / discharge cycle test at that charge voltage is taken as RH ', and the same charge / discharge cycle test is performed at a voltage 0.15 V lower than the charge voltage.
  • RH ′ / RL ′ is more preferably 0.8 or more, and most preferably 0.9 or more.
  • B / A is preferably 1 or more, more preferably 5 or more, and most preferably 10 or more.
  • the capacity maintenance rate improvement ratio at the charging voltage is B ′
  • the capacity maintenance rate improvement ratio at the charging voltage 0.15 V lower than the charging voltage is A ′.
  • B '/ A' is preferably 1 or more, more preferably 5 or more, and most preferably 10 or more.
  • a second embodiment of the non-aqueous secondary battery of the present invention comprises a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the non-aqueous electrolyte or the positive electrode contains a fluorine-containing compound or a carbonic acid compound, and the non-aqueous electrolysis
  • the solution contains an additive other than vinylene carbonate, and the concentration of the additive in the non-aqueous electrolyte solution is 0.05% by mass or more and 3% by mass or less.
  • the positive electrode after charging the battery to 4.5 V with a 1/3 C current, the positive electrode after discharging to 3 V with a 1/3 C current is washed with methyl ethyl carbonate After vacuum drying, the surface of the positive electrode is analyzed by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the content of oxygen atoms in the surface of the positive electrode is Ro (atomic%) and the content ratio of fluorine atoms If Rf (atomic%) and the content ratio of carbon atoms with a 1s orbital bond energy of 289 to 291 eV is Rc (atomic%), Rf / Ro is 0.05 or more or 1.3 or less, or Rc / Rc Ro can be 0.05 or more and 0.75 or less. Thereby, charge / discharge cycle characteristics under high voltage can be improved.
  • fluorine-containing compound and the carbonic acid compound the same compounds as those used in the non-aqueous secondary battery of the first embodiment described above can be used.
  • a nitrogen-containing compound is desirable, and a non-fluorine-type (fluorine-free) nitrogen-containing compound is more desirable.
  • the nitrogen-containing compound it is desirable that at least one H atom is bonded to the nitrogen atom, and it is more preferable that two H atoms be bonded to the nitrogen atom.
  • the nitrogen-containing compound include amines and amides, with amines being particularly desirable. More specifically, diethylene glycol bisaminopropyl ether, diethylene oxide bishexamethylene triamine, dicyclohexylamine and the like can be used as the nitrogen-containing compound.
  • the concentration of the additive in the non-aqueous electrolyte is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and preferably 3% by mass or less, and more preferably 1% by mass or less.
  • the above-mentioned additive reacts with the positive electrode to form a film. When the amount is too small, a sufficient film is not formed, and when it is too large, the resistance becomes high.
  • the configuration other than the above-described configuration of the non-aqueous secondary battery of the present embodiment can be the same as the configuration of the non-aqueous secondary battery of the first embodiment described above.
  • the first embodiment of the method for producing a non-aqueous secondary battery of the present invention is a method for producing the non-aqueous secondary battery according to the above-mentioned first embodiment, which is selected from Component 1, Component 2 and Component 3. Providing a treatment liquid containing at least one component, and applying the treatment liquid to the surface of the positive electrode, wherein the component 1 is a sugar analog compound, and the component 2 is a metal salt The component 3 is a nitrogen-containing compound, and the positive electrode is a positive electrode after pressing.
  • the components 1 to 3 may be the same as those used in the non-aqueous secondary battery of the first embodiment described above.
  • the reason for using the positive electrode after press treatment as the positive electrode is to adjust the porosity of the positive electrode mixture layer of the positive electrode.
  • the conductive network is already formed, and by performing the coating process in that state, the influence on the conductivity is small, and the coating to the conductive material may also be performed. It is preferable in terms of battery characteristics.
  • the porosity of the positive electrode mixture layer is preferably 22% or more, more preferably 25% or more, and most preferably 28% or more, and preferably 35% or less, more preferably 32% or less, and most preferably 29% or less. desirable. If the porosity of the positive electrode mixture layer is too large, most of the treatment solution will infiltrate into the positive electrode and the covering effect on the surface becomes low, and if too small, the covering formed by the above components Is limited to the surface, and the coating strength is reduced.
  • the mass increase rate of the positive electrode before and after the immersion treatment is 3 when the mass of the positive electrode is measured. % Or more is desirable, 20% or more is more desirable, and 50% or less is desirable. If the said mass increase rate exists in the said range, the surface of a positive electrode can be wetted moderately with the said process liquid.
  • the concentration of the component in the treatment liquid is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, most preferably 0.1% by mass or more, and preferably 20% by mass or less, 10% by mass. % Or less is more desirable, and 2% by mass or less is most desirable.
  • concentration is too low, the covering effect is reduced, and when the concentration is too high, it is difficult to control the amount of coating and the resistance of the electrode increases.
  • the application amount is too small, the covering effect is reduced, and when the application amount is too large, the resistance of the electrode is increased.
  • 2nd Embodiment of the manufacturing method of the non-aqueous secondary battery of this invention is a method of manufacturing the non-aqueous secondary battery of the above-mentioned 1st Embodiment, Comprising: The component 1, the component 2, and the component 3 Preparing a non-aqueous electrolyte containing at least one component selected from the following: assembling a battery using the positive electrode, the negative electrode, and the non-aqueous electrolyte, and charging / discharging the assembled battery.
  • the component 1 is a sugar analog compound
  • the component 2 is a metal salt
  • the component 3 is a nitrogen-containing compound.
  • the components 1 to 3 may be the same as those used in the non-aqueous secondary battery of the first embodiment described above.
  • Example 1 The laminate type lithium ion battery shown in FIG. 1 was produced as follows.
  • calendering is performed to adjust the thickness of the positive electrode mixture layer to a total thickness of 75 ⁇ m, and cut so as to have a length of 30 mm and a width of 30 mm, leaving a tab weld.
  • the positive electrode was prepared. Furthermore, the active material of the tab weld of this positive electrode was removed, and the tab was welded to the tab weld to form a lead.
  • the positive electrode After measuring the mass of the positive electrode, the positive electrode is immersed in ion exchange water for 10 seconds, taken out, left for 5 seconds, and then the mass of the positive electrode is measured.
  • the mass increase rate before and after the immersion treatment of the positive electrode was 35%.
  • Diethylene triamine pentaacetic acid pentasodium (approx. 40% by mass aqueous solution, corresponding to Component 2 and Component 3) manufactured by Tokyo Chemical Industry Co., Ltd. is diluted with ion-exchanged water, and a 1 mass% aqueous solution of diethylenetriamine pentaacetic acid pentasodium is shown in this example.
  • a processing solution of Next using the coating rod which wound cellulose on the surface of the positive electrode produced above, the above-mentioned processing solution is applied by about 1 mg / cm 2 application amount, and then the above-mentioned positive electrode is dried at 120 ° C. The processed positive electrode was produced.
  • calendering is performed to adjust the thickness of the negative electrode mixture layer to a total thickness of 113 ⁇ m, and cut so as to have a length of 32 mm and a width of 32 mm, leaving a tab welded portion to produce a negative electrode. did. Furthermore, a tab was welded to the tab weld of this negative electrode to form a lead.
  • separator As a separator, what cut
  • Nonaqueous Electrolyte 1.0 mol of LiPF 6 is dissolved in 1 kg of a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) at a volume ratio of 1: 3 to prepare a mixed solution, and 100 parts by mass of the mixed solution is further added 2 parts by mass of vinylene carbonate (VC) and 3 parts by mass of succinonitrile were added to prepare a non-aqueous electrolyte.
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • FIG. 1 The top view of the produced laminated
  • a laminated electrode body and a non-aqueous electrolyte are accommodated in an outer package 11 made of a rectangular aluminum laminate film in plan view.
  • the positive electrode external terminal 12 and the negative electrode external terminal 13 are drawn from the same side of the exterior body 11.
  • Example 2 A laminate-type lithium ion battery of Example 2 was produced in the same manner as in Example 1 except that the concentration of pentasodium diethylenetriaminepentaacetate was changed to 2% by mass in the treatment liquid used for the coating treatment of the positive electrode.
  • Example 3 A laminate-type lithium ion battery of Example 3 was produced in the same manner as in Example 1 except that the concentration of pentasodium diethylenetriaminepentaacetate was changed to 5% by mass in the treatment liquid used for the coating treatment of the positive electrode.
  • Example 4 A laminate-type lithium ion battery of Example 4 was produced in the same manner as in Example 1 except that succinonitrile was not added to the non-aqueous electrolytic solution.
  • Example 5 A laminate-type lithium ion battery of Example 5 was produced in the same manner as in Example 1 except that the addition amount of succinonitrile in the non-aqueous electrolytic solution was changed to 20 parts by mass.
  • Example 6 Non-aqueous electrolysis using a 1% by mass aqueous solution of tetrasodium ethylenediaminetetraacetate (corresponding to Component 2 and Component 3) in place of the 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate in the treatment solution used for the coating treatment of the positive electrode
  • a laminated lithium ion battery of Example 6 was produced in the same manner as in Example 1 except that succinonitrile was not added to the solution.
  • Example 7 In the treatment solution used for the coating treatment of the positive electrode, 1 mass% of fructan (corresponds to component 1) and 0.9 mass% of gamma glutamic acid (corresponds to component 3) instead of a 1 mass% aqueous solution of pentasodium diethylenetriaminepentaacetate A laminate-type lithium ion battery of Example 7 was produced in the same manner as in Example 1 except that the mixed aqueous solution was used, and succinonitrile was not added to the non-aqueous electrolytic solution.
  • Example 8 The treatment liquid used for the coating treatment of the positive electrode was replaced with a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetic acid, and a 1% by mass aqueous solution of Li 2 MoO 4 (corresponding to component 2) was used. Similarly, a laminate-type lithium ion battery of Example 8 was produced.
  • Example 9 In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of Li 2 MoO 4 (corresponding to component 2) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate A laminated lithium ion battery of Example 9 was produced in the same manner as in Example 1 except that the nitrile was not added.
  • Example 10 In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of Li 2 WO 4 (corresponding to component 2) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate to form a non-aqueous electrolyte
  • a laminated lithium ion battery of Example 10 was produced in the same manner as in Example 1 except that the nitrile was not added.
  • Example 11 In the treatment solution used for the coating treatment of the positive electrode, 5 of lignin sulfonic acid sodium (corresponding to Component 1 and Component 2) made of sodium lignin sulfonate in place of a 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium A laminate-type lithium ion battery of Example 11 was produced in the same manner as in Example 1 except that a mass% aqueous solution was used, and succinonitrile was not added to the non-aqueous electrolytic solution.
  • Example 12 In the treatment solution used for the coating treatment of the positive electrode, 1 of sodium lignin sulfonate (corresponding to Component 1 and Component 2) of lignin sulfonic acid sodium instead of 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium A laminated lithium ion battery of Example 12 was produced in the same manner as Example 1 except that the addition amount of succinonitrile in the non-aqueous electrolyte was changed to 20 parts by mass using a mass% aqueous solution.
  • Example 13 In the treatment solution used for the coating treatment of the positive electrode, the 1% by mass aqueous solution of sucrose (corresponding to Component 1) is used instead of the 1% by mass aqueous solution of pentasodium diethylenetriamine pentaacetate, and the addition of succinonitrile in the non-aqueous electrolyte A laminated lithium ion battery of Example 13 was made in the same manner as Example 1 except that the amount was 20 parts by mass.
  • Example 14 In the treatment solution used for the coating treatment of the positive electrode, an example was used except that a 0.1 mass% aqueous solution of carboxymethylcellulose (CMC, corresponding to component 1) was used instead of a 1 mass% aqueous solution of diethylenetriamine pentaacetic acid pentasodium. In the same manner as in Example 1, a laminate-type lithium ion battery of Example 14 was produced.
  • CMC carboxymethylcellulose
  • Example 15 In the treatment solution used for the coating treatment of the positive electrode, a 0.1 mass% aqueous solution of carboxymethylcellulose (CMC, corresponding to component 1) is used instead of a 1 mass% aqueous solution of pentasodium diethylenetriaminepentaacetate to prepare a non-aqueous electrolyte
  • CMC carboxymethylcellulose
  • Example 16 In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sodium alginate (corresponding to Component 1 and Component 2) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetic acid to form a non-aqueous electrolyte
  • a laminated lithium ion battery of Example 16 was made in the same manner as Example 1 except that the amount of addition of sinonitrile was 20 parts by mass.
  • Example 17 Used in the processing solution used in the coating process of the positive electrode, in place of the 1 wt% aqueous solution of diethylenetriaminepentaacetic acid pentasodium, monofluorophosphate, sodium 1 mass% aqueous solution of (Na 2 PO 3 F, component 2 corresponds to), A laminate-type lithium ion battery of Example 17 was produced in the same manner as in Example 1 except that succinonitrile was not added to the non-aqueous electrolytic solution.
  • Example 18 In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of Na 3 PO 4 (corresponding to component 2) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetic acid to form a non-aqueous electrolyte.
  • a laminated lithium ion battery of Example 18 was produced in the same manner as in Example 1 except that the nitrile was not added.
  • Example 19 In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sodium metaphosphate [corresponding to (NaPO 3 ) n , component 2] is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate A laminated lithium ion battery of Example 19 was produced in the same manner as Example 1, except that succinonitrile was not added to the electrolytic solution.
  • Example 20 In the treatment solution used for the coating treatment of the positive electrode, a 1 mass% aqueous solution of sodium pyrophosphate (Na 4 P 2 O 7 , corresponding to component 2) is used instead of a 1 mass% aqueous solution of pentasodium diethylenetriamine pentaacetate.
  • a laminated lithium ion battery of Example 20 was produced in the same manner as Example 1, except that succinonitrile was not added to the water electrolyte.
  • Example 21 Non-aqueous electrolyte solution using a 1% by mass aqueous solution of 3-sulfopropyl potassium methacrylate (corresponding to component 2) in place of the 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate in the treatment liquid used for the coating treatment of the positive electrode
  • a laminated lithium ion battery of Example 21 was produced in the same manner as in Example 1 except that succinonitrile was not added.
  • Example 22 In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of lithium dibenzenesulfonic acid imide (corresponding to Component 2 and Component 3) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate A laminated lithium ion battery of Example 22 was made in the same manner as Example 1, except that succinonitrile was not added to the electrolytic solution.
  • Example 23 In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of ⁇ -cyclodextrin (corresponding to Component 1) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate to form a non-aqueous electrolyte.
  • a laminated lithium ion battery of Example 23 was made in the same manner as Example 1 except that the nitrile was not added.
  • Example 24 In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of ⁇ -cyclodextrin (corresponding to Component 1) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate to form a non-aqueous electrolyte.
  • a laminated lithium ion battery of Example 24 was produced in the same manner as in Example 1 except that the nitrile was not added.
  • Example 25 In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sodium alginate (corresponding to Component 1 and Component 2) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetic acid to form a non-aqueous electrolyte
  • a laminated lithium ion battery of Example 25 was made in the same manner as Example 1 except that no sinonitrile was added.
  • Example 26 In the treatment solution used for the coating treatment of the positive electrode, 1 mass of alginic acid and sodium alginate (corresponding to 50% partially neutralized alginic acid product, component 1 and component 2) instead of a 1 mass% aqueous solution of diethylenetriamine pentaacetic acid pentasodium A laminated lithium ion battery of Example 26 was produced in the same manner as in Example 1 except that the% aqueous solution was used and the succinonitrile was not added to the non-aqueous electrolytic solution.
  • Example 27 In the treatment solution used for the coating treatment of the positive electrode, 0.3 mass of sodium polyacrylate (molecular weight: 30,000, corresponding to component 1 and component 2) instead of 1 mass% aqueous solution of pentasodium diethylenetriamine pentaacetate A laminate-type lithium ion battery of Example 27 was produced in the same manner as in Example 1 except that a 20% aqueous solution was used, and succinonitrile was not added to the non-aqueous electrolytic solution.
  • sodium polyacrylate molecular weight: 30,000, corresponding to component 1 and component 2
  • succinonitrile was not added to the non-aqueous electrolytic solution.
  • Example 28 In the treatment solution used for the coating treatment of the positive electrode, a 0.3 mass% aqueous solution of polyacrylic acid (molecular weight: 250,000, corresponding to component 1) is used instead of a 1 mass% aqueous solution of pentasodium diethylenetriamine pentaacetate.
  • a laminate-type lithium ion battery of Example 28 was produced in the same manner as in Example 1 except that succinonitrile was not added to the water electrolyte solution.
  • Example 29 A mixed solution was prepared by dissolving 1.0 mol of LiPF 6 in 1 kg of a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) at a volume ratio of 1: 3 without coating the positive electrode by applying the treatment liquid.
  • the non-aqueous electrolyte is prepared by adding 2 parts by mass of vinylene carbonate (VC), 3 parts by mass of succinonitrile, and 0.3 parts by mass of diethylene glycol bisaminopropyl ether to 100 parts by mass of the mixture.
  • a laminated lithium ion battery of Example 29 was produced in the same manner as in Example 1 except for preparing and using this non-aqueous electrolyte.
  • Comparative example 1 A laminate-type lithium ion battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the coating treatment of the positive electrode by the application of the treatment liquid was not performed and succinonitrile was not added to the non-aqueous electrolyte.
  • Comparative example 2 A laminate-type lithium ion battery of Comparative Example 2 was produced in the same manner as Example 1, except that the coating treatment of the positive electrode by application of the treatment liquid was not performed.
  • ⁇ Heating test> The external terminal of the laminate type lithium ion battery was cut, and an imide tape was wound around the cut portion for insulation while keeping the battery configuration, and it was wrapped with aluminum foil to prepare a measurement sample. Thereafter, the measurement sample is inserted into a stainless steel sample container with a pressure of 100 atm pressure and a calorimeter "C80" manufactured by Setaram Co., and the sample container is further inserted into the main body of "C80", 1 from 40 ° C to 300 ° C. The temperature rising test was conducted at ° C./min, the heat generation of the battery was measured, and the temperature of the heat generation peak of the battery observed at 200 ° C. or higher was measured.
  • peak position correction is performed at the peak position (binding energy of 1s orbital: 284.4 eV) of the conductive support agent (carbon black) contained in the positive electrode, and for peak division, position peak and peak width Were separated.
  • the content of oxygen atom is Ro (atomic%)
  • the content of fluorine atom is Rf (atomic%)
  • the carbon atom with 1s orbital bond energy of 289 to 291 eV on the surface of the positive electrode Rf / Ro and Rc / Ro were calculated by setting the ratio to Rc (atomic%).
  • the content ratio of other atoms on the surface of the positive electrode was also measured.
  • Tables 1 and 2 show the presence or absence of the nitrile compound in the positive electrode surface treatment agent and the non-aqueous electrolyte used in Examples 1 to 29 and Comparative Examples 1 and 2 described above. Moreover, the result of the said evaluation test and the XPS analysis of the positive electrode surface is shown in Table 3 and Table 4. Moreover, in Table 3 and Table 4, the content ratio of N: nitrogen atom, P: phosphorus atom, S: sulfur atom, M: active material metal component is also shown as another atomic ratio.
