JP7069189B2 - Non-water secondary battery, non-water electrolyte used for it, and method for manufacturing the non-water secondary battery. - Google Patents

Non-water secondary battery, non-water electrolyte used for it, and method for manufacturing the non-water secondary battery. Download PDF

Info

Publication number
JP7069189B2
JP7069189B2 JP2019544506A JP2019544506A JP7069189B2 JP 7069189 B2 JP7069189 B2 JP 7069189B2 JP 2019544506 A JP2019544506 A JP 2019544506A JP 2019544506 A JP2019544506 A JP 2019544506A JP 7069189 B2 JP7069189 B2 JP 7069189B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
atom
less
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019544506A
Other languages
Japanese (ja)
Other versions
JPWO2019065151A1 (en
Inventor
房次 喜多
悠 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Maxell Ltd
Original Assignee
Mitsui Chemicals Inc
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Maxell Ltd filed Critical Mitsui Chemicals Inc
Publication of JPWO2019065151A1 publication Critical patent/JPWO2019065151A1/en
Application granted granted Critical
Publication of JP7069189B2 publication Critical patent/JP7069189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法に関するものである。 The present invention relates to a non-aqueous secondary battery, a non-aqueous electrolytic solution used thereof, and a method for manufacturing the non-aqueous secondary battery.

近年、携帯電話、ノート型パーソナルコンピュータ等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、小型・軽量で且つ高容量・高エネルギー密度の二次電池が必要とされるようになってきている。 In recent years, with the development of portable electronic devices such as mobile phones and notebook personal computers and the practical application of electric vehicles, small and lightweight secondary batteries with high capacity and high energy density have been required. It's coming.

現在、この要求に応え得る非水二次電池、特にリチウムイオン電池では、正極活物質にコバルト酸リチウム(LixCoO2)、ニッケル酸リチウム(LixNiO2)、ニッケル-コバルト-マンガン酸リチウム(LixNiy1Coy2Mny32:0.9<x<1.1、0<y1~3<1、y1+y2+y3=1)等のリチウム含有複合酸化物あるいはこれらの複合体や混合物を用い、負極活物質に黒鉛等を用いている。そして、非水二次電池の適用機器の更なる発達に伴って、非水二次電池の更なる高容量化・高エネルギー密度化が求められている。 Currently, in non-aqueous secondary batteries that can meet this demand, especially lithium ion batteries, the positive electrode active materials are lithium cobaltate (Li x CoO 2 ), lithium nickelate (Li x NiO 2 ), and nickel-cobalt-lithium manganate. Using a lithium-containing composite oxide such as (Li x Ni y1 Co y2 Mn y3 O 2 : 0.9 <x <1.1, 0 <y1 to 3 <1, y1 + y2 + y3 = 1) or a composite or mixture thereof. , Graphite or the like is used as the negative electrode active material. With the further development of equipment to which non-water secondary batteries are applied, further increase in capacity and energy density of non-water secondary batteries is required.

非水二次電池の高容量化及び高エネルギー密度化を図る手法の一つとして、正極活物質を高電圧で充電して用いることが挙げられる。しかし、非水二次電池の高エネルギー密度化及び高電圧化に伴い、電池の充放電サイクル特性の低下が顕著になってきた。 One of the methods for increasing the capacity and energy density of the non-aqueous secondary battery is to charge the positive electrode active material at a high voltage and use it. However, with the increase in energy density and voltage of non-aqueous secondary batteries, the deterioration of the charge / discharge cycle characteristics of the batteries has become remarkable.

従来、高電圧下における充放電サイクル特性の低下を抑制するため、正極活物質に異種金属を固溶させ、正極の表面を金属酸化物で被覆することが提案されているが、被膜の高電圧安定性に劣り、被膜と電解液との相互作用により被膜が劣化するという問題がある。また、同様の目的で、正極の表面を有機物やアルカリ金属塩、アルカリ土類塩で被覆することも種々検討されている。しかし、有機化合物からなる被膜の場合、一般にフッ素化合物等の耐高電圧性材料を用いて被膜を形成しなければ高電圧用の被膜としては使用に耐えない。また、有機化合物からなる被膜は、電解液により膨潤しやすいため、電解液と正極とを遮断するという被膜効果は低いと考えられる。更に、アルカリ金属塩、アルカリ土類塩で被覆を形成した場合、被膜が電解液に溶解しやすく、また、被膜が電解液を吸収しやすく、いずれも被膜効果が低下する問題がある。 Conventionally, in order to suppress deterioration of charge / discharge cycle characteristics under high voltage, it has been proposed to dissolve a dissimilar metal in a positive electrode active material and coat the surface of the positive electrode with a metal oxide. There is a problem that the stability is poor and the coating is deteriorated due to the interaction between the coating and the electrolytic solution. Further, for the same purpose, various studies have been made on coating the surface of the positive electrode with an organic substance, an alkali metal salt, or an alkaline earth salt. However, in the case of a film made of an organic compound, in general, it cannot be used as a film for high voltage unless the film is formed by using a high voltage resistant material such as a fluorine compound. Further, since the film made of an organic compound is easily swollen by the electrolytic solution, it is considered that the film effect of blocking the electrolytic solution and the positive electrode is low. Further, when the coating is formed of an alkali metal salt or an alkaline earth salt, the coating film easily dissolves in the electrolytic solution, and the coating film easily absorbs the electrolytic solution, both of which have a problem that the coating effect is deteriorated.

例えば、非特許文献1には、正極活物質を無機酸化物でコーテイングする例が記載されている。これにより、活物質の副反応は抑制できるが、活物質表面の電子伝導性が阻害される恐れがある。特許文献1には、活物質の表面が、多価のフッ素含有有機リチウム塩で被覆された例について記載されており、高電圧に強いフッ素化合物で被覆することで電解液の高電圧下での反応は抑制されるが、簡便な手法ではなく、抵抗の増加も懸念される。特許文献2には、正極塗料中に保護膜材料を添加し、正極材料表面に熱作動保護膜を形成し、電池の安全性を改善することが提案されているが、塗料に保護膜材料を添加するため、電極の抵抗増加が懸念される。特許文献3には、電極表面(特に負極)表面に多孔質保護膜を形成することが提案されているが、多孔質であるため電解液と正極の反応抑制には効果が低いと考えられる。また、特許文献3には、正極表面に保護膜を形成する具体例は記載されていない。 For example, Non-Patent Document 1 describes an example in which a positive electrode active material is coated with an inorganic oxide. As a result, side reactions of the active material can be suppressed, but the electron conductivity on the surface of the active material may be impaired. Patent Document 1 describes an example in which the surface of an active material is coated with a polyvalent fluorine-containing organic lithium salt, and by coating with a fluorine compound resistant to a high voltage, the surface of the active material is coated under a high voltage of an electrolytic solution. Although the reaction is suppressed, it is not a simple method and there is concern about an increase in resistance. Patent Document 2 proposes adding a protective film material to the positive electrode paint to form a heat-operated protective film on the surface of the positive electrode material to improve the safety of the battery. Since it is added, there is a concern that the resistance of the electrode will increase. Patent Document 3 proposes to form a porous protective film on the surface of the electrode (particularly the negative electrode), but it is considered that the porous protective film is less effective in suppressing the reaction between the electrolytic solution and the positive electrode. Further, Patent Document 3 does not describe a specific example of forming a protective film on the surface of the positive electrode.

また、従来、安全性確保のために様々な電解液添加剤が検討されてきた。シクロヘキシルベンゼンやビフェニル等がその代表例であるが、4.35V程度の高電圧まで充電されるタイプの電池では、通常の充電状態でも添加剤が反応する領域になってしまい、実用上はそれらの添加剤を使用できない場合が多くなってきている。また、通常の4.2V充電であっても添加剤の一部は反応して電池性能に影響を与える。そこで、高電圧下でも使用可能で、安全性を確保できる電解液添加剤が必要になってきている。 In addition, various electrolytic solution additives have been studied in order to ensure safety. Cyclohexylbenzene, biphenyl, etc. are typical examples, but in the type of battery that can be charged up to a high voltage of about 4.35V, the additive reacts even in the normal state of charge, and in practice, they are used. In many cases, additives cannot be used. Further, even in the normal 4.2 V charge, a part of the additive reacts and affects the battery performance. Therefore, there is a need for an electrolytic solution additive that can be used even under high voltage and can ensure safety.

特許文献4には、高い電圧下でも使用可能な非水二次電池が提案されており、その電池の電解液添加剤として分子内にニトリル基を2以上有する化合物を使用することが記載され、具体的には、スクシノニトリル等のジニトリルを用いることが記載されている。一方、特許文献4では、電極の反応性を考慮すると分子内にニトリル基を2以上有する化合物の添加量は、1質量%以下が望ましい範囲としている。 Patent Document 4 proposes a non-aqueous secondary battery that can be used even under a high voltage, and describes that a compound having two or more nitrile groups in the molecule is used as an electrolyte solution additive for the battery. Specifically, it is described that a dinitrile such as succinonitrile is used. On the other hand, in Patent Document 4, the addition amount of the compound having two or more nitrile groups in the molecule is preferably 1% by mass or less in consideration of the reactivity of the electrode.

また、特許文献5には、電解液添加剤としてグルタロニトリル等のジニトリルを高濃度で用いる非水電解液二次電池が提案されている。特許文献5では、充放電サイクル特性の向上は記載されているが、その充放電サイクル特性の評価を、対極としてリチウム金属を用いて行っており、負極の反応に課題がある。一般にニトリル類は、電池の膨れを抑制するなどの効果はあるが、負極の反応性に課題があり、我々の検討でも充放電サイクル特性に課題があることが分かっている。 Further, Patent Document 5 proposes a non-aqueous electrolytic solution secondary battery using dinitrile such as glutaronitrile as an electrolytic solution additive at a high concentration. Although Patent Document 5 describes the improvement of charge / discharge cycle characteristics, the charge / discharge cycle characteristics are evaluated using lithium metal as a counter electrode, and there is a problem in the reaction of the negative electrode. In general, nitriles have the effect of suppressing battery swelling, but there is a problem with the reactivity of the negative electrode, and our study also shows that there is a problem with the charge / discharge cycle characteristics.

特開2012-243696号公報Japanese Unexamined Patent Publication No. 2012-243696 特開2010-157512号公報Japanese Unexamined Patent Publication No. 2010-157512 特開2009-301765号公報Japanese Unexamined Patent Publication No. 2009-301765 特開2008-108586号公報Japanese Unexamined Patent Publication No. 2008-108586 特開平9-161845号公報Japanese Unexamined Patent Publication No. 9-161845

Y.J.Kim 他、Journal of The Electrochemical Society、150(12)、A1723-A1725(2003)Y. J. Kim et al., Journal of The Electrical Society, 150 (12), A1723-A1725 (2003)

本発明は上記問題を解決するものであり、高電圧での充放電サイクル特性に優れた非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法を提供するものである。 The present invention solves the above problems and provides a non-aqueous secondary battery having excellent charge / discharge cycle characteristics at a high voltage, a non-aqueous electrolytic solution used thereof, and a method for manufacturing the non-aqueous secondary battery. Is.

本発明の第1の非水二次電池は、正極、負極及び非水電解液を含む非水二次電池であって、前記正極の表面が、成分1、成分2及び成分3から選ばれる少なくとも1つの成分で被覆されており、前記成分1が、糖類似化合物であり、前記成分2が、金属塩であり、前記成分3が、窒素含有化合物であることを特徴とする。 The first non-aqueous secondary battery of the present invention is a non-aqueous secondary battery containing a positive electrode, a negative electrode and a non-aqueous electrolytic solution, and the surface of the positive electrode is at least selected from component 1, component 2 and component 3. It is coated with one component, wherein the component 1 is a sugar-like compound, the component 2 is a metal salt, and the component 3 is a nitrogen-containing compound.

本発明の第2の非水二次電池は、正極、負極及び非水電解液を含む非水二次電池であって、前記非水電解液又は前記正極は、フッ素含有化合物又は炭酸化合物を含み、前記非水電解液は、ビニレンカーボネート以外の添加剤を含み、前記非水電解液における前記添加剤の濃度が、0.05質量%以上3質量%以下であることを特徴とする。 The second non-aqueous secondary battery of the present invention is a non-aqueous secondary battery containing a positive electrode, a negative electrode and a non-aqueous electrolytic solution, wherein the non-aqueous electrolytic solution or the positive electrode contains a fluorine-containing compound or a carbonic acid compound. The non-aqueous electrolytic solution contains an additive other than vinylene carbonate, and the concentration of the additive in the non-aqueous electrolytic solution is 0.05% by mass or more and 3% by mass or less.

また、本発明の非水電解液は、上記本発明の非水二次電池に用いる非水電解液であって、フッ素含有化合物及び炭酸化合物から選ばれる少なくとも一方を含むことを特徴とする。 Further, the non-aqueous electrolytic solution of the present invention is the non-aqueous electrolytic solution used for the non-aqueous secondary battery of the present invention, and is characterized by containing at least one selected from a fluorine-containing compound and a carbon dioxide compound.

また、本発明の第1の非水二次電池の製造方法は、上記本発明の非水二次電池を製造する方法であって、成分1、成分2及び成分3から選ばれる少なくとも1つの成分を含む処理液を準備する工程と、前記処理液を正極の表面に塗布する工程とを含み、前記成分1が、糖類似化合物であり、前記成分2が、金属塩であり、前記成分3が、窒素含有化合物であり、前記正極は、プレス処理後の正極であることを特徴とする。 Further, the method for producing the first non-aqueous secondary battery of the present invention is the method for producing the non-aqueous secondary battery of the present invention, and at least one component selected from the component 1, the component 2 and the component 3 is used. Including a step of preparing a treatment liquid containing the above, and a step of applying the treatment liquid to the surface of the positive electrode, the component 1 is a sugar-like compound, the component 2 is a metal salt, and the component 3 is. , A nitrogen-containing compound, wherein the positive electrode is a positive electrode after a press treatment.

また、本発明の第2の非水二次電池の製造方法は、上記本発明の非水二次電池を製造する方法であって、成分1、成分2及び成分3から選ばれる少なくとも1つの成分を含む非水電解液を準備する工程と、正極、負極及び前記非水電解液を用いて電池を組み立てる工程と、前記組み立てた電池を充放電する工程とを含み、前記成分1が、糖類似化合物であり、前記成分2が、金属塩であり、前記成分3が、窒素含有化合物であることを特徴とする。 Further, the method for manufacturing the second non-aqueous secondary battery of the present invention is the method for manufacturing the non-aqueous secondary battery of the present invention, and at least one component selected from the component 1, the component 2 and the component 3 is used. A step of preparing a non-aqueous electrolytic solution containing the above, a step of assembling a battery using the positive electrode, a negative electrode and the non-aqueous electrolytic solution, and a step of charging and discharging the assembled battery, wherein the component 1 is similar to sugar. It is a compound, wherein the component 2 is a metal salt, and the component 3 is a nitrogen-containing compound.

本発明によれば、高電圧での充放電サイクル特性に優れた非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a non-aqueous secondary battery having excellent charge / discharge cycle characteristics at a high voltage, a non-aqueous electrolytic solution used thereof, and a method for manufacturing the non-aqueous secondary battery.

図1は、非水二次電池の一例を示す平面図である。FIG. 1 is a plan view showing an example of a non-aqueous secondary battery.

(非水二次電池の第1の実施形態)
本発明の非水二次電池の第1の実施形態は、正極、負極及び非水電解液を備え、上記正極の表面が、成分1、成分2及び成分3から選ばれる少なくとも1つの成分で被覆されており、上記成分1が糖類似化合物であり、上記成分2が金属塩であり、上記成分3が窒素含有化合物である。
(First Embodiment of Non-Water Secondary Battery)
A first embodiment of the non-aqueous secondary battery of the present invention comprises a positive electrode, a negative electrode and a non-aqueous electrolytic solution, and the surface of the positive electrode is coated with at least one component selected from component 1, component 2 and component 3. The above component 1 is a sugar-like compound, the above component 2 is a metal salt, and the above component 3 is a nitrogen-containing compound.

上記正極の表面を上記成分で被覆することにより、高電圧下でも安定な被膜を正極の表面に形成でき、正極と非水電解液との接触を減少させて、高電圧下での充放電サイクル特性を向上できる。 By coating the surface of the positive electrode with the above components, a stable film can be formed on the surface of the positive electrode even under high voltage, the contact between the positive electrode and the non-aqueous electrolyte solution is reduced, and the charge / discharge cycle under high voltage is performed. The characteristics can be improved.

