JP6658182B2 - Electrode structure and lithium secondary battery - Google Patents

Electrode structure and lithium secondary battery Download PDF

Info

Publication number
JP6658182B2
JP6658182B2 JP2016059751A JP2016059751A JP6658182B2 JP 6658182 B2 JP6658182 B2 JP 6658182B2 JP 2016059751 A JP2016059751 A JP 2016059751A JP 2016059751 A JP2016059751 A JP 2016059751A JP 6658182 B2 JP6658182 B2 JP 6658182B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
layer
separator
liquid absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016059751A
Other languages
Japanese (ja)
Other versions
JP2017174647A (en
Inventor
塩澤 真人
真人 塩澤
佐々木 厳
厳 佐々木
勇一 伊藤
勇一 伊藤
哲 後藤
哲 後藤
淳子 天野
淳子 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016059751A priority Critical patent/JP6658182B2/en
Publication of JP2017174647A publication Critical patent/JP2017174647A/en
Application granted granted Critical
Publication of JP6658182B2 publication Critical patent/JP6658182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、電極構造体及びリチウム二次電池に関する。   The present invention relates to an electrode structure and a lithium secondary battery.

従来、リチウム二次電池としては、正極活物質粒子のDBP吸油量を、正極活物質層の多孔度と正極活物質層の厚さとで除した値Aと、負極活物質粒子の亜麻仁油の吸油量を、負極活物質層の多孔度と負極活物質層の厚さとで除した値Bとの比A/Bが、0.78≦(A/B)≦1.22である、電池が提案されている(特許文献1参照)。この電池では、正極活物質層と負極活物質層とで電解液の保持力の特性が概ねバランスよく調整されている。このため、ハイレート(高電流)で充放電が繰り返される用途において、電池の正極と負極において電解液の出入りが激しく繰り返される場合でも、電池の抵抗上昇を低く抑えることができる、としている。   Conventionally, as a lithium secondary battery, the value A obtained by dividing the DBP oil absorption of the positive electrode active material particles by the porosity of the positive electrode active material layer and the thickness of the positive electrode active material layer, and the oil absorption of linseed oil of the negative electrode active material particles A battery is proposed in which the ratio A / B of a value obtained by dividing the amount by the porosity of the negative electrode active material layer and the thickness B of the negative electrode active material layer is 0.78 ≦ (A / B) ≦ 1.22. (See Patent Document 1). In this battery, the characteristics of the holding power of the electrolytic solution are adjusted in a generally well-balanced manner between the positive electrode active material layer and the negative electrode active material layer. For this reason, in applications where charging and discharging are repeated at a high rate (high current), even when electrolyte flows in and out of the positive electrode and the negative electrode of the battery are severely repeated, the increase in resistance of the battery can be suppressed.

特開2013−109929号公報JP 2013-109929 A

しかしながら、特許文献1の電池では、正極活物質層と負極活物質層とで電解液の保持力の特性を調整することにより、抵抗上昇を抑制し、ハイレート充放電に対する耐久性を高めることができるが、まだ十分ではなく、ハイレート充放電に対する耐久性などをより高めることが望まれていた。   However, in the battery of Patent Literature 1, by adjusting the characteristics of the holding power of the electrolytic solution between the positive electrode active material layer and the negative electrode active material layer, it is possible to suppress a rise in resistance and increase the durability against high-rate charging and discharging. However, it is not yet sufficient, and it has been desired to further improve the durability against high-rate charge / discharge.

本発明は、このような課題に鑑みなされたものであり、内部抵抗の増加をより抑制できる電極構造体及びリチウム二次電池を提供することを主目的とする。   The present invention has been made in view of such problems, and has as its main object to provide an electrode structure and a lithium secondary battery that can further suppress an increase in internal resistance.

上述した目的を達成するために鋭意研究したところ、本発明者らは、バイレック法に準じて測定した吸液高さが所定の関係となるような、正極、負極、セパレータの正極側の層及びセパレータの負極側の層を用意し、これらを用いて電極構造体を作製したところ、内部抵抗の増加をより抑制できることを見いだし、本発明を完成するに至った。   After extensive research to achieve the above-mentioned object, the present inventors have determined that the liquid absorption height measured according to the Bilek method has a predetermined relationship, a positive electrode, a negative electrode, a layer on the positive electrode side of the separator and When a layer on the negative electrode side of the separator was prepared and an electrode structure was produced using these, it was found that an increase in internal resistance could be further suppressed, and the present invention was completed.