  • a non-aqueous secondary battery excellent in charge and discharge cycle characteristics at high voltage can be provided, and the non-aqueous secondary battery of the present invention is a secondary battery of small size, light weight, high capacity and high energy density. It can be used as a battery for portable electronic devices such as a mobile phone or a notebook personal computer requiring a battery, or a battery for an electric car.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The purpose of the present invention is to provide a non-aqueous secondary cell having exceptional charge/discharge cycle characteristics at a high voltage, a non-aqueous electrolyte used in the non-aqueous secondary cell, and a method for manufacturing the non-aqueous secondary cell. This non-aqueous secondary cell comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte. When the positive electrode, after charging is performed to 4.5 V with a 1/3 C current and then discharging is performed to 3 V with a 1/3 C current, is cleaned with methyl ethyl carbonate and then vacuum dried, and then the surface of the positive electrode is analyzed by X-ray photoelectron spectroscopy, Rf/Ro is 0.05-1.3 inclusive, or Rc/Ro is 0.05-0.75 inclusive, where Ro (atom%) represents the proportion of oxygen atoms, Rf (atom%) represents the proportion of fluorine atoms, and Rc (atom%) represents the proportion of carbon atoms in which the binding energy of the 1s orbit is 289-291 eV, said atoms being contained at the surface of the positive electrode.

Description

非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法Non-aqueous secondary battery, non-aqueous electrolyte used therefor, and method of manufacturing the non-aqueous secondary battery
 本発明は、非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法に関するものである。 The present invention relates to a non-aqueous secondary battery, a non-aqueous electrolyte used therefor, and a method of manufacturing the non-aqueous secondary battery.
 近年、携帯電話、ノート型パーソナルコンピュータ等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、小型・軽量で且つ高容量・高エネルギー密度の二次電池が必要とされるようになってきている。 In recent years, with the development of portable electronic devices such as mobile phones and notebook personal computers, and the commercialization of electric vehicles, etc., secondary batteries of small size, light weight, high capacity and high energy density are required. It is coming.
 現在、この要求に応え得る非水二次電池、特にリチウムイオン電池では、正極活物質にコバルト酸リチウム(LixCoO2)、ニッケル酸リチウム(LixNiO2)、ニッケル-コバルト-マンガン酸リチウム(LixNiy1Coy2Mny32:0.9<x<1.1、0<y1~3<1、y1+y2+y3=1)等のリチウム含有複合酸化物あるいはこれらの複合体や混合物を用い、負極活物質に黒鉛等を用いている。そして、非水二次電池の適用機器の更なる発達に伴って、非水二次電池の更なる高容量化・高エネルギー密度化が求められている。 Currently, non-aqueous secondary battery capable of meeting this requirement, especially in the lithium-ion battery, the positive electrode active material in the lithium cobalt oxide (Li x CoO 2), lithium nickelate (Li x NiO 2), nickel - cobalt - lithium manganate with: (Li x Ni y1 Co y2 Mn y3 O 2 0.9 <x <1.1,0 <y1 ~ 3 <1, y1 + y2 + y3 = 1) lithium-containing composite oxide or a composite thereof and mixtures of such Graphite or the like is used as the negative electrode active material. And with the further development of the applicable equipment of the non-aqueous secondary battery, the further high capacity-ization and high energy density formation of the non-aqueous secondary battery are calculated | required.
 非水二次電池の高容量化及び高エネルギー密度化を図る手法の一つとして、正極活物質を高電圧で充電して用いることが挙げられる。しかし、非水二次電池の高エネルギー密度化及び高電圧化に伴い、電池の充放電サイクル特性の低下が顕著になってきた。 One of methods for achieving high capacity and high energy density of the non-aqueous secondary battery is to charge the positive electrode active material with high voltage and use it. However, with the increase in energy density and voltage of non-aqueous secondary batteries, the decrease in charge-discharge cycle characteristics of the batteries has become remarkable.
 従来、高電圧下における充放電サイクル特性の低下を抑制するため、正極活物質に異種金属を固溶させ、正極の表面を金属酸化物で被覆することが提案されているが、被膜の高電圧安定性に劣り、被膜と電解液との相互作用により被膜が劣化するという問題がある。また、同様の目的で、正極の表面を有機物やアルカリ金属塩、アルカリ土類塩で被覆することも種々検討されている。しかし、有機化合物からなる被膜の場合、一般にフッ素化合物等の耐高電圧性材料を用いて被膜を形成しなければ高電圧用の被膜としては使用に耐えない。また、有機化合物からなる被膜は、電解液により膨潤しやすいため、電解液と正極とを遮断するという被膜効果は低いと考えられる。更に、アルカリ金属塩、アルカリ土類塩で被覆を形成した場合、被膜が電解液に溶解しやすく、また、被膜が電解液を吸収しやすく、いずれも被膜効果が低下する問題がある。 In the past, in order to suppress the decrease in charge-discharge cycle characteristics under high voltage, it has been proposed to make the positive electrode active material form a solid solution of different metals and coat the surface of the positive electrode with metal oxide. There is a problem that the stability is poor and the film is degraded due to the interaction between the film and the electrolyte. Further, for the same purpose, various studies have been made to coat the surface of the positive electrode with an organic substance, an alkali metal salt or an alkaline earth salt. However, in the case of a film made of an organic compound, unless a film is generally formed using a high voltage resistant material such as a fluorine compound, it can not withstand use as a film for high voltage. In addition, since a film made of an organic compound is easily swollen by the electrolytic solution, it is considered that the film effect of blocking the electrolytic solution and the positive electrode is low. Furthermore, when the coating is formed of an alkali metal salt or an alkaline earth salt, the coating is easily dissolved in the electrolytic solution, and the coating tends to absorb the electrolytic solution, and there is a problem that the coating effect is reduced.
 例えば、非特許文献1には、正極活物質を無機酸化物でコーテイングする例が記載されている。これにより、活物質の副反応は抑制できるが、活物質表面の電子伝導性が阻害される恐れがある。特許文献1には、活物質の表面が、多価のフッ素含有有機リチウム塩で被覆された例について記載されており、高電圧に強いフッ素化合物で被覆することで電解液の高電圧下での反応は抑制されるが、簡便な手法ではなく、抵抗の増加も懸念される。特許文献2には、正極塗料中に保護膜材料を添加し、正極材料表面に熱作動保護膜を形成し、電池の安全性を改善することが提案されているが、塗料に保護膜材料を添加するため、電極の抵抗増加が懸念される。特許文献3には、電極表面(特に負極)表面に多孔質保護膜を形成することが提案されているが、多孔質であるため電解液と正極の反応抑制には効果が低いと考えられる。また、特許文献3には、正極表面に保護膜を形成する具体例は記載されていない。 For example, Non-Patent Document 1 describes an example in which a positive electrode active material is coated with an inorganic oxide. Thereby, the side reaction of the active material can be suppressed, but there is a possibility that the electron conductivity of the surface of the active material is inhibited. Patent Document 1 describes an example in which the surface of an active material is coated with a polyvalent fluorine-containing organic lithium salt, and by covering with a fluorine compound that is resistant to high voltage, the electrolyte is subjected to high voltage. Although the reaction is suppressed, it is not a simple method, and there is also concern about an increase in resistance. Patent Document 2 proposes that a protective film material is added to the positive electrode paint, and a thermally actuated protective film is formed on the surface of the positive electrode material to improve the safety of the battery. Due to the addition, the resistance of the electrode may be increased. Although Patent Document 3 proposes that a porous protective film is formed on the surface of an electrode (in particular, a negative electrode), it is considered to be less effective in suppressing the reaction between an electrolytic solution and a positive electrode because it is porous. Moreover, the specific example which forms a protective film in the positive electrode surface in patent document 3 is not described.
 また、従来、安全性確保のために様々な電解液添加剤が検討されてきた。シクロヘキシルベンゼンやビフェニル等がその代表例であるが、4.35V程度の高電圧まで充電されるタイプの電池では、通常の充電状態でも添加剤が反応する領域になってしまい、実用上はそれらの添加剤を使用できない場合が多くなってきている。また、通常の4.2V充電であっても添加剤の一部は反応して電池性能に影響を与える。そこで、高電圧下でも使用可能で、安全性を確保できる電解液添加剤が必要になってきている。 Also, conventionally, various electrolyte additives have been studied to ensure safety. Cyclohexylbenzene, biphenyl, etc. are representative examples, but in a battery of the type in which the battery is charged to a high voltage of about 4.35 V, the additive reacts in the normal state of charge, and in practical use In many cases, additives can not be used. Also, even with normal 4.2 V charging, some of the additives react to affect the battery performance. Therefore, there is a need for an electrolytic solution additive that can be used even under high voltage and can ensure safety.
 特許文献4には、高い電圧下でも使用可能な非水二次電池が提案されており、その電池の電解液添加剤として分子内にニトリル基を2以上有する化合物を使用することが記載され、具体的には、スクシノニトリル等のジニトリルを用いることが記載されている。一方、特許文献4では、電極の反応性を考慮すると分子内にニトリル基を2以上有する化合物の添加量は、1質量%以下が望ましい範囲としている。 Patent Document 4 proposes a non-aqueous secondary battery which can be used even under high voltage, and describes the use of a compound having two or more nitrile groups in the molecule as an electrolytic solution additive of the battery, Specifically, the use of dinitriles such as succinonitrile is described. On the other hand, in Patent Document 4, in consideration of the reactivity of the electrode, the addition amount of the compound having two or more nitrile groups in the molecule is in a desirable range of 1% by mass or less.
 また、特許文献5には、電解液添加剤としてグルタロニトリル等のジニトリルを高濃度で用いる非水電解液二次電池が提案されている。特許文献5では、充放電サイクル特性の向上は記載されているが、その充放電サイクル特性の評価を、対極としてリチウム金属を用いて行っており、負極の反応に課題がある。一般にニトリル類は、電池の膨れを抑制するなどの効果はあるが、負極の反応性に課題があり、我々の検討でも充放電サイクル特性に課題があることが分かっている。 Further, Patent Document 5 proposes a non-aqueous electrolyte secondary battery using a dinitrile such as glutaronitrile at a high concentration as an electrolyte additive. Although Patent Document 5 describes the improvement of charge and discharge cycle characteristics, evaluation of the charge and discharge cycle characteristics is performed using lithium metal as a counter electrode, and there is a problem in the reaction of the negative electrode. In general, nitriles have an effect of suppressing battery swelling and the like, but there is a problem in the reactivity of the negative electrode, and it is known that the charge and discharge cycle characteristics also have a problem in our examination.
特開2012-243696号公報JP 2012-243696 A 特開2010-157512号公報JP, 2010-157512, A 特開2009-301765号公報JP, 2009-301765, A 特開2008-108586号公報JP 2008-108586 A 特開平9-161845号公報Unexamined-Japanese-Patent No. 9-161845 gazette
 本発明は上記問題を解決するものであり、高電圧での充放電サイクル特性に優れた非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法を提供するものである。 The present invention solves the above problems, and provides a non-aqueous secondary battery excellent in charge and discharge cycle characteristics at high voltage, a non-aqueous electrolyte used therefor, and a method of manufacturing the non-aqueous secondary battery. It is.
 本発明の第1の非水二次電池は、正極、負極及び非水電解液を含む非水二次電池であって、前記正極の表面が、成分1、成分2及び成分3から選ばれる少なくとも1つの成分で被覆されており、前記成分1が、糖類似化合物であり、前記成分2が、金属塩であり、前記成分3が、窒素含有化合物であることを特徴とする。 The first non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the surface of the positive electrode is at least one selected from Component 1, Component 2 and Component 3. It is characterized in that it is coated with one component, the component 1 is a sugar analog compound, the component 2 is a metal salt, and the component 3 is a nitrogen-containing compound.
 本発明の第2の非水二次電池は、正極、負極及び非水電解液を含む非水二次電池であって、前記非水電解液又は前記正極は、フッ素含有化合物又は炭酸化合物を含み、前記非水電解液は、ビニレンカーボネート以外の添加剤を含み、前記非水電解液における前記添加剤の濃度が、0.05質量%以上3質量%以下であることを特徴とする。 The second non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolytic solution, and the non-aqueous electrolytic solution or the positive electrode contains a fluorine-containing compound or a carbonic acid compound. The non-aqueous electrolyte contains an additive other than vinylene carbonate, and the concentration of the additive in the non-aqueous electrolyte is 0.05% by mass or more and 3% by mass or less.
 また、本発明の非水電解液は、上記本発明の非水二次電池に用いる非水電解液であって、フッ素含有化合物及び炭酸化合物から選ばれる少なくとも一方を含むことを特徴とする。 The non-aqueous electrolyte of the present invention is a non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention, characterized in that it contains at least one selected from a fluorine-containing compound and a carbonic acid compound.
 また、本発明の第1の非水二次電池の製造方法は、上記本発明の非水二次電池を製造する方法であって、成分1、成分2及び成分3から選ばれる少なくとも1つの成分を含む処理液を準備する工程と、前記処理液を正極の表面に塗布する工程とを含み、前記成分1が、糖類似化合物であり、前記成分2が、金属塩であり、前記成分3が、窒素含有化合物であり、前記正極は、プレス処理後の正極であることを特徴とする。 The first method for producing a non-aqueous secondary battery according to the present invention is a method for producing the non-aqueous secondary battery according to the present invention, wherein at least one component selected from Component 1, Component 2 and Component 3 And a step of applying the treatment liquid to the surface of the positive electrode, wherein the component 1 is a sugar analog compound, the component 2 is a metal salt, and the component 3 is a step of preparing the treatment solution A nitrogen-containing compound, and the positive electrode is a positive electrode after pressing.
 また、本発明の第2の非水二次電池の製造方法は、上記本発明の非水二次電池を製造する方法であって、成分1、成分2及び成分3から選ばれる少なくとも1つの成分を含む非水電解液を準備する工程と、正極、負極及び前記非水電解液を用いて電池を組み立てる工程と、前記組み立てた電池を充放電する工程とを含み、前記成分1が、糖類似化合物であり、前記成分2が、金属塩であり、前記成分3が、窒素含有化合物であることを特徴とする。 The second method for producing a non-aqueous secondary battery according to the present invention is a method for producing the non-aqueous secondary battery according to the present invention, wherein at least one component selected from component 1, component 2 and component 3 Comprising the steps of: preparing a non-aqueous electrolyte containing the following; assembling a battery using the positive electrode, the negative electrode, and the non-aqueous electrolyte; and charging and discharging the assembled battery, wherein The compound is a compound, the component 2 is a metal salt, and the component 3 is a nitrogen-containing compound.
 本発明によれば、高電圧での充放電サイクル特性に優れた非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法を提供できる。 According to the present invention, it is possible to provide a non-aqueous secondary battery excellent in charge and discharge cycle characteristics at high voltage, a non-aqueous electrolyte used therefor, and a method of manufacturing the non-aqueous secondary battery.
図1は、非水二次電池の一例を示す平面図である。FIG. 1 is a plan view showing an example of the non-aqueous secondary battery.
 (非水二次電池の第1の実施形態)
 本発明の非水二次電池の第1の実施形態は、正極、負極及び非水電解液を備え、上記正極の表面が、成分1、成分2及び成分3から選ばれる少なくとも1つの成分で被覆されており、上記成分1が糖類似化合物であり、上記成分2が金属塩であり、上記成分3が窒素含有化合物である。
(First Embodiment of Nonaqueous Secondary Battery)
The first embodiment of the non-aqueous secondary battery of the present invention comprises a positive electrode, a negative electrode and a non-aqueous electrolyte, and the surface of the positive electrode is coated with at least one component selected from component 1, component 2 and component 3. The component 1 is a sugar analog compound, the component 2 is a metal salt, and the component 3 is a nitrogen-containing compound.
 上記正極の表面を上記成分で被覆することにより、高電圧下でも安定な被膜を正極の表面に形成でき、正極と非水電解液との接触を減少させて、高電圧下での充放電サイクル特性を向上できる。 By coating the surface of the positive electrode with the above components, a stable film can be formed on the surface of the positive electrode even under high voltage, and the contact between the positive electrode and the non-aqueous electrolyte can be reduced to perform charge and discharge cycles under high voltage. Characteristics can be improved.
 また、本発明者らは、上記正極の表面を上記成分で被覆することを検討する中で、正極の表面を特定の表面状態にすることにより、電解液の添加剤効果がより向上でき、高電圧下での充放電サイクル特性を確実に向上できることを確認した。具体的には、電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、上記正極の表面をX線光電子分光分析法で分析した場合、上記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下である表面状態が好ましいことが判明した。 In addition, the present inventors consider coating the surface of the positive electrode with the above components, and by setting the surface of the positive electrode to a specific surface state, the additive effect of the electrolytic solution can be further improved, which is high. It was confirmed that the charge and discharge cycle characteristics under voltage could be improved with certainty. Specifically, after charging the battery to 4.5 V with a 1/3 C current, the positive electrode after discharging to 3 V with a 1/3 C current is washed with methylethyl carbonate and then vacuum dried, and then the above When the surface of the positive electrode is analyzed by X-ray photoelectron spectroscopy, the content ratio of oxygen atoms is Ro (atomic%), the content ratio of fluorine atoms is Rf (atomic%), and the binding energy of 1s orbital on the surface of the positive electrode Rf / Ro is 0.05 or more and 1.3 or less, or Rc / Ro is 0.05 or more and 0.75 or less, where Rc (atomic%) is a carbon atom content ratio of 289 to 291 eV The surface condition proved to be favorable.
 以下、本実施形態の各要素について詳述する。 Hereinafter, each element of this embodiment will be described in detail.