また、本発明者らは、上記正極の表面を上記成分で被覆することを検討する中で、正極の表面を特定の表面状態にすることにより、電解液の添加剤効果がより向上でき、高電圧下での充放電サイクル特性を確実に向上できることを確認した。具体的には、電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、上記正極の表面をX線光電子分光分析法で分析した場合、上記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下である表面状態が好ましいことが判明した。 Further, while considering coating the surface of the positive electrode with the above components, the present inventors can further improve the additive effect of the electrolytic solution by making the surface of the positive electrode a specific surface state, which is highly effective. It was confirmed that the charge / discharge cycle characteristics under voltage can be reliably improved. Specifically, the positive electrode after charging the battery to 4.5 V with a current of 1 / 3C and then discharging to 3 V with a current of 1 / 3C is washed with methyl ethyl carbonate and then vacuum-dried. When the surface of the positive electrode is analyzed by X-ray photoelectron spectroscopic analysis, the content ratio of oxygen atoms on the surface of the positive electrode is Ro (atomic%), the content ratio of fluorine atoms is Rf (atomic%), and the bond energy of 1s orbitals. When the content ratio of carbon atoms of 289 to 291 eV is Rc (atomic%), Rf / Ro is 0.05 or more and 1.3 or less, or Rc / Ro is 0.05 or more and 0.75 or less. It turned out that the surface condition was preferable.

以下、本実施形態の各要素について詳述する。 Hereinafter, each element of the present embodiment will be described in detail.

<成分1、成分2及び成分3>
電池の充電電圧がリチウム基準で4.2Vを超える場合に、電解液や電極に含有させる物質として、従来、高電圧下で反応しにくい耐高電圧性のフッ素系化合物等がよく利用されてきた。一方、本発明者らの検討の結果、高電圧で反応しやすい窒素原子を含有する化合物、及び、電池に使用するのは望ましくないと考えられてきたOH基を有するポリマー等も、高電圧下での充放電サイクル特性の向上に効果が高いことが分かった。具体的には、糖類似化合物(成分1)、金属塩(成分2)及び窒素含有化合物(成分3)である。特に、糖類似化合物(成分1)はOH基を有するものが多く、また、窒素含有化合物(成分3)は酸化に弱い窒素原子部を有しており、従来は、高電圧下で使用される正極と共には通常使用されないものである。しかし、本発明者らは、高電圧充電電池に通常用いられない物質についてもあえて検討した結果、高電圧下での充放電サイクル特性の向上に効果があることを確認した。上記成分1~3は、正極にバインダ以外として含有させることにより効果を発揮するが、特に正極の表面に多く存在させることにより効果があり、正極の表面を成分1、成分2及び成分3から選ばれる少なくとも1つの成分で被覆することが最も効果が大きい。また、成分1~3に該当する具体的な物質は、一つの物質で複数の成分に分類されているものが好ましく、例えば、リグニンスルホン酸マグネシウムは、糖類似化合物(成分1)であり、且つ、金属塩(成分2)でもあるので、好ましい成分である。
<Ingredient 1, Ingredient 2 and Ingredient 3>
When the charging voltage of a battery exceeds 4.2 V based on lithium, a high voltage resistant fluorine-based compound or the like, which is difficult to react under high voltage, has been often used as a substance to be contained in an electrolytic solution or an electrode. .. On the other hand, as a result of the studies by the present inventors, compounds containing nitrogen atoms that easily react at high voltage and polymers having OH groups, which have been considered undesired to be used in batteries, are also under high voltage. It was found that it is highly effective in improving the charge / discharge cycle characteristics in. Specifically, it is a sugar-like compound (component 1), a metal salt (component 2), and a nitrogen-containing compound (component 3). In particular, many sugar-like compounds (component 1) have an OH group, and nitrogen-containing compounds (component 3) have a nitrogen atom portion that is vulnerable to oxidation, and are conventionally used under high voltage. It is not normally used with a positive electrode. However, as a result of deliberately examining substances that are not normally used in high-voltage rechargeable batteries, the present inventors have confirmed that they are effective in improving charge / discharge cycle characteristics under high voltage. The above components 1 to 3 are effective when they are contained in the positive electrode as other than the binder, but are particularly effective when they are present in a large amount on the surface of the positive electrode, and the surface of the positive electrode is selected from component 1, component 2 and component 3. It is most effective to cover with at least one component. Further, the specific substances corresponding to the components 1 to 3 are preferably one substance classified into a plurality of components. For example, magnesium lignin sulfonate is a sugar-like compound (component 1) and is classified into a plurality of components. Since it is also a metal salt (component 2), it is a preferable component.

[成分1]
上記成分1は、糖類似化合物である。上記糖類似化合物は、糖類とその関連物質を含む。上記糖類としては、ブドウ糖等の単糖類、スクロース等の多糖類、デンプン、アミロース、アミロペクチン、グリコーゲン、セルロース、ペクチン、グルコマンナン等も含まれる。また、α-、β-、γ-シクロデキストリン、デオキシリボース、フコース、ラムノース、グルクロン酸、ガラクツロン酸、グルコサミン、ガラクトサミン、グリセリン、キシリトール、ソルビトール、アスコルビン酸(ビタミンC)、グルクロノラクトン、グルコノラクトン等も糖類に含まれる。また、上記糖類の関連物質には、OH基を複数有する化合物であるリグニン、リグニン誘導体、アルギン酸、アルギン酸塩等も含まれ、OH基を複数有する化合物には、カルボキシメチルセルロース、ヒドロキシメチルセルロース等も含まれる。
[Ingredient 1]
The above component 1 is a sugar-like compound. The sugar analogs include sugars and related substances. The saccharides include monosaccharides such as glucose, polysaccharides such as sucrose, starch, amylose, amylopectin, glycogen, cellulose, pectin, glucomannan and the like. In addition, α-, β-, γ-cyclodextrin, deoxyribose, fucose, rhamnose, glucuronic acid, galacturonic acid, glucosamine, galactosamine, glycerin, xylitol, sorbitol, ascorbic acid (vitamin C), glucuronolactone, gluconolactone. Etc. are also included in sugars. Further, the substances related to the saccharide include lignin, a lignin derivative, alginate, alginate and the like which are compounds having a plurality of OH groups, and the compound having a plurality of OH groups also includes carboxymethyl cellulose, hydroxymethyl cellulose and the like. ..

上記糖類としては、スクロース等の多糖類が望ましく、上記OH基を複数有する化合物としては、カルボキシメチルセルロース、ヒドロキシメチルセルロース、リグニン化合物(リグニン、リグニン誘導体)、アルギン酸、アルギン酸塩が望ましい。 As the saccharide, a polysaccharide such as sucrose is desirable, and as the compound having a plurality of OH groups, carboxymethyl cellulose, hydroxymethyl cellulose, lignin compound (lignin, lignin derivative), alginate, and alginate are desirable.

上記糖類似化合物の分子量は、電解液中で溶解しにくいように200以上が望ましく、500以上がより望ましく、1000以上が最も望ましい。 The molecular weight of the sugar-like compound is preferably 200 or more, more preferably 500 or more, and most preferably 1000 or more so that it is difficult to dissolve in the electrolytic solution.

上記成分として、本来不安定なOH基を有する化合物が高電圧で効果がある理由については明確ではないが、高電圧による分子状態の変化、及び、その分子間の水素結合が作用していると考えられる。また、上記成分にフッ素原子を含有していないことが望ましい。上記成分にフッ素原子を含有すると被覆物の溶解や膨潤が起きやすくなり正極の保護効果が低下する傾向にあるからである。 It is not clear why a compound having an originally unstable OH group is effective at a high voltage as the above component, but it is said that the change in the molecular state due to the high voltage and the hydrogen bond between the molecules are acting. Conceivable. Further, it is desirable that the above components do not contain a fluorine atom. This is because if a fluorine atom is contained in the above-mentioned component, the coating material tends to dissolve or swell, and the protective effect of the positive electrode tends to decrease.

[成分2]
上記成分2は、金属塩であり、望ましくはアルカリ金属塩又はアルカリ土類金属塩であり、より望ましくはマグネシウム塩又はナトリウム塩である。また、リン系の塩、硫酸塩、カルボン酸塩が望ましく、特にリン系の塩が望ましい。上記リン系の塩としては、例えば、モノフルオロリン酸塩(MA2PO3F)、メタリン酸塩((MAPO3n)、ピロリン酸塩(MA427)が挙げられる。上記化学式中のMAは、金属元素を示し、価数は1~3である。
[Ingredient 2]
The component 2 is a metal salt, preferably an alkali metal salt or an alkaline earth metal salt, and more preferably a magnesium salt or a sodium salt. In addition, phosphorus-based salts, sulfates, and carboxylates are desirable, and phosphorus-based salts are particularly desirable. Examples of the phosphorus-based salt include monofluorophosphate ( MA2 PO 3 F ), metaphosphate ((MA PO 3 ) n ), and pyrophosphate ( MA4 P 2 O 7 ). .. MA in the above chemical formula indicates a metal element and has a valence of 1 to 3.

また、上記成分2としては、ポリ酸塩も望ましい。上記ポリ酸塩とは、化学式が[Mxy]n-(Mは、Mo、V、W、Ti、Al、Nb等)で表される分子を含む塩を指す呼称である。例えば、タングステン酸、モリブデン酸、ヴァナジン酸、マンガン酸等の塩類が挙げられる。上記のリン系の塩やポリ酸塩が望ましいのは、高電圧でも安定で電解液にも溶解しにくいためと考えられる。 Further, as the component 2, a polyate salt is also desirable. The above-mentioned polyate is a name indicating a salt containing a molecule whose chemical formula is represented by [M x O y ] n- (M is Mo, V, W, Ti, Al, Nb, etc.). Examples thereof include salts such as tungstic acid, molybdic acid, vanadic acid and manganese acid. It is considered that the above-mentioned phosphorus-based salts and polypeptides are desirable because they are stable even at high voltage and are difficult to dissolve in the electrolytic solution.

[成分3]
上記成分3は、窒素含有化合物である。上記窒素含有化合物は、部分的に塩になっていることが望ましい。これにより、窒素含有化合物が水溶性となり電極処理がしやすくなるからである。通常は、窒素含有化合物は、高電圧には弱く電池を劣化させやすいと思われている。しかし、多くの窒素含有化合物は、高電圧で反応している可能性が高いが、反応した後に良好な被覆効果を示すことも多い。
[Ingredient 3]
The component 3 is a nitrogen-containing compound. It is desirable that the nitrogen-containing compound is partially salted. This makes the nitrogen-containing compound water-soluble and facilitates electrode treatment. Normally, nitrogen-containing compounds are thought to be vulnerable to high voltages and prone to battery deterioration. However, although many nitrogen-containing compounds are likely to react at high voltages, they often exhibit a good coating effect after the reaction.

上記窒素含有化合物としては、アミン、アミド、イミド、アミノ酸、タンパク質等が挙げられる。一方、上記窒素含有化合物は、非水電解液中に溶解すると被覆効果が十分に得られない場合もあるので、溶解しにくいように塩になっているか、分子量が200以上の化合物であることが望ましく、塩であることがより望ましい。上記窒素含有化合物塩のアニオン部分は、カルボン酸基、スルホン酸基、リン酸基が望ましい。上記窒素含有化合物塩としては、例えば、ジエチレントリアミン五酢酸五ナトリウム等のジエチレントリアミン五酢酸塩、エチレンジアミン四酢酸四ナトリウム等のエチレンジアミン四酢酸塩、及びその他のマグネシウム塩、ポリグルタミン酸ナトリウム等のポリペプチド類とその塩、タンパク質、アスパラギン酸塩、ヒアルロン酸ナトリウム(鶏冠由来)、ポリイミド塩、ポリアミド塩、ポリアリルアミン等が挙げられる。化合物1分子中において、上記塩の部分が複数個あることが望ましく、上記塩の部分が4個以上あることがより望ましく、5個以上が最も望ましい。上記窒素含有化合物塩は、アミンの酢酸塩であることがより望ましい。 Examples of the nitrogen-containing compound include amines, amides, imides, amino acids, proteins and the like. On the other hand, the nitrogen-containing compound may not have a sufficient coating effect when dissolved in a non-aqueous electrolyte solution. Therefore, the compound may be salted so as to be difficult to dissolve or have a molecular weight of 200 or more. Desirable, more preferably salt. The anionic portion of the nitrogen-containing compound salt is preferably a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group. Examples of the nitrogen-containing compound salt include diethylenetriamine pentaacetic acid salts such as diethylenetriamine pentaacetic acid pentaacetate, ethylenediamine tetraacetate salts such as ethylenediamine tetraacetate tetraacetic acid, other magnesium salts, and polypeptides such as polyglutamate sodium and the like. Examples thereof include salts, proteins, asparagates, sodium hyaluronate (derived from chicken crown), polyimide salts, polyamide salts, polyallylamine and the like. It is desirable that the compound has a plurality of salt portions in one molecule, more preferably four or more salt portions, and most preferably five or more. The nitrogen-containing compound salt is more preferably an acetate of an amine.

また、上記成分にフッ素原子を含有していないことが望ましい。上記成分にフッ素原子を含有すると被覆物の溶解や膨潤が起きやすくなり正極の保護効果が低下する傾向にあるからである。 Further, it is desirable that the above components do not contain a fluorine atom. This is because if a fluorine atom is contained in the above-mentioned component, the coating material tends to dissolve or swell, and the protective effect of the positive electrode tends to decrease.

[正極の被覆]
上記正極の被覆は、上記成分1~3を少なくとも主成分として被覆処理を行うことが望ましい。副成分としてアルミナ等の絶縁材料や添加物を入れることもできるが、副成分が多くなると副成分の部分から電解液が浸入し被覆による保護効果が損なわれるおそれがあるからである。具体的な正極の被覆方法は、上記成分1~3を少なくとも含む処理液を正極の表面に塗布することにより行うことができる。その場合の上記処理液中の上記成分1~3の固形分中の割合は、50質量%以上が望ましく、70質量%以上がより望ましく、90質量%以上が最も望ましい。
[Covering of positive electrode]
It is desirable that the positive electrode is coated with at least the components 1 to 3 as the main components. An insulating material such as alumina or an additive can be added as a sub-component, but if the amount of the sub-component increases, the electrolytic solution may infiltrate from the sub-component portion and the protective effect of the coating may be impaired. A specific method for coating the positive electrode can be performed by applying a treatment liquid containing at least the above components 1 to 3 to the surface of the positive electrode. In that case, the ratio of the components 1 to 3 in the solid content in the treatment liquid is preferably 50% by mass or more, more preferably 70% by mass or more, and most preferably 90% by mass or more.

また、上記正極の他の被覆方法としては、上記成分1~3を正極活物質中に含有させるか、又は上記成分1~3を非水電解液中に含有させて、電池を組み立てた後に、充放電する方法がある。 Further, as another coating method for the positive electrode, the above components 1 to 3 are contained in the positive electrode active material, or the above components 1 to 3 are contained in the non-aqueous electrolyte solution to assemble the battery, and then the battery is assembled. There is a method of charging and discharging.

上記正極の被覆方法がどの方法であっても、正極の電子伝導を確保する点、及び被膜の破壊を防ぐ点から、プレス処理後の正極に上記被膜を形成することが望ましい。 Regardless of the method for coating the positive electrode, it is desirable to form the film on the positive electrode after the press treatment from the viewpoint of ensuring the electron conduction of the positive electrode and preventing the film from being destroyed.

<正極の表面状態>
上記正極の表面状態とは、前述のとおり、電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の上記正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、上記正極の表面をX線光電子分光分析法(XPS)で分析した場合、上記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下である正極の表面状態をいう。上記正極の表面状態においては、上記正極の表面に何らかの被膜が形成されていると考えられる。上記被膜は、前述の成分1~3による正極の被覆の作用により形成されてもよいし、後述する非水電解液に含まれる特定の成分又は特定の添加剤の作用により形成されてもよい。
<Surface condition of positive electrode>
As described above, the surface condition of the positive electrode is that the positive electrode is charged with a current of 1 / 3C to 4.5V and then discharged to 3V with a current of 1 / 3C, and then the positive electrode is washed with methyl ethyl carbonate. After vacuum drying, when the surface of the positive electrode is then analyzed by X-ray photoelectron spectroscopy (XPS), the content of oxygen atoms on the surface of the positive electrode is Ro (atomic%), and the content of fluorine atoms is determined. Assuming that the content ratio of carbon atoms with Rf (atomic%) and 1s orbital bond energy of 289 to 291 eV is Rc (atomic%), Rf / Ro is 0.05 or more and 1.3 or less, or Rc / Ro. Refers to the surface condition of the positive electrode in which is 0.05 or more and 0.75 or less. In the surface state of the positive electrode, it is considered that some kind of film is formed on the surface of the positive electrode. The film may be formed by the action of coating the positive electrode with the above-mentioned components 1 to 3, or may be formed by the action of a specific component or a specific additive contained in the non-aqueous electrolytic solution described later.