即ち、本発明の電極構造体は、
正極と、負極と、前記正極と負極との間に介在する2層以上のセパレータと、を備え、
バイレック法により試液を10分間吸液させて測定した、前記正極の吸液高さをA(mm)、前記負極の吸液高さをB(mm)、前記セパレータの正極側の層の吸液高さをC(mm)、前記セパレータの負極側の層の吸液高さをD(mm)としたときに、(D−C)/(A−B)>0を満たすものである。
That is, the electrode structure of the present invention,
A positive electrode, a negative electrode, and two or more separators interposed between the positive electrode and the negative electrode,
The liquid absorption height of the positive electrode was A (mm), the liquid absorption height of the negative electrode was B (mm), and the liquid absorption of the layer on the positive electrode side of the separator was measured by absorbing a test solution for 10 minutes by a birec method. When the height is C (mm) and the liquid absorption height of the layer on the negative electrode side of the separator is D (mm), (DC) / (AB)> 0 is satisfied.

本発明のリチウム二次電池は、
上述した電極構造体と、
前記正極と前記負極との間に介在しリチウムイオンを伝導する非水電解液と、
を備えたものである。
The lithium secondary battery of the present invention,
The electrode structure described above,
A non-aqueous electrolyte interposed between the positive electrode and the negative electrode and conducting lithium ions,
It is provided with.

本発明の電極構造体及びリチウム二次電池では、内部抵抗の増加をより抑制できる。このような効果が得られる理由は、以下のように推察される。例えば、1層構造のセパレータを用いた場合などには、正極内と負極内とでの電解液の流通のしやすさや電解液の保持力などの違いによって、特にハイレートで充放電したときに塩濃度の偏りが大きくなり、抵抗が増加しやすい。しかし、2層以上のセパレータを備え(D−C)/(A−B)>0を満たすものとする、すなわち、吸液高さが低い電極側に吸液高さが高いセパレータを配置し、吸液高さが高い電極側に吸液高さが低いセパレータを配置することで、塩濃度の偏りを低減できると考えられる。こうして、抵抗増加をより抑制できると推察される。ここで、「バイレック法」は、JIS L 1907:2010に準じた吸液方法であるものとする。   In the electrode structure and the lithium secondary battery of the present invention, an increase in internal resistance can be further suppressed. The reason why such an effect is obtained is presumed as follows. For example, when a separator having a one-layer structure is used, a difference in the ease of circulation of the electrolyte between the positive electrode and the negative electrode, the retention of the electrolyte, and the like, particularly when the battery is charged and discharged at a high rate. The bias in the concentration increases, and the resistance tends to increase. However, two or more layers of separators are provided, and (DC) / (AB)> 0 is satisfied. That is, a separator having a high liquid absorption height is arranged on the electrode side having a low liquid absorption height, It is considered that the bias of the salt concentration can be reduced by disposing a separator having a low liquid absorption height on the electrode side having a high liquid absorption height. Thus, it is presumed that the increase in resistance can be further suppressed. Here, the “birec method” is a liquid absorption method according to JIS L 1907: 2010.

リチウム二次電池10の一例を示す模式図。FIG. 2 is a schematic diagram illustrating an example of a lithium secondary battery 10. 電極構造体11の一例を示す断面図。Sectional drawing which shows an example of the electrode structure 11. FIG. 吸液高さの測定方法を示す説明図。Explanatory drawing which shows the measuring method of a liquid absorption height. リチウム二次電池30の一例を示す模式図。FIG. 2 is a schematic diagram showing an example of a lithium secondary battery 30.

次に、本発明の実施の形態を図面を用いて説明する。図1は、本発明のリチウム二次電池10の一例を示す模式図である。図2は、電極構造体11の一例を示す断面図である。本実施形態のリチウム二次電池10は、図1、2に示すように、例えば、集電体13に正極合材層14を形成した正極シート15と、集電体16の表面に負極合材層17を形成した負極シート18と、正極シート15と負極シート18との間に設けられ正極側の層20と負極側の層19とを有するセパレータ21と、正極シート15と負極シート18の間を満たす非水電解液22と、を備えている。このリチウム二次電池10では、正極シート15と負極シート18との間にセパレータ21を挟み、これらを捲回して円筒ケース23に挿入し、正極シート15に接続された正極端子24と負極シート18に接続された負極端子26とを配設して形成されている。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating an example of the lithium secondary battery 10 of the present invention. FIG. 2 is a cross-sectional view illustrating an example of the electrode structure 11. As shown in FIGS. 1 and 2, the lithium secondary battery 10 of the present embodiment includes, for example, a positive electrode sheet 15 in which a positive electrode mixture layer 14 is formed on a current collector 13, and a negative electrode mixture A negative electrode sheet 18 having the layer 17 formed thereon, a separator 21 provided between the positive electrode sheet 15 and the negative electrode sheet 18 and having a positive electrode side layer 20 and a negative electrode side layer 19, and a separator 21 between the positive electrode sheet 15 and the negative electrode sheet 18. And a non-aqueous electrolyte solution 22 that satisfies the following conditions. In this lithium secondary battery 10, a separator 21 is sandwiched between a positive electrode sheet 15 and a negative electrode sheet 18, these are wound and inserted into a cylindrical case 23, and the positive electrode terminal 24 and the negative electrode sheet 18 connected to the positive electrode sheet 15 are connected. And a negative electrode terminal 26 connected to the negative electrode terminal 26.