 <成分1、成分2及び成分3>
 電池の充電電圧がリチウム基準で4.2Vを超える場合に、電解液や電極に含有させる物質として、従来、高電圧下で反応しにくい耐高電圧性のフッ素系化合物等がよく利用されてきた。一方、本発明者らの検討の結果、高電圧で反応しやすい窒素原子を含有する化合物、及び、電池に使用するのは望ましくないと考えられてきたOH基を有するポリマー等も、高電圧下での充放電サイクル特性の向上に効果が高いことが分かった。具体的には、糖類似化合物(成分1)、金属塩(成分2)及び窒素含有化合物(成分3)である。特に、糖類似化合物(成分1)はOH基を有するものが多く、また、窒素含有化合物(成分3)は酸化に弱い窒素原子部を有しており、従来は、高電圧下で使用される正極と共には通常使用されないものである。しかし、本発明者らは、高電圧充電電池に通常用いられない物質についてもあえて検討した結果、高電圧下での充放電サイクル特性の向上に効果があることを確認した。上記成分1~3は、正極にバインダ以外として含有させることにより効果を発揮するが、特に正極の表面に多く存在させることにより効果があり、正極の表面を成分1、成分2及び成分3から選ばれる少なくとも1つの成分で被覆することが最も効果が大きい。また、成分1~3に該当する具体的な物質は、一つの物質で複数の成分に分類されているものが好ましく、例えば、リグニンスルホン酸マグネシウムは、糖類似化合物(成分1)であり、且つ、金属塩(成分2)でもあるので、好ましい成分である。
<Component 1, Component 2 and Component 3>
Conventionally, high voltage resistant fluorine-based compounds that are difficult to react under high voltage have been widely used as substances to be contained in the electrolyte solution and the electrode when the charge voltage of the battery exceeds 4.2 V in lithium standard . On the other hand, as a result of studies by the present inventors, compounds containing nitrogen atoms that are easily reacted at high voltages, and polymers having OH groups that have been considered undesirable for use in batteries, etc. Was found to be highly effective in improving the charge and discharge cycle characteristics. Specifically, they are a sugar analog compound (component 1), a metal salt (component 2) and a nitrogen-containing compound (component 3). In particular, many of the sugar analogues (component 1) have an OH group, and the nitrogen-containing compounds (component 3) have a nitrogen atom moiety which is susceptible to oxidation, and conventionally they are used under high voltage It is not usually used with the positive electrode. However, as a result of daringly examining substances that are not usually used in high voltage rechargeable batteries, the present inventors confirmed that they are effective in improving the charge and discharge cycle characteristics under high voltage. The components 1 to 3 exhibit the effect by containing the positive electrode as a component other than a binder, but the effect is exhibited particularly by causing the surface to be present in large amounts on the surface of the positive electrode, and the surface of the positive electrode is selected from component 1, component 2 and component 3. Coating with at least one component is most effective. Further, specific substances corresponding to the components 1 to 3 are preferably one substance and classified into a plurality of components, for example, magnesium lignin sulfonate is a sugar analog compound (component 1), and Since it is also a metal salt (component 2), it is a preferable component.
 [成分1]
 上記成分1は、糖類似化合物である。上記糖類似化合物は、糖類とその関連物質を含む。上記糖類としては、ブドウ糖等の単糖類、スクロース等の多糖類、デンプン、アミロース、アミロペクチン、グリコーゲン、セルロース、ペクチン、グルコマンナン等も含まれる。また、α-、β-、γ-シクロデキストリン、デオキシリボース、フコース、ラムノース、グルクロン酸、ガラクツロン酸、グルコサミン、ガラクトサミン、グリセリン、キシリトール、ソルビトール、アスコルビン酸(ビタミンC)、グルクロノラクトン、グルコノラクトン等も糖類に含まれる。また、上記糖類の関連物質には、OH基を複数有する化合物であるリグニン、リグニン誘導体、アルギン酸、アルギン酸塩等も含まれ、OH基を複数有する化合物には、カルボキシメチルセルロース、ヒドロキシメチルセルロース等も含まれる。
[Component 1]
Component 1 above is a sugar analog compound. The above sugar analogues include sugars and related substances. The above saccharides include monosaccharides such as glucose, polysaccharides such as sucrose, starch, amylose, amylopectin, glycogen, cellulose, pectin, glucomannan and the like. Also, α-, β-, γ-cyclodextrin, deoxyribose, fucose, rhamnose, glucuronic acid, galacturonic acid, glucosamine, galactosamine, glycerin, xylitol, sorbitol, ascorbic acid (vitamin C), glucuronolactone, gluconolactone Etc. are also included in the saccharides. Further, related substances of the above-mentioned saccharides include lignin, lignin derivative, alginic acid, alginate and the like which are compounds having a plurality of OH groups, and compounds having a plurality of OH groups include carboxymethylcellulose and hydroxymethylcellulose etc. .
 上記糖類としては、スクロース等の多糖類が望ましく、上記OH基を複数有する化合物としては、カルボキシメチルセルロース、ヒドロキシメチルセルロース、リグニン化合物(リグニン、リグニン誘導体)、アルギン酸、アルギン酸塩が望ましい。 As said saccharides, polysaccharides, such as sucrose, are desirable, As a compound which has multiple said OH groups, carboxymethylcellulose, hydroxymethylcellulose, lignin compounds (lignin, lignin derivative), alginic acid, and alginate are desirable.
 上記糖類似化合物の分子量は、電解液中で溶解しにくいように200以上が望ましく、500以上がより望ましく、1000以上が最も望ましい。 The molecular weight of the above-mentioned sugar analog compound is preferably 200 or more, more preferably 500 or more, and most preferably 1000 or more so as to be difficult to dissolve in the electrolytic solution.
 上記成分として、本来不安定なOH基を有する化合物が高電圧で効果がある理由については明確ではないが、高電圧による分子状態の変化、及び、その分子間の水素結合が作用していると考えられる。また、上記成分にフッ素原子を含有していないことが望ましい。上記成分にフッ素原子を含有すると被覆物の溶解や膨潤が起きやすくなり正極の保護効果が低下する傾向にあるからである。 Although it is not clear why the compound having the originally unstable OH group is effective at high voltage as the above component, it is unclear that the change of molecular state by high voltage and the hydrogen bond between the molecules are acting Conceivable. Moreover, it is desirable not to contain the fluorine atom in the said component. If a fluorine atom is contained in the above component, dissolution and swelling of the coating tend to occur, and the protective effect of the positive electrode tends to decrease.
 [成分2]
 上記成分2は、金属塩であり、望ましくはアルカリ金属塩又はアルカリ土類金属塩であり、より望ましくはマグネシウム塩又はナトリウム塩である。また、リン系の塩、硫酸塩、カルボン酸塩が望ましく、特にリン系の塩が望ましい。上記リン系の塩としては、例えば、モノフルオロリン酸塩(MA2PO3F)、メタリン酸塩((MAPO3n)、ピロリン酸塩(MA427)が挙げられる。上記化学式中のMAは、金属元素を示し、価数は1~3である。
[Component 2]
Component 2 is a metal salt, preferably an alkali metal salt or an alkaline earth metal salt, more preferably a magnesium salt or a sodium salt. Further, phosphorus-based salts, sulfates and carboxylates are desirable, and phosphorus-based salts are particularly desirable. The salt of the phosphorus-based, for example, monofluorophosphate (M A2 PO 3 F), metaphosphate ((M A PO 3) n ), pyrophosphate (M A4 P 2 O 7) . M A in the above chemical formula represents a metal element, and the valence is 1 to 3.
 また、上記成分2としては、ポリ酸塩も望ましい。上記ポリ酸塩とは、化学式が[Mxy]n-(Mは、Mo、V、W、Ti、Al、Nb等)で表される分子を含む塩を指す呼称である。例えば、タングステン酸、モリブデン酸、ヴァナジン酸、マンガン酸等の塩類が挙げられる。上記のリン系の塩やポリ酸塩が望ましいのは、高電圧でも安定で電解液にも溶解しにくいためと考えられる。 Moreover, as said component 2, a poly-acid salt is also desirable. The above-mentioned poly acid salt is a designation indicating a salt containing a molecule represented by the chemical formula [M x O y ] n- (where M is Mo, V, W, Ti, Al, Nb, etc.). For example, salts of tungstic acid, molybdic acid, vanadic acid, manganic acid and the like can be mentioned. The above-mentioned phosphorus-based salts and poly-acid salts are desirable because they are stable even at high voltage and difficult to dissolve in the electrolyte.
 [成分3]
 上記成分3は、窒素含有化合物である。上記窒素含有化合物は、部分的に塩になっていることが望ましい。これにより、窒素含有化合物が水溶性となり電極処理がしやすくなるからである。通常は、窒素含有化合物は、高電圧には弱く電池を劣化させやすいと思われている。しかし、多くの窒素含有化合物は、高電圧で反応している可能性が高いが、反応した後に良好な被覆効果を示すことも多い。
[Component 3]
Component 3 is a nitrogen-containing compound. It is desirable that the nitrogen-containing compound be partially in the form of a salt. This is because the nitrogen-containing compound becomes water soluble and the electrode processing becomes easy. In general, nitrogen-containing compounds are believed to be weak at high voltages and prone to battery degradation. However, many nitrogen-containing compounds are likely to be reactive at high voltages, but often exhibit good coverage after reaction.
 上記窒素含有化合物としては、アミン、アミド、イミド、アミノ酸、タンパク質等が挙げられる。一方、上記窒素含有化合物は、非水電解液中に溶解すると被覆効果が十分に得られない場合もあるので、溶解しにくいように塩になっているか、分子量が200以上の化合物であることが望ましく、塩であることがより望ましい。上記窒素含有化合物塩のアニオン部分は、カルボン酸基、スルホン酸基、リン酸基が望ましい。上記窒素含有化合物塩としては、例えば、ジエチレントリアミン五酢酸五ナトリウム等のジエチレントリアミン五酢酸塩、エチレンジアミン四酢酸四ナトリウム等のエチレンジアミン四酢酸塩、及びその他のマグネシウム塩、ポリグルタミン酸ナトリウム等のポリペプチド類とその塩、タンパク質、アスパラギン酸塩、ヒアルロン酸ナトリウム(鶏冠由来)、ポリイミド塩、ポリアミド塩、ポリアリルアミン等が挙げられる。化合物1分子中において、上記塩の部分が複数個あることが望ましく、上記塩の部分が4個以上あることがより望ましく、5個以上が最も望ましい。上記窒素含有化合物塩は、アミンの酢酸塩であることがより望ましい。 Examples of the nitrogen-containing compound include amines, amides, imides, amino acids and proteins. On the other hand, since the above nitrogen-containing compound may not sufficiently obtain a coating effect when it is dissolved in a non-aqueous electrolytic solution, it may be a salt or a compound having a molecular weight of 200 or more so as not to dissolve easily. Desirably, the salt is more desirable. The anion moiety of the nitrogen-containing compound salt is preferably a carboxylic acid group, a sulfonic acid group or a phosphoric acid group. Examples of the nitrogen-containing compound salts include diethylenetriaminepentaacetic acid salts such as diethylenetriaminepentaacetic acid pentasodium, ethylenediaminetetraacetic acid salts such as ethylenediaminetetraacetic acid tetrasodium, other magnesium salts, and polypeptides such as sodium polyglutamate and the like Examples include salts, proteins, aspartate, sodium hyaluronate (derived from chicken crown), polyimide salts, polyamide salts, polyallylamine and the like. It is desirable for the compound to have a plurality of salt portions in one molecule, more desirably 4 or more portions, and most desirably 5 or more portions of the salt. More preferably, the nitrogen-containing compound salt is an acetate of an amine.
 また、上記成分にフッ素原子を含有していないことが望ましい。上記成分にフッ素原子を含有すると被覆物の溶解や膨潤が起きやすくなり正極の保護効果が低下する傾向にあるからである。 Moreover, it is desirable not to contain the fluorine atom in the said component. If a fluorine atom is contained in the above component, dissolution and swelling of the coating tend to occur, and the protective effect of the positive electrode tends to decrease.
 [正極の被覆]
 上記正極の被覆は、上記成分1~3を少なくとも主成分として被覆処理を行うことが望ましい。副成分としてアルミナ等の絶縁材料や添加物を入れることもできるが、副成分が多くなると副成分の部分から電解液が浸入し被覆による保護効果が損なわれるおそれがあるからである。具体的な正極の被覆方法は、上記成分1~3を少なくとも含む処理液を正極の表面に塗布することにより行うことができる。その場合の上記処理液中の上記成分1~3の固形分中の割合は、50質量%以上が望ましく、70質量%以上がより望ましく、90質量%以上が最も望ましい。
[Coating of positive electrode]
It is desirable that the coating of the positive electrode is performed with the components 1 to 3 as at least a main component. Although an insulating material such as alumina or an additive can be added as a secondary component, if the secondary component is increased, the electrolytic solution may infiltrate from the part of the secondary component and the protective effect of the coating may be impaired. A specific method of coating the positive electrode can be carried out by applying a treatment liquid containing at least the components 1 to 3 on the surface of the positive electrode. In that case, the proportion of the solid content of the components 1 to 3 in the treatment liquid is desirably 50% by mass or more, more desirably 70% by mass or more, and most desirably 90% by mass or more.
 また、上記正極の他の被覆方法としては、上記成分1~3を正極活物質中に含有させるか、又は上記成分1~3を非水電解液中に含有させて、電池を組み立てた後に、充放電する方法がある。 Moreover, as another coating method of the said positive electrode, after making the said components 1 to 3 contain in a positive electrode active material, or making the said components 1 to 3 contain in a non-aqueous electrolyte, and assembling a battery, There is a method to charge and discharge.
 上記正極の被覆方法がどの方法であっても、正極の電子伝導を確保する点、及び被膜の破壊を防ぐ点から、プレス処理後の正極に上記被膜を形成することが望ましい。 Whichever method is used to coat the positive electrode, it is desirable to form the above-mentioned film on the positive electrode after pressing, from the viewpoint of securing the electron conduction of the positive electrode and the prevention of the film breakage.
 <正極の表面状態>
 上記正極の表面状態とは、前述のとおり、電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の上記正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、上記正極の表面をX線光電子分光分析法(XPS)で分析した場合、上記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下である正極の表面状態をいう。上記正極の表面状態においては、上記正極の表面に何らかの被膜が形成されていると考えられる。上記被膜は、前述の成分1~3による正極の被覆の作用により形成されてもよいし、後述する非水電解液に含まれる特定の成分又は特定の添加剤の作用により形成されてもよい。
<Surface condition of positive electrode>
With the surface condition of the positive electrode, as described above, after charging the battery to 4.5 V with a current of 1/3 C, the positive electrode after discharging to 3 V with a current of 1/3 C was washed with methyl ethyl carbonate After that, when the surface of the positive electrode is analyzed by X-ray photoelectron spectroscopy (XPS) after vacuum drying, the oxygen atom content ratio Ro (atomic%) and the fluorine atom content ratio on the surface of the positive electrode Assuming that the content ratio of carbon atoms having Rf (atomic%) and 1s orbital bonding energy of 289 to 291 eV is Rc (atomic%), Rf / Ro is 0.05 or more and 1.3 or less, or Rc / Ro Surface state of the positive electrode which is 0.05 or more and 0.75 or less. In the surface state of the positive electrode, it is considered that a film is formed on the surface of the positive electrode. The film may be formed by the action of the coating of the positive electrode with the components 1 to 3 described above, or may be formed by the action of a specific component or a specific additive contained in the non-aqueous electrolyte described later.
 上記Rf/Roは、0.05以上が好ましく、0.1以上がより好ましく、また、1.3以下が好ましく、1.0以下がより好ましく、0.5以下が最も好ましい。また、上記Rc/Roは、0.05以上が好ましく、0.1以上がより好ましく、また、0.75以下が好ましく、0.6以下がより好ましく、0.5以下が最も好ましい。これらの値が大きすぎると形成された被膜の電極保護性能が低くなる傾向があり、小さすぎると電極保護性能は高いが、抵抗増加による電気特性が低下する傾向がある。 The Rf / Ro is preferably 0.05 or more, more preferably 0.1 or more, and preferably 1.3 or less, more preferably 1.0 or less, and most preferably 0.5 or less. The Rc / Ro is preferably 0.05 or more, more preferably 0.1 or more, and preferably 0.75 or less, more preferably 0.6 or less, and most preferably 0.5 or less. When these values are too large, the electrode protection performance of the formed film tends to be low. When the values are too small, the electrode protection performance is high, but the electrical characteristics due to the increase in resistance tend to be deteriorated.
 上記Rf/Ro及び上記Rc/Roが、どうして上記範囲内であることが望ましいかは検討中であるが、正極の表面は様々な酸素を含む化合物を含む状態で形成されている(例えば、活物質の酸素、電解液分解物の酸素等)。また、酸素の含有量についても炭素に次いで多く、一方で酸素はイオンの移動と電極の保護に重要な元素である。例えば、金属酸化物正極の場合は、酸素は活物質の構成元素であり、イオン輸送や反応性にかかわる。また、正極の表面にできた生成物も、炭酸化合物(炭酸塩、炭酸エステル等)、リン酸化合物、硫酸化合物、アルコラート、エーテル化合物等の被膜形成とその形成反応に重要な成分である。 It is under investigation whether it is desirable that the above Rf / Ro and the above Rc / Ro are within the above range, but the surface of the positive electrode is formed in a state of containing various compounds containing oxygen (eg, active Oxygen of substance, oxygen of electrolyte decomposition product etc.). In addition, the content of oxygen is also second highest to carbon, while oxygen is an important element for ion migration and electrode protection. For example, in the case of a metal oxide positive electrode, oxygen is a constituent element of the active material, and is involved in ion transport and reactivity. Further, the product formed on the surface of the positive electrode is also an important component for film formation such as a carbonic acid compound (carbonate, carbonate etc.), a phosphoric acid compound, a sulfuric acid compound, an alcoholate, an ether compound etc. and its formation reaction.
 ここで、上記Rf/Ro及び上記Rc/Roが上記範囲内であることは、正極の表面に良好な保護膜が特定の状態で形成され、1s軌道の結合エネルギーが289~291eVの炭素原子を含む炭素含有化合物あるいはフッ素化合物等の電解液の分解等による生成物が正極の表面に形成されることを抑えることができることを意味していると考えられる。即ち、上記炭素含有化合物は主に炭酸化合物と考えられ、高電圧下ではCO2を発生させる場合もあるので多すぎると望ましくない。また、正極の表面に存在するフッ素は、電解液中のLiPF6等のフッ素化合物成分や正極に含まれるフッ素化合物成分由来であるが、このフッ素が正極の表面に多く存在するとLiイオンの出入りがしにくくなり電池特性が低下してしまうと共に不均一な反応も起こり、高電圧のサイクル特性も低下する恐れがある。一方、上記炭素含有化合物やフッ素化合物は、電極保護やイオンの輸送にもかかわっているので、少量は存在しないと電気特性に影響するものと推察される。 Here, when the above Rf / Ro and the above Rc / Ro are within the above range, a good protective film is formed in a specific state on the surface of the positive electrode, and the 1s orbital binding energy is 289 to 291 eV carbon atom It is considered to mean that it is possible to suppress formation of the product of the decomposition of the electrolytic solution such as the carbon-containing compound or the fluorine compound contained on the surface of the positive electrode. That is, the above carbon-containing compound is mainly considered to be a carbonic acid compound, and may generate CO 2 under high voltage, so it is not preferable to add too much. Further, although the fluorine present on the surface of the positive electrode is derived from the fluorine compound component such as LiPF 6 in the electrolytic solution and the fluorine compound component contained in the positive electrode, when a large amount of this fluorine is present on the surface of the positive electrode It is difficult to do so, the battery characteristics are degraded, and the non-uniform reaction also occurs, and the high voltage cycle characteristics may also be degraded. On the other hand, since the above carbon-containing compounds and fluorine compounds are also involved in electrode protection and ion transport, it is presumed that the absence of a small amount affects the electrical characteristics.