上記Rf/Roは、0.05以上が好ましく、0.1以上がより好ましく、また、1.3以下が好ましく、1.0以下がより好ましく、0.5以下が最も好ましい。また、上記Rc/Roは、0.05以上が好ましく、0.1以上がより好ましく、また、0.75以下が好ましく、0.6以下がより好ましく、0.5以下が最も好ましい。これらの値が大きすぎると形成された被膜の電極保護性能が低くなる傾向があり、小さすぎると電極保護性能は高いが、抵抗増加による電気特性が低下する傾向がある。 The Rf / Ro is preferably 0.05 or more, more preferably 0.1 or more, preferably 1.3 or less, more preferably 1.0 or less, and most preferably 0.5 or less. The Rc / Ro is preferably 0.05 or more, more preferably 0.1 or more, preferably 0.75 or less, more preferably 0.6 or less, and most preferably 0.5 or less. If these values are too large, the electrode protection performance of the formed film tends to be low, and if they are too small, the electrode protection performance tends to be high, but the electrical characteristics tend to deteriorate due to the increase in resistance.

上記Rf/Ro及び上記Rc/Roが、どうして上記範囲内であることが望ましいかは検討中であるが、正極の表面は様々な酸素を含む化合物を含む状態で形成されている(例えば、活物質の酸素、電解液分解物の酸素等)。また、酸素の含有量についても炭素に次いで多く、一方で酸素はイオンの移動と電極の保護に重要な元素である。例えば、金属酸化物正極の場合は、酸素は活物質の構成元素であり、イオン輸送や反応性にかかわる。また、正極の表面にできた生成物も、炭酸化合物(炭酸塩、炭酸エステル等)、リン酸化合物、硫酸化合物、アルコラート、エーテル化合物等の被膜形成とその形成反応に重要な成分である。 It is under consideration why the Rf / Ro and the Rc / Ro should be within the above range, but the surface of the positive electrode is formed in a state containing various oxygen-containing compounds (for example, active). Oxygen of substances, oxygen of electrolyte decomposition products, etc.). Oxygen content is also the second highest after carbon, while oxygen is an important element for ion movement and electrode protection. For example, in the case of a metal oxide positive electrode, oxygen is a constituent element of the active material and is involved in ion transport and reactivity. The product formed on the surface of the positive electrode is also an important component for film formation and its formation reaction of carbonic acid compounds (carbonates, carbonic acid esters, etc.), phosphoric acid compounds, sulfuric acid compounds, alcoholates, ether compounds and the like.

ここで、上記Rf/Ro及び上記Rc/Roが上記範囲内であることは、正極の表面に良好な保護膜が特定の状態で形成され、1s軌道の結合エネルギーが289~291eVの炭素原子を含む炭素含有化合物あるいはフッ素化合物等の電解液の分解等による生成物が正極の表面に形成されることを抑えることができることを意味していると考えられる。即ち、上記炭素含有化合物は主に炭酸化合物と考えられ、高電圧下ではCO2を発生させる場合もあるので多すぎると望ましくない。また、正極の表面に存在するフッ素は、電解液中のLiPF6等のフッ素化合物成分や正極に含まれるフッ素化合物成分由来であるが、このフッ素が正極の表面に多く存在するとLiイオンの出入りがしにくくなり電池特性が低下してしまうと共に不均一な反応も起こり、高電圧のサイクル特性も低下する恐れがある。一方、上記炭素含有化合物やフッ素化合物は、電極保護やイオンの輸送にもかかわっているので、少量は存在しないと電気特性に影響するものと推察される。 Here, the fact that the Rf / Ro and the Rc / Ro are within the above ranges means that a good protective film is formed on the surface of the positive electrode in a specific state, and carbon atoms having a 1s orbital bonding energy of 289 to 291 eV are formed. It is considered to mean that it is possible to suppress the formation of products on the surface of the positive electrode due to the decomposition of the electrolytic solution such as the carbon-containing compound or the fluorine compound contained therein. That is, the carbon-containing compound is considered to be mainly a carbonic acid compound, and CO 2 may be generated under a high voltage, so it is not desirable if the amount is too large. Further, the fluorine present on the surface of the positive electrode is derived from the fluorine compound component such as LiPF 6 in the electrolytic solution and the fluorine compound component contained in the positive electrode, but if this fluorine is abundant on the surface of the positive electrode, Li ions enter and exit. It becomes difficult to do so, the battery characteristics are deteriorated, a non-uniform reaction occurs, and the high voltage cycle characteristics may be deteriorated. On the other hand, since the carbon-containing compound and the fluorine compound are involved in electrode protection and ion transport, it is presumed that the absence of a small amount affects the electrical characteristics.

上記正極が上記表面状態である場合、上記正極の表面におけるコバルト(Co)、ニッケル(Ni)、マンガン(Mn)及び鉄(Fe)の含有割合の合計は、上記被膜の形成により、低下するが、低下しすぎると電気特性が損なわれる。このため、上記正極の表面をXPS分析した場合、上記正極の表面におけるCo、Ni、Mn及びFeの含有割合の合計は、0.1原子%以上が好ましく、0.2原子%以上がより好ましく、0.5原子%以上が最も好ましく、また、15原子%以下が好ましく、5原子%以下がより好ましく、3原子%以下が最も好ましい。 When the positive electrode is in the surface state, the total content of cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe) on the surface of the positive electrode is reduced by the formation of the film. If it drops too much, the electrical characteristics will be impaired. Therefore, when the surface of the positive electrode is analyzed by XPS, the total content of Co, Ni, Mn and Fe on the surface of the positive electrode is preferably 0.1 atomic% or more, more preferably 0.2 atomic% or more. , 0.5 atomic% or more is most preferable, 15 atomic% or less is preferable, 5 atomic% or less is more preferable, and 3 atomic% or less is most preferable.

上記正極を前述のリン系の塩、硫酸塩、ポリ酸塩、窒素含有化合物等により被覆した場合は、上記正極の表面におけるリン(P)、イオウ(S)、金属成分(Mo、V、W、Ti、Al、Nb等)、及び窒素(N)の各含有割合が特定の範囲にあることが望ましい。 When the positive electrode is coated with the above-mentioned phosphorus-based salt, sulfate, polypeptide, nitrogen-containing compound, etc., phosphorus (P), sulfur (S), and metal components (Mo, V, W) on the surface of the positive electrode are used. , Ti, Al, Nb, etc.), and nitrogen (N) are preferably in a specific range.

具体的には、上記正極の表面をXPS分析した場合、S、金属成分(Mo、V、W、Ti、Al、Nb等)及びNの各含有割合は、0.1原子%以上が望ましく、0.2原子%以上がより望ましく、0.5原子%以上が最も望ましく、また、1原子%以下が望ましく、0.5原子%以下がより望ましい。また、同様にP原子の含有割合は、0.5原子%以上が望ましく、1原子%以上がより望ましく、2%原子以上が最も望ましく、また、10原子%以下が望ましく、5原子%以下がより望ましい。これらの値が大きすぎると形成された被膜の電極保護性能が低くなる傾向があり、小さすぎると電極保護性能は高いが、抵抗増加による電気特性が低下する傾向がある。 Specifically, when the surface of the positive electrode is analyzed by XPS, the content ratios of S, metal components (Mo, V, W, Ti, Al, Nb, etc.) and N are preferably 0.1 atomic% or more. 0.2 atomic% or more is more desirable, 0.5 atomic% or more is most desirable, 1 atomic% or less is desirable, and 0.5 atomic% or less is more desirable. Similarly, the content ratio of P atom is preferably 0.5 atom% or more, more preferably 1 atom% or more, most preferably 2% atom or more, and preferably 10 atom% or less, and 5 atom% or less. More desirable. If these values are too large, the electrode protection performance of the formed film tends to be low, and if they are too small, the electrode protection performance tends to be high, but the electrical characteristics tend to deteriorate due to the increase in resistance.

前述のとおり、上記正極の表面のXPS分析は、電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の正極を、メチルエチルカーボネートで洗浄した後に真空乾燥した後に行うが、上記正極の洗浄は、通常、不活性雰囲気中で行う。XPS測定装置は、例えば、Kratos社製のXPS測定装置"AXIS-NOVA"を用い、X線源として単色化AlKα(1486.6eV)を用い、分析領域700μm×300μmの範囲で観察を行う。上記装置に試料をセットする際は、トランスファベッセルを用いて、試料に水分ができるだけ触れないようにして行うことが好ましい。 As described above, in the XPS analysis of the surface of the positive electrode, the positive electrode after charging the battery to 4.5 V with a current of 1 / 3C and then discharging to 3 V with a current of 1 / 3C was washed with methyl ethyl carbonate. Although it is performed after vacuum drying later, the cleaning of the positive electrode is usually performed in an inert atmosphere. As the XPS measuring device, for example, an XPS measuring device "AXIS-NOVA" manufactured by Kratos is used, and monochromatic AlKα (1486.6 eV) is used as an X-ray source, and observation is performed in an analysis area of 700 μm × 300 μm. When setting the sample in the above device, it is preferable to use a transfer vessel so that the sample is kept out of contact with water as much as possible.

次に、本実施形態の非水二次電池の各要素について、代表的なリチウムイオン電池を例示して説明する。上記リチウムイオン電池は、正極と、負極と、非水電解液と、セパレータとを備えている。 Next, each element of the non-aqueous secondary battery of the present embodiment will be described by exemplifying a typical lithium ion battery. The lithium ion battery includes a positive electrode, a negative electrode, a non-aqueous electrolytic solution, and a separator.

<正極>
上記正極には、例えば、正極活物質、導電助剤及びバインダ等を含有する正極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
<Positive electrode>
As the positive electrode, for example, a structure having a positive electrode mixture layer containing a positive electrode active material, a conductive auxiliary agent, a binder and the like on one or both sides of a current collector can be used.

上記正極活物質としては、リチウムイオンを吸蔵・放出可能なリチウム含有遷移金属酸化物等が使用される。リチウム含有遷移金属酸化物としては、従来から知られているリチウムイオン電池に使用されているものが挙げられる。具体的には、LiyCoO2(但し、0≦y≦1.1である。)、LizNiO2(但し、0≦z≦1.1である。)、LipMnO2(但し、0≦p≦1.1である。)、LiqCor2 1-r2(但し、M2は、Mg、Mn、Fe、Ni、Cu、Zn、Al、Ti、Ge及びCrよりなる群から選択される少なくとも1種の金属元素であり、0≦q≦1.1、0<r<1.0である。)、LisNi1-t3 t2(但し、M3は、Mg、Mn、Fe、Co、Cu、Zn、Al、Ti、Ge及びCrよりなる群から選択される少なくとも1種の金属元素であり、0≦s≦1.1、0<t<1.0である。)、LifMnvNiwCo1-v-w2(但し、0≦f≦1.1、0<v<1.0、0<w<1.0である。)等の層状構造を有するリチウム含有遷移金属酸化物等が挙げられ、これらのうちの1種のみを使用してもよく、2種以上を併用してもよい。 As the positive electrode active material, a lithium-containing transition metal oxide or the like that can occlude and release lithium ions is used. Examples of the lithium-containing transition metal oxide include those used in conventionally known lithium ion batteries. Specifically, Li y CoO 2 (where 0 ≦ y ≦ 1.1), Li z NiO 2 (where 0 ≦ z ≦ 1.1), Li p MnO 2 (where 0 ≦ z ≦ 1.1). 0 ≦ p ≦ 1.1), Li q Cor M 2 1-r O 2 (However, M 2 is derived from Mg, Mn, Fe, Ni, Cu, Zn, Al, Ti, Ge and Cr. It is at least one metal element selected from the group consisting of 0 ≦ q ≦ 1.1 and 0 <r <1.0), Li s Ni 1-t M 3 t O 2 (where M). Reference numeral 3 is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Cu, Zn, Al, Ti, Ge and Cr, and 0 ≦ s ≦ 1.1, 0 <t <. 1.0), Li f Mn v Ni w Co 1-vw O 2 (However, 0 ≦ f ≦ 1.1, 0 <v <1.0, 0 <w <1.0). Examples thereof include lithium-containing transition metal oxides having a layered structure such as, and only one of these may be used, or two or more thereof may be used in combination.

上記バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリアクリル酸塩、ポリイミド、ポリアミドイミド等が好適に用いられる。 As the binder, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyacrylic acid salt, polyimide, polyamideimide and the like are preferably used. ..

また、上記導電助剤としては、例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛(黒鉛質炭素材料);アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ-ボンブラック;炭素繊維;等の炭素材料等が挙げられる。 The conductive auxiliary agent includes, for example, natural graphite (scaly graphite, etc.), graphite such as artificial graphite (graphitic carbon material); acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black. Carbon black such as; carbon fiber; carbon material such as, etc. may be mentioned.

上記正極は、例えば、上記正極活物質、上記バインダ及び上記導電助剤を、N-メチル-2-ピロリドン(NMP)等の溶剤に分散させたペースト状やスラリー状の正極合剤含有塗料を調製し、これを集電体の片面又は両面に塗布し、乾燥した後に、必要に応じてプレス処理を施す工程を経て製造される。但し、正極は、上記の製造方法で製造されたものに制限される訳ではなく、他の製造方法で製造されたものであってもよい。 For the positive electrode, for example, a paste-like or slurry-like positive electrode mixture-containing paint in which the positive electrode active material, the binder, and the conductive auxiliary agent are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) is prepared. Then, this is applied to one side or both sides of the current collector, dried, and then pressed if necessary. However, the positive electrode is not limited to the one manufactured by the above manufacturing method, and may be manufactured by another manufacturing method.

上記正極合剤層の厚みは、例えば、集電体の片面あたり10~100μmであることが好ましい。上記正極合剤層の密度は、集電体に積層した単位面積あたりの正極合剤層の質量と、厚みとから算出され、3.0~4.5g/cm3であることが好ましい。上記正極合剤層の組成としては、例えば、正極活物質の量が60~95質量%であることが好ましく、バインダの量が1~15質量%であることが好ましく、導電助剤の量が3~20質量%であることが好ましい。 The thickness of the positive electrode mixture layer is preferably, for example, 10 to 100 μm per one side of the current collector. The density of the positive electrode mixture layer is calculated from the mass and thickness of the positive electrode mixture layer per unit area laminated on the current collector, and is preferably 3.0 to 4.5 g / cm 3 . The composition of the positive electrode mixture layer is, for example, preferably 60 to 95% by mass of the positive electrode active material, preferably 1 to 15% by mass of the binder, and the amount of the conductive auxiliary agent. It is preferably 3 to 20% by mass.

上記正極の表面に前述の成分1~3を少なくとも含む処理液を塗布して、上記正極の表面を被覆する場合、上記正極合剤層の空隙率は、22%以上が望ましく、25%以上がより望ましく、28%以上が最も望ましく、また、35%以下が望ましく、32%以下がより望ましく、29%以下が最も望ましい。上記正極合剤層の空隙率が大きすぎると上記処理液の大半が正極内部に浸入してしまい、表面での被覆効果が低くなるからであり、また、小さすぎると上記成分により形成される被覆が表面に限定されてしまい、被覆強度が低下するからである。 When the surface of the positive electrode is coated with a treatment liquid containing at least the above-mentioned components 1 to 3, the porosity of the positive electrode mixture layer is preferably 22% or more, and 25% or more. More desirable, 28% or more is most desirable, 35% or less is desirable, 32% or less is more desirable, and 29% or less is most desirable. This is because if the porosity of the positive electrode mixture layer is too large, most of the treatment liquid infiltrates into the inside of the positive electrode and the coating effect on the surface is lowered, and if it is too small, the coating formed by the components is formed. Is limited to the surface, and the coating strength is lowered.

上記正極の集電体には、従来から知られているリチウムイオン電池の正極に使用されているものと同様のものが使用でき、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン又はそれらの合金からなる箔、パンチドメタル、エキスパンドメタル、網等が挙げられ、通常、厚みが10~30μmのアルミニウム箔が好適に用いられる。 As the current collector of the positive electrode, the same one as that used for the positive electrode of a conventionally known lithium ion battery can be used, and it is made of, for example, aluminum, stainless steel, nickel, titanium or an alloy thereof. Examples thereof include foils, punched metals, expanded metals, nets and the like, and aluminum foils having a thickness of 10 to 30 μm are usually preferably used.