このリチウム二次電池10は、正極活物質と集電体13とを含む正極シート15と、負極活物質と集電体16とを含む負極シート18と、正極シート15と負極シート18との間に介在し正極側の層20と負極側の層19とを有するセパレータ21とを積層した電極構造体11を備えている。この電極構造体11では、バイレック法により試液を10分間吸液させて測定した、正極合材層14の吸液高さをA(mm)、負極合材層17の吸液高さをB(mm)、セパレータ21の正極側の層20の吸液高さをC(mm)、セパレータ21の負極側の層19の吸液高さをD(mm)としたときに、(D−C)/(A−B)>0を満たす。   The lithium secondary battery 10 includes a positive electrode sheet 15 including a positive electrode active material and a current collector 13, a negative electrode sheet 18 including a negative electrode active material and a current collector 16, and a positive electrode sheet 15 and a negative electrode sheet 18. And a separator 21 having a layer 20 on the positive electrode side and a layer 19 on the negative electrode side interposed therebetween. In this electrode structure 11, the liquid absorption height of the positive electrode mixture layer 14 was measured as A (mm), and the liquid absorption height of the negative electrode mixture layer 17 was measured as B ( mm), the liquid absorption height of the layer 20 on the positive electrode side of the separator 21 is C (mm), and the liquid absorption height of the layer 19 on the negative electrode side of the separator 21 is D (mm). / (AB)> 0 is satisfied.

ここで、吸液高さの測定方法について説明する。吸液高さの測定方法は、JIS L 1907:2010のバイレック法に準じて行うものとする。この吸液高さの測定方法は、試液を水に限定しない点、試験片の寸法を約100cm×2.5cmとする点、試験片の採取方向を電池の軸方向に対応する方向が長手方向となるような方向(一方向のみ)とする点、及び試験片の浸せきする側の端部に必要に応じて錘をつける点、以外は、JIS L 1907:2010のバイレック法と同じである。   Here, a method of measuring the liquid absorption height will be described. The method of measuring the liquid absorption height shall be performed in accordance with the birec method of JIS L 1907: 2010. The method of measuring the liquid absorption height is such that the sample solution is not limited to water, the size of the test piece is about 100 cm × 2.5 cm, and the direction in which the sample is collected corresponds to the axial direction of the battery. The method is the same as the birec method of JIS L 1907: 2010, except that a direction (only one direction) is satisfied and a weight is attached to the end of the test piece on the side to be immersed as necessary.

図3は、吸液高さの測定方法を示す説明図である。図3に示すように、試液66を入れた容器52の液面上に支えた水平棒60上に試験片60をピンなどで固定したあと、試験片60のうちの下端部62(下端端から20mm±2mm)が試液66に浸せきするように調整し、そのまま10分放置する。放置後、毛細管現象によって試液66が上昇した高さT(以下吸液高さとも称する)をスケールで1mm単位で測定する。   FIG. 3 is an explanatory diagram showing a method of measuring the liquid absorption height. As shown in FIG. 3, after fixing the test piece 60 on a horizontal bar 60 supported on the liquid surface of the container 52 containing the test solution 66 with a pin or the like, the lower end portion 62 of the test piece 60 (from the lower end end). (20 mm ± 2 mm) so as to be immersed in the test solution 66, and left as it is for 10 minutes. After the standing, the height T (hereinafter also referred to as the liquid absorption height) at which the test solution 66 has risen due to the capillary phenomenon is measured in units of 1 mm on a scale.