 上記正極が上記表面状態である場合、上記正極の表面におけるコバルト(Co)、ニッケル(Ni)、マンガン(Mn)及び鉄(Fe)の含有割合の合計は、上記被膜の形成により、低下するが、低下しすぎると電気特性が損なわれる。このため、上記正極の表面をXPS分析した場合、上記正極の表面におけるCo、Ni、Mn及びFeの含有割合の合計は、0.1原子%以上が好ましく、0.2原子%以上がより好ましく、0.5原子%以上が最も好ましく、また、15原子%以下が好ましく、5原子%以下がより好ましく、3原子%以下が最も好ましい。 When the positive electrode is in the surface state, the total content of cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe) on the surface of the positive electrode is reduced by the formation of the film. If it is too low, the electrical properties will be impaired. Therefore, when the surface of the positive electrode is subjected to XPS analysis, the total content ratio of Co, Ni, Mn and Fe on the surface of the positive electrode is preferably 0.1 atomic% or more, more preferably 0.2 atomic% or more. 0.5 atomic% or more is most preferable, 15 atomic% or less is preferable, 5 atomic% or less is more preferable, and 3 atomic% or less is most preferable.
 上記正極を前述のリン系の塩、硫酸塩、ポリ酸塩、窒素含有化合物等により被覆した場合は、上記正極の表面におけるリン(P)、イオウ(S)、金属成分(Mo、V、W、Ti、Al、Nb等)、及び窒素(N)の各含有割合が特定の範囲にあることが望ましい。 When the above positive electrode is coated with the above-mentioned phosphorus salt, sulfate, polyacid salt, nitrogen-containing compound, etc., phosphorus (P), sulfur (S), metal components (Mo, V, W) on the surface of the above positive electrode It is desirable that each content ratio of Ti, Al, Nb, etc., and nitrogen (N) be in a specific range.
 具体的には、上記正極の表面をXPS分析した場合、S、金属成分(Mo、V、W、Ti、Al、Nb等)及びNの各含有割合は、0.1原子%以上が望ましく、0.2原子%以上がより望ましく、0.5原子%以上が最も望ましく、また、1原子%以下が望ましく、0.5原子%以下がより望ましい。また、同様にP原子の含有割合は、0.5原子%以上が望ましく、1原子%以上がより望ましく、2%原子以上が最も望ましく、また、10原子%以下が望ましく、5原子%以下がより望ましい。これらの値が大きすぎると形成された被膜の電極保護性能が低くなる傾向があり、小さすぎると電極保護性能は高いが、抵抗増加による電気特性が低下する傾向がある。 Specifically, when the surface of the positive electrode is subjected to XPS analysis, the content of each of S, metal components (Mo, V, W, Ti, Al, Nb, etc.) and N is preferably 0.1 atomic% or more. 0.2 atomic% or more is more desirable, 0.5 atomic% or more is the most desirable, and 1 atomic% or less is desirable, and 0.5 atomic% or less is more desirable. Similarly, the content of P is preferably 0.5 atomic percent or more, more preferably 1 atomic percent or more, most preferably 2 percent or more, and most preferably 10 atomic percent or less, and 5 atomic percent or less. More desirable. When these values are too large, the electrode protection performance of the formed film tends to be low. When the values are too small, the electrode protection performance is high, but the electrical characteristics due to the increase in resistance tend to be deteriorated.
 前述のとおり、上記正極の表面のXPS分析は、電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の正極を、メチルエチルカーボネートで洗浄した後に真空乾燥した後に行うが、上記正極の洗浄は、通常、不活性雰囲気中で行う。XPS測定装置は、例えば、Kratos社製のXPS測定装置"AXIS-NOVA"を用い、X線源として単色化AlKα(1486.6eV)を用い、分析領域700μm×300μmの範囲で観察を行う。上記装置に試料をセットする際は、トランスファベッセルを用いて、試料に水分ができるだけ触れないようにして行うことが好ましい。 As described above, the XPS analysis of the surface of the positive electrode described that after charging the battery to 4.5 V with a current of 1/3 C, the positive electrode after discharging to 3 V with a current of 1/3 C was washed with methyl ethyl carbonate Although later performed after vacuum drying, the washing of the positive electrode is usually performed in an inert atmosphere. The XPS measurement apparatus uses, for example, an XPS measurement apparatus "AXIS-NOVA" manufactured by Kratos Co., Ltd., and performs observation in the range of 700 μm × 300 μm as an X-ray source using monochromatized AlKα (1486.6 eV). When the sample is set in the above apparatus, it is preferable to use a transfer vessel so that the sample is kept as free from moisture as possible.
 次に、本実施形態の非水二次電池の各要素について、代表的なリチウムイオン電池を例示して説明する。上記リチウムイオン電池は、正極と、負極と、非水電解液と、セパレータとを備えている。 Next, each element of the non-aqueous secondary battery of the present embodiment will be described by exemplifying a representative lithium ion battery. The lithium ion battery includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator.
 <正極>
 上記正極には、例えば、正極活物質、導電助剤及びバインダ等を含有する正極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
<Positive electrode>
For the positive electrode, for example, one having a structure having a positive electrode mixture layer containing a positive electrode active material, a conductive additive, a binder and the like on one side or both sides of a current collector can be used.
 上記正極活物質としては、リチウムイオンを吸蔵・放出可能なリチウム含有遷移金属酸化物等が使用される。リチウム含有遷移金属酸化物としては、従来から知られているリチウムイオン電池に使用されているものが挙げられる。具体的には、LiyCoO2(但し、0≦y≦1.1である。)、LizNiO2(但し、0≦z≦1.1である。)、LipMnO2(但し、0≦p≦1.1である。)、LiqCor2 1-r2(但し、M2は、Mg、Mn、Fe、Ni、Cu、Zn、Al、Ti、Ge及びCrよりなる群から選択される少なくとも1種の金属元素であり、0≦q≦1.1、0<r<1.0である。)、LisNi1-t3 t2(但し、M3は、Mg、Mn、Fe、Co、Cu、Zn、Al、Ti、Ge及びCrよりなる群から選択される少なくとも1種の金属元素であり、0≦s≦1.1、0<t<1.0である。)、LifMnvNiwCo1-v-w2(但し、0≦f≦1.1、0<v<1.0、0<w<1.0である。)等の層状構造を有するリチウム含有遷移金属酸化物等が挙げられ、これらのうちの1種のみを使用してもよく、2種以上を併用してもよい。 As the positive electrode active material, a lithium-containing transition metal oxide or the like capable of inserting and extracting lithium ions is used. Examples of lithium-containing transition metal oxides include those used in conventionally known lithium ion batteries. Specifically, Li y CoO 2 (where 0 ≦ y ≦ 1.1), Li z NiO 2 (where 0 ≦ z ≦ 1.1), Li p MnO 2 (wherein is 0 ≦ p ≦ 1.1.), Li q Co r M 2 1-r O 2 ( where, M 2 is, Mg, Mn, Fe, Ni , Cu, Zn, Al, Ti, from Ge and Cr At least one metal element selected from the group consisting of 0 ≦ q ≦ 1.1, 0 <r <1.0), Li s Ni 1-t M 3 t O 2 (where M is an integer) 3 is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Cu, Zn, Al, Ti, Ge and Cr, and 0 ≦ s ≦ 1.1, 0 <t < 1.0, Li f Mn v Ni w Co 1-vw O 2 (where 0 ≦ f ≦ 1.1, 0 <v <1.0, 0 <w <1.0). And other layered structures Arm containing transition metal oxides and the like, may be used only one of these may be used in combination of two or more.
 上記バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリアクリル酸塩、ポリイミド、ポリアミドイミド等が好適に用いられる。 As the binder, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyacrylate, polyimide, polyamideimide, etc. are suitably used. .
 また、上記導電助剤としては、例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛(黒鉛質炭素材料);アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ-ボンブラック;炭素繊維;等の炭素材料等が挙げられる。 Moreover, as said conductive support agent, For example, Graphite (graphite carbon materials), such as natural graphite (sculpt graphite etc.), artificial graphite etc .; Acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black And carbon materials such as carbon black; carbon fibers; and the like.
 上記正極は、例えば、上記正極活物質、上記バインダ及び上記導電助剤を、N-メチル-2-ピロリドン(NMP)等の溶剤に分散させたペースト状やスラリー状の正極合剤含有塗料を調製し、これを集電体の片面又は両面に塗布し、乾燥した後に、必要に応じてプレス処理を施す工程を経て製造される。但し、正極は、上記の製造方法で製造されたものに制限される訳ではなく、他の製造方法で製造されたものであってもよい。 The positive electrode is prepared, for example, by preparing a paste- or slurry-like positive electrode mixture-containing coating material in which the positive electrode active material, the binder, and the conductive auxiliary agent are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP). The composition is applied to one side or both sides of the current collector, dried and then subjected to a pressing process as required. However, the positive electrode is not limited to one manufactured by the above manufacturing method, and may be manufactured by another manufacturing method.
 上記正極合剤層の厚みは、例えば、集電体の片面あたり10~100μmであることが好ましい。上記正極合剤層の密度は、集電体に積層した単位面積あたりの正極合剤層の質量と、厚みとから算出され、3.0~4.5g/cm3であることが好ましい。上記正極合剤層の組成としては、例えば、正極活物質の量が60~95質量%であることが好ましく、バインダの量が1~15質量%であることが好ましく、導電助剤の量が3~20質量%であることが好ましい。 The thickness of the positive electrode mixture layer is preferably, for example, 10 to 100 μm per side of the current collector. The density of the positive electrode mixture layer is calculated from the mass and thickness of the positive electrode mixture layer per unit area stacked on the current collector, and is preferably 3.0 to 4.5 g / cm 3 . As a composition of the said positive mix layer, it is preferable that the quantity of a positive electrode active material is 60-95 mass%, for example, it is preferable that the quantity of a binder is 1-15 mass%, and the quantity of a conductive support agent is The content is preferably 3 to 20% by mass.
 上記正極の表面に前述の成分1~3を少なくとも含む処理液を塗布して、上記正極の表面を被覆する場合、上記正極合剤層の空隙率は、22%以上が望ましく、25%以上がより望ましく、28%以上が最も望ましく、また、35%以下が望ましく、32%以下がより望ましく、29%以下が最も望ましい。上記正極合剤層の空隙率が大きすぎると上記処理液の大半が正極内部に浸入してしまい、表面での被覆効果が低くなるからであり、また、小さすぎると上記成分により形成される被覆が表面に限定されてしまい、被覆強度が低下するからである。 When the surface of the positive electrode is coated by applying the treatment liquid containing at least the components 1 to 3 on the surface of the positive electrode, the porosity of the positive electrode mixture layer is preferably 22% or more and 25% or more. More preferably, 28% or more is most desirable, 35% or less is desirable, 32% or less is more desirable, and 29% or less is most desirable. If the porosity of the positive electrode mixture layer is too large, most of the treatment solution will infiltrate into the positive electrode and the covering effect on the surface becomes low, and if too small, the covering formed by the above components Is limited to the surface, and the coating strength is reduced.
 上記正極の集電体には、従来から知られているリチウムイオン電池の正極に使用されているものと同様のものが使用でき、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン又はそれらの合金からなる箔、パンチドメタル、エキスパンドメタル、網等が挙げられ、通常、厚みが10~30μmのアルミニウム箔が好適に用いられる。 As the current collector of the above positive electrode, the same one as conventionally used for the positive electrode of a lithium ion battery can be used, and it is made of, for example, aluminum, stainless steel, nickel, titanium or their alloys. A foil, a punched metal, an expanded metal, a net, etc. may be mentioned, and usually, an aluminum foil having a thickness of 10 to 30 μm is suitably used.
 <負極>
 上記負極には、例えば、負極活物質及びバインダ等を含有する負極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
<Negative electrode>
For the negative electrode, for example, a negative electrode mixture layer containing a negative electrode active material, a binder and the like can be used on one side or both sides of the current collector.
 上記負極合剤層に含まれる負極活物質には、リチウムを脱挿入できる化合物や、リチウムと合金化可能な元素を含む材料が使用できるが、黒鉛質炭素材料を用いることが好ましい。黒鉛質炭素材料としては、従来から知られているリチウムイオン電池に使用されているものが好適であり、例えば、鱗片状黒鉛等の天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ(MCMB)、炭素繊維等の易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;等が挙げられる。また、リチウムと合金化可能な元素を含む材料としては、リチウムと合金化可能な金属(Si、Sn等)又はその合金が挙げられるが、一般組成式SiOx(但し、Siに対するOの原子比xは、0.5≦x≦1.5である。)で表されるSiとOとを構成元素に含む材料も用いることができる。 As the negative electrode active material contained in the above-mentioned negative electrode mixture layer, a compound which can deintercalate lithium or a material containing an element which can be alloyed with lithium can be used, but a graphitic carbon material is preferably used. As the graphitic carbon material, those used in conventionally known lithium ion batteries are suitable. For example, natural graphite such as scale-like graphite; pyrolytic carbons, mesophase carbon microbeads (MCMB), Artificial graphite obtained by graphitizing a graphitizable carbon such as carbon fiber at 2800 ° C. or higher. Further, as a material containing an element capable of alloying with lithium, a metal (Si, Sn, etc.) capable of being alloyed with lithium or an alloy thereof may be mentioned, but the general composition formula SiO x (however, atomic ratio of O to Si) A material containing Si and O represented by x) as 0.5 ≦ x ≦ 1.5 can also be used.
 上記負極合剤層に使用するバインダには、前述した正極のバインダとして例示したバインダと同じものが使用できる。 As a binder used for the said negative mix layer, the same thing as the binder illustrated as a binder of the positive electrode mentioned above can be used.
 また、上記負極合剤層には、更に導電助剤として導電性材料を添加してもよい。上記導電性材料としては、リチウムイオン電池内において化学変化を起こさないものであれば特に限定されず、例えば、アセチレンブラック、ケッチェンブラック等の各種カーボンブラック、カーボンナノチューブ、炭素繊維等の材料を1種又は2種以上用いることができる。 Further, a conductive material may be further added to the negative electrode mixture layer as a conductive aid. The conductive material is not particularly limited as long as it does not cause a chemical change in the lithium ion battery. For example, various carbon blacks such as acetylene black and ketjen black, carbon nanotubes, carbon fibers and the like may be used. A species or two or more species can be used.
 上記負極は、例えば、負極活物質及びバインダ、更には必要に応じて導電助剤をNMPや水等の溶剤に分散させたペースト状やスラリー状の負極合剤含有塗料を調製し、これを集電体の片面又は両面に塗布し、乾燥した後に、必要に応じてプレス処理を施す工程を経て製造される。但し、負極は、上記の製造方法で製造されたものに制限される訳ではなく、他の製造方法で製造されたものであってもよい。 The negative electrode is prepared, for example, by preparing a paste-like or slurry-like negative electrode mixture-containing coating material in which a negative electrode active material and a binder, and further, if necessary, a conductive auxiliary agent is dispersed in a solvent such as NMP or water. The composition is applied to one side or both sides of the current collector, dried, and then subjected to a pressing process as required. However, the negative electrode is not limited to those manufactured by the above manufacturing method, and may be manufactured by another manufacturing method.
 上記負極合剤層の厚みは、例えば、集電体の片面あたり10~100μmであることが好ましい。上記負極合剤層の密度は、1.0~1.9g/cm3であることが好ましい。上記負極合剤層の組成としては、負極活物質の量が80~99質量%であることが好ましく、バインダの量が1~20質量%であることが好ましく、導電助剤を使用する場合には、導電助剤は、負極活物質の量及びバインダの量が上記の好適値を満足する範囲内で使用することが好ましい。 The thickness of the negative electrode mixture layer is preferably, for example, 10 to 100 μm per side of the current collector. The density of the negative electrode mixture layer is preferably 1.0 to 1.9 g / cm 3 . In the composition of the negative electrode mixture layer, the amount of the negative electrode active material is preferably 80 to 99% by mass, the amount of the binder is preferably 1 to 20% by mass, and the conductive auxiliary agent is used. It is preferable that the conductive aid be used in such a range that the amount of the negative electrode active material and the amount of the binder satisfy the above-mentioned suitable values.
 上記負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタル等を用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するためには厚みの下限は5μmであることが好ましい。 As the current collector of the negative electrode, a foil made of copper or nickel, a punching metal, a net, an expanded metal or the like may be used, but a copper foil is usually used. The upper limit of the thickness of the negative electrode current collector is preferably 30 μm when the thickness of the entire negative electrode is reduced to obtain a battery of high energy density, and the lower limit of the thickness is 5 μm to ensure mechanical strength. Is preferred.
 <非水電解液>
 上記非水電解液には、有機溶媒に無機リチウム塩や有機リチウム塩等の電解質塩を溶解した非水電解液が使用される。
<Non-aqueous electrolyte>
As the non-aqueous electrolytic solution, a non-aqueous electrolytic solution in which an electrolyte salt such as an inorganic lithium salt or an organic lithium salt is dissolved in an organic solvent is used.
 上記有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3-プロパンサルトン等の非プロトン性有機溶媒が挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC) Γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric triester , Trimethoxymethane, dioxolane derivatives, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, diethyl Ethers, include aprotic organic solvents such as 1,3-propane sultone, it may be used those either alone, or in combination of two or more.
 上記無機リチウム塩としては、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、低級脂肪族カルボン酸Li、LiAlCl4、LiCl、LiBr、LiI、クロロボランLi、四フェニルホウ酸Li等が挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the inorganic lithium salt, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic carboxylic acids Li, LiAlCl 4, LiCl, LiBr And LiI, chloroborane Li, tetraphenylborate Li and the like, and these may be used alone or in combination of two or more.
 上記有機リチウム塩としては、LiCF3SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCn12n1+1SO3(2≦n1≦7)、LiN(Rf1OSO22[但し、Rf1はフルオロアルキル基である。]等が挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the organic lithium salt include LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and LiC n1 F 2n1 + 1 SO 3 (2 ≦ n1 ≦ 7), LiN (Rf 1 OSO 2 ) 2 [wherein, Rf 1 is a fluoroalkyl group. And the like, and these may be used alone or in combination of two or more.
 上記電解質塩の濃度は、非水電解液中、例えば、0.2~3.0mol/dm3であることが好ましく、0.5~1.5mol/dm3であることがより好ましく、0.9~1.3mol/dm3であることが更に好ましい。 The concentration of the electrolyte salt in the nonaqueous electrolyte solution, for example, preferably from 0.2 ~ 3.0mol / dm 3, more preferably from 0.5 ~ 1.5mol / dm 3, 0 . More preferably, it is 9 to 1.3 mol / dm 3 .