<負極>
上記負極には、例えば、負極活物質及びバインダ等を含有する負極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
<Negative electrode>
As the negative electrode, for example, a structure having a negative electrode mixture layer containing a negative electrode active material, a binder and the like on one side or both sides of a current collector can be used.

上記負極合剤層に含まれる負極活物質には、リチウムを脱挿入できる化合物や、リチウムと合金化可能な元素を含む材料が使用できるが、黒鉛質炭素材料を用いることが好ましい。黒鉛質炭素材料としては、従来から知られているリチウムイオン電池に使用されているものが好適であり、例えば、鱗片状黒鉛等の天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ(MCMB)、炭素繊維等の易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;等が挙げられる。また、リチウムと合金化可能な元素を含む材料としては、リチウムと合金化可能な金属(Si、Sn等)又はその合金が挙げられるが、一般組成式SiOx(但し、Siに対するOの原子比xは、0.5≦x≦1.5である。)で表されるSiとOとを構成元素に含む材料も用いることができる。 As the negative electrode active material contained in the negative electrode mixture layer, a compound capable of deinserting lithium or a material containing an element capable of alloying with lithium can be used, but it is preferable to use a graphitic carbon material. As the graphitic carbon material, those used in conventionally known lithium ion batteries are suitable, for example, natural graphite such as scaly graphite; thermally decomposed carbons, mesophase carbon microbeads (MCMB), and the like. Examples thereof include artificial graphite obtained by graphitizing easily graphitized carbon such as carbon fiber at 2800 ° C. or higher. Examples of the material containing an element that can be alloyed with silicon include a metal (Si, Sn, etc.) that can be alloyed with silicon or an alloy thereof, and the general composition formula SiO x (however, the atomic ratio of O to Si). As x, a material containing Si and O represented by (0.5 ≦ x ≦ 1.5) as constituent elements can also be used.

上記負極合剤層に使用するバインダには、前述した正極のバインダとして例示したバインダと同じものが使用できる。 As the binder used for the negative electrode mixture layer, the same binder as that exemplified as the above-mentioned positive electrode binder can be used.

また、上記負極合剤層には、更に導電助剤として導電性材料を添加してもよい。上記導電性材料としては、リチウムイオン電池内において化学変化を起こさないものであれば特に限定されず、例えば、アセチレンブラック、ケッチェンブラック等の各種カーボンブラック、カーボンナノチューブ、炭素繊維等の材料を1種又は2種以上用いることができる。 Further, a conductive material may be further added to the negative electrode mixture layer as a conductive auxiliary agent. The conductive material is not particularly limited as long as it does not cause a chemical change in the lithium ion battery, and for example, various carbon blacks such as acetylene black and ketjen black, carbon nanotubes, carbon fibers and the like are used. Species or two or more species can be used.

上記負極は、例えば、負極活物質及びバインダ、更には必要に応じて導電助剤をNMPや水等の溶剤に分散させたペースト状やスラリー状の負極合剤含有塗料を調製し、これを集電体の片面又は両面に塗布し、乾燥した後に、必要に応じてプレス処理を施す工程を経て製造される。但し、負極は、上記の製造方法で製造されたものに制限される訳ではなく、他の製造方法で製造されたものであってもよい。 For the negative electrode, for example, a paste-like or slurry-like negative electrode mixture-containing paint in which a negative electrode active material and a binder and, if necessary, a conductive auxiliary agent are dispersed in a solvent such as NMP or water is prepared and collected. It is manufactured by applying it to one or both sides of an electric body, drying it, and then pressing it if necessary. However, the negative electrode is not limited to the one manufactured by the above manufacturing method, and may be manufactured by another manufacturing method.

上記負極合剤層の厚みは、例えば、集電体の片面あたり10~100μmであることが好ましい。上記負極合剤層の密度は、1.0~1.9g/cm3であることが好ましい。上記負極合剤層の組成としては、負極活物質の量が80~99質量%であることが好ましく、バインダの量が1~20質量%であることが好ましく、導電助剤を使用する場合には、導電助剤は、負極活物質の量及びバインダの量が上記の好適値を満足する範囲内で使用することが好ましい。 The thickness of the negative electrode mixture layer is preferably, for example, 10 to 100 μm per one side of the current collector. The density of the negative electrode mixture layer is preferably 1.0 to 1.9 g / cm 3 . The composition of the negative electrode mixture layer is preferably such that the amount of the negative electrode active material is 80 to 99% by mass, the amount of the binder is preferably 1 to 20% by mass, and when a conductive auxiliary agent is used. The conductive auxiliary agent is preferably used within a range in which the amount of the negative electrode active material and the amount of the binder satisfy the above-mentioned suitable values.

上記負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタル等を用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するためには厚みの下限は5μmであることが好ましい。 As the current collector of the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal or the like can be used, but a copper foil is usually used. When the thickness of the entire negative electrode of this negative electrode current collector is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit of the thickness is 5 μm in order to secure mechanical strength. Is preferable.

<非水電解液>
上記非水電解液には、有機溶媒に無機リチウム塩や有機リチウム塩等の電解質塩を溶解した非水電解液が使用される。
<Non-water electrolyte>
As the non-aqueous electrolyte solution, a non-aqueous electrolyte solution in which an electrolyte salt such as an inorganic lithium salt or an organic lithium salt is dissolved in an organic solvent is used.

上記有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3-プロパンサルトン等の非プロトン性有機溶媒が挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC). , Γ-Butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formic acid, methyl acetate, phosphate triester , Trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3-propanesartone and other aproton organic solvents. It may be used alone or in combination of two or more.

上記無機リチウム塩としては、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、低級脂肪族カルボン酸Li、LiAlCl4、LiCl、LiBr、LiI、クロロボランLi、四フェニルホウ酸Li等が挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the inorganic lithium salt include LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , lower aliphatic carboxylic acid Li, LiAlCl 4 , LiCl, and LiBr. , LiI, chloroborane Li, Li tetraphenylborate and the like, and these may be used alone or in combination of two or more.

上記有機リチウム塩としては、LiCF3SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCn12n1+1SO3(2≦n1≦7)、LiN(Rf1OSO22[但し、Rf1はフルオロアルキル基である。]等が挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the organolithium salts include LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , and LiC n1 F. 2n1 + 1 SO 3 (2≤n1≤7), LiN (Rf 1 OSO 2 ) 2 [However, Rf 1 is a fluoroalkyl group. ] And the like, and these may be used alone or in combination of two or more.

上記電解質塩の濃度は、非水電解液中、例えば、0.2~3.0mol/dm3であることが好ましく、0.5~1.5mol/dm3であることがより好ましく、0.9~1.3mol/dm3であることが更に好ましい。 The concentration of the electrolyte salt in the non-aqueous electrolyte solution is, for example, preferably 0.2 to 3.0 mol / dm 3 , more preferably 0.5 to 1.5 mol / dm 3 , and 0. It is more preferably 9 to 1.3 mol / dm 3 .

前述のとおり、電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、上記正極の表面をX線光電子分光分析法(XPS)で分析した場合、上記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下である正極の表面状態を得るためには、上記非水電解液は、上記リチウム塩としてフッ素含有化合物を含むことが好ましく、上記有機溶媒として炭酸化合物を含むことが好ましい。上記非水電解液は、上記フッ素含有化合物又は上記炭酸化合物のいずれか一方を少なくとも含めばよいが、上記フッ素含有化合物と上記炭酸化合物とを共に含むことが好ましい。但し、上記フッ素含有化合物と上記炭酸化合物は、正極に含有されていてもよい。 As described above, the positive electrode after charging the battery to 4.5 V with a current of 1 / 3C and then discharging to 3 V with a current of 1 / 3C is washed with methyl ethyl carbonate and then vacuum dried, and then the positive electrode is described above. When the surface of the above-mentioned surface is analyzed by X-ray photoelectron spectroscopy (XPS), the content ratio of oxygen atoms on the surface of the positive electrode is Ro (atomic%), the content ratio of fluorine atoms is Rf (atom%), and the 1s orbital. Assuming that the content ratio of carbon atoms having a bond energy of 289 to 291 eV is Rc (atomic%), Rf / Ro is 0.05 or more and 1.3 or less, or Rc / Ro is 0.05 or more and 0.75 or less. In order to obtain the surface state of the positive electrode, the non-aqueous electrolytic solution preferably contains a fluorine-containing compound as the lithium salt, and preferably contains a carbon dioxide compound as the organic solvent. The non-aqueous electrolytic solution may contain at least one of the fluorine-containing compound and the carbonic acid compound, but preferably contains both the fluorine-containing compound and the carbonic acid compound. However, the fluorine-containing compound and the carbonic acid compound may be contained in the positive electrode.

上記正極の表面状態を得るための非水電解液としては、ジメチルカーボネート、ジエチルカーボネート及びメチルエチルカーボネートより選ばれる少なくとも1種の鎖状カーボネートと、エチレンカーボネート及びプロピレンカーボネートより選ばれる少なくとも1種の環状カーボネートとを含む溶媒に、LiPF6(六フッ化リン酸リチウム)を溶解した非水電解液を使用することが特に好ましい。 As the non-aqueous electrolyte solution for obtaining the surface state of the positive electrode, at least one chain carbonate selected from dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, and at least one cyclic carbonate selected from ethylene carbonate and propylene carbonate. It is particularly preferable to use a non-aqueous electrolyte solution in which LiPF 6 (lithium hexafluorophosphate) is dissolved in a solvent containing carbonate.

また、上記非水電解液には、充放電サイクル特性の改善、高温貯蔵特性や過充電防止等の安全性を向上させる目的で、次に示す添加剤を適宜含有させることができる。上記添加剤としては、例えば、無水酸、スルホン酸エステル、ジニトリル、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビニレンカーボネート(VC)、ビフェニル、フルオロベンゼン、t-ブチルベンゼン、環状フッ素化カーボネート[トリフルオロプロピレンカーボネート(TFPC)、フルオロエチレンカーボネート(FEC)等]、又は、鎖状フッ素化カーボネート[トリフルオロジメチルカーボネート(TFDMC)、トリフルオロジエチルカーボネート(TFDEC)、トリフルオロエチルメチルカーボネート(TFEMC)等]、フッ素化エーテル[Rf2-OR4(但し、Rf2はフッ素を含有するアルキル基であり、R4はフッ素を含有してもよい有機基である。]、リン酸エステル[エチルジエチルホスホノアセテート(EDPA):(C25O)2(P=O)-CH2(C=O)OC25]、リン酸トリス(トリフルオロエチル)(TFEP):(CF3CH2O)3P=O、リン酸トリフェニル(TPP):(C65O)3P=O等(上記各化合物の誘導体も含む。)が挙げられる。 Further, the non-aqueous electrolytic solution may appropriately contain the following additives for the purpose of improving the charge / discharge cycle characteristics, high temperature storage characteristics, prevention of overcharging and the like. Examples of the additive include anhydrous acid, sulfonic acid ester, dinitrile, 1,3-propanesaltone, diphenyldisulfide, cyclohexylbenzene, vinylene carbonate (VC), biphenyl, fluorobenzene, t-butylbenzene, and cyclic fluorination. Esters [trifluoropropylene carbonate (TFPC), fluoroethylene carbonate (FEC), etc.] or chain fluorinated carbonates [trifluorodimethyl carbonate (TFDMC), trifluorodiethyl carbonate (TFDEC), trifluoroethylmethyl carbonate (TFEMC) ), Etc.], Fluorinated ether [Rf 2 -OR 4 (where Rf 2 is a fluorine-containing alkyl group and R 4 is an organic group which may contain hydrogen]], phosphate ester [ethyl. Diethylphosphonoacetate (EDPA): (C 2 H 5 O) 2 (P = O) -CH 2 (C = O) OC 2 H 5 ], Tris (trifluoroethyl) phosphate (TFEP): (CF 3 ) CH 2 O) 3 P = O, triphenyl phosphate (TPP): (C 6 H 5 O) 3 P = O and the like (including derivatives of each of the above compounds).

前述の正極の被覆と合わせて用いると高電圧下での充放電サイクル特性の向上に効果が高い添加剤は、分子内にニトリル基を2つ以上有する化合物である。上記分子内にニトリル基を2つ以上有する化合物としては、例えば、スクシノニトリル、グルタロニトリル、アジポニトリル、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、1,8-ジシアノオクタン、1,9-ジシアノノナン、1,10-ジシアノデカン、1,12-ジシアノドデカン、テトラメチルスクシノニトリル、2-メチルグルタロニトリル、4-ジシアノペンタン、2,6-ジシアノヘプタン、2,7-ジシアノオクタン、2,8-ジシアノノナン、1,6-ジシアノデカン、1,2-ジシアノベンゼン等のジニトリル等が挙げられる。また、これらのジニトリル等は、その一部がフッ素化されていてもよい。 An additive that is highly effective in improving charge / discharge cycle characteristics under high voltage when used in combination with the above-mentioned positive electrode coating is a compound having two or more nitrile groups in the molecule. Examples of the compound having two or more nitrile groups in the molecule include succinonitrile, glutaronitrile, adiponitrile, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, and 1, 8-dicyanooctane, 1,9-dicyanononane, 1,10-dicyanodecane, 1,12-dicyanododecane, tetramethylsuccinonitrile, 2-methylglutaronitrile, 4-dicyanopentane, 2,6-dicyanoheptane, Examples thereof include dinitriles such as 2,7-dicyanooctane, 2,8-dicyanononane, 1,6-dicyanodecane and 1,2-dicyanobenzene. Further, some of these dinitriles and the like may be fluorinated.

上記非水電解液における上記分子内にニトリル基を2つ以上有する化合物の濃度は、0.1質量%以上が望ましく、2質量%以上がより望ましく、10質量%以上が最も望ましく、また、50質量%以下が望ましく、30質量%以下がより望ましく、20質量%以下が最も望ましい。 The concentration of the compound having two or more nitrile groups in the molecule in the non-aqueous electrolytic solution is preferably 0.1% by mass or more, more preferably 2% by mass or more, most preferably 10% by mass or more, and 50. It is preferably 3% by mass or less, more preferably 30% by mass or less, and most preferably 20% by mass or less.

<セパレータ>
上記セパレータとしては、強度が十分で、且つ非水電解液を多く保持できるものがよく、例えば、厚さが5~50μmで開口率が30~70%の、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン製の微多孔膜を用いることができる。上記セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、エチレン-プロピレン共重合体を含んでいてもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
<Separator>
The separator preferably has sufficient strength and can hold a large amount of non-aqueous electrolytic solution. For example, polyethylene (PE) or polypropylene (PP) having a thickness of 5 to 50 μm and an aperture ratio of 30 to 70%. Etc., a microporous film made of polyolefin can be used. The microporous film constituting the separator may be, for example, one using only PE or only one using PP, may contain an ethylene-propylene copolymer, or may be made of PE. It may be a laminate of a porous film and a microporous film made of PP.

また、上記セパレータとして、融点が140℃以下の樹脂を主体とした多孔質層(A)と、融点が150℃以上の樹脂又は耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(B)とから構成された積層型のセパレータを使用することもできる。上記多孔質層(A)は、主にシャットダウン機能を確保するためのものであり、リチウムイオン電池の内部温度が多孔質層(A)の主体となる成分である樹脂の融点以上に達したときには、多孔質層(A)に係る樹脂が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。一方、上記多孔質層(B)は、リチウムイオン電池の内部温度が上昇した際にも正極と負極との直接の接触による短絡を防止する機能を備えたものであり、融点が150℃以上の樹脂又は耐熱温度が150℃以上の無機フィラーによって、その機能を確保している。即ち、電池が高温となった場合には、喩え多孔質層(A)が収縮しても、収縮し難い多孔質層(B)によって、セパレータが熱収縮した場合に発生し得る正負極の直接の接触による短絡を防止できる。また、この耐熱性の多孔質層(B)がセパレータの骨格として作用するため、多孔質層(A)の熱収縮、即ちセパレータ全体の熱収縮自体も抑制できる。ここで、「融点」とは、日本工業規格(JIS)K7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味し、「耐熱温度が150℃以上」とは、少なくとも150℃において軟化等の変形が見られないことを意味している。 Further, as the separator, a porous layer (A) mainly composed of a resin having a melting point of 140 ° C. or lower and a porous layer mainly containing a resin having a melting point of 150 ° C. or higher or an inorganic filler having a heat resistant temperature of 150 ° C. or higher ( A laminated separator composed of B) and can also be used. The porous layer (A) is mainly for ensuring a shutdown function, and when the internal temperature of the lithium ion battery reaches the melting point or higher of the resin which is the main component of the porous layer (A). , The resin related to the porous layer (A) melts and closes the pores of the separator, resulting in a shutdown that suppresses the progress of the electrochemical reaction. On the other hand, the porous layer (B) has a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode even when the internal temperature of the lithium ion battery rises, and has a melting point of 150 ° C. or higher. Its function is ensured by a resin or an inorganic filler having a heat resistant temperature of 150 ° C. or higher. That is, when the battery becomes hot, even if the porous layer (A) shrinks, the porous layer (B) that does not easily shrink causes the separator to heat shrink, which can occur directly on the positive and negative electrodes. It is possible to prevent a short circuit due to contact. Further, since the heat-resistant porous layer (B) acts as a skeleton of the separator, the heat shrinkage of the porous layer (A), that is, the heat shrinkage of the entire separator can be suppressed. Here, the "melting point" means the melting temperature measured by a differential scanning calorimeter (DSC) in accordance with the provisions of Japanese Industrial Standards (JIS) K7121, and "heat resistant temperature is 150 ° C. or higher". Means that no deformation such as softening is observed at least at 150 ° C.