試験片60としては、正極シート15、負極シート18、セパレータ21の正極側の層20、セパレータ21の負極側の層19から(又はこれらと同じ材質のシートから)、それぞれ100cm×2.5cmの大きさに切り出したものを用いる。試験片60の長手方向は、各部材を捲回してリチウム二次電池10に組み込むときの捲回軸方向(以下軸方向と称する)と一致するようにする。図3では、試験片60の下端部62側の端に錘64を取り付け、下端部62の浮上を抑制している。なお、正極合材層14や負極合材層17が単独で形状を維持できる場合には、正極シート15や負極シート18に代えて正極合材層14や負極合材層17(又はこれらと同じ材質のシート)から試験片60を切り出して用いてもよい。   As the test piece 60, each of the positive electrode sheet 15, the negative electrode sheet 18, the positive electrode side layer 20 of the separator 21, and the negative electrode side layer 19 of the separator 21 (or from a sheet of the same material), each having a size of 100 cm × 2.5 cm Use the one cut out to the size. The longitudinal direction of the test piece 60 is made to coincide with the winding axis direction (hereinafter, referred to as the axial direction) when each member is wound and assembled into the lithium secondary battery 10. In FIG. 3, a weight 64 is attached to the end of the test piece 60 on the lower end 62 side, and the floating of the lower end 62 is suppressed. When the positive electrode mixture layer 14 and the negative electrode mixture layer 17 can maintain the shape alone, the positive electrode mixture layer 14 and the negative electrode mixture layer 17 (or the same The test piece 60 may be cut out from a material sheet) and used.

試液66の種類は特に限定されない。試液66の種類によって、A、B、C及びDの値が変わることはあるが、(D−C)/(A−B)の比率には大きな違いはないと考えられるためである。試液66は、評価の容易性の観点から揮発性の低いものが好ましい。試液66は、リチウム二次電池10の非水電解液22として後ほど例示する溶媒などとしてもよく、例えば、プロピレンカーボネートとしてもよい。プロピレンカーボネートは、揮発性が低く、評価に適している。また、試液66は、水でもよい。なお、この試液66の種類は、リチウム二次電池10の非水電解液22に用いる溶媒と同種でもよいし異種でもよい。試液の温度は20℃±2℃とする。   The type of the test solution 66 is not particularly limited. This is because the values of A, B, C, and D may change depending on the type of the test solution 66, but the ratio of (D−C) / (A−B) is considered to have no significant difference. It is preferable that the test solution 66 has low volatility from the viewpoint of easy evaluation. The test solution 66 may be a solvent or the like exemplified later as the nonaqueous electrolyte solution 22 of the lithium secondary battery 10, and may be, for example, propylene carbonate. Propylene carbonate has low volatility and is suitable for evaluation. In addition, the test solution 66 may be water. The type of the test solution 66 may be the same as or different from the solvent used for the non-aqueous electrolyte 22 of the lithium secondary battery 10. The temperature of the test solution is 20 ° C ± 2 ° C.

(D−C)/(A−B)の値は、0より大きければよいが、1以上が好ましく、2以上がより好ましい。こうしたものでは、塩濃度の偏りをより低減し、抵抗増加をより抑制できると考えられる。また、(D−C)/(A−B)の値の上限は特に限定されないが、100以下や75以下、50以下などとしてもよい。   The value of (DC) / (AB) may be larger than 0, but is preferably 1 or more, and more preferably 2 or more. In such a case, it is considered that the bias of the salt concentration can be further reduced and the increase in resistance can be further suppressed. The upper limit of the value of (DC) / (AB) is not particularly limited, but may be 100 or less, 75 or less, 50 or less.

|A−B|の値は、0より大きければよいが、1以上としてもよく、3以上としてもよく、5以上としてもよい。|A−B|の値が大きいものでは、単層のセパレータなどを用いた場合に塩濃度の偏りが大きくなりやすいため、本発明適用の意義が高い。なお、AとBの値は、充放電特性が良好になるように適宜設定すればよく、AがBより大きくてもよいし、BがAより大きくてもよい。   The value of | AB | may be greater than 0, but may be 1 or more, 3 or more, or 5 or more. When the value of | AB | is large, the bias of the salt concentration tends to increase when a single-layer separator or the like is used, so that the application of the present invention is significant. It should be noted that the values of A and B may be appropriately set so that the charge / discharge characteristics are good, and A may be larger than B or B may be larger than A.