 前述のとおり、電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、上記正極の表面をX線光電子分光分析法(XPS)で分析した場合、上記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下である正極の表面状態を得るためには、上記非水電解液は、上記リチウム塩としてフッ素含有化合物を含むことが好ましく、上記有機溶媒として炭酸化合物を含むことが好ましい。上記非水電解液は、上記フッ素含有化合物又は上記炭酸化合物のいずれか一方を少なくとも含めばよいが、上記フッ素含有化合物と上記炭酸化合物とを共に含むことが好ましい。但し、上記フッ素含有化合物と上記炭酸化合物は、正極に含有されていてもよい。 As described above, after charging the battery to 4.5 V with a 1/3 C current, the positive electrode after discharging to 3 V with a 1/3 C current is washed with methyl ethyl carbonate and then vacuum dried, and then the above positive electrode In the surface of the positive electrode, the content ratio of oxygen atoms is Ro (atomic%), the content ratio of fluorine atoms is Rf (atomic%), and the surface of the positive electrode is analyzed by X-ray photoelectron spectroscopy (XPS) Assuming that the content ratio of a carbon atom having a binding energy of 289 to 291 eV is Rc (atomic%), Rf / Ro is 0.05 or more and 1.3 or less, or Rc / Ro is 0.05 or more and 0.75 or less In order to obtain the surface state of the positive electrode, the non-aqueous electrolyte preferably contains a fluorine-containing compound as the lithium salt, and preferably contains a carbonic acid compound as the organic solvent. The non-aqueous electrolyte may include at least one of the fluorine-containing compound and the carbonic acid compound, but preferably contains both the fluorine-containing compound and the carbonic acid compound. However, the said fluorine-containing compound and the said carbonic acid compound may be contained in the positive electrode.
 上記正極の表面状態を得るための非水電解液としては、ジメチルカーボネート、ジエチルカーボネート及びメチルエチルカーボネートより選ばれる少なくとも1種の鎖状カーボネートと、エチレンカーボネート及びプロピレンカーボネートより選ばれる少なくとも1種の環状カーボネートとを含む溶媒に、LiPF6(六フッ化リン酸リチウム)を溶解した非水電解液を使用することが特に好ましい。 As a non-aqueous electrolytic solution for obtaining the surface state of the above positive electrode, at least one linear carbonate selected from dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, and at least one cyclic selected from ethylene carbonate and propylene carbonate It is particularly preferable to use a non-aqueous electrolytic solution in which LiPF 6 (lithium hexafluorophosphate) is dissolved in a solvent containing carbonate.
 また、上記非水電解液には、充放電サイクル特性の改善、高温貯蔵特性や過充電防止等の安全性を向上させる目的で、次に示す添加剤を適宜含有させることができる。上記添加剤としては、例えば、無水酸、スルホン酸エステル、ジニトリル、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビニレンカーボネート(VC)、ビフェニル、フルオロベンゼン、t-ブチルベンゼン、環状フッ素化カーボネート[トリフルオロプロピレンカーボネート(TFPC)、フルオロエチレンカーボネート(FEC)等]、又は、鎖状フッ素化カーボネート[トリフルオロジメチルカーボネート(TFDMC)、トリフルオロジエチルカーボネート(TFDEC)、トリフルオロエチルメチルカーボネート(TFEMC)等]、フッ素化エーテル[Rf2-OR4(但し、Rf2はフッ素を含有するアルキル基であり、R4はフッ素を含有してもよい有機基である。]、リン酸エステル[エチルジエチルホスホノアセテート(EDPA):(C25O)2(P=O)-CH2(C=O)OC25]、リン酸トリス(トリフルオロエチル)(TFEP):(CF3CH2O)3P=O、リン酸トリフェニル(TPP):(C65O)3P=O等(上記各化合物の誘導体も含む。)が挙げられる。 In order to improve the charge / discharge cycle characteristics and to improve safety such as high-temperature storage characteristics and overcharge prevention, the non-aqueous electrolyte can contain the following additives as appropriate. Examples of the additive include an acid anhydride, a sulfonic acid ester, dinitrile, 1,3-propanesultone, diphenyl disulfide, cyclohexylbenzene, vinylene carbonate (VC), biphenyl, fluorobenzene, t-butylbenzene, cyclic fluorinated Carbonate [trifluoropropylene carbonate (TFPC), fluoroethylene carbonate (FEC), etc.] or linear fluorinated carbonate [trifluorodimethyl carbonate (TFDMC), trifluorodiethyl carbonate (TFDEC), trifluoroethyl methyl carbonate (TFE MC) Etc.], fluorinated ethers [Rf 2 -OR 4 (where Rf 2 is a fluorine-containing alkyl group, R 4 is an organic group which may contain fluorine)], phosphoric acid ester [ Ethyldiethylphosphonoacetate (EDPA): (C 2 H 5 O) 2 (P = O) -CH 2 (C = O) OC 2 H 5 ], tris (trifluoroethyl) phosphate (TFEP): (CF 3 CH 2 O) 3 P = O, triphenyl phosphate (TPP): (C 6 H 5 O) 3 P = O, etc. (including derivatives of the above-mentioned compounds).
 前述の正極の被覆と合わせて用いると高電圧下での充放電サイクル特性の向上に効果が高い添加剤は、分子内にニトリル基を2つ以上有する化合物である。上記分子内にニトリル基を2つ以上有する化合物としては、例えば、スクシノニトリル、グルタロニトリル、アジポニトリル、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、1,8-ジシアノオクタン、1,9-ジシアノノナン、1,10-ジシアノデカン、1,12-ジシアノドデカン、テトラメチルスクシノニトリル、2-メチルグルタロニトリル、4-ジシアノペンタン、2,6-ジシアノヘプタン、2,7-ジシアノオクタン、2,8-ジシアノノナン、1,6-ジシアノデカン、1,2-ジシアノベンゼン等のジニトリル等が挙げられる。また、これらのジニトリル等は、その一部がフッ素化されていてもよい。 An additive that is effective in improving charge / discharge cycle characteristics under high voltage when used in combination with the above-mentioned positive electrode coating is a compound having two or more nitrile groups in the molecule. Examples of the compound having two or more nitrile groups in the molecule include succinonitrile, glutaronitrile, adiponitrile, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, 1,7 8-dicyanooctane, 1,9-dicyanononane, 1,10-dicyanodecane, 1,12-dicyanododecane, tetramethyl succinonitrile, 2-methylglutaronitrile, 4-dicyanopentane, 2,6-dicyanoheptane, Examples thereof include dinitriles such as 2,7-dicyanooctane, 2,8-dicyanononane, 1,6-dicyanodecane and 1,2-dicyanobenzene. In addition, part of these dinitriles and the like may be fluorinated.
 上記非水電解液における上記分子内にニトリル基を2つ以上有する化合物の濃度は、0.1質量%以上が望ましく、2質量%以上がより望ましく、10質量%以上が最も望ましく、また、50質量%以下が望ましく、30質量%以下がより望ましく、20質量%以下が最も望ましい。 The concentration of the compound having two or more nitrile groups in the molecule in the non-aqueous electrolyte is preferably 0.1% by mass or more, more preferably 2% by mass or more, and most preferably 10% by mass or more. % By mass or less is desirable, 30% by mass or less is more desirable, and 20% by mass or less is the most desirable.
 <セパレータ>
 上記セパレータとしては、強度が十分で、且つ非水電解液を多く保持できるものがよく、例えば、厚さが5~50μmで開口率が30~70%の、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン製の微多孔膜を用いることができる。上記セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、エチレン-プロピレン共重合体を含んでいてもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
<Separator>
The separator preferably has sufficient strength and can hold a large amount of non-aqueous electrolytic solution, for example, polyethylene (PE) or polypropylene (PP) having a thickness of 5 to 50 μm and an opening ratio of 30 to 70%. And the like can be used. The microporous membrane constituting the separator may be, for example, one using only PE or one using PP, may contain an ethylene-propylene copolymer, and may be made of PE It may be a laminate of a porous membrane and a microporous membrane made of PP.
 また、上記セパレータとして、融点が140℃以下の樹脂を主体とした多孔質層(A)と、融点が150℃以上の樹脂又は耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(B)とから構成された積層型のセパレータを使用することもできる。上記多孔質層(A)は、主にシャットダウン機能を確保するためのものであり、リチウムイオン電池の内部温度が多孔質層(A)の主体となる成分である樹脂の融点以上に達したときには、多孔質層(A)に係る樹脂が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。一方、上記多孔質層(B)は、リチウムイオン電池の内部温度が上昇した際にも正極と負極との直接の接触による短絡を防止する機能を備えたものであり、融点が150℃以上の樹脂又は耐熱温度が150℃以上の無機フィラーによって、その機能を確保している。即ち、電池が高温となった場合には、喩え多孔質層(A)が収縮しても、収縮し難い多孔質層(B)によって、セパレータが熱収縮した場合に発生し得る正負極の直接の接触による短絡を防止できる。また、この耐熱性の多孔質層(B)がセパレータの骨格として作用するため、多孔質層(A)の熱収縮、即ちセパレータ全体の熱収縮自体も抑制できる。ここで、「融点」とは、日本工業規格(JIS)K7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味し、「耐熱温度が150℃以上」とは、少なくとも150℃において軟化等の変形が見られないことを意味している。 In addition, as the separator, a porous layer mainly composed of a resin having a melting point of 140 ° C. or less and a porous layer mainly composed of a resin having a melting point of 150 ° C. or more or an inorganic filler having a heat resistance temperature of 150 ° C. It is also possible to use a laminated separator composed of B). The porous layer (A) is mainly for securing the shutdown function, and when the internal temperature of the lithium ion battery reaches the melting point of the resin which is the main component of the porous layer (A). The resin according to the porous layer (A) melts to close the pores of the separator, resulting in a shutdown that suppresses the progress of the electrochemical reaction. On the other hand, the porous layer (B) has a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode even when the internal temperature of the lithium ion battery rises, and has a melting point of 150.degree. The function is ensured by the resin or the inorganic filler having a heat resistant temperature of 150 ° C. or higher. That is, when the battery becomes high temperature, the positive and negative electrodes may be generated directly when the separator is thermally shrunk by the porous layer (B) which is hardly shrunk even when the grip porous layer (A) is shrunk. It is possible to prevent a short circuit due to contact. Further, since the heat-resistant porous layer (B) acts as a skeleton of the separator, the heat shrinkage of the porous layer (A), that is, the heat shrinkage itself of the whole separator can be suppressed. Here, the "melting point" means a melting temperature measured using a differential scanning calorimeter (DSC) according to the Japanese Industrial Standard (JIS) K7121, and "the heat resistant temperature is 150 ° C or higher" Means that no deformation such as softening is observed at least at 150 ° C.
 上記セパレータ(ポリオレフィン製の微多孔膜からなるセパレータや、上記積層型のセパレータ)の厚みは、10~30μmであることがより好ましい。 The thickness of the above-mentioned separator (a separator comprising a microporous membrane made of polyolefin, or the above-mentioned laminated separator) is more preferably 10 to 30 μm.
 <電極体>
 本実施形態の非水二次電池に用いられる電極体としては、上記正極と上記負極とを上記セパレータを介して積層した積層電極体や、上記積層電極体を更に渦巻状に巻回した巻回電極体が挙げられる。
<Electrode body>
As an electrode body used for the non-aqueous secondary battery of the present embodiment, a laminated electrode body in which the positive electrode and the negative electrode are laminated via the separator, or winding in which the laminated electrode body is further wound in a spiral shape An electrode body is mentioned.
 <電池の形態>
 上記リチウムイオン電池の形態としては特に限定されず、例えば、コイン形、ボタン形、シート形、積層形、円筒形、扁平形、角形、電気自動車等に用いる大型のもの等のいずれであってもよい。
<Form of battery>
The form of the lithium ion battery is not particularly limited. For example, any of coin type, button type, sheet type, laminated type, cylindrical type, flat type, square type, large type used in electric vehicles etc. Good.
 <非水二次電池の特性>
 本実施形態の非水二次電池の充電電圧は、リチウム基準で4.35V以上が望ましく、4.45V以上がより望ましく、4.55V以上が最も望ましい。充電電圧が高くなるほど本実施形態の正極被覆による電極保護作用が有効に作用するからである。また、上記充電電圧は、5.5V以下が望ましい。充電電圧が高すぎると保護膜自体の分解の恐れがあるからである。更に、リチウムイオン電池の充電電圧がリチウム基準で望ましくは4.4V以上、更に望ましくは4.55V以上になると、電池の継続的発熱状態がより低い温度から始まるため、前述のジニトリルを含有する電解液との組み合わせがより最適となる。
<Characteristics of non-aqueous secondary battery>
The charge voltage of the non-aqueous secondary battery of the present embodiment is preferably 4.35 V or more, more preferably 4.45 V or more, and most preferably 4.55 V or more based on lithium. It is because the electrode protection effect by the positive electrode coating of this embodiment works more effectively as the charging voltage becomes higher. Moreover, as for the said charging voltage, 5.5 V or less is desirable. If the charging voltage is too high, there is a risk of decomposition of the protective film itself. Furthermore, when the charge voltage of the lithium ion battery is preferably 4.4 V or more, more preferably 4.55 V or more based on lithium, the continuous heat generation state of the battery starts from a lower temperature, so the electrolysis containing the above-mentioned dinitrile The combination with the solution is more optimal.
 本実施形態の非水二次電池では、1/3Cの電流で4.35Vまで充電した後、1/3Cの電流で3Vまで放電することを1サイクルとし、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を4.35V容量維持率:RLとし、1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電することを1サイクルとし、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を4.5V容量維持率:RHとした場合、容量維持率比:RH/RLを0.75以上とすることができる。上記容量維持率比:RH/RLは、0.8以上がより望ましく、0.9以上が最も望ましい。即ち、本実施形態の非水二次電池では、高電圧下においても充放電サイクル特性の低下を低く抑えることができる。また、本実施形態と充電電圧が異なる場合は、その充電電圧での充放電サイクル試験での容量維持率をRH'とし、その充電電圧より0.15V低い電圧で同様の充放電サイクル試験を行った場合の容量維持率をRL'としたとき、RH'/RL'は、0.8以上がより望ましく、0.9以上が最も望ましい。 In the non-aqueous secondary battery of the present embodiment, after charging to 4.35 V with a current of 1/3 C, discharging to 3 V with a current of 1/3 C is one cycle, and 100 cycles to the discharge capacity at 1 cycle The ratio (%) of the discharge capacity at that time is 4.35V capacity maintenance rate: RL, after charging to 4.5V with 1 / 3C current, discharging to 3V with 1 / 3C current is one cycle, When the ratio (%) of the discharge capacity at 100 cycles to the discharge capacity at one cycle is 4.5 V capacity maintenance ratio: RH, the capacity maintenance ratio ratio RH / RL can be 0.75 or more. The above capacity retention ratio: RH / RL is more preferably 0.8 or more, and most preferably 0.9 or more. That is, in the non-aqueous secondary battery of the present embodiment, the decrease in charge-discharge cycle characteristics can be suppressed to a low level even under high voltage. If the charge voltage is different from that of the present embodiment, the capacity retention ratio in the charge / discharge cycle test at that charge voltage is taken as RH ', and the same charge / discharge cycle test is performed at a voltage 0.15 V lower than the charge voltage. When the capacity retention ratio in this case is RL ′, RH ′ / RL ′ is more preferably 0.8 or more, and most preferably 0.9 or more.
 また、正極の被覆を行わなかった以外は本実施形態の非水二次電池と同様にして作製した従来の非水二次電池において、1/3Cの電流で4.35Vまで充電した後、1/3Cの電流で3Vまで放電することを1サイクルとし、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を4.35V容量維持率:RLCとし、1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電することを1サイクルとし、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を4.5V容量維持率:RHCとした場合、4.35Vにおいて本実施形態のRLと従来のRLCから下記式(1)で計算される4.35V容量維持率改善割合Aと、4.5Vにおいて本実施形態のRHと従来のRHCから下記式(2)で計算される4.5V容量維持率改善割合Bとを比較すると、本実施形態では、当初の予想に反して、4.5V容量維持率改善割合Bが4.35V容量維持率改善割合Aより大きくすることができる。
 A=〔(RL-RLC)/RLC〕×100   (1)
 B=〔(RH-RHC)/RHC〕×100   (2)
Further, in the conventional non-aqueous secondary battery fabricated in the same manner as the non-aqueous secondary battery of the present embodiment except that the positive electrode was not coated, after charging to 4.35 V with a 1/3 C current, 1 Assuming that discharging to 3 V with a current of 3 C is one cycle, and the ratio (%) of discharge capacity at 100 cycles to the discharge capacity at 1 cycle is 4.35 V capacity retention ratio: RLC, 1/3 C current After charging to 4.5V, discharging to 3V with 1 / 3C current is one cycle, and the ratio (%) of discharge capacity at 100 cycles to discharge capacity at one cycle is 4.5V capacity maintenance ratio: In the case of RHC, the 4.35 V capacity maintenance ratio improvement ratio A calculated at the following equation (1) from RL of the present embodiment and the conventional RLC at 4.35 V, and RH of the present embodiment and the conventional at 4.5 V RHC In comparison with the 4.5 V capacity maintenance ratio improvement ratio B calculated by the following equation (2), in the present embodiment, the 4.5 V capacity maintenance ratio improvement ratio B is 4.35 V capacity contrary to the initial expectation. It can be made larger than the maintenance rate improvement rate A.
A = [(RL−RLC) / RLC] × 100 (1)
B = [(RH-RHC) / RHC] x 100 (2)
 また、4.5V容量維持率改善割合Bと4.35V容量維持率改善割合Aとから求められるB/Aの値が1以上であれば、高電圧での充放電サイクル特性が高いことを示す。よって、B/Aは、1以上が望ましく、5以上がより望ましく、10以上が最も望ましい。 Also, if the value of B / A obtained from the 4.5 V capacity maintenance ratio improvement ratio B and the 4.35 V capacity maintenance ratio improvement ratio A is 1 or more, it indicates that the charge and discharge cycle characteristics at high voltage are high. . Therefore, B / A is preferably 1 or more, more preferably 5 or more, and most preferably 10 or more.
 また、本実施形態と充電電圧が異なる場合でも、その充電電圧での容量維持率改善割合をB'とし、その充電電圧より0.15V低い充電電圧での容量維持率改善割合をA'としたときも、B'/A'は、1以上が望ましく、5以上がより望ましく、10以上が最も望ましい。 Further, even when the charging voltage is different from that of the present embodiment, the capacity maintenance rate improvement ratio at the charging voltage is B ′, and the capacity maintenance rate improvement ratio at the charging voltage 0.15 V lower than the charging voltage is A ′. Sometimes, B '/ A' is preferably 1 or more, more preferably 5 or more, and most preferably 10 or more.
 (非水二次電池の第2の実施形態)
 本発明の非水二次電池の第2の実施形態は、正極、負極及び非水電解液を備え、上記非水電解液又は上記正極は、フッ素含有化合物又は炭酸化合物を含み、上記非水電解液は、ビニレンカーボネート以外の添加剤を含み、上記非水電解液における上記添加剤の濃度が、0.05質量%以上3質量%以下である。
(Second Embodiment of Nonaqueous Secondary Battery)
A second embodiment of the non-aqueous secondary battery of the present invention comprises a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the non-aqueous electrolyte or the positive electrode contains a fluorine-containing compound or a carbonic acid compound, and the non-aqueous electrolysis The solution contains an additive other than vinylene carbonate, and the concentration of the additive in the non-aqueous electrolyte solution is 0.05% by mass or more and 3% by mass or less.