上記セパレータ(ポリオレフィン製の微多孔膜からなるセパレータや、上記積層型のセパレータ)の厚みは、10~30μmであることがより好ましい。 The thickness of the separator (separator made of a microporous film made of polyolefin or the laminated separator) is more preferably 10 to 30 μm.

<電極体>
本実施形態の非水二次電池に用いられる電極体としては、上記正極と上記負極とを上記セパレータを介して積層した積層電極体や、上記積層電極体を更に渦巻状に巻回した巻回電極体が挙げられる。
<Electrode body>
As the electrode body used in the non-aqueous secondary battery of the present embodiment, a laminated electrode body in which the positive electrode and the negative electrode are laminated via the separator, or a winding in which the laminated electrode body is further wound in a spiral shape. An electrode body can be mentioned.

<電池の形態>
上記リチウムイオン電池の形態としては特に限定されず、例えば、コイン形、ボタン形、シート形、積層形、円筒形、扁平形、角形、電気自動車等に用いる大型のもの等のいずれであってもよい。
<Battery form>
The form of the lithium ion battery is not particularly limited, and may be, for example, any of a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, a square type, a large one used for an electric vehicle, and the like. good.

<非水二次電池の特性>
本実施形態の非水二次電池の充電電圧は、リチウム基準で4.35V以上が望ましく、4.45V以上がより望ましく、4.55V以上が最も望ましい。充電電圧が高くなるほど本実施形態の正極被覆による電極保護作用が有効に作用するからである。また、上記充電電圧は、5.5V以下が望ましい。充電電圧が高すぎると保護膜自体の分解の恐れがあるからである。更に、リチウムイオン電池の充電電圧がリチウム基準で望ましくは4.4V以上、更に望ましくは4.55V以上になると、電池の継続的発熱状態がより低い温度から始まるため、前述のジニトリルを含有する電解液との組み合わせがより最適となる。
<Characteristics of non-water secondary battery>
The charging voltage of the non-aqueous secondary battery of the present embodiment is preferably 4.35 V or higher, more preferably 4.45 V or higher, and most preferably 4.55 V or higher based on lithium. This is because the higher the charging voltage, the more effectively the electrode protection action of the positive electrode coating of the present embodiment works. Further, the charging voltage is preferably 5.5 V or less. This is because if the charging voltage is too high, the protective film itself may be decomposed. Further, when the charging voltage of the lithium ion battery is preferably 4.4 V or more, more preferably 4.55 V or more based on lithium, the continuous heat generation state of the battery starts from a lower temperature, and thus the above-mentioned electrolysis containing dinitrile. The combination with the liquid is more optimal.

本実施形態の非水二次電池では、1/3Cの電流で4.35Vまで充電した後、1/3Cの電流で3Vまで放電することを1サイクルとし、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を4.35V容量維持率:RLとし、1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電することを1サイクルとし、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を4.5V容量維持率:RHとした場合、容量維持率比:RH/RLを0.75以上とすることができる。上記容量維持率比:RH/RLは、0.8以上がより望ましく、0.9以上が最も望ましい。即ち、本実施形態の非水二次電池では、高電圧下においても充放電サイクル特性の低下を低く抑えることができる。また、本実施形態と充電電圧が異なる場合は、その充電電圧での充放電サイクル試験での容量維持率をRH'とし、その充電電圧より0.15V低い電圧で同様の充放電サイクル試験を行った場合の容量維持率をRL'としたとき、RH'/RL'は、0.8以上がより望ましく、0.9以上が最も望ましい。 In the non-aqueous secondary battery of the present embodiment, one cycle is one cycle in which the battery is charged to 4.35 V with a current of 1 / 3C and then discharged to 3 V with a current of 1 / 3C, and 100 cycles with respect to the discharge capacity at the time of one cycle. The ratio (%) of the discharge capacity at the time is 4.35V capacity retention rate: RL, and after charging to 4.5V with a current of 1 / 3C, discharging to 3V with a current of 1 / 3C is defined as one cycle. When the ratio (%) of the discharge capacity at 100 cycles to the discharge capacity at 1 cycle is 4.5 V capacity retention rate: RH, the capacity retention rate ratio: RH / RL can be 0.75 or more. The capacity retention ratio: RH / RL is more preferably 0.8 or more, and most preferably 0.9 or more. That is, in the non-aqueous secondary battery of the present embodiment, the deterioration of the charge / discharge cycle characteristics can be suppressed to a low level even under a high voltage. When the charge voltage is different from that of the present embodiment, the capacity retention rate in the charge / discharge cycle test at the charge voltage is set to RH', and the same charge / discharge cycle test is performed at a voltage 0.15 V lower than the charge voltage. When the capacity retention rate is RL', RH'/ RL'is more preferably 0.8 or more, and most preferably 0.9 or more.

また、正極の被覆を行わなかった以外は本実施形態の非水二次電池と同様にして作製した従来の非水二次電池において、1/3Cの電流で4.35Vまで充電した後、1/3Cの電流で3Vまで放電することを1サイクルとし、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を4.35V容量維持率:RLCとし、1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電することを1サイクルとし、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を4.5V容量維持率:RHCとした場合、4.35Vにおいて本実施形態のRLと従来のRLCから下記式(1)で計算される4.35V容量維持率改善割合Aと、4.5Vにおいて本実施形態のRHと従来のRHCから下記式(2)で計算される4.5V容量維持率改善割合Bとを比較すると、本実施形態では、当初の予想に反して、4.5V容量維持率改善割合Bが4.35V容量維持率改善割合Aより大きくすることができる。
A=〔(RL-RLC)/RLC〕×100 (1)
B=〔(RH-RHC)/RHC〕×100 (2)
Further, in the conventional non-aqueous secondary battery manufactured in the same manner as the non-aqueous secondary battery of the present embodiment except that the positive electrode is not coated, after charging to 4.35 V with a current of 1/3 C, 1 Discharging to 3V with a current of / 3C is one cycle, and the ratio (%) of the discharge capacity at 100 cycles to the discharge capacity at one cycle is 4.35V. Capacity retention rate: RLC, with a current of 1 / 3C. After charging to 4.5V, discharging to 3V with a current of 1 / 3C is defined as one cycle, and the ratio (%) of the discharge capacity at 100 cycles to the discharge capacity at 1 cycle is 4.5V capacity retention rate: In the case of RHC, the RL of the present embodiment and the conventional RLC at 4.35V have a 4.35V capacity retention rate improvement rate A calculated by the following formula (1), and the RH of the present embodiment and the conventional one at 4.5V. Comparing the 4.5V capacity retention rate improvement rate B calculated by the following formula (2) from the RHC of the above, in the present embodiment, contrary to the initial expectation, the 4.5V capacity retention rate improvement rate B is 4. It can be made larger than the 35V capacity maintenance rate improvement rate A.
A = [(RL-RLC) / RLC] x 100 (1)
B = [(RH-RHC) / RHC] x 100 (2)

また、4.5V容量維持率改善割合Bと4.35V容量維持率改善割合Aとから求められるB/Aの値が1以上であれば、高電圧での充放電サイクル特性が高いことを示す。よって、B/Aは、1以上が望ましく、5以上がより望ましく、10以上が最も望ましい。 Further, if the B / A value obtained from the 4.5V capacity retention rate improvement rate B and the 4.35V capacity maintenance rate improvement rate A is 1 or more, it indicates that the charge / discharge cycle characteristics at high voltage are high. .. Therefore, the B / A is preferably 1 or more, more preferably 5 or more, and most preferably 10 or more.

また、本実施形態と充電電圧が異なる場合でも、その充電電圧での容量維持率改善割合をB'とし、その充電電圧より0.15V低い充電電圧での容量維持率改善割合をA'としたときも、B'/A'は、1以上が望ましく、5以上がより望ましく、10以上が最も望ましい。 Further, even when the charging voltage is different from that of the present embodiment, the capacity retention rate improvement rate at the charging voltage is set to B', and the capacity retention rate improvement rate at the charging voltage 0.15V lower than the charging voltage is set to A'. Even when, B'/ A'is preferably 1 or more, more preferably 5 or more, and most preferably 10 or more.

(非水二次電池の第2の実施形態)
本発明の非水二次電池の第2の実施形態は、正極、負極及び非水電解液を備え、上記非水電解液又は上記正極は、フッ素含有化合物又は炭酸化合物を含み、上記非水電解液は、ビニレンカーボネート以外の添加剤を含み、上記非水電解液における上記添加剤の濃度が、0.05質量%以上3質量%以下である。
(Second Embodiment of Non-Water Secondary Battery)
A second embodiment of the non-aqueous secondary battery of the present invention comprises a positive electrode, a negative electrode and a non-aqueous electrolytic solution, wherein the non-aqueous electrolytic solution or the positive electrode contains a fluorine-containing compound or a carbonic acid compound, and the non-aqueous electrolysis solution is provided. The liquid contains an additive other than vinylene carbonate, and the concentration of the additive in the non-aqueous electrolytic solution is 0.05% by mass or more and 3% by mass or less.

上記構成の非水二次電池とすることにより、電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の上記正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、上記正極の表面をX線光電子分光分析法(XPS)で分析した場合、上記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下とすることができる。これにより、高電圧下での充放電サイクル特性を向上できる。 By using a non-aqueous secondary battery having the above configuration, the positive electrode after charging the battery to 4.5 V with a current of 1 / 3C and then discharging to 3 V with a current of 1 / 3C is washed with methyl ethyl carbonate. Then, when the surface of the positive electrode is analyzed by X-ray photoelectron spectroscopy (XPS), the content of oxygen atoms on the surface of the positive electrode is Ro (atomic%) and the content of fluorine atoms. When Rf (atomic%) and the content ratio of carbon atoms having a 1s orbital bond energy of 289 to 291 eV are Rc (atomic%), Rf / Ro is 0.05 or more and 1.3 or less, or Rc /. Ro can be 0.05 or more and 0.75 or less. This makes it possible to improve the charge / discharge cycle characteristics under high voltage.

上記フッ素含有化合物及び上記炭酸化合物は、前述の第1の実施形態の非水二次電池で用いるものと同様のものが使用できる。 As the fluorine-containing compound and the carbonic acid compound, the same compounds as those used in the non-aqueous secondary battery of the first embodiment can be used.

また、上記ビニレンカーボネート以外の添加剤としては、窒素含有化合物が望ましく、非フッ素系(フッ素を含有しない)窒素含有化合物がより望ましい。更に、上記窒素含有化合物では、窒素原子にH原子が少なくとも1つ結合していることが望ましく、窒素原子にH原子が2つ結合していることがより望ましい。上記窒素含有化合物としては、アミン、アミド等が挙げられるが、アミンが特に望ましい。上記窒素含有化合物として、より具体的には、ジエチレングリコールビスアミノプロピルエーテル、ジエチレンオキサイドビスヘキサメチレントリアミン、ジシクロヘキシルアミン等を用いることができる。 Further, as the additive other than the vinylene carbonate, a nitrogen-containing compound is desirable, and a non-fluorine-based (fluorine-free) nitrogen-containing compound is more preferable. Further, in the nitrogen-containing compound, it is desirable that at least one H atom is bonded to the nitrogen atom, and it is more desirable that two H atoms are bonded to the nitrogen atom. Examples of the nitrogen-containing compound include amines and amides, but amines are particularly desirable. More specifically, diethylene glycol bisaminopropyl ether, diethylene oxide bishexamethylenetriamine, dicyclohexylamine and the like can be used as the nitrogen-containing compound.

上記非水電解液における上記添加剤の濃度は、0.05質量%以上が望ましく、0.1質量%以上がより望ましく、また、3質量%以下が望ましく、1質量%以下がより望ましい。上記添加剤は、正極と反応して被膜を形成させるので、少なすぎると十分な被膜が形成されず、多すぎると抵抗が高くなるためである。 The concentration of the additive in the non-aqueous electrolytic solution is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, preferably 3% by mass or less, and more preferably 1% by mass or less. This is because the additive reacts with the positive electrode to form a film, and if it is too small, a sufficient film is not formed, and if it is too large, the resistance increases.

また、本実施形態の非水二次電池の上記構成以外の構成は、前述の第1の実施形態の非水二次電池の構成と同様とすることができる。 Further, the configuration of the non-aqueous secondary battery of the present embodiment other than the above configuration can be the same as the configuration of the non-aqueous secondary battery of the first embodiment described above.

(非水二次電池の製造方法の実施形態)
本発明の非水二次電池の製造方法の第1の実施形態は、前述の第1の実施形態の非水二次電池を製造する方法であって、成分1、成分2及び成分3から選ばれる少なくとも1つの成分を含む処理液を準備する工程と、上記処理液を正極の表面に塗布する工程とを含み、上記成分1が、糖類似化合物であり、上記成分2が、金属塩であり、上記成分3が、窒素含有化合物であり、上記正極は、プレス処理後の正極である。
(Embodiment of Manufacturing Method of Non-Water Secondary Battery)
The first embodiment of the method for manufacturing a non-aqueous secondary battery of the present invention is the method for manufacturing a non-aqueous secondary battery according to the first embodiment described above, and is selected from the components 1, the component 2 and the component 3. Including a step of preparing a treatment liquid containing at least one component and a step of applying the treatment liquid to the surface of the positive electrode, the component 1 is a sugar-like compound, and the component 2 is a metal salt. The component 3 is a nitrogen-containing compound, and the positive electrode is a positive electrode after a press treatment.

上記成分1~3は、前述の第1の実施形態の非水二次電池で用いるものと同様のものが使用できる。 As the components 1 to 3, the same components as those used in the non-aqueous secondary battery of the first embodiment described above can be used.

上記正極として、プレス処理後の正極を用いるのは、上記正極の正極合剤層の空隙率を調整するためである。また、プレス処理後の正極では、既に導電性ネットワークが形成されており、その状態で被覆処理を行うことで、導電性への影響が少なく、且つ、導電材への被覆も合わせて行うことができ、電池特性上好適である。 The positive electrode after the press treatment is used as the positive electrode in order to adjust the porosity of the positive electrode mixture layer of the positive electrode. Further, in the positive electrode after the press treatment, a conductive network has already been formed, and by performing the coating treatment in that state, the influence on the conductivity is small and the coating on the conductive material can also be performed. It is possible and suitable for battery characteristics.

上記正極合剤層の空隙率は、22%以上が望ましく、25%以上がより望ましく、28%以上が最も望ましく、また、35%以下が望ましく、32%以下がより望ましく、29%以下が最も望ましい。上記正極合剤層の空隙率が大きすぎると上記処理液の大半が正極内部に浸入してしまい、表面での被覆効果が低くなるからであり、また、小さすぎると上記成分により形成される被覆が表面に限定されてしまい、被覆強度が低下するからである。 The porosity of the positive electrode mixture layer is preferably 22% or more, more preferably 25% or more, most desirablely 28% or more, preferably 35% or less, more preferably 32% or less, and most preferably 29% or less. desirable. This is because if the porosity of the positive electrode mixture layer is too large, most of the treatment liquid infiltrates into the inside of the positive electrode and the coating effect on the surface is lowered, and if it is too small, the coating formed by the components is formed. Is limited to the surface, and the coating strength is lowered.

本実施形態では、上記正極を上記処理液中に10秒間浸漬処理した後に取り出して、5秒放置した後に上記正極の質量を測定した場合、上記正極の上記浸漬処理前後の質量増加率は、3%以上が望ましく、20%以上がより望ましく、また、50%以下が望ましい。上記質量増加率が上記範囲内にあれば、正極の表面を上記処理液で適度に濡らすことができる。 In the present embodiment, when the positive electrode is immersed in the treatment liquid for 10 seconds, then taken out and left for 5 seconds, and then the mass of the positive electrode is measured, the mass increase rate of the positive electrode before and after the immersion treatment is 3. % Or more is desirable, 20% or more is more desirable, and 50% or less is desirable. When the mass increase rate is within the above range, the surface of the positive electrode can be appropriately wetted with the treatment liquid.