正極シート15には、図2に示すように、正極活物質を含む正極合材層14がその両面に形成されている。なお、正極合材層14は、採用する構造に応じて、正極シート15の片面に形成されていてもよい。正極合材層14の片面あたりの厚みaは、例えば10μm以上500μm以下としてもよいし、20μm以上200μm以下としてもよい。   As shown in FIG. 2, a positive electrode mixture layer 14 containing a positive electrode active material is formed on both surfaces of the positive electrode sheet 15. The positive electrode mixture layer 14 may be formed on one surface of the positive electrode sheet 15 depending on the structure to be adopted. The thickness a per one surface of the positive electrode mixture layer 14 may be, for example, 10 μm or more and 500 μm or less, or may be 20 μm or more and 200 μm or less.

正極シート15は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、集電体13の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極シート15の吸液高さAは、例えば、用いる正極活物質、導電材及び結着材の種類や量を調整したり、電極密度を調整したりして調整することができる。吸液高さAは、例えば1mm以上や2mm以上、5mm以上などとしてもよい。また、50mm以下や30mm以下、20mm以下などとしてもよい。   The positive electrode sheet 15 is prepared, for example, by mixing a positive electrode active material, a conductive material, and a binder, adding an appropriate solvent to form a paste-like positive electrode mixture, applying it to the surface of the current collector 13 and drying it. In order to increase the electrode density, it may be formed by compression. The liquid absorption height A of the positive electrode sheet 15 can be adjusted by, for example, adjusting the types and amounts of the positive electrode active material, the conductive material, and the binder used, or adjusting the electrode density. The liquid absorption height A may be, for example, 1 mm or more, 2 mm or more, 5 mm or more, or the like. Moreover, it is good also as 50 mm or less, 30 mm or less, 20 mm or less.

正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、基本組成式をLi(1-x)MnO2(0<x<1など、以下同じ)やLi(1-x)Mn24などとするリチウムマンガン複合酸化物、基本組成式をLi(1-x)CoO2などとするリチウムコバルト複合酸化物、基本組成式をLi(1-x)NiO2などとするリチウムニッケル複合酸化物、基本組成式をLi(1-x)NiaCobMnc2(但し0<a<1、0<b<1、0<c<1、a+b+c=1を満たす)などとするリチウムニッケルコバルトマンガン複合酸化物、基本組成式をLiV23などとするリチウムバナジウム複合酸化物、基本組成式をV25などとする遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiNi1/3Co1/3Mn1/32などが好ましい。なお、「基本組成式」とは、各元素の組成にずれがあってもよいし、他の元素を含んでもよい趣旨である。 As the positive electrode active material, a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like can be used. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , and FeS 2, and a basic composition formula of Li (1-x) MnO 2 (0 <x <1, the same applies hereinafter) and Li (1 -x) Lithium manganese composite oxide such as Mn 2 O 4, lithium cobalt composite oxide whose basic composition formula is Li (1-x) CoO 2, etc., basic composition formula of Li (1-x) NiO 2 etc. lithium nickel composite oxide, the basic compositional formula Li (1-x) Ni a Co b Mn c O 2 ( where 0 <a <1,0 <b < 1,0 <c <1, a + b + c = 1 ), A lithium vanadium composite oxide having a basic composition formula such as LiV 2 O 3, and a transition metal oxide having a basic composition formula such as V 2 O 5. it can. Of these, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiNi 1/3 Co 1/3 Mn 1/3 O 2 are preferred. Note that the “basic composition formula” means that the composition of each element may be different or other elements may be included.

導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。   The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale graphite, flake graphite) or artificial graphite, acetylene black, carbon black, Ketjen black, carbon whiskers, needle coke, carbon fiber, and one or a mixture of two or more of metals (copper, nickel, aluminum, silver, gold, and the like) can be used. Among these, carbon black and acetylene black are preferable as the conductive material from the viewpoints of electron conductivity and coatability.

結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。   The binder plays a role of binding the active material particles and the conductive material particles. For example, a binder resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a fluorine-containing resin such as fluororubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. Further, an aqueous dispersion of a cellulose-based or styrene-butadiene rubber (SBR) as an aqueous binder can also be used.

正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。   Examples of the solvent in which the positive electrode active material, the conductive material, and the binder are dispersed include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethylene triamine, N, N-dimethylaminopropylamine And organic solvents such as ethylene oxide and tetrahydrofuran. Further, a dispersant, a thickener, and the like may be added to water, and the active material may be slurried with a latex such as SBR. As the thickener, for example, polysaccharides such as carboxymethylcellulose and methylcellulose can be used alone or as a mixture of two or more.

塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。   Examples of the application method include roller coating such as an applicator roll, screen coating, a doctor blade method, spin coating, and a bar coater, and any of these can be used to obtain an arbitrary thickness and shape.