 上記構成の非水二次電池とすることにより、電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の上記正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、上記正極の表面をX線光電子分光分析法(XPS)で分析した場合、上記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下とすることができる。これにより、高電圧下での充放電サイクル特性を向上できる。 By using the non-aqueous secondary battery having the above configuration, after charging the battery to 4.5 V with a 1/3 C current, the positive electrode after discharging to 3 V with a 1/3 C current is washed with methyl ethyl carbonate After vacuum drying, the surface of the positive electrode is analyzed by X-ray photoelectron spectroscopy (XPS). The content of oxygen atoms in the surface of the positive electrode is Ro (atomic%) and the content ratio of fluorine atoms If Rf (atomic%) and the content ratio of carbon atoms with a 1s orbital bond energy of 289 to 291 eV is Rc (atomic%), Rf / Ro is 0.05 or more or 1.3 or less, or Rc / Rc Ro can be 0.05 or more and 0.75 or less. Thereby, charge / discharge cycle characteristics under high voltage can be improved.
 上記フッ素含有化合物及び上記炭酸化合物は、前述の第1の実施形態の非水二次電池で用いるものと同様のものが使用できる。 As the fluorine-containing compound and the carbonic acid compound, the same compounds as those used in the non-aqueous secondary battery of the first embodiment described above can be used.
 また、上記ビニレンカーボネート以外の添加剤としては、窒素含有化合物が望ましく、非フッ素系(フッ素を含有しない)窒素含有化合物がより望ましい。更に、上記窒素含有化合物では、窒素原子にH原子が少なくとも1つ結合していることが望ましく、窒素原子にH原子が2つ結合していることがより望ましい。上記窒素含有化合物としては、アミン、アミド等が挙げられるが、アミンが特に望ましい。上記窒素含有化合物として、より具体的には、ジエチレングリコールビスアミノプロピルエーテル、ジエチレンオキサイドビスヘキサメチレントリアミン、ジシクロヘキシルアミン等を用いることができる。 Moreover, as additives other than the said vinylene carbonate, a nitrogen-containing compound is desirable, and a non-fluorine-type (fluorine-free) nitrogen-containing compound is more desirable. Furthermore, in the nitrogen-containing compound, it is desirable that at least one H atom is bonded to the nitrogen atom, and it is more preferable that two H atoms be bonded to the nitrogen atom. Examples of the nitrogen-containing compound include amines and amides, with amines being particularly desirable. More specifically, diethylene glycol bisaminopropyl ether, diethylene oxide bishexamethylene triamine, dicyclohexylamine and the like can be used as the nitrogen-containing compound.
 上記非水電解液における上記添加剤の濃度は、0.05質量%以上が望ましく、0.1質量%以上がより望ましく、また、3質量%以下が望ましく、1質量%以下がより望ましい。上記添加剤は、正極と反応して被膜を形成させるので、少なすぎると十分な被膜が形成されず、多すぎると抵抗が高くなるためである。 The concentration of the additive in the non-aqueous electrolyte is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and preferably 3% by mass or less, and more preferably 1% by mass or less. The above-mentioned additive reacts with the positive electrode to form a film. When the amount is too small, a sufficient film is not formed, and when it is too large, the resistance becomes high.
 また、本実施形態の非水二次電池の上記構成以外の構成は、前述の第1の実施形態の非水二次電池の構成と同様とすることができる。 The configuration other than the above-described configuration of the non-aqueous secondary battery of the present embodiment can be the same as the configuration of the non-aqueous secondary battery of the first embodiment described above.
 (非水二次電池の製造方法の実施形態)
 本発明の非水二次電池の製造方法の第1の実施形態は、前述の第1の実施形態の非水二次電池を製造する方法であって、成分1、成分2及び成分3から選ばれる少なくとも1つの成分を含む処理液を準備する工程と、上記処理液を正極の表面に塗布する工程とを含み、上記成分1が、糖類似化合物であり、上記成分2が、金属塩であり、上記成分3が、窒素含有化合物であり、上記正極は、プレス処理後の正極である。
(Embodiment of manufacturing method of non-aqueous secondary battery)
The first embodiment of the method for producing a non-aqueous secondary battery of the present invention is a method for producing the non-aqueous secondary battery according to the above-mentioned first embodiment, which is selected from Component 1, Component 2 and Component 3. Providing a treatment liquid containing at least one component, and applying the treatment liquid to the surface of the positive electrode, wherein the component 1 is a sugar analog compound, and the component 2 is a metal salt The component 3 is a nitrogen-containing compound, and the positive electrode is a positive electrode after pressing.
 上記成分1~3は、前述の第1の実施形態の非水二次電池で用いるものと同様のものが使用できる。 The components 1 to 3 may be the same as those used in the non-aqueous secondary battery of the first embodiment described above.
 上記正極として、プレス処理後の正極を用いるのは、上記正極の正極合剤層の空隙率を調整するためである。また、プレス処理後の正極では、既に導電性ネットワークが形成されており、その状態で被覆処理を行うことで、導電性への影響が少なく、且つ、導電材への被覆も合わせて行うことができ、電池特性上好適である。 The reason for using the positive electrode after press treatment as the positive electrode is to adjust the porosity of the positive electrode mixture layer of the positive electrode. In addition, in the positive electrode after the pressing process, the conductive network is already formed, and by performing the coating process in that state, the influence on the conductivity is small, and the coating to the conductive material may also be performed. It is preferable in terms of battery characteristics.
 上記正極合剤層の空隙率は、22%以上が望ましく、25%以上がより望ましく、28%以上が最も望ましく、また、35%以下が望ましく、32%以下がより望ましく、29%以下が最も望ましい。上記正極合剤層の空隙率が大きすぎると上記処理液の大半が正極内部に浸入してしまい、表面での被覆効果が低くなるからであり、また、小さすぎると上記成分により形成される被覆が表面に限定されてしまい、被覆強度が低下するからである。 The porosity of the positive electrode mixture layer is preferably 22% or more, more preferably 25% or more, and most preferably 28% or more, and preferably 35% or less, more preferably 32% or less, and most preferably 29% or less. desirable. If the porosity of the positive electrode mixture layer is too large, most of the treatment solution will infiltrate into the positive electrode and the covering effect on the surface becomes low, and if too small, the covering formed by the above components Is limited to the surface, and the coating strength is reduced.
 本実施形態では、上記正極を上記処理液中に10秒間浸漬処理した後に取り出して、5秒放置した後に上記正極の質量を測定した場合、上記正極の上記浸漬処理前後の質量増加率は、3%以上が望ましく、20%以上がより望ましく、また、50%以下が望ましい。上記質量増加率が上記範囲内にあれば、正極の表面を上記処理液で適度に濡らすことができる。 In the present embodiment, when the positive electrode is immersed in the treatment solution for 10 seconds, taken out and left for 5 seconds, the mass increase rate of the positive electrode before and after the immersion treatment is 3 when the mass of the positive electrode is measured. % Or more is desirable, 20% or more is more desirable, and 50% or less is desirable. If the said mass increase rate exists in the said range, the surface of a positive electrode can be wetted moderately with the said process liquid.
 上記処理液における上記成分の濃度は、0.01質量%以上が望ましく、0.05質量%以上がより望ましく、0.1質量%以上が最も望ましく、また、20質量%以下が望ましく、10質量%以下がより望ましく、2質量%以下が最も望ましい。上記濃度が低すぎると被覆効果が低下し、上記濃度が高すぎると、被覆量の調整が困難となり、電極の抵抗が増大するためである。 The concentration of the component in the treatment liquid is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, most preferably 0.1% by mass or more, and preferably 20% by mass or less, 10% by mass. % Or less is more desirable, and 2% by mass or less is most desirable. When the concentration is too low, the covering effect is reduced, and when the concentration is too high, it is difficult to control the amount of coating and the resistance of the electrode increases.
 また、上記処理液の上記正極の表面への塗布量は、上記処理液の乾燥成分質量換算で、0.0002mg/cm2以上が望ましく、0.002mg/cm2以上がより望ましく、0.008mg/cm2以上が最も望ましく、また、0.5mg/cm2以下が望ましく、0.15mg/cm2以下がより望ましく、0.1mg/cm2以下が最も望ましい。上記塗布量が少なすぎると被覆効果が低下し、上記塗布量が多すぎると、電極の抵抗が増大するためである。 The coating amount of the surface of the positive electrode of the treatment liquid, a dry component mass conversion of the processing solution, 0.0002 mg / cm 2 or more is desirable, 0.002 mg / cm 2 or more and more preferably, 0.008 mg / Cm 2 or more is most desirable, and 0.5 mg / cm 2 or less is desirable, 0.15 mg / cm 2 or less is more desirable, and 0.1 mg / cm 2 or less is most desirable. When the application amount is too small, the covering effect is reduced, and when the application amount is too large, the resistance of the electrode is increased.
 また、本発明の非水二次電池の製造方法の第2の実施形態は、前述の第1の実施形態の非水二次電池を製造する方法であって、成分1、成分2及び成分3から選ばれる少なくとも1つの成分を含む非水電解液を準備する工程と、正極、負極及び上記非水電解液を用いて電池を組み立てる工程と、上記組み立てた電池を充放電する工程とを含み、上記成分1が、糖類似化合物であり、上記成分2が、金属塩であり、上記成分3が、窒素含有化合物である。 Moreover, 2nd Embodiment of the manufacturing method of the non-aqueous secondary battery of this invention is a method of manufacturing the non-aqueous secondary battery of the above-mentioned 1st Embodiment, Comprising: The component 1, the component 2, and the component 3 Preparing a non-aqueous electrolyte containing at least one component selected from the following: assembling a battery using the positive electrode, the negative electrode, and the non-aqueous electrolyte, and charging / discharging the assembled battery. The component 1 is a sugar analog compound, the component 2 is a metal salt, and the component 3 is a nitrogen-containing compound.
 上記成分1~3は、前述の第1の実施形態の非水二次電池で用いるものと同様のものが使用できる。 The components 1 to 3 may be the same as those used in the non-aqueous secondary battery of the first embodiment described above.
 以下、実施例に基づいて本発明を詳細に説明する。但し、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.
 (実施例1)
 図1に示すラミネート型リチウムイオン電池を次のように作製した。
Example 1
The laminate type lithium ion battery shown in FIG. 1 was produced as follows.
 〔正極の作製〕
 先ず、正極活物質であるLiCoO2(日本化学工業社製、"C20F")100質量部と、導電助剤であるアセチレンブラック3質量部と、バインダであるPVDF3質量部(NMP溶液として固形分量を供給)とを、溶媒であるNMPに均一になるように混合して正極合剤含有ペーストを調製した。次に、得られた正極合剤含有ペーストを、厚みが20μmのアルミニウム箔からなる集電体の片面に、塗布量が正極合剤含有ペーストの固形分量として18.0mg/cm2となるように塗布して乾燥させた後、カレンダー処理を行って、全厚が75μmになるように正極合剤層の厚みを調整し、タブ溶接部を残して長さ30mm、幅30mmになるように切断して正極を作製した。更に、この正極のタブ溶接部の活物質を取り除き、そのタブ溶接部にタブを溶接してリード部を形成した。
[Production of positive electrode]
First, 100 parts by mass of LiCoO 2 (manufactured by Nippon Chemical Industrial Co., Ltd., "C20F") which is a positive electrode active material, 3 parts by mass of acetylene black which is a conductive additive, and 3 parts by mass of PVDF which is a binder (solid content as NMP solution Was mixed uniformly with the solvent NMP to prepare a positive electrode mixture-containing paste. Next, the obtained positive electrode mixture-containing paste is applied on one side of a current collector made of an aluminum foil having a thickness of 20 μm so that the coating amount is 18.0 mg / cm 2 as the solid content of the positive electrode mixture-containing paste. After coating and drying, calendering is performed to adjust the thickness of the positive electrode mixture layer to a total thickness of 75 μm, and cut so as to have a length of 30 mm and a width of 30 mm, leaving a tab weld. The positive electrode was prepared. Furthermore, the active material of the tab weld of this positive electrode was removed, and the tab was welded to the tab weld to form a lead.
 上記正極の質量を測定した後、上記正極をイオン交換水中に10秒間浸漬処理した後に取り出して、5秒放置した後に上記正極の質量を測定したところ、上記正極の上記浸漬処理前後の質量増加率は35%であった。 After measuring the mass of the positive electrode, the positive electrode is immersed in ion exchange water for 10 seconds, taken out, left for 5 seconds, and then the mass of the positive electrode is measured. The mass increase rate before and after the immersion treatment of the positive electrode Was 35%.
 〔正極の被覆処理〕
 東京化成社製のジエチレントリアミン五酢酸五ナトリウム(約40質量%水溶液、成分2及び成分3に該当)をイオン交換水で希釈して、ジエチレントリアミン五酢酸五ナトリウムの1質量%の水溶液を、本実施例の処理液として調製した。次に、上記で作製した正極の表面に、セルロースを巻いた塗り棒を用いて、上記処理液を約1mg/cm2の塗布量で塗布し、その後、上記正極を120℃で乾燥し、表面処理した正極を作製した。
[Coating treatment of positive electrode]
Diethylene triamine pentaacetic acid pentasodium (approx. 40% by mass aqueous solution, corresponding to Component 2 and Component 3) manufactured by Tokyo Chemical Industry Co., Ltd. is diluted with ion-exchanged water, and a 1 mass% aqueous solution of diethylenetriamine pentaacetic acid pentasodium is shown in this example. Prepared as a processing solution of Next, using the coating rod which wound cellulose on the surface of the positive electrode produced above, the above-mentioned processing solution is applied by about 1 mg / cm 2 application amount, and then the above-mentioned positive electrode is dried at 120 ° C. The processed positive electrode was produced.
 〔負極の作製〕
 負極活物質である黒鉛(日立化成社製、"MAGE")100質量部と、バインダであるCMC1質量部(1質量%の水溶液として固形分量を供給)とSBR1.5質量部とを、溶媒であるイオン交換水に混合して負極合剤含有ペーストを調製した。次に、得られた負極合剤含有ペーストを、厚み16.5μmの銅箔の片面に、塗布量が負極合剤含有ペーストの固形分量として12.7mg/cm2となるように塗布して乾燥させた後、カレンダー処理を行って、全厚が113μmになるように負極合剤層の厚みを調整し、タブ溶接部を残して長さ32mm、幅32mmになるように切断して負極を作製した。更に、この負極のタブ溶接部にタブを溶接してリード部を形成した。
[Fabrication of negative electrode]
100 parts by mass of graphite ("MAGE" manufactured by Hitachi Chemical Co., Ltd.) which is a negative electrode active material, 1 part by mass of CMC which is a binder (supply solid content as a 1% by mass aqueous solution) and 1.5 parts by mass of SBR It mixed in a certain ion exchange water and prepared negative mix containing paste. Next, the obtained negative electrode mixture-containing paste is applied to one side of a 16.5 μm thick copper foil so that the amount of application becomes 12.7 mg / cm 2 as the solid content of the negative electrode mixture-containing paste and dried. Then, calendering is performed to adjust the thickness of the negative electrode mixture layer to a total thickness of 113 μm, and cut so as to have a length of 32 mm and a width of 32 mm, leaving a tab welded portion to produce a negative electrode. did. Furthermore, a tab was welded to the tab weld of this negative electrode to form a lead.
 〔セパレータの準備〕
 セパレータとしては、厚さ25μmのポリエチレン製微多孔膜を長さ45mm、幅40mmに切断したものを準備した。
[Preparation of separator]
As a separator, what cut | disconnected the polyethylene microporous film with a thickness of 25 micrometers in length 45 mm and width 40 mm was prepared.
 〔非水電解液の調製〕
 エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)との体積比1:3の混合溶媒1kgに、1.0molのLiPF6を溶解して混合液を作製し、その混合液100質量部に、更にビニレンカーボネート(VC)2質量部とスクシノニトリル3質量部とを加えて、非水電解液を調製した。
[Preparation of Nonaqueous Electrolyte]
1.0 mol of LiPF 6 is dissolved in 1 kg of a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) at a volume ratio of 1: 3 to prepare a mixed solution, and 100 parts by mass of the mixed solution is further added 2 parts by mass of vinylene carbonate (VC) and 3 parts by mass of succinonitrile were added to prepare a non-aqueous electrolyte.
 〔電池の組み立てと充電〕
 上記正極と上記負極とを、上記セパレータを介在させて重ね、正極/セパレータ/負極の3枚構成の積層電極体を作製した。得られた積層電極体をアルミニウムラミネートフィルムからなる外装体内に収納し、上記非水電解液を注入した後に封止を行った。最後に、上記ラミネート型リチウムイオン電池を10mA(1/3C相当のレート)で、上限電圧4.35V(Li基準で4.45V)、下限電圧3Vで5回充放電を行い、本実施例のラミネート型リチウムイオン電池とした。
[Assembly of battery and charge]
The positive electrode and the negative electrode were stacked with the separator interposed therebetween to prepare a three-layer laminated electrode body of positive electrode / separator / negative electrode. The obtained laminated electrode body was housed in an outer package made of an aluminum laminate film, and after the non-aqueous electrolyte was injected, sealing was performed. Finally, charge and discharge the laminate type lithium ion battery at 10 mA (rate corresponding to 1/3 C), upper limit voltage 4.35 V (Li basis: 4.45 V), lower limit voltage 3 V five times. It was a laminate type lithium ion battery.
 図1に作製したラミネート型リチウムイオン電池の平面図を示す。図1において、ラミネート型リチウムイオン電池10は、積層電極体及び非水電解液が、平面視で矩形のアルミニウムラミネートフィルムからなる外装体11内に収納されている。そして、正極外部端子12及び負極外部端子13が、外装体11の同じ辺から引き出されている。 The top view of the produced laminated | stacked lithium ion battery is shown in FIG. In FIG. 1, in the laminate type lithium ion battery 10, a laminated electrode body and a non-aqueous electrolyte are accommodated in an outer package 11 made of a rectangular aluminum laminate film in plan view. The positive electrode external terminal 12 and the negative electrode external terminal 13 are drawn from the same side of the exterior body 11.
 (実施例2)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの濃度を2質量%とした以外は、実施例1と同様にして実施例2のラミネート型リチウムイオン電池を作製した。
(Example 2)
A laminate-type lithium ion battery of Example 2 was produced in the same manner as in Example 1 except that the concentration of pentasodium diethylenetriaminepentaacetate was changed to 2% by mass in the treatment liquid used for the coating treatment of the positive electrode.
 (実施例3)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの濃度を5質量%とした以外は、実施例1と同様にして実施例3のラミネート型リチウムイオン電池を作製した。
(Example 3)
A laminate-type lithium ion battery of Example 3 was produced in the same manner as in Example 1 except that the concentration of pentasodium diethylenetriaminepentaacetate was changed to 5% by mass in the treatment liquid used for the coating treatment of the positive electrode.
 (実施例4)
 非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例4のラミネート型リチウムイオン電池を作製した。
(Example 4)
A laminate-type lithium ion battery of Example 4 was produced in the same manner as in Example 1 except that succinonitrile was not added to the non-aqueous electrolytic solution.