上記処理液における上記成分の濃度は、0.01質量%以上が望ましく、0.05質量%以上がより望ましく、0.1質量%以上が最も望ましく、また、20質量%以下が望ましく、10質量%以下がより望ましく、2質量%以下が最も望ましい。上記濃度が低すぎると被覆効果が低下し、上記濃度が高すぎると、被覆量の調整が困難となり、電極の抵抗が増大するためである。 The concentration of the above components in the treatment liquid is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, most preferably 0.1% by mass or more, and preferably 20% by mass or less, and 10% by mass. % Or less is more desirable, and 2% by mass or less is most desirable. This is because if the concentration is too low, the coating effect is lowered, and if the concentration is too high, it becomes difficult to adjust the coating amount and the resistance of the electrode increases.

また、上記処理液の上記正極の表面への塗布量は、上記処理液の乾燥成分質量換算で、0.0002mg/cm2以上が望ましく、0.002mg/cm2以上がより望ましく、0.008mg/cm2以上が最も望ましく、また、0.5mg/cm2以下が望ましく、0.15mg/cm2以下がより望ましく、0.1mg/cm2以下が最も望ましい。上記塗布量が少なすぎると被覆効果が低下し、上記塗布量が多すぎると、電極の抵抗が増大するためである。 The amount of the treatment liquid applied to the surface of the positive electrode is preferably 0.0002 mg / cm 2 or more, more preferably 0.002 mg / cm 2 or more, and 0.008 mg in terms of the dry component mass of the treatment liquid. More than / cm 2 is most desirable, 0.5 mg / cm 2 or less is desirable, 0.15 mg / cm 2 or less is more desirable, and 0.1 mg / cm 2 or less is most desirable. This is because if the coating amount is too small, the coating effect is lowered, and if the coating amount is too large, the resistance of the electrode is increased.

また、本発明の非水二次電池の製造方法の第2の実施形態は、前述の第1の実施形態の非水二次電池を製造する方法であって、成分1、成分2及び成分3から選ばれる少なくとも1つの成分を含む非水電解液を準備する工程と、正極、負極及び上記非水電解液を用いて電池を組み立てる工程と、上記組み立てた電池を充放電する工程とを含み、上記成分1が、糖類似化合物であり、上記成分2が、金属塩であり、上記成分3が、窒素含有化合物である。 Further, the second embodiment of the method for manufacturing a non-aqueous secondary battery of the present invention is the method for manufacturing a non-aqueous secondary battery according to the first embodiment described above, wherein the component 1, the component 2, and the component 3 are manufactured. A step of preparing a non-aqueous electrolyte solution containing at least one component selected from the above, a step of assembling a battery using the positive electrode, the negative electrode and the above-mentioned non-aqueous electrolyte solution, and a step of charging and discharging the assembled battery are included. The component 1 is a sugar-like compound, the component 2 is a metal salt, and the component 3 is a nitrogen-containing compound.

上記成分1~3は、前述の第1の実施形態の非水二次電池で用いるものと同様のものが使用できる。 As the components 1 to 3, the same components as those used in the non-aqueous secondary battery of the first embodiment described above can be used.

以下、実施例に基づいて本発明を詳細に説明する。但し、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

(実施例1)
図1に示すラミネート型リチウムイオン電池を次のように作製した。
(Example 1)
The laminated lithium-ion battery shown in FIG. 1 was manufactured as follows.

〔正極の作製〕
先ず、正極活物質であるLiCoO2(日本化学工業社製、"C20F")100質量部と、導電助剤であるアセチレンブラック3質量部と、バインダであるPVDF3質量部(NMP溶液として固形分量を供給)とを、溶媒であるNMPに均一になるように混合して正極合剤含有ペーストを調製した。次に、得られた正極合剤含有ペーストを、厚みが20μmのアルミニウム箔からなる集電体の片面に、塗布量が正極合剤含有ペーストの固形分量として18.0mg/cm2となるように塗布して乾燥させた後、カレンダー処理を行って、全厚が75μmになるように正極合剤層の厚みを調整し、タブ溶接部を残して長さ30mm、幅30mmになるように切断して正極を作製した。更に、この正極のタブ溶接部の活物質を取り除き、そのタブ溶接部にタブを溶接してリード部を形成した。
[Preparation of positive electrode]
First, 100 parts by mass of LiCoO 2 (manufactured by Nippon Kagaku Kogyo Co., Ltd., "C20F"), which is a positive electrode active material, 3 parts by mass of acetylene black, which is a conductive auxiliary agent, and 3 parts by mass of PVDF, which is a binder (solid content as an NMP solution). (Supply) was mixed with NMP as a solvent so as to be uniform to prepare a positive electrode mixture-containing paste. Next, the obtained positive electrode mixture-containing paste was applied to one side of a current collector made of an aluminum foil having a thickness of 20 μm so that the coating amount was 18.0 mg / cm 2 as the solid content of the positive electrode mixture-containing paste. After applying and drying, a calendar treatment is performed to adjust the thickness of the positive electrode mixture layer so that the total thickness is 75 μm, and the tab welded portion is left and cut to a length of 30 mm and a width of 30 mm. To prepare a positive electrode. Further, the active material of the tab welded portion of the positive electrode was removed, and the tab was welded to the tab welded portion to form a lead portion.

上記正極の質量を測定した後、上記正極をイオン交換水中に10秒間浸漬処理した後に取り出して、5秒放置した後に上記正極の質量を測定したところ、上記正極の上記浸漬処理前後の質量増加率は35%であった。 After measuring the mass of the positive electrode, the positive electrode was immersed in ion-exchanged water for 10 seconds, then taken out, left for 5 seconds, and then the mass of the positive electrode was measured. Was 35%.

〔正極の被覆処理〕
東京化成社製のジエチレントリアミン五酢酸五ナトリウム(約40質量%水溶液、成分2及び成分3に該当)をイオン交換水で希釈して、ジエチレントリアミン五酢酸五ナトリウムの1質量%の水溶液を、本実施例の処理液として調製した。次に、上記で作製した正極の表面に、セルロースを巻いた塗り棒を用いて、上記処理液を約1mg/cm2の塗布量で塗布し、その後、上記正極を120℃で乾燥し、表面処理した正極を作製した。
[Covering treatment of positive electrode]
Diethylenetriamine pentaacetic acid pentasodium (corresponding to about 40% by mass aqueous solution, component 2 and component 3) manufactured by Tokyo Kasei Co., Ltd. is diluted with ion-exchanged water to obtain a 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium in this example. Was prepared as a treatment solution for. Next, the treatment liquid was applied to the surface of the positive electrode prepared above at a coating amount of about 1 mg / cm 2 using a coating rod wrapped with cellulose, and then the positive electrode was dried at 120 ° C. to surface the surface. A treated positive electrode was prepared.

〔負極の作製〕
負極活物質である黒鉛(日立化成社製、"MAGE")100質量部と、バインダであるCMC1質量部(1質量%の水溶液として固形分量を供給)とSBR1.5質量部とを、溶媒であるイオン交換水に混合して負極合剤含有ペーストを調製した。次に、得られた負極合剤含有ペーストを、厚み16.5μmの銅箔の片面に、塗布量が負極合剤含有ペーストの固形分量として12.7mg/cm2となるように塗布して乾燥させた後、カレンダー処理を行って、全厚が113μmになるように負極合剤層の厚みを調整し、タブ溶接部を残して長さ32mm、幅32mmになるように切断して負極を作製した。更に、この負極のタブ溶接部にタブを溶接してリード部を形成した。
[Manufacturing of negative electrode]
100 parts by mass of graphite (manufactured by Hitachi Chemical Co., Ltd., "MAGE") as a negative electrode active material, 1 part by mass of CMC as a binder (providing a solid content as a 1% by mass aqueous solution), and 1.5 parts by mass of SBR with a solvent. A paste containing a negative electrode mixture was prepared by mixing with a certain ion-exchanged water. Next, the obtained negative electrode mixture-containing paste was applied to one side of a copper foil having a thickness of 16.5 μm so that the coating amount was 12.7 mg / cm 2 as the solid content of the negative electrode mixture-containing paste and dried. After that, a calendar process is performed to adjust the thickness of the negative electrode mixture layer so that the total thickness is 113 μm, and the negative electrode is manufactured by cutting to a length of 32 mm and a width of 32 mm, leaving the tab welded portion. bottom. Further, a tab was welded to the tab welded portion of the negative electrode to form a lead portion.

〔セパレータの準備〕
セパレータとしては、厚さ25μmのポリエチレン製微多孔膜を長さ45mm、幅40mmに切断したものを準備した。
[Preparation of separator]
As a separator, a polyethylene microporous membrane having a thickness of 25 μm cut into a length of 45 mm and a width of 40 mm was prepared.

〔非水電解液の調製〕
エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)との体積比1:3の混合溶媒1kgに、1.0molのLiPF6を溶解して混合液を作製し、その混合液100質量部に、更にビニレンカーボネート(VC)2質量部とスクシノニトリル3質量部とを加えて、非水電解液を調製した。
[Preparation of non-aqueous electrolyte solution]
A mixed solution was prepared by dissolving 1.0 mol of LiPF 6 in 1 kg of a mixed solvent having a volume ratio of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) of 1: 3, and further added to 100 parts by mass of the mixed solution. A non-aqueous electrolyte solution was prepared by adding 2 parts by mass of vinylene carbonate (VC) and 3 parts by mass of succinonitrile.

〔電池の組み立てと充電〕
上記正極と上記負極とを、上記セパレータを介在させて重ね、正極/セパレータ/負極の3枚構成の積層電極体を作製した。得られた積層電極体をアルミニウムラミネートフィルムからなる外装体内に収納し、上記非水電解液を注入した後に封止を行った。最後に、上記ラミネート型リチウムイオン電池を10mA(1/3C相当のレート)で、上限電圧4.35V(Li基準で4.45V)、下限電圧3Vで5回充放電を行い、本実施例のラミネート型リチウムイオン電池とした。
[Battery assembly and charging]
The positive electrode and the negative electrode were overlapped with the separator interposed therebetween to prepare a laminated electrode body having a three-sheet structure of positive electrode / separator / negative electrode. The obtained laminated electrode body was housed in an exterior body made of an aluminum laminated film, and the non-aqueous electrolytic solution was injected and then sealed. Finally, the laminated lithium-ion battery is charged and discharged 5 times at 10 mA (rate equivalent to 1 / 3C), an upper limit voltage of 4.35 V (4.45 V based on Li), and a lower limit voltage of 3 V. It was a laminated lithium-ion battery.

図1に作製したラミネート型リチウムイオン電池の平面図を示す。図1において、ラミネート型リチウムイオン電池10は、積層電極体及び非水電解液が、平面視で矩形のアルミニウムラミネートフィルムからなる外装体11内に収納されている。そして、正極外部端子12及び負極外部端子13が、外装体11の同じ辺から引き出されている。 FIG. 1 shows a plan view of the laminated lithium ion battery produced. In FIG. 1, in the laminated lithium ion battery 10, the laminated electrode body and the non-aqueous electrolytic solution are housed in an exterior body 11 made of a rectangular aluminum laminated film in a plan view. Then, the positive electrode external terminal 12 and the negative electrode external terminal 13 are pulled out from the same side of the exterior body 11.

(実施例2)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの濃度を2質量%とした以外は、実施例1と同様にして実施例2のラミネート型リチウムイオン電池を作製した。
(Example 2)
A laminated lithium-ion battery of Example 2 was produced in the same manner as in Example 1 except that the concentration of diethylenetriamine pentaacetic acid pentasodium was 2% by mass in the treatment liquid used for the positive electrode coating treatment.

(実施例3)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの濃度を5質量%とした以外は、実施例1と同様にして実施例3のラミネート型リチウムイオン電池を作製した。
(Example 3)
A laminated lithium-ion battery of Example 3 was produced in the same manner as in Example 1 except that the concentration of diethylenetriamine pentaacetic acid pentasodium was 5% by mass in the treatment liquid used for the positive electrode coating treatment.

(実施例4)
非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例4のラミネート型リチウムイオン電池を作製した。
(Example 4)
A laminated lithium-ion battery of Example 4 was produced in the same manner as in Example 1 except that succinonitrile was not added to the non-aqueous electrolytic solution.

(実施例5)
非水電解液のスクシノニトリルの添加量を20質量部とした以外は、実施例1と同様にして実施例5のラミネート型リチウムイオン電池を作製した。
(Example 5)
A laminated lithium-ion battery of Example 5 was produced in the same manner as in Example 1 except that the amount of succinonitrile added to the non-aqueous electrolytic solution was 20 parts by mass.

(実施例6)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、エチレンジアミン四酢酸四ナトリウム(成分2及び成分3に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例6のラミネート型リチウムイオン電池を作製した。
(Example 6)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of ethylenediamine tetraacetate (corresponding to component 2 and component 3) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and non-aqueous electrolysis was performed. A laminated lithium ion battery of Example 6 was produced in the same manner as in Example 1 except that succinonitrile was not added to the liquid.

(実施例7)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、フラクタン(成分1に該当)1質量%及びガンマグルタミン酸(成分3に該当)0.9質量%の混合水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例7のラミネート型リチウムイオン電池を作製した。
(Example 7)
In the treatment liquid used for the coating treatment of the positive electrode, 1% by mass of fractane (corresponding to component 1) and 0.9% by mass of gamma glutamate (corresponding to component 3) were used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium. A laminated lithium ion battery of Example 7 was produced in the same manner as in Example 1 except that succinonitrile was not added to the non-aqueous electrolyte solution using a mixed aqueous solution.

(実施例8)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、Li2MoO4(成分2に該当)の1質量%水溶液を用いた以外は、実施例1と同様にして実施例8のラミネート型リチウムイオン電池を作製した。
(Example 8)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of Li 2 MoO 4 (corresponding to component 2) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium. In the same manner, the laminated lithium ion battery of Example 8 was produced.

(実施例9)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、Li2MoO4(成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例9のラミネート型リチウムイオン電池を作製した。
(Example 9)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of Li 2 MoO 4 (corresponding to component 2) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and succino was used as the non-aqueous electrolyte solution. The laminated lithium ion battery of Example 9 was produced in the same manner as in Example 1 except that nitrile was not added.

(実施例10)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、Li2WO4(成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例10のラミネート型リチウムイオン電池を作製した。
(Example 10)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of Li 2 WO 4 (corresponding to component 2) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and the non-aqueous electrolyte solution was succino. The laminated lithium ion battery of Example 10 was produced in the same manner as in Example 1 except that nitrile was not added.

(実施例11)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、リグニンスルホン酸ナトリウム(日本製紙社製"サンエキスP252"、成分1及び成分2に該当)の5質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例11のラミネート型リチウムイオン電池を作製した。
(Example 11)
In the treatment liquid used for the coating treatment of the positive electrode, 5 of sodium lignin sulfonate (corresponding to "Sun Extract P252" manufactured by Nippon Paper Co., Ltd., component 1 and component 2) instead of a 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium. The laminated lithium ion battery of Example 11 was produced in the same manner as in Example 1 except that succinonitrile was not added to the non-aqueous electrolyte solution using a mass% aqueous solution.

(実施例12)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、リグニンスルホン酸ナトリウム(日本製紙社製"サンエキスP321"、成分1及び成分2に該当)の1質量%水溶液を用い、非水電解液のスクシノニトリルの添加量を20質量部とした以外は、実施例1と同様にして実施例12のラミネート型リチウムイオン電池を作製した。
(Example 12)
In the treatment liquid used for the coating treatment of the positive electrode, instead of a 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, 1 of sodium lignin sulfonate (corresponding to "Sun Extract P321" manufactured by Nippon Paper Co., Ltd., component 1 and component 2). A laminated lithium ion battery of Example 12 was produced in the same manner as in Example 1 except that a mass% aqueous solution was used and the amount of succinonitrile added to the non-aqueous electrolyte solution was 20 parts by mass.

(実施例13)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、スクロース(成分1に該当)の1質量%水溶液を用い、非水電解液のスクシノニトリルの添加量を20質量部とした以外は、実施例1と同様にして実施例13のラミネート型リチウムイオン電池を作製した。
(Example 13)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sucrose (corresponding to component 1) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and succinonitrile as a non-aqueous electrolyte solution was added. The laminated lithium ion battery of Example 13 was produced in the same manner as in Example 1 except that the amount was 20 parts by mass.