集電体13としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体13の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体13の厚さは、例えば1〜500μmのものが用いられる。   The current collector 13 includes aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, and the like, and aluminum or copper for the purpose of improving adhesiveness, conductivity, and oxidation resistance. The surface of which has been treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the current collector 13 include a foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foamed body, and a formed body of a fiber group. The thickness of the current collector 13 is, for example, 1 to 500 μm.

負極シート18には、負極活物質を含む負極合材層17がその両面に形成されている。なお、負極合材層17は、採用する構造に応じて、負極シート18の片面に形成されていてもよい。負極合材層17の片面あたりの厚みbは、例えば10μm以上500μm以下としてもよいし、20μm以上200μm以下としてもよい。   On the negative electrode sheet 18, a negative electrode mixture layer 17 containing a negative electrode active material is formed on both surfaces thereof. The negative electrode mixture layer 17 may be formed on one side of the negative electrode sheet 18 according to the structure to be adopted. The thickness b per one surface of the negative electrode mixture layer 17 may be, for example, 10 μm or more and 500 μm or less, or 20 μm or more and 200 μm or less.

負極シート18は、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材としたものを、集電体16の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極シート18の吸液高さBは、例えば、用いる負極活物質、導電材及び結着剤の種類や量を調整したり、電極密度を調整したりして調整することができる。吸液高さBは、例えば1mm以上や2mm以上、5mm以上などとしてもよい。また、50mm以下や30mm以下、20mm以下などとしてもよい。   The negative electrode sheet 18 is prepared, for example, by mixing a negative electrode active material, a conductive material, and a binder, adding an appropriate solvent, and forming a paste-like negative electrode mixture on the surface of the current collector 16 by drying. In order to increase the electrode density, it may be formed by compression. The liquid absorption height B of the negative electrode sheet 18 can be adjusted by, for example, adjusting the types and amounts of the negative electrode active material, the conductive material, and the binder used, or adjusting the electrode density. The liquid absorption height B may be, for example, 1 mm or more, 2 mm or more, 5 mm or more, or the like. Moreover, it is good also as 50 mm or less, 30 mm or less, 20 mm or less.

負極活物質としては、リチウムイオンを吸蔵・放出可能な炭素質材料、複数の元素を含む複合酸化物、導電性ポリマーなどが挙げられる。炭素質材料は、例えば、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり支持塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時おける不可逆容量を少なくできるため、好ましい。複合酸化物としては、例えば、リチウムチタン複合酸化物やリチウムバナジウム複合酸化物などが挙げられる。負極活物質としては、このうち、炭素質材料が安全性の面から見て好ましい。また、負極シート18に用いられる導電材、結着材、溶剤などは、それぞれ正極シート15で例示したものを用いることができる。負極シート18の集電体16には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体16の形状は、正極と同様のものを用いることができる。   Examples of the negative electrode active material include a carbonaceous material capable of inserting and extracting lithium ions, a composite oxide containing a plurality of elements, and a conductive polymer. Examples of the carbonaceous material include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Among these, graphites such as artificial graphite and natural graphite have an operating potential close to metallic lithium, can be charged and discharged at a high operating voltage, and suppresses self-discharge when a lithium salt is used as a supporting salt, This is preferable because the irreversible capacity at the time of charging can be reduced. Examples of the composite oxide include a lithium titanium composite oxide and a lithium vanadium composite oxide. Among them, a carbonaceous material is preferable as the negative electrode active material from the viewpoint of safety. As the conductive material, the binder, the solvent, and the like used for the negative electrode sheet 18, those exemplified for the positive electrode sheet 15 can be used. The current collector 16 of the negative electrode sheet 18 includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al—Cd alloy, etc., as well as adhesiveness, conductivity, and reduction resistance. For the purpose of improving the properties, for example, those obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. The shape of the current collector 16 can be the same as that of the positive electrode.

セパレータ21は、正極側の層20及び負極側の層19を備えている。セパレータ21は、正極側の層20と負極側の層19との2層で構成されていてもよいし、正極側の層20と負極側の層19との間に1層以上の層を備えて構成されていてもよい。各層は、溶着などにより接合されていてもよいし、接合されていなくてもよい。各層の材質は、リチウム二次電池10の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。   The separator 21 includes a layer 20 on the positive electrode side and a layer 19 on the negative electrode side. The separator 21 may be composed of two layers, that is, a layer 20 on the positive electrode side and a layer 19 on the negative electrode side, or may include one or more layers between the layer 20 on the positive electrode side and the layer 19 on the negative electrode side. May be configured. The layers may be joined by welding or the like, or may not be joined. The material of each layer is not particularly limited as long as it has a composition that can withstand the use range of the lithium secondary battery 10. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or an olefin resin such as polyethylene or polypropylene is used. A thin microporous membrane is exemplified.