 (実施例5)
 非水電解液のスクシノニトリルの添加量を20質量部とした以外は、実施例1と同様にして実施例5のラミネート型リチウムイオン電池を作製した。
(Example 5)
A laminate-type lithium ion battery of Example 5 was produced in the same manner as in Example 1 except that the addition amount of succinonitrile in the non-aqueous electrolytic solution was changed to 20 parts by mass.
 (実施例6)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、エチレンジアミン四酢酸四ナトリウム(成分2及び成分3に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例6のラミネート型リチウムイオン電池を作製した。
(Example 6)
Non-aqueous electrolysis using a 1% by mass aqueous solution of tetrasodium ethylenediaminetetraacetate (corresponding to Component 2 and Component 3) in place of the 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate in the treatment solution used for the coating treatment of the positive electrode A laminated lithium ion battery of Example 6 was produced in the same manner as in Example 1 except that succinonitrile was not added to the solution.
 (実施例7)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、フラクタン(成分1に該当)1質量%及びガンマグルタミン酸(成分3に該当)0.9質量%の混合水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例7のラミネート型リチウムイオン電池を作製した。
(Example 7)
In the treatment solution used for the coating treatment of the positive electrode, 1 mass% of fructan (corresponds to component 1) and 0.9 mass% of gamma glutamic acid (corresponds to component 3) instead of a 1 mass% aqueous solution of pentasodium diethylenetriaminepentaacetate A laminate-type lithium ion battery of Example 7 was produced in the same manner as in Example 1 except that the mixed aqueous solution was used, and succinonitrile was not added to the non-aqueous electrolytic solution.
 (実施例8)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、Li2MoO4(成分2に該当)の1質量%水溶液を用いた以外は、実施例1と同様にして実施例8のラミネート型リチウムイオン電池を作製した。
(Example 8)
The treatment liquid used for the coating treatment of the positive electrode was replaced with a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetic acid, and a 1% by mass aqueous solution of Li 2 MoO 4 (corresponding to component 2) was used. Similarly, a laminate-type lithium ion battery of Example 8 was produced.
 (実施例9)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、Li2MoO4(成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例9のラミネート型リチウムイオン電池を作製した。
(Example 9)
In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of Li 2 MoO 4 (corresponding to component 2) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate A laminated lithium ion battery of Example 9 was produced in the same manner as in Example 1 except that the nitrile was not added.
 (実施例10)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、Li2WO4(成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例10のラミネート型リチウムイオン電池を作製した。
(Example 10)
In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of Li 2 WO 4 (corresponding to component 2) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate to form a non-aqueous electrolyte A laminated lithium ion battery of Example 10 was produced in the same manner as in Example 1 except that the nitrile was not added.
 (実施例11)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、リグニンスルホン酸ナトリウム(日本製紙社製"サンエキスP252"、成分1及び成分2に該当)の5質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例11のラミネート型リチウムイオン電池を作製した。
(Example 11)
In the treatment solution used for the coating treatment of the positive electrode, 5 of lignin sulfonic acid sodium (corresponding to Component 1 and Component 2) made of sodium lignin sulfonate in place of a 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium A laminate-type lithium ion battery of Example 11 was produced in the same manner as in Example 1 except that a mass% aqueous solution was used, and succinonitrile was not added to the non-aqueous electrolytic solution.
 (実施例12)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、リグニンスルホン酸ナトリウム(日本製紙社製"サンエキスP321"、成分1及び成分2に該当)の1質量%水溶液を用い、非水電解液のスクシノニトリルの添加量を20質量部とした以外は、実施例1と同様にして実施例12のラミネート型リチウムイオン電池を作製した。
(Example 12)
In the treatment solution used for the coating treatment of the positive electrode, 1 of sodium lignin sulfonate (corresponding to Component 1 and Component 2) of lignin sulfonic acid sodium instead of 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium A laminated lithium ion battery of Example 12 was produced in the same manner as Example 1 except that the addition amount of succinonitrile in the non-aqueous electrolyte was changed to 20 parts by mass using a mass% aqueous solution.
 (実施例13)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、スクロース(成分1に該当)の1質量%水溶液を用い、非水電解液のスクシノニトリルの添加量を20質量部とした以外は、実施例1と同様にして実施例13のラミネート型リチウムイオン電池を作製した。
(Example 13)
In the treatment solution used for the coating treatment of the positive electrode, the 1% by mass aqueous solution of sucrose (corresponding to Component 1) is used instead of the 1% by mass aqueous solution of pentasodium diethylenetriamine pentaacetate, and the addition of succinonitrile in the non-aqueous electrolyte A laminated lithium ion battery of Example 13 was made in the same manner as Example 1 except that the amount was 20 parts by mass.
 (実施例14)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、カルボキシメチルセルロース(CMC、成分1に該当)の0.1質量%水溶液を用いた以外は、実施例1と同様にして実施例14のラミネート型リチウムイオン電池を作製した。
(Example 14)
In the treatment solution used for the coating treatment of the positive electrode, an example was used except that a 0.1 mass% aqueous solution of carboxymethylcellulose (CMC, corresponding to component 1) was used instead of a 1 mass% aqueous solution of diethylenetriamine pentaacetic acid pentasodium. In the same manner as in Example 1, a laminate-type lithium ion battery of Example 14 was produced.
 (実施例15)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、カルボキシメチルセルロース(CMC、成分1に該当)の0.1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例15のラミネート型リチウムイオン電池を作製した。
(Example 15)
In the treatment solution used for the coating treatment of the positive electrode, a 0.1 mass% aqueous solution of carboxymethylcellulose (CMC, corresponding to component 1) is used instead of a 1 mass% aqueous solution of pentasodium diethylenetriaminepentaacetate to prepare a non-aqueous electrolyte A laminated lithium ion battery of Example 15 was produced in the same manner as in Example 1 except that succinonitrile was not added.
 (実施例16)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、アルギン酸ナトリウム(成分1及び成分2に該当)の1質量%水溶液を用い、非水電解液のスクシノニトリルの添加量を20質量部とした以外は、実施例1と同様にして実施例16のラミネート型リチウムイオン電池を作製した。
(Example 16)
In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sodium alginate (corresponding to Component 1 and Component 2) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetic acid to form a non-aqueous electrolyte A laminated lithium ion battery of Example 16 was made in the same manner as Example 1 except that the amount of addition of sinonitrile was 20 parts by mass.
 (実施例17)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、モノフルオロリン酸ナトリウム(Na2PO3F、成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例17のラミネート型リチウムイオン電池を作製した。
(Example 17)
Used in the processing solution used in the coating process of the positive electrode, in place of the 1 wt% aqueous solution of diethylenetriaminepentaacetic acid pentasodium, monofluorophosphate, sodium 1 mass% aqueous solution of (Na 2 PO 3 F, component 2 corresponds to), A laminate-type lithium ion battery of Example 17 was produced in the same manner as in Example 1 except that succinonitrile was not added to the non-aqueous electrolytic solution.
 (実施例18)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、Na3PO4(成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例18のラミネート型リチウムイオン電池を作製した。
(Example 18)
In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of Na 3 PO 4 (corresponding to component 2) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetic acid to form a non-aqueous electrolyte. A laminated lithium ion battery of Example 18 was produced in the same manner as in Example 1 except that the nitrile was not added.
 (実施例19)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、メタリン酸ナトリウム〔(NaPO3n、成分2に該当〕の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例19のラミネート型リチウムイオン電池を作製した。
(Example 19)
In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sodium metaphosphate [corresponding to (NaPO 3 ) n , component 2] is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate A laminated lithium ion battery of Example 19 was produced in the same manner as Example 1, except that succinonitrile was not added to the electrolytic solution.
 (実施例20)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、ピロリン酸ナトリウム(Na427、成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例20のラミネート型リチウムイオン電池を作製した。
Example 20
In the treatment solution used for the coating treatment of the positive electrode, a 1 mass% aqueous solution of sodium pyrophosphate (Na 4 P 2 O 7 , corresponding to component 2) is used instead of a 1 mass% aqueous solution of pentasodium diethylenetriamine pentaacetate. A laminated lithium ion battery of Example 20 was produced in the same manner as Example 1, except that succinonitrile was not added to the water electrolyte.
 (実施例21)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、メタクリル酸3-スルホプロピルカリウム(成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例21のラミネート型リチウムイオン電池を作製した。
(Example 21)
Non-aqueous electrolyte solution using a 1% by mass aqueous solution of 3-sulfopropyl potassium methacrylate (corresponding to component 2) in place of the 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate in the treatment liquid used for the coating treatment of the positive electrode A laminated lithium ion battery of Example 21 was produced in the same manner as in Example 1 except that succinonitrile was not added.
 (実施例22)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、ジベンゼンスルホン酸イミドリチウム(成分2及び成分3に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例22のラミネート型リチウムイオン電池を作製した。
(Example 22)
In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of lithium dibenzenesulfonic acid imide (corresponding to Component 2 and Component 3) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate A laminated lithium ion battery of Example 22 was made in the same manner as Example 1, except that succinonitrile was not added to the electrolytic solution.
 (実施例23)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、β-シクロデキストリン(成分1に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例23のラミネート型リチウムイオン電池を作製した。
(Example 23)
In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of β-cyclodextrin (corresponding to Component 1) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate to form a non-aqueous electrolyte. A laminated lithium ion battery of Example 23 was made in the same manner as Example 1 except that the nitrile was not added.
 (実施例24)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、α-シクロデキストリン(成分1に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例24のラミネート型リチウムイオン電池を作製した。
(Example 24)
In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of α-cyclodextrin (corresponding to Component 1) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetate to form a non-aqueous electrolyte. A laminated lithium ion battery of Example 24 was produced in the same manner as in Example 1 except that the nitrile was not added.
 (実施例25)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、アルギン酸ナトリウム(成分1及び成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例25のラミネート型リチウムイオン電池を作製した。
(Example 25)
In the treatment solution used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sodium alginate (corresponding to Component 1 and Component 2) is used instead of a 1% by mass aqueous solution of pentasodium diethylenetriaminepentaacetic acid to form a non-aqueous electrolyte A laminated lithium ion battery of Example 25 was made in the same manner as Example 1 except that no sinonitrile was added.
 (実施例26)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、アルギン酸とアルギン酸ナトリウム(アルギン酸の50%部分中和品、成分1及び成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例26のラミネート型リチウムイオン電池を作製した。
(Example 26)
In the treatment solution used for the coating treatment of the positive electrode, 1 mass of alginic acid and sodium alginate (corresponding to 50% partially neutralized alginic acid product, component 1 and component 2) instead of a 1 mass% aqueous solution of diethylenetriamine pentaacetic acid pentasodium A laminated lithium ion battery of Example 26 was produced in the same manner as in Example 1 except that the% aqueous solution was used and the succinonitrile was not added to the non-aqueous electrolytic solution.
 (実施例27)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、ポリアクリル酸ナトリウム(分子量:3~4万、成分1及び成分2に該当)の0.3質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例27のラミネート型リチウムイオン電池を作製した。
(Example 27)
In the treatment solution used for the coating treatment of the positive electrode, 0.3 mass of sodium polyacrylate (molecular weight: 30,000, corresponding to component 1 and component 2) instead of 1 mass% aqueous solution of pentasodium diethylenetriamine pentaacetate A laminate-type lithium ion battery of Example 27 was produced in the same manner as in Example 1 except that a 20% aqueous solution was used, and succinonitrile was not added to the non-aqueous electrolytic solution.
 (実施例28)
 正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、ポリアクリル酸(分子量:25万、成分1に該当)の0.3質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例28のラミネート型リチウムイオン電池を作製した。
(Example 28)
In the treatment solution used for the coating treatment of the positive electrode, a 0.3 mass% aqueous solution of polyacrylic acid (molecular weight: 250,000, corresponding to component 1) is used instead of a 1 mass% aqueous solution of pentasodium diethylenetriamine pentaacetate. A laminate-type lithium ion battery of Example 28 was produced in the same manner as in Example 1 except that succinonitrile was not added to the water electrolyte solution.
 (実施例29)
 処理液の塗布による正極の被覆処理を行わず、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)との体積比1:3の混合溶媒1kgに、1.0molのLiPF6を溶解して混合液を作製し、その混合液100質量部に、更にビニレンカーボネート(VC)2質量部と、スクシノニトリル3質量部と、ジエチレングリコールビスアミノプロピルエーテル0.3質量部とを加えて非水電解液を調製し、この非水電解液を使用した以外は、実施例1と同様にして実施例29のラミネート型リチウムイオン電池を作製した。
(Example 29)
A mixed solution was prepared by dissolving 1.0 mol of LiPF 6 in 1 kg of a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) at a volume ratio of 1: 3 without coating the positive electrode by applying the treatment liquid. The non-aqueous electrolyte is prepared by adding 2 parts by mass of vinylene carbonate (VC), 3 parts by mass of succinonitrile, and 0.3 parts by mass of diethylene glycol bisaminopropyl ether to 100 parts by mass of the mixture. A laminated lithium ion battery of Example 29 was produced in the same manner as in Example 1 except for preparing and using this non-aqueous electrolyte.
 (比較例1)
 処理液の塗布による正極の被覆処理を行わず、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして比較例1のラミネート型リチウムイオン電池を作製した。
(Comparative example 1)
A laminate-type lithium ion battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the coating treatment of the positive electrode by the application of the treatment liquid was not performed and succinonitrile was not added to the non-aqueous electrolyte.
 (比較例2)
 処理液の塗布による正極の被覆処理を行わなかった以外は、実施例1と同様にして比較例2のラミネート型リチウムイオン電池を作製した。
(Comparative example 2)
A laminate-type lithium ion battery of Comparative Example 2 was produced in the same manner as Example 1, except that the coating treatment of the positive electrode by application of the treatment liquid was not performed.
 次に、上記の実施例1~29及び比較例1~2の電池について下記評価試験を行い、並びに実施例1、5、11、12、19、20、29及び比較例1~2の正極表面のXPS分析を行った。 Next, the following evaluation test is performed on the batteries of Examples 1 to 29 and Comparative Examples 1 and 2 described above, and the positive electrode surfaces of Examples 1, 5, 11, 12, 19, 20, and 29 and Comparative Examples 1 and 2. XPS analysis was performed.
 <充放電サイクル試験>
 [4.35V充放電サイクル試験]
 電流10mA(1/3Cの電流値に相当)、上限電圧4.35V、下限電圧3Vの条件で、100回充放電を繰り返した。これに基づき、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を、実施例1~29については4.35V容量維持率:RLとして算出し、比較例1については4.35V容量維持率:RLC1として算出し、比較例2については4.35V容量維持率:RLC2として算出した。
<Charge / discharge cycle test>
[4.35 V charge and discharge cycle test]
The charge and discharge were repeated 100 times under the conditions of a current of 10 mA (corresponding to a current value of 1/3 C), an upper limit voltage of 4.35 V, and a lower limit voltage of 3 V. Based on this, the ratio (%) of the discharge capacity at 100 cycles to the discharge capacity at 1 cycle is calculated as 4.35 V capacity retention ratio: RL for Examples 1 to 29, and 4.4 for Comparative Example 1. The 35 V capacity maintenance rate was calculated as RLC 1, and the comparative example 2 was calculated as 4.35 V capacity maintenance rate: RLC 2.
 [4.5V充放電サイクル試験]
 電流10mA(1/3Cの電流値に相当)、上限電圧4.5V、下限電圧3Vの条件で、100回充放電を繰り返した。これに基づき、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を、実施例1~29については4.5V容量維持率:RHとして算出し、比較例1については4.5V容量維持率:RHC1として算出し、比較例2については4.5V容量維持率:RHC2として算出した。
[4.5 V charge and discharge cycle test]
The charge and discharge were repeated 100 times under the conditions of a current of 10 mA (corresponding to a current value of 1/3 C), an upper limit voltage of 4.5 V, and a lower limit voltage of 3 V. Based on this, the ratio (%) of the discharge capacity at 100 cycles to the discharge capacity at 1 cycle is calculated as a 4.5 V capacity retention ratio: RH for Examples 1 to 29, and for Comparative Example 1, 4. The 5 V capacity maintenance rate was calculated as RHC 1, and the comparative example 2 was calculated as 4.5 V capacity maintenance rate: RHC 2.
 [4.35V容量維持率改善割合Aの算出]
 実施例1~29及び比較例2については下記式Aにより4.35V容量維持率改善割合Aを算出した。
 A=〔(RL-RLC1)/RLC1〕×100
[Calculation of 4.35 V capacity maintenance rate improvement ratio A]
For Examples 1 to 29 and Comparative Example 2, the improvement ratio A of 4.35 V capacity retention ratio was calculated by the following formula A.
A = [(RL−RLC1) / RLC1] × 100
 [4.5V容量維持率改善割合Bの算出]
 実施例1~29及び比較例2については下記式Bにより4.5V容量維持率改善割合Bを算出した。
 B=〔(RH-RHC1)/RHC1〕×100
[Calculation of 4.5 V capacity maintenance rate improvement ratio B]
For Examples 1 to 29 and Comparative Example 2, the 4.5 V capacity maintenance ratio improvement ratio B was calculated by the following formula B.
B = [(RH-RHC1) / RHC1] × 100
 [B/Aの算出]
 上記4.35V容量維持率改善割合A及び上記4.5V容量維持率改善割合Bから、B/Aを算出した。
[Calculation of B / A]
B / A was calculated from the 4.35 V capacity retention ratio improvement ratio A and the 4.5 V capacity retention ratio improvement ratio B.
 <加熱試験>
 ラミネート型リチウムイオン電池の外部端子を切断し、電池構成を保ったまま、その切断部にイミドテープを巻いてで絶縁処理を施し、それをアルミニウム箔で包み、測定試料とした。その後、その測定試料をセタラム社製のカロリーメーター"C80"の100気圧耐圧のステンレス製の試料容器に挿入し、更にその試料容器を"C80"の本体に挿入し、40℃から300℃まで1℃/分で昇温試験を行い、電池の発熱を計測し、200℃以上に見られる電池の発熱ピークの温度を測定した。
<Heating test>
The external terminal of the laminate type lithium ion battery was cut, and an imide tape was wound around the cut portion for insulation while keeping the battery configuration, and it was wrapped with aluminum foil to prepare a measurement sample. Thereafter, the measurement sample is inserted into a stainless steel sample container with a pressure of 100 atm pressure and a calorimeter "C80" manufactured by Setaram Co., and the sample container is further inserted into the main body of "C80", 1 from 40 ° C to 300 ° C. The temperature rising test was conducted at ° C./min, the heat generation of the battery was measured, and the temperature of the heat generation peak of the battery observed at 200 ° C. or higher was measured.