(実施例14)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、カルボキシメチルセルロース(CMC、成分1に該当)の0.1質量%水溶液を用いた以外は、実施例1と同様にして実施例14のラミネート型リチウムイオン電池を作製した。
(Example 14)
Examples except that a 0.1% by mass aqueous solution of carboxymethyl cellulose (CMC, corresponding to component 1) was used in place of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium in the treatment liquid used for the positive electrode coating treatment. The laminated lithium ion battery of Example 14 was produced in the same manner as in 1.

(実施例15)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、カルボキシメチルセルロース(CMC、成分1に該当)の0.1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例15のラミネート型リチウムイオン電池を作製した。
(Example 15)
In the treatment liquid used for the coating treatment of the positive electrode, a 0.1% by mass aqueous solution of carboxymethyl cellulose (CMC, corresponding to component 1) was used in place of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and the non-aqueous electrolytic solution was used. A laminated lithium ion battery of Example 15 was produced in the same manner as in Example 1 except that succinonitrile was not added.

(実施例16)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、アルギン酸ナトリウム(成分1及び成分2に該当)の1質量%水溶液を用い、非水電解液のスクシノニトリルの添加量を20質量部とした以外は、実施例1と同様にして実施例16のラミネート型リチウムイオン電池を作製した。
(Example 16)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sodium alginate (corresponding to component 1 and component 2) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and the non-aqueous electrolyte solution was squeezed. A laminated lithium ion battery of Example 16 was produced in the same manner as in Example 1 except that the amount of shinonitrile added was 20 parts by mass.

(実施例17)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、モノフルオロリン酸ナトリウム(Na2PO3F、成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例17のラミネート型リチウムイオン電池を作製した。
(Example 17)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sodium monofluorophosphate (Na 2 PO 3F , corresponding to component 2) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium. A laminated lithium ion battery of Example 17 was produced in the same manner as in Example 1 except that succinonitrile was not added to the non-aqueous electrolyte solution.

(実施例18)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、Na3PO4(成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例18のラミネート型リチウムイオン電池を作製した。
(Example 18)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of Na 3 PO 4 (corresponding to component 2) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and succino was used as the non-aqueous electrolyte solution. The laminated lithium ion battery of Example 18 was produced in the same manner as in Example 1 except that nitrile was not added.

(実施例19)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、メタリン酸ナトリウム〔(NaPO3n、成分2に該当〕の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例19のラミネート型リチウムイオン電池を作製した。
(Example 19)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sodium metaphosphate [(NaPO 3 ) n , corresponding to component 2] was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and non-water was used. A laminated lithium ion battery of Example 19 was produced in the same manner as in Example 1 except that succinonitrile was not added to the electrolytic solution.

(実施例20)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、ピロリン酸ナトリウム(Na427、成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例20のラミネート型リチウムイオン電池を作製した。
(Example 20)
In the treatment liquid used for the positive electrode coating treatment, a 1% by mass aqueous solution of sodium pyrophosphate (Na 4 P 2 O 7 , corresponding to component 2) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and the solution was not used. A laminated lithium ion battery of Example 20 was produced in the same manner as in Example 1 except that succinonitrile was not added to the aqueous electrolytic solution.

(実施例21)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、メタクリル酸3-スルホプロピルカリウム(成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例21のラミネート型リチウムイオン電池を作製した。
(Example 21)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of 3-sulfopropyl potassium methacrylate (corresponding to component 2) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and a non-aqueous electrolytic solution was used. The laminated lithium ion battery of Example 21 was produced in the same manner as in Example 1 except that succinonitrile was not added to the mixture.

(実施例22)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、ジベンゼンスルホン酸イミドリチウム(成分2及び成分3に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例22のラミネート型リチウムイオン電池を作製した。
(Example 22)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of imidelithium dibenzenesulfonate (corresponding to component 2 and component 3) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and non-water was used. The laminated lithium ion battery of Example 22 was produced in the same manner as in Example 1 except that succinonitrile was not added to the electrolytic solution.

(実施例23)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、β-シクロデキストリン(成分1に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例23のラミネート型リチウムイオン電池を作製した。
(Example 23)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of β-cyclodextrin (corresponding to component 1) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and succino was used as the non-aqueous electrolytic solution. The laminated lithium ion battery of Example 23 was produced in the same manner as in Example 1 except that nitrile was not added.

(実施例24)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、α-シクロデキストリン(成分1に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例24のラミネート型リチウムイオン電池を作製した。
(Example 24)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of α-cyclodextrin (corresponding to component 1) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and succino was used as the non-aqueous electrolytic solution. The laminated lithium ion battery of Example 24 was produced in the same manner as in Example 1 except that nitrile was not added.

(実施例25)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、アルギン酸ナトリウム(成分1及び成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例25のラミネート型リチウムイオン電池を作製した。
(Example 25)
In the treatment liquid used for the coating treatment of the positive electrode, a 1% by mass aqueous solution of sodium alginate (corresponding to component 1 and component 2) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium, and the non-aqueous electrolytic solution was used as a scoop. The laminated lithium ion battery of Example 25 was produced in the same manner as in Example 1 except that shinonitrile was not added.

(実施例26)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、アルギン酸とアルギン酸ナトリウム(アルギン酸の50%部分中和品、成分1及び成分2に該当)の1質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例26のラミネート型リチウムイオン電池を作製した。
(Example 26)
In the treatment liquid used for the coating treatment of the positive electrode, 1 mass of alginate and sodium alginate (corresponding to 50% partially neutralized product of alginate, component 1 and component 2) instead of 1 mass% aqueous solution of diethylenetriamine pentaacetate pentasodium. A laminated lithium ion battery of Example 26 was produced in the same manner as in Example 1 except that succinonitrile was not added to the non-aqueous electrolyte solution using a% aqueous solution.

(実施例27)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、ポリアクリル酸ナトリウム(分子量:3~4万、成分1及び成分2に該当)の0.3質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例27のラミネート型リチウムイオン電池を作製した。
(Example 27)
In the treatment liquid used for the coating treatment of the positive electrode, 0.3 mass of sodium polyacrylate (molecular weight: 30,000 to 40,000, corresponding to component 1 and component 2) instead of a 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium. A laminated lithium ion battery of Example 27 was produced in the same manner as in Example 1 except that succinonitrile was not added to the non-aqueous electrolyte solution using a% aqueous solution.

(実施例28)
正極の被覆処理に用いた処理液において、ジエチレントリアミン五酢酸五ナトリウムの1質量%水溶液に代えて、ポリアクリル酸(分子量:25万、成分1に該当)の0.3質量%水溶液を用い、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして実施例28のラミネート型リチウムイオン電池を作製した。
(Example 28)
In the treatment liquid used for the coating treatment of the positive electrode, a 0.3% by mass aqueous solution of polyacrylic acid (molecular weight: 250,000, corresponding to component 1) was used instead of the 1% by mass aqueous solution of diethylenetriamine pentaacetic acid pentasodium. The laminated lithium ion battery of Example 28 was produced in the same manner as in Example 1 except that succinonitrile was not added to the aqueous electrolytic solution.

(実施例29)
処理液の塗布による正極の被覆処理を行わず、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)との体積比1:3の混合溶媒1kgに、1.0molのLiPF6を溶解して混合液を作製し、その混合液100質量部に、更にビニレンカーボネート(VC)2質量部と、スクシノニトリル3質量部と、ジエチレングリコールビスアミノプロピルエーテル0.3質量部とを加えて非水電解液を調製し、この非水電解液を使用した以外は、実施例1と同様にして実施例29のラミネート型リチウムイオン電池を作製した。
(Example 29)
1.0 mol of LiPF 6 is dissolved in 1 kg of a mixed solvent having a volume ratio of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) of 1: 3 without coating the positive electrode by applying the treatment liquid. To 100 parts by volume of the mixed solution, 2 parts by volume of vinylene carbonate (VC), 3 parts by volume of succinonitrile, and 0.3 parts by volume of diethylene glycol bisaminopropyl ether were added to prepare a non-aqueous electrolyte solution. A laminated lithium ion battery of Example 29 was prepared in the same manner as in Example 1 except that the non-aqueous electrolyte solution was used.

(比較例1)
処理液の塗布による正極の被覆処理を行わず、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして比較例1のラミネート型リチウムイオン電池を作製した。
(Comparative Example 1)
A laminated lithium-ion battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the positive electrode was not coated by applying the treatment liquid and succinonitrile was not added to the non-aqueous electrolytic solution.

(比較例2)
処理液の塗布による正極の被覆処理を行わなかった以外は、実施例1と同様にして比較例2のラミネート型リチウムイオン電池を作製した。
(Comparative Example 2)
A laminated lithium-ion battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the positive electrode was not coated by applying the treatment liquid.

次に、上記の実施例1~29及び比較例1~2の電池について下記評価試験を行い、並びに実施例1、5、11、12、19、20、29及び比較例1~2の正極表面のXPS分析を行った。 Next, the following evaluation tests were performed on the batteries of Examples 1 to 29 and Comparative Examples 1 and 2, and the positive electrode surfaces of Examples 1, 5, 11, 12, 19, 20, 29 and Comparative Examples 1 and 2 were performed. XPS analysis was performed.

<充放電サイクル試験>
[4.35V充放電サイクル試験]
電流10mA(1/3Cの電流値に相当)、上限電圧4.35V、下限電圧3Vの条件で、100回充放電を繰り返した。これに基づき、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を、実施例1~29については4.35V容量維持率:RLとして算出し、比較例1については4.35V容量維持率:RLC1として算出し、比較例2については4.35V容量維持率:RLC2として算出した。
<Charge / discharge cycle test>
[4.35V charge / discharge cycle test]
Charging and discharging were repeated 100 times under the conditions of a current of 10 mA (corresponding to a current value of 1 / 3C), an upper limit voltage of 4.35 V, and a lower limit voltage of 3 V. Based on this, the ratio (%) of the discharge capacity at 100 cycles to the discharge capacity at 1 cycle was calculated as 4.35 V capacity retention rate: RL for Examples 1 to 29, and 4. for Comparative Example 1. It was calculated as 35V capacity retention rate: RLC1, and for Comparative Example 2, it was calculated as 4.35V capacity retention rate: RLC2.

[4.5V充放電サイクル試験]
電流10mA(1/3Cの電流値に相当)、上限電圧4.5V、下限電圧3Vの条件で、100回充放電を繰り返した。これに基づき、1サイクル時の放電容量に対する100サイクル時の放電容量の割合(%)を、実施例1~29については4.5V容量維持率:RHとして算出し、比較例1については4.5V容量維持率:RHC1として算出し、比較例2については4.5V容量維持率:RHC2として算出した。
[4.5V charge / discharge cycle test]
Charging and discharging were repeated 100 times under the conditions of a current of 10 mA (corresponding to a current value of 1 / 3C), an upper limit voltage of 4.5 V, and a lower limit voltage of 3 V. Based on this, the ratio (%) of the discharge capacity at 100 cycles to the discharge capacity at 1 cycle was calculated as 4.5 V capacity retention rate: RH for Examples 1 to 29, and 4. for Comparative Example 1. It was calculated as 5V capacity retention rate: RHC1, and for Comparative Example 2, it was calculated as 4.5V capacity retention rate: RHC2.

[4.35V容量維持率改善割合Aの算出]
実施例1~29及び比較例2については下記式Aにより4.35V容量維持率改善割合Aを算出した。
A=〔(RL-RLC1)/RLC1〕×100
[Calculation of 4.35V capacity maintenance rate improvement rate A]
For Examples 1 to 29 and Comparative Example 2, the 4.35 V capacity retention rate improvement rate A was calculated by the following formula A.
A = [(RL-RLC1) / RLC1] × 100

[4.5V容量維持率改善割合Bの算出]
実施例1~29及び比較例2については下記式Bにより4.5V容量維持率改善割合Bを算出した。
B=〔(RH-RHC1)/RHC1〕×100
[Calculation of 4.5V capacity maintenance rate improvement rate B]
For Examples 1 to 29 and Comparative Example 2, the 4.5V capacity retention rate improvement rate B was calculated by the following formula B.
B = [(RH-RHC1) / RHC1] × 100

[B/Aの算出]
上記4.35V容量維持率改善割合A及び上記4.5V容量維持率改善割合Bから、B/Aを算出した。
[Calculation of B / A]
B / A was calculated from the 4.35V capacity maintenance rate improvement rate A and the 4.5V capacity maintenance rate improvement rate B.

<加熱試験>
ラミネート型リチウムイオン電池の外部端子を切断し、電池構成を保ったまま、その切断部にイミドテープを巻いてで絶縁処理を施し、それをアルミニウム箔で包み、測定試料とした。その後、その測定試料をセタラム社製のカロリーメーター"C80"の100気圧耐圧のステンレス製の試料容器に挿入し、更にその試料容器を"C80"の本体に挿入し、40℃から300℃まで1℃/分で昇温試験を行い、電池の発熱を計測し、200℃以上に見られる電池の発熱ピークの温度を測定した。
<Heating test>
The external terminal of the laminated lithium-ion battery was cut, and while maintaining the battery configuration, the cut portion was wrapped with imide tape to insulate it, and the cut portion was wrapped with aluminum foil to prepare a measurement sample. After that, the measurement sample is inserted into a 100-atmosphere pressure-resistant stainless steel sample container of a calorimeter "C80" manufactured by Setaram, and the sample container is further inserted into the main body of "C80" to be from 40 ° C to 300 ° C. A temperature rise test was performed at ° C./min, the heat generation of the battery was measured, and the temperature of the heat generation peak of the battery observed at 200 ° C. or higher was measured.

<XPS分析>
電流10mA(1/3Cの電流値に相当)、上限電圧4.5V、下限電圧3Vの条件で1回充放電を行った後、電池を分解して正極を取り出し、上記正極を不活性雰囲気中で、メチルエチルカーボネートで洗浄した後に真空乾燥した。その後、Kratos社製のXPS測定装置"AXIS-NOVA"を用い、X線源として単色化AlKα(1486.6eV)を用い、分析領域700μm×300μmの範囲で、Pass Energy:20eVで不活性雰囲気から真空引きを行い、正極の表面のXPS分析を行った。また、上記XPS分析では、正極に含まれる導電助剤(カーボンブラック)のピーク位置(1s軌道の結合エネルギー:284.4eV)においてピーク位置補正を行い、ピーク分割については、位置ピークとピーク幅とをそろえて分離した。
<XPS analysis>
After charging and discharging once under the conditions of a current of 10 mA (corresponding to a current value of 1 / 3C), an upper limit voltage of 4.5 V, and a lower limit voltage of 3 V, the battery is disassembled and the positive electrode is taken out, and the positive electrode is placed in an inert atmosphere. Then, it was washed with methyl ethyl carbonate and then vacuum dried. After that, using the XPS measuring device "AXIS-NOVA" manufactured by Kratos, monochromatic AlKα (1486.6 eV) was used as the X-ray source, and the analysis area was 700 μm × 300 μm, and the Pass Energy was 20 eV from the inert atmosphere. Evacuation was performed and XPS analysis of the surface of the positive electrode was performed. Further, in the above XPS analysis, the peak position is corrected at the peak position (binding energy of 1s orbit: 284.4 eV) of the conductive auxiliary agent (carbon black) contained in the positive electrode, and the position peak and the peak width are used for the peak division. Was separated.

上記XPS分析結果として、上記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)として、Rf/Ro及びRc/Roを算出した。また、正極の表面の他の原子の含有割合も測定した。 As a result of the XPS analysis, the oxygen atom content is Ro (atom%), the fluorine atom content is Rf (atom%), and the carbon atom having a 1s orbital bond energy of 289 to 291 eV is contained on the surface of the positive electrode. Rf / Ro and Rc / Ro were calculated with the ratio as Rc (atomic%). The content of other atoms on the surface of the positive electrode was also measured.

上記の実施例1~29及び比較例1~2で用いた正極表面処理剤及び非水電解液中のニトリル化合物の有無を表1及び表2に示す。また、上記評価試験及び正極表面のXPS分析の結果を表3及び表4に示す。また、表3及び表4では、他の原子割合として、N:窒素原子、P:リン原子、S:イオウ原子、M:活物質金属成分の含有割合もそれぞれ示した。 Tables 1 and 2 show the presence or absence of the nitrile compound in the positive electrode surface treatment agent and the non-aqueous electrolytic solution used in Examples 1 to 29 and Comparative Examples 1 and 2 above. The results of the above evaluation test and XPS analysis of the positive electrode surface are shown in Tables 3 and 4. In addition, in Tables 3 and 4, as other atomic ratios, the content ratios of N: nitrogen atom, P: phosphorus atom, S: sulfur atom, and M: active material metal component are also shown.