セパレータ21において、正極側の層20の吸液高さCや、負極側の層19の吸液高さDは、例えば、その層を構成する材料の材質や密度、孔形状などを調整することによって、調整することができる。吸液高さCやDは、例えば1mm以上や2mm以上、10mm以上などとしてもよい。また、500mm以下や300mm以下、200mm以下などとしてもよい。   In the separator 21, the liquid-absorbing height C of the layer 20 on the positive electrode side and the liquid-absorbing height D of the layer 19 on the negative electrode side are adjusted, for example, by adjusting the material, density, and hole shape of the material constituting the layer. Can be adjusted. The liquid absorption heights C and D may be, for example, 1 mm or more, 2 mm or more, and 10 mm or more. Further, it may be 500 mm or less, 300 mm or less, 200 mm or less, or the like.

セパレータ21において、正極側の層20の厚みc及び負極側の層19の厚みdは、5μm以上であることが好ましく、15μm以上であることがさらに好ましく、25μm以上であることがさらに好ましい。厚みが厚いセパレータを用いた場合には、正極内と負極内とにおける電解液の流通のしやすさや電解液の保持力等の差を、セパレータの各層の電解液の供給力や保持力によってより緩和できると考えられる。厚みc,dの上限は、特に限定されないが、例えば500μm以下や200μm以下などとしてもよい。ここで、正極側の層20の厚みcと負極側の層厚みdとは、例えば、c/dの値が0.05以上15以下を満たすことが好ましく、0.5以上10以下を満たすことがより好ましい。また、正極側の層20の厚みcは、正極合材層14の厚みaとの間で、c/aの値が0.1以上5以下を満たすことが好ましく、0.2以上1.5以下を満たすことがより好ましい。また、負極側の層19の厚みdは、負極合材層17の厚みbとの間で、d/bの値が0.1以上5以下を満たすことが好ましく、0.2以上1.5以下を満たすことがより好ましい。なお、セパレータ21の正極側や負極側の最表層に例えば1μm以下や3μm以下などの極めて薄い層や、機械的強度だけを担う層などが存在する場合には、そうした層単独では、正極側の層20や負極側の層19として扱わないものとする。この場合、極めて薄い層を含む正極側の層を正極側の層20とし、極めて薄い層を含む負極側の層を負極側の層19として扱うものとする。   In the separator 21, the thickness c of the layer 20 on the positive electrode side and the thickness d of the layer 19 on the negative electrode side are preferably 5 μm or more, more preferably 15 μm or more, and even more preferably 25 μm or more. When a thick separator is used, the difference in the ease of circulation of the electrolyte between the positive electrode and the negative electrode and the difference in the holding power of the electrolyte are more affected by the supply and holding power of the electrolyte in each layer of the separator. It can be eased. The upper limits of the thicknesses c and d are not particularly limited, but may be, for example, 500 μm or less, 200 μm or less. Here, the thickness c of the layer 20 on the positive electrode side and the layer thickness d on the negative electrode side preferably satisfy, for example, a value of c / d of 0.05 or more and 15 or less, and more preferably 0.5 or more and 10 or less. Is more preferred. Further, the thickness c of the layer 20 on the positive electrode side is preferably such that the value of c / a satisfies 0.1 or more and 5 or less, and 0.2 or more and 1.5 or less, with respect to the thickness a of the positive electrode mixture layer 14. It is more preferable to satisfy the following. The thickness d of the layer 19 on the negative electrode side is preferably such that the value of d / b satisfies 0.1 or more and 5 or less with respect to the thickness b of the negative electrode mixture layer 17; It is more preferable to satisfy the following. In the case where an extremely thin layer such as 1 μm or less or 3 μm or less or a layer only responsible for mechanical strength is present on the outermost layer on the positive electrode side or the negative electrode side of the separator 21, if such a layer alone is used, It is not treated as the layer 20 or the layer 19 on the negative electrode side. In this case, the layer on the positive electrode side including an extremely thin layer is treated as the layer 20 on the positive electrode side, and the layer on the negative electrode side including the extremely thin layer is treated as the layer 19 on the negative electrode side.

リチウム二次電池10の非水電解液22としては、支持塩を溶媒に溶解した非水系電解液や非水系ゲル電解液などを用いることができる。溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。なお、環状カーボネート類は、比誘電率が比較的高く、電解液の誘電率を高めていると考えられ、鎖状カーボネート類は、電解液の粘度を抑えていると考えられる。   As the non-aqueous electrolyte 22 of the lithium secondary battery 10, a non-aqueous electrolyte or a non-aqueous gel electrolyte in which a supporting salt is dissolved in a solvent can be used. Examples of the solvent include carbonates, esters, ethers, nitriles, furans, sulfolane, dioxolane and the like, and these can be used alone or as a mixture. Specifically, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t are used as carbonates. -Butyl carbonate, di-i-propyl carbonate, chain carbonates such as t-butyl-i-propyl carbonate, γ-butyl lactone, cyclic esters such as γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane, and diethoxyethane; nitriles such as acetonitrile and benzonitrile; tetrahydrofuran Examples thereof include furans such as orchid and methyltetrahydrofuran, sulfolane such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolan and methyldioxolan. Among them, a combination of a cyclic carbonate and a chain carbonate is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charging and discharging are excellent, but also the viscosity of the electrolyte, the obtained battery electric capacity, the battery output, and the like can be balanced. it can. Note that cyclic carbonates are considered to have a relatively high relative dielectric constant and increase the dielectric constant of the electrolytic solution, and chain carbonates are considered to suppress the viscosity of the electrolytic solution.

支持塩は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩を溶解する濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。 The supporting salt is, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, LiClO. 4 , LiCl, LiF, LiBr, LiI, LiAlCl 4 and the like. Among them, inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 and LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 It is preferable to use one or more selected salts in combination from the viewpoint of electrical characteristics. The concentration of the supporting salt in the non-aqueous electrolyte is preferably from 0.1 mol / L to 5 mol / L, more preferably from 0.5 mol / L to 2 mol / L. When the concentration for dissolving the supporting salt is 0.1 mol / L or more, a sufficient current density can be obtained, and when the concentration is 5 mol / L or less, the electrolytic solution can be further stabilized. Further, a flame retardant such as phosphorus-based or halogen-based may be added to the non-aqueous electrolyte.

以上詳述した本実施形態のリチウム二次電池10では、2層以上のセパレータを備え、吸液高さが低い電極側に吸液高さが高いセパレータが配置され、吸液高さが高い電極側に吸液高さが低いセパレータを配置されている。このため、正極内と負極内とにおける電解液の流通のしやすさや電解液の保持力などの違いによって生じることのある塩濃度の偏りをより抑制できると考えられる。具体的には、正極内と負極内とにおける電解液の流通のしやすさや電解液の保持力等の差を、セパレータの各層の電解液の供給力や保持力によって緩和し、リチウムイオン濃度の偏りを抑制できると考えられる。このため、ハイレート充放電時の抵抗増加をより抑制できると考えられる。   In the lithium secondary battery 10 of the present embodiment described in detail above, a separator having two or more layers, a separator having a high liquid absorption height is disposed on the electrode side having a low liquid absorption height, and an electrode having a high liquid absorption height is provided. A separator having a low liquid absorption height is arranged on the side. For this reason, it is considered that the bias of the salt concentration, which may be caused by the difference in the ease of circulation of the electrolyte and the retention of the electrolyte between the inside of the positive electrode and the inside of the negative electrode, can be further suppressed. Specifically, the difference in the ease of circulation of the electrolyte and the retention of the electrolyte between the inside of the positive electrode and the inside of the negative electrode is reduced by the supply and retention of the electrolyte in each layer of the separator, and the lithium ion concentration is reduced. It is considered that the bias can be suppressed. Therefore, it is considered that an increase in resistance during high-rate charging and discharging can be further suppressed.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment at all, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば上述した実施形態では、正極シート15、負極シート18及びセパレータ21を積層して捲回した電極構造体11として説明したが、特にこれに限定されず、例えば、捲回しない電極構造体としてもよい。また、上述した実施形態では、リチウム二次電池の形状は円筒型としたが、特にこれに限定されず、例えばコイン型、ボタン型、シート型、積層型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。   For example, in the above-described embodiment, the positive electrode sheet 15, the negative electrode sheet 18, and the separator 21 are described as the electrode structure 11 which is stacked and wound. However, the present invention is not particularly limited thereto. Good. Further, in the above-described embodiment, the shape of the lithium secondary battery is cylindrical, but is not particularly limited thereto, and examples thereof include a coin type, a button type, a sheet type, a stacked type, a flat type, and a square type. . Further, the present invention may be applied to a large vehicle used for an electric vehicle or