 <XPS分析>
 電流10mA(1/3Cの電流値に相当)、上限電圧4.5V、下限電圧3Vの条件で1回充放電を行った後、電池を分解して正極を取り出し、上記正極を不活性雰囲気中で、メチルエチルカーボネートで洗浄した後に真空乾燥した。その後、Kratos社製のXPS測定装置"AXIS-NOVA"を用い、X線源として単色化AlKα(1486.6eV)を用い、分析領域700μm×300μmの範囲で、Pass Energy:20eVで不活性雰囲気から真空引きを行い、正極の表面のXPS分析を行った。また、上記XPS分析では、正極に含まれる導電助剤(カーボンブラック)のピーク位置(1s軌道の結合エネルギー:284.4eV)においてピーク位置補正を行い、ピーク分割については、位置ピークとピーク幅とをそろえて分離した。
<XPS analysis>
After charging and discharging once under the conditions of current 10 mA (corresponding to a current value of 1/3 C), upper limit voltage 4.5 V, lower limit voltage 3 V, the battery is disassembled to take out the positive electrode, and the above positive electrode is in an inert atmosphere. After washing with methyl ethyl carbonate, it was dried under vacuum. After that, using an XPS measurement apparatus “AXIS-NOVA” manufactured by Kratos, using monochromatized AlKα (1486.6 eV) as an X-ray source, in an analysis area of 700 μm × 300 μm, Pass Energy: 20 eV from an inert atmosphere Vacuum drawing was performed, and XPS analysis of the surface of the positive electrode was performed. In the above-mentioned XPS analysis, peak position correction is performed at the peak position (binding energy of 1s orbital: 284.4 eV) of the conductive support agent (carbon black) contained in the positive electrode, and for peak division, position peak and peak width Were separated.
 上記XPS分析結果として、上記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)として、Rf/Ro及びRc/Roを算出した。また、正極の表面の他の原子の含有割合も測定した。 As a result of the XPS analysis, the content of oxygen atom is Ro (atomic%), the content of fluorine atom is Rf (atomic%), and the carbon atom with 1s orbital bond energy of 289 to 291 eV on the surface of the positive electrode Rf / Ro and Rc / Ro were calculated by setting the ratio to Rc (atomic%). In addition, the content ratio of other atoms on the surface of the positive electrode was also measured.
 上記の実施例1~29及び比較例1~2で用いた正極表面処理剤及び非水電解液中のニトリル化合物の有無を表1及び表2に示す。また、上記評価試験及び正極表面のXPS分析の結果を表3及び表4に示す。また、表3及び表4では、他の原子割合として、N:窒素原子、P:リン原子、S:イオウ原子、M:活物質金属成分の含有割合もそれぞれ示した。 Tables 1 and 2 show the presence or absence of the nitrile compound in the positive electrode surface treatment agent and the non-aqueous electrolyte used in Examples 1 to 29 and Comparative Examples 1 and 2 described above. Moreover, the result of the said evaluation test and the XPS analysis of the positive electrode surface is shown in Table 3 and Table 4. Moreover, in Table 3 and Table 4, the content ratio of N: nitrogen atom, P: phosphorus atom, S: sulfur atom, M: active material metal component is also shown as another atomic ratio.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~4より、糖類似化合物(成分1)、金属塩(成分2)、窒素含有化合物(成分3)の少なくとも一種で被覆されている正極、あるいは特定の表面状態の正極を用いた電池は、高電圧下において優れた充放電サイクル特性が得られることが分かる。また、本来は充放電サイクル特性の悪いジニトリル化合物を電解液に用いることで安全性も改善でき、充放電サイクル特性も向上することが分かる。 From Tables 1 to 4, it is possible to use a positive electrode coated with at least one of a sugar analog compound (component 1), a metal salt (component 2) and a nitrogen-containing compound (component 3), or a battery using a positive electrode with a specific surface condition It can be seen that excellent charge and discharge cycle characteristics can be obtained under high voltage. In addition, it is understood that the safety can be improved and the charge and discharge cycle characteristics can be improved by using a dinitrile compound which is originally poor in the charge and discharge cycle characteristics for the electrolytic solution.
 本発明によれば、高電圧での充放電サイクル特性に優れた非水二次電池を提供でき、本発明の非水二次電池は、小型・軽量で且つ高容量・高エネルギー密度の二次電池が必要とされる携帯電話、ノート型パーソナルコンピュータ等のポータブル電子機器用電池や、電気自動車用電池として用いることができる。 According to the present invention, a non-aqueous secondary battery excellent in charge and discharge cycle characteristics at high voltage can be provided, and the non-aqueous secondary battery of the present invention is a secondary battery of small size, light weight, high capacity and high energy density. It can be used as a battery for portable electronic devices such as a mobile phone or a notebook personal computer requiring a battery, or a battery for an electric car.
 10 ラミネート型リチウムイオン電池
 11 外装体
 12 正極外部端子
 13 負極外部端子
DESCRIPTION OF SYMBOLS 10 laminated type lithium ion battery 11 exterior body 12 positive electrode external terminal 13 negative electrode external terminal

Claims (15)

  1.  正極、負極及び非水電解液を含む非水二次電池であって、
     1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の前記正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、前記正極の表面をX線光電子分光分析法で分析した場合、
     前記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、
     Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下であることを特徴とする非水二次電池。
    A non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, comprising:
    After charging to 4.5 V with 1/3 C current, the positive electrode after discharging to 3 V with 1/3 C current is washed with methyl ethyl carbonate and then vacuum dried, and then the surface of the positive electrode is subjected to X-rays When analyzed by photoelectron spectroscopy
    In the surface of the positive electrode, the content ratio of oxygen atom is Ro (atomic%), the content ratio of fluorine atom is Rf (atomic%), and the content ratio of carbon atoms having 1s orbital bond energy of 289 to 291 eV is Rc (atomic% And if
    A non-aqueous secondary battery characterized in that Rf / Ro is 0.05 or more and 1.3 or less, or Rc / Ro is 0.05 or more and 0.75 or less.
  2.  前記正極の表面のX線光電子分光分析法による分析において、下記(1)~(3)のいずれかを満たす請求項1に記載の非水二次電池。
    (1)前記正極の表面における窒素原子の含有割合が0.1原子%以上1原子%以下
    (2)前記正極の表面におけるリン原子の含有割合が0.5原子%以上10原子%以下
    (3)前記正極の表面におけるコバルト、ニッケル、マンガン及び鉄の含有割合の合計が0.1原子%以上15原子%以下
    The non-aqueous secondary battery according to claim 1, satisfying any of the following (1) to (3) in the analysis of the surface of the positive electrode by X-ray photoelectron spectroscopy.
    (1) The content ratio of nitrogen atoms in the surface of the positive electrode is 0.1 atomic percent or more and 1 atomic percent or less (2) The content ratio of phosphorus atoms in the surface of the positive electrode is 0.5 atomic percent or more and 10 atomic percent or less (3 The total content of cobalt, nickel, manganese and iron on the surface of the positive electrode is 0.1 atomic% or more and 15 atomic% or less
  3.  前記正極の表面が、リグニン化合物、ポリ酸塩、モノフルオロリン酸塩、メタリン酸塩、ピロリン酸塩、ジエチレントリアミン五酢酸塩、エチレンジアミン四酢酸塩、ポリペプチド類又はその塩、及びポリアリルアミンよりなる群から選択される少なくとも1種の成分で被覆されている請求項1に記載の非水二次電池。 The surface of the positive electrode is a group consisting of lignin compounds, polyacid salts, monofluorophosphates, metaphosphates, pyrophosphates, diethylenetriaminepentaacetate, ethylenediaminetetraacetates, polypeptides or salts thereof, and polyallylamines The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is coated with at least one component selected from the group consisting of
  4.  前記正極は、フッ素含有化合物及び炭酸化合物から選ばれる少なくとも一方を含む請求項1に記載の非水二次電池。 The non-aqueous secondary battery according to claim 1, wherein the positive electrode contains at least one selected from a fluorine-containing compound and a carbonic acid compound.
  5.  前記正極は、正極合剤層を含み、
     前記正極合剤層の空隙率が、22%以上35%以下である請求項1に記載の非水二次電池。
    The positive electrode includes a positive electrode mixture layer,
    The non-aqueous secondary battery according to claim 1, wherein the porosity of the positive electrode mixture layer is 22% or more and 35% or less.
  6.  請求項1~5のいずれか1項に記載の非水二次電池を製造する方法であって、
     正極の表面に塗布する処理液を準備する工程と、
     前記処理液を正極の表面に塗布する工程とを含み、
     前記処理液が、リグニン化合物、ポリ酸塩、モノフルオロリン酸塩、メタリン酸塩、ピロリン酸塩、ジエチレントリアミン五酢酸塩、エチレンジアミン四酢酸塩、ポリペプチド類又はその塩、及びポリアリルアミンよりなる群から選択される少なくとも1種の成分を含むことを特徴とする非水二次電池の製造方法。
    A method for producing the non-aqueous secondary battery according to any one of claims 1 to 5, comprising:
    Preparing a treatment liquid to be applied to the surface of the positive electrode;
    Applying the treatment liquid to the surface of the positive electrode,
    The treatment liquid is selected from the group consisting of lignin compounds, polyacid salts, monofluorophosphates, metaphosphates, pyrophosphates, diethylenetriaminepentaacetates, ethylenediaminetetraacetates, polypeptides or salts thereof, and polyallylamines. A method of manufacturing a non-aqueous secondary battery comprising at least one selected component.
  7.  前記正極は、正極合剤層を含み、
     前記正極合剤層をプレス処理する工程と、前記プレス処理された正極合剤層の表面に前記処理液を塗布する工程とを含む請求項6に記載の非水二次電池の製造方法。
    The positive electrode includes a positive electrode mixture layer,
    The manufacturing method of the non-aqueous secondary battery of Claim 6 including the process of press-processing the said positive mix layer layer, and the process of apply | coating the said process liquid on the surface of the positive electrode mix layer by which the press process was carried out.
  8.  前記正極合剤層をプレス処理する工程において、前記正極合剤層の空隙率を、22%以上35%以下とする請求項7に記載の非水二次電池の製造方法。 The method for manufacturing a non-aqueous secondary battery according to claim 7, wherein the porosity of the positive electrode mixture layer is set to 22% or more and 35% or less in the step of pressing the positive electrode mixture layer.
  9.  前記処理液における前記成分の濃度が、0.01質量%以上20質量%以下であり、
     前記処理液の前記正極の表面への塗布量が、前記処理液の乾燥成分質量換算で、0.0002mg/cm2以上0.5mg/cm2以下である請求項6に記載の非水二次電池の製造方法。
    The concentration of the component in the treatment liquid is 0.01% by mass or more and 20% by mass or less,
    The coating amount of the surface of the positive electrode of the treatment liquid, a dry component mass conversion of the treatment liquid, nonaqueous secondary of claim 6 is 0.0002 mg / cm 2 or more 0.5 mg / cm 2 or less How to make a battery.
  10.  請求項1~5のいずれか1項に記載の非水二次電池を製造する方法であって、
     リグニン化合物、ポリ酸塩、モノフルオロリン酸塩、メタリン酸塩、ピロリン酸塩、ジエチレントリアミン五酢酸塩、エチレンジアミン四酢酸塩、ポリペプチド類又はその塩、及びポリアリルアミンよりなる群から選択される少なくとも1種の成分を含む非水電解液を準備する工程と、
     正極、負極及び前記非水電解液を用いて電池を組み立てる工程と、
     前記組み立てた電池を、4.35V以上となる電圧まで充電した後に放電する工程とを含むことを特徴とする非水二次電池の製造方法。
    A method for producing the non-aqueous secondary battery according to any one of claims 1 to 5, comprising:
    At least one selected from the group consisting of lignin compounds, poly acid salts, monofluorophosphates, metaphosphates, pyrophosphates, diethylenetriamine pentaacetates, ethylenediaminetetraacetates, polypeptides or salts thereof, and polyallylamines Preparing a non-aqueous electrolyte containing the components of the species;
    Assembling a battery using a positive electrode, a negative electrode, and the non-aqueous electrolyte;
    And d) charging the assembled battery to a voltage of 4.35 V or higher and discharging the assembled battery.
  11.  請求項1~5のいずれか1項に記載の非水二次電池を製造するための非水電解液。 A non-aqueous electrolyte for producing the non-aqueous secondary battery according to any one of claims 1 to 5.
  12.  フッ素含有化合物及び炭酸化合物から選ばれる少なくとも一方を含む請求項11に記載の非水電解液。 The non-aqueous electrolytic solution according to claim 11, comprising at least one selected from a fluorine-containing compound and a carbonic acid compound.
  13.  分子内にニトリル基を2つ以上有する化合物を含む請求項11に記載の非水電解液。 The non-aqueous electrolytic solution according to claim 11, comprising a compound having two or more nitrile groups in the molecule.
  14.  前記分子内にニトリル基を2つ以上有する化合物の濃度が、0.1質量%以上50質量%以下である請求項13に記載の非水電解液。 The non-aqueous electrolytic solution according to claim 13, wherein the concentration of the compound having two or more nitrile groups in the molecule is 0.1% by mass or more and 50% by mass or less.
  15.  リグニン化合物、ポリ酸塩、モノフルオロリン酸塩、メタリン酸塩、ピロリン酸塩、ジエチレントリアミン五酢酸塩、エチレンジアミン四酢酸塩、ポリペプチド類又はその塩、及びポリアリルアミンよりなる群から選択される少なくとも1種の成分を含む請求項11に記載の非水電解液。 At least one selected from the group consisting of lignin compounds, poly acid salts, monofluorophosphates, metaphosphates, pyrophosphates, diethylenetriamine pentaacetates, ethylenediaminetetraacetates, polypeptides or salts thereof, and polyallylamines The non-aqueous electrolytic solution according to claim 11, comprising a component of a species.
PCT/JP2018/033101 2017-09-29 2018-09-06 Non-aqueous secondary cell, non-aqueous electrolyte used in same, and method for manufacturing non-aqueous secondary cell WO2019065151A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019544506A JP7069189B2 (en) 2017-09-29 2018-09-06 Non-water secondary battery, non-water electrolyte used for it, and method for manufacturing the non-water secondary battery.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-191408 2017-09-29
JP2017191408 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065151A1 true WO2019065151A1 (en) 2019-04-04

Family

ID=65900871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033101 WO2019065151A1 (en) 2017-09-29 2018-09-06 Non-aqueous secondary cell, non-aqueous electrolyte used in same, and method for manufacturing non-aqueous secondary cell

Country Status (2)

Country Link
JP (1) JP7069189B2 (en)
WO (1) WO2019065151A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380113A (en) * 2019-08-02 2019-10-25 湖州昆仑动力电池材料有限公司 Additive for high-voltage lithium ion battery electrolyte and application thereof
CN112542614A (en) * 2020-06-09 2021-03-23 杉杉新材料(衢州)有限公司 High-voltage lithium ion battery non-aqueous electrolyte and lithium ion battery thereof
CN112585786A (en) * 2019-05-27 2021-03-30 株式会社Lg化学 Positive electrode additive, method for producing same, and positive electrode and lithium secondary battery comprising same
CN113067032A (en) * 2021-03-18 2021-07-02 宁德新能源科技有限公司 Electrolyte solution, electrochemical device, and electronic device
CN114424374A (en) * 2019-09-27 2022-04-29 松下知识产权经营株式会社 Secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188950A (en) * 1996-12-20 1998-07-21 Toray Ind Inc Electrode for battery, and secondary battery using the electrode
JP2000357505A (en) * 1999-06-15 2000-12-26 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JP2001222995A (en) * 2000-02-08 2001-08-17 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2002075367A (en) * 2000-09-04 2002-03-15 Mitsui Chemicals Inc Positive electrode active material for lithium battery, manufacturing method for the active material, and secondary battery using it
JP2015072858A (en) * 2013-10-04 2015-04-16 旭化成株式会社 Nonaqueous electrolytic solution, electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220335A (en) * 2006-02-14 2007-08-30 Univ Nagoya Lithium ion secondary battery
JP2014120456A (en) * 2012-12-19 2014-06-30 Nissan Motor Co Ltd Secondary battery
JP2016186918A (en) * 2015-03-27 2016-10-27 トヨタ自動車株式会社 Method of manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2017094416A1 (en) * 2015-12-02 2017-06-08 日本電気株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188950A (en) * 1996-12-20 1998-07-21 Toray Ind Inc Electrode for battery, and secondary battery using the electrode
JP2000357505A (en) * 1999-06-15 2000-12-26 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JP2001222995A (en) * 2000-02-08 2001-08-17 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2002075367A (en) * 2000-09-04 2002-03-15 Mitsui Chemicals Inc Positive electrode active material for lithium battery, manufacturing method for the active material, and secondary battery using it
JP2015072858A (en) * 2013-10-04 2015-04-16 旭化成株式会社 Nonaqueous electrolytic solution, electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585786A (en) * 2019-05-27 2021-03-30 株式会社Lg化学 Positive electrode additive, method for producing same, and positive electrode and lithium secondary battery comprising same
CN112585786B (en) * 2019-05-27 2024-06-04 株式会社Lg新能源 Positive electrode additive, method for manufacturing same, positive electrode comprising same, and lithium secondary battery
CN110380113A (en) * 2019-08-02 2019-10-25 湖州昆仑动力电池材料有限公司 Additive for high-voltage lithium ion battery electrolyte and application thereof
CN114424374A (en) * 2019-09-27 2022-04-29 松下知识产权经营株式会社 Secondary battery
CN114424374B (en) * 2019-09-27 2024-02-20 松下知识产权经营株式会社 Secondary battery
CN112542614A (en) * 2020-06-09 2021-03-23 杉杉新材料(衢州)有限公司 High-voltage lithium ion battery non-aqueous electrolyte and lithium ion battery thereof
CN113067032A (en) * 2021-03-18 2021-07-02 宁德新能源科技有限公司 Electrolyte solution, electrochemical device, and electronic device

Also Published As

Publication number Publication date
JPWO2019065151A1 (en) 2020-04-30
JP7069189B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP7069189B2 (en) Non-water secondary battery, non-water electrolyte used for it, and method for manufacturing the non-water secondary battery.
WO2014126256A1 (en) Electrolyte solution and lithium ion secondary battery provided with same
JP4743752B2 (en) Lithium ion secondary battery
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
WO2013137351A1 (en) Secondary battery electrolyte and secondary battery using same
JP5357517B2 (en) Lithium ion secondary battery
JP4201308B2 (en) Lithium secondary battery separator and lithium secondary battery using the same
WO2012111545A1 (en) Non-aqueous electrolyte secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JPWO2013073288A1 (en) Lithium ion secondary battery
JP6056955B2 (en) Lithium secondary battery
WO2013042503A1 (en) Non-aqueous secondary battery
JP6205889B2 (en) Lithium secondary battery
WO2022054343A1 (en) Lithium secondary battery
KR102294200B1 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer and secondary battery
JP2016085838A (en) Lithium ion secondary battery
US20150311530A1 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery using same
CN109935905B (en) Electrolyte and lithium ion battery
JP2020167054A (en) Lithium ion secondary battery
JP5662746B2 (en) Lithium ion secondary battery
JPWO2019065288A1 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
JP5350849B2 (en) Lithium secondary battery
JP2018085213A (en) Lithium secondary battery
JP7199157B2 (en) Electrolyte solution containing lithium iodide, and lithium ion battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862698

Country of ref document: EP

Kind code of ref document: A1