Figure 0007069189000001
Figure 0007069189000001

Figure 0007069189000002
Figure 0007069189000002

Figure 0007069189000003
Figure 0007069189000003

Figure 0007069189000004
Figure 0007069189000004

表1~4より、糖類似化合物(成分1)、金属塩(成分2)、窒素含有化合物(成分3)の少なくとも一種で被覆されている正極、あるいは特定の表面状態の正極を用いた電池は、高電圧下において優れた充放電サイクル特性が得られることが分かる。また、本来は充放電サイクル特性の悪いジニトリル化合物を電解液に用いることで安全性も改善でき、充放電サイクル特性も向上することが分かる。 From Tables 1 to 4, a battery using a positive electrode coated with at least one of a sugar-like compound (component 1), a metal salt (component 2), and a nitrogen-containing compound (component 3), or a positive electrode having a specific surface condition is used. It can be seen that excellent charge / discharge cycle characteristics can be obtained under high voltage. Further, it can be seen that the safety can be improved and the charge / discharge cycle characteristics can be improved by using the dinitrile compound which originally has poor charge / discharge cycle characteristics in the electrolytic solution.

本発明によれば、高電圧での充放電サイクル特性に優れた非水二次電池を提供でき、本発明の非水二次電池は、小型・軽量で且つ高容量・高エネルギー密度の二次電池が必要とされる携帯電話、ノート型パーソナルコンピュータ等のポータブル電子機器用電池や、電気自動車用電池として用いることができる。 According to the present invention, it is possible to provide a non-aqueous secondary battery having excellent charge / discharge cycle characteristics at a high voltage, and the non-aqueous secondary battery of the present invention is compact and lightweight, and has a high capacity and a high energy density. It can be used as a battery for portable electronic devices such as mobile phones and notebook personal computers that require a battery, and a battery for an electric vehicle.

10 ラミネート型リチウムイオン電池
11 外装体
12 正極外部端子
13 負極外部端子
10 Laminated lithium-ion battery 11 Exterior 12 Positive electrode external terminal 13 Negative electrode external terminal

Claims (9)

正極、負極及び非水電解液を含む非水二次電池であって、
前記正極は、正極合剤層を含み、
前記正極合剤層の空隙率が、22%以上35%以下であり、
1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の前記正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、前記正極の表面をX線光電子分光分析法で分析した場合、
前記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、
Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下であることを特徴とする非水二次電池。
A non-aqueous secondary battery containing a positive electrode, a negative electrode and a non-aqueous electrolyte solution.
The positive electrode contains a positive electrode mixture layer and contains a positive electrode mixture layer.
The porosity of the positive electrode mixture layer is 22% or more and 35% or less.
After charging to 4.5V with a current of 1 / 3C and discharging to 3V with a current of 1 / 3C, the positive electrode is washed with methyl ethyl carbonate and then vacuum dried, and then the surface of the positive electrode is X-rayed. When analyzed by photoelectron spectroscopy
On the surface of the positive electrode, the content ratio of oxygen atom is Ro (atom%), the content ratio of fluorine atom is Rf (atom%), and the content ratio of carbon atom whose bond energy of 1s orbital is 289 to 291 eV is Rc (atom%). ) Then
A non-aqueous secondary battery characterized in that Rf / Ro is 0.05 or more and 1.3 or less, or Rc / Ro is 0.05 or more and 0.75 or less.
前記正極の表面のX線光電子分光分析法による分析において、下記(1)~(3)のいずれかを満たす請求項1に記載の非水二次電池。
(1)前記正極の表面における窒素原子の含有割合が0.1原子%以上1原子%以下
(2)前記正極の表面におけるリン原子の含有割合が0.5原子%以上10原子%以下
(3)前記正極の表面におけるコバルト、ニッケル、マンガン及び鉄の含有割合の合計が0.1原子%以上15原子%以下
The non-aqueous secondary battery according to claim 1, which satisfies any of the following (1) to (3) in the analysis of the surface of the positive electrode by the X-ray photoelectron spectroscopy.
(1) The content ratio of nitrogen atoms on the surface of the positive electrode is 0.1 atomic% or more and 1 atomic% or less (2) The content ratio of phosphorus atoms on the surface of the positive electrode is 0.5 atomic% or more and 10 atomic% or less (3). ) The total content of cobalt, nickel, manganese and iron on the surface of the positive electrode is 0.1 atomic% or more and 15 atomic% or less.
前記正極の表面が、リグニン化合物、ポリ酸塩、モノフルオロリン酸塩、メタリン酸塩、ピロリン酸塩、ジエチレントリアミン五酢酸塩、エチレンジアミン四酢酸塩、ポリペプチド類又はその塩、及びポリアリルアミンよりなる群から選択される少なくとも1種の成分で被覆されている請求項1に記載の非水二次電池。 A group in which the surface of the positive electrode is composed of a lignin compound, a polypeptide, a monofluorophosphate, a metaphosphate, a pyrophosphate, a diethylenetriamine pentaacetate, an ethylenediaminetetraacetate, polypeptides or salts thereof, and polyallylamine. The non-aqueous secondary battery according to claim 1, which is coated with at least one component selected from. 前記正極は、フッ素含有化合物及び炭酸化合物から選ばれる少なくとも一方を含む請求項1に記載の非水二次電池。 The non-aqueous secondary battery according to claim 1, wherein the positive electrode contains at least one selected from a fluorine-containing compound and a carbonic acid compound. 正極、負極及び非水電解液を含む非水二次電池を製造する方法であって、
正極の表面に塗布する処理液を準備する工程と、
前記処理液を正極の表面に塗布する工程とを含み、
前記処理液が、リグニン化合物、ポリ酸塩、モノフルオロリン酸塩、メタリン酸塩、ピロリン酸塩、ジエチレントリアミン五酢酸塩、エチレンジアミン四酢酸塩、ポリペプチド類又はその塩、及びポリアリルアミンよりなる群から選択される少なくとも1種の成分を含み、
前記電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の前記正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、前記正極の表面をX線光電子分光分析法で分析した場合、
前記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、
Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下であることを特徴とする非水二次電池の製造方法。
A method for manufacturing a non-aqueous secondary battery containing a positive electrode, a negative electrode and a non-aqueous electrolyte solution.
The process of preparing the treatment liquid to be applied to the surface of the positive electrode and
The step of applying the treatment liquid to the surface of the positive electrode is included.
The treatment liquid consists of a group consisting of a lignin compound, a polypeptide, a monofluorophosphate, a metaphosphate, a pyrophosphate, a diethylenetriamine pentaacetate, an ethylenediaminetetraacetate, polypeptides or salts thereof, and polyallylamine. Contains at least one ingredient selected
After charging the battery to 4.5V with a current of 1 / 3C and discharging to 3V with a current of 1 / 3C, the positive electrode was washed with methyl ethyl carbonate and then vacuum dried, and then the surface of the positive electrode was dried. When analyzed by X-ray photoelectron spectroscopy
On the surface of the positive electrode, the content ratio of oxygen atom is Ro (atom%), the content ratio of fluorine atom is Rf (atom%), and the content ratio of carbon atom whose bond energy of 1s orbital is 289 to 291 eV is Rc (atom%). ) Then
A method for producing a non-aqueous secondary battery, wherein Rf / Ro is 0.05 or more and 1.3 or less, or Rc / Ro is 0.05 or more and 0.75 or less.
前記正極は、正極合剤層を含み、
前記正極合剤層をプレス処理する工程と、前記プレス処理された正極合剤層の表面に前記処理液を塗布する工程とを含む請求項5に記載の非水二次電池の製造方法。
The positive electrode contains a positive electrode mixture layer and contains a positive electrode mixture layer.
The method for manufacturing a non-aqueous secondary battery according to claim 5, further comprising a step of pressing the positive electrode mixture layer and a step of applying the treatment liquid to the surface of the pressed positive electrode mixture layer.
前記正極合剤層をプレス処理する工程において、前記正極合剤層の空隙率を、22%以上35%以下とする請求項6に記載の非水二次電池の製造方法。 The method for manufacturing a non-aqueous secondary battery according to claim 6, wherein in the step of pressing the positive electrode mixture layer, the porosity of the positive electrode mixture layer is 22% or more and 35% or less. 前記処理液における前記成分の濃度が、0.01質量%以上20質量%以下であり、
前記処理液の前記正極の表面への塗布量が、前記処理液の乾燥成分質量換算で、0.0002mg/cm2以上0.5mg/cm2以下である請求項5に記載の非水二次電池の製造方法。
The concentration of the component in the treatment liquid is 0.01% by mass or more and 20% by mass or less.
The non-aqueous secondary according to claim 5, wherein the amount of the treatment liquid applied to the surface of the positive electrode is 0.0002 mg / cm 2 or more and 0.5 mg / cm 2 or less in terms of the mass of the dry component of the treatment liquid. How to make a battery.
正極、負極及び非水電解液を含む非水二次電池を製造する方法であって、
リグニン化合物、ポリ酸塩、モノフルオロリン酸塩、メタリン酸塩、ピロリン酸塩、ジエチレントリアミン五酢酸塩、エチレンジアミン四酢酸塩、ポリペプチド類又はその塩、及びポリアリルアミンよりなる群から選択される少なくとも1種の成分を含む非水電解液を準備する工程と、
正極、負極及び前記非水電解液を用いて電池を組み立てる工程と、
前記組み立てた電池を、4.35V以上となる電圧まで充電した後に放電する工程とを含み、
前記電池を1/3Cの電流で4.5Vまで充電した後、1/3Cの電流で3Vまで放電した後の前記正極を、メチルエチルカーボネートで洗浄した後に真空乾燥し、その後、前記正極の表面をX線光電子分光分析法で分析した場合、
前記正極の表面における、酸素原子の含有割合をRo(原子%)、フッ素原子の含有割合をRf(原子%)、1s軌道の結合エネルギーが289~291eVの炭素原子の含有割合をRc(原子%)とすると、
Rf/Roが0.05以上1.3以下であるか、又はRc/Roが0.05以上0.75以下であることを特徴とする非水二次電池の製造方法。
A method for manufacturing a non-aqueous secondary battery containing a positive electrode, a negative electrode and a non-aqueous electrolyte solution.
At least one selected from the group consisting of lignin compounds, polypeptides, monofluorophosphates, metaphosphates, pyrophosphates, diethylenetriaminepentaacetates, ethylenediaminetetraacetates, polypeptides or salts thereof, and polyallylamines. The process of preparing a non-aqueous electrolyte solution containing seed components,
The process of assembling a battery using the positive electrode, the negative electrode and the non-aqueous electrolytic solution, and
It includes a step of charging the assembled battery to a voltage of 4.35 V or higher and then discharging the assembled battery.
After charging the battery to 4.5V with a current of 1 / 3C and discharging to 3V with a current of 1 / 3C, the positive electrode was washed with methyl ethyl carbonate and then vacuum dried, and then the surface of the positive electrode was dried. When analyzed by X-ray photoelectron spectroscopy
On the surface of the positive electrode, the content ratio of oxygen atom is Ro (atom%), the content ratio of fluorine atom is Rf (atom%), and the content ratio of carbon atom whose bond energy of 1s orbital is 289 to 291 eV is Rc (atom%). ) Then
A method for producing a non-aqueous secondary battery, wherein Rf / Ro is 0.05 or more and 1.3 or less, or Rc / Ro is 0.05 or more and 0.75 or less.
JP2019544506A 2017-09-29 2018-09-06 Non-water secondary battery, non-water electrolyte used for it, and method for manufacturing the non-water secondary battery. Active JP7069189B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017191408 2017-09-29
JP2017191408 2017-09-29
PCT/JP2018/033101 WO2019065151A1 (en) 2017-09-29 2018-09-06 Non-aqueous secondary cell, non-aqueous electrolyte used in same, and method for manufacturing non-aqueous secondary cell

Publications (2)

Publication Number Publication Date
JPWO2019065151A1 JPWO2019065151A1 (en) 2020-04-30
JP7069189B2 true JP7069189B2 (en) 2022-05-17

Family

ID=65900871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019544506A Active JP7069189B2 (en) 2017-09-29 2018-09-06 Non-water secondary battery, non-water electrolyte used for it, and method for manufacturing the non-water secondary battery.

Country Status (2)

Country Link
JP (1) JP7069189B2 (en)
WO (1) WO2019065151A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200136240A (en) * 2019-05-27 2020-12-07 주식회사 엘지화학 Additives for cathode, manufacturing method of the same, cathode including the same, lithium recharegable battery including the same
CN110380113A (en) * 2019-08-02 2019-10-25 湖州昆仑动力电池材料有限公司 Additive for high-voltage lithium ion battery electrolyte and application thereof
EP4037031B1 (en) * 2019-09-27 2024-02-28 Panasonic Intellectual Property Management Co., Ltd. Secondary battery
CN112542614A (en) * 2020-06-09 2021-03-23 杉杉新材料(衢州)有限公司 High-voltage lithium ion battery non-aqueous electrolyte and lithium ion battery thereof
CN113067032B (en) * 2021-03-18 2022-11-15 宁德新能源科技有限公司 Electrolyte solution, electrochemical device, and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357505A (en) 1999-06-15 2000-12-26 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JP2001222995A (en) 2000-02-08 2001-08-17 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2002075367A (en) 2000-09-04 2002-03-15 Mitsui Chemicals Inc Positive electrode active material for lithium battery, manufacturing method for the active material, and secondary battery using it
JP2007220335A (en) 2006-02-14 2007-08-30 Univ Nagoya Lithium ion secondary battery
JP2014120456A (en) 2012-12-19 2014-06-30 Nissan Motor Co Ltd Secondary battery
JP2015072858A (en) 2013-10-04 2015-04-16 旭化成株式会社 Nonaqueous electrolytic solution, electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery
JP2016186918A (en) 2015-03-27 2016-10-27 トヨタ自動車株式会社 Method of manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2017094416A1 (en) 2015-12-02 2017-06-08 日本電気株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188950A (en) * 1996-12-20 1998-07-21 Toray Ind Inc Electrode for battery, and secondary battery using the electrode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357505A (en) 1999-06-15 2000-12-26 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JP2001222995A (en) 2000-02-08 2001-08-17 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2002075367A (en) 2000-09-04 2002-03-15 Mitsui Chemicals Inc Positive electrode active material for lithium battery, manufacturing method for the active material, and secondary battery using it
JP2007220335A (en) 2006-02-14 2007-08-30 Univ Nagoya Lithium ion secondary battery
JP2014120456A (en) 2012-12-19 2014-06-30 Nissan Motor Co Ltd Secondary battery
JP2015072858A (en) 2013-10-04 2015-04-16 旭化成株式会社 Nonaqueous electrolytic solution, electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery
JP2016186918A (en) 2015-03-27 2016-10-27 トヨタ自動車株式会社 Method of manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2017094416A1 (en) 2015-12-02 2017-06-08 日本電気株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery

Also Published As

Publication number Publication date
WO2019065151A1 (en) 2019-04-04
JPWO2019065151A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP7069189B2 (en) Non-water secondary battery, non-water electrolyte used for it, and method for manufacturing the non-water secondary battery.
JP4042034B2 (en) Non-aqueous electrolyte battery
JP5463957B2 (en) Non-aqueous electrolyte and battery
JP5601058B2 (en) Nonaqueous electrolyte battery and nonaqueous electrolyte
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
JP5357517B2 (en) Lithium ion secondary battery
JP7128835B2 (en) Lithium salt mixtures and their use as battery electrolytes
KR101431259B1 (en) Additive for non-aqueous electrolyte and secondary battery using the same
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP6208560B2 (en) Lithium secondary battery
JP2012003994A (en) Nonaqueous electrolyte battery and nonaqueous electrolyte
JP6295975B2 (en) Lithium ion secondary battery
JP6205889B2 (en) Lithium secondary battery
WO2022054343A1 (en) Lithium secondary battery
JP2008097954A (en) Electrolyte solution and battery
JP2016085838A (en) Lithium ion secondary battery
US9893360B2 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery using same
JP5782869B2 (en) Nonaqueous electrolyte secondary battery and current collector for nonaqueous electrolyte secondary battery
US20150064554A1 (en) Lithium ion secondary battery
JP5023649B2 (en) Lithium ion secondary battery
JP6658182B2 (en) Electrode structure and lithium secondary battery
JP5662746B2 (en) Lithium ion secondary battery
JP2018085213A (en) Lithium secondary battery
JP2017134974A (en) Lithium secondary battery
JP7199157B2 (en) Electrolyte solution containing lithium iodide, and lithium ion battery using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220315

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7069189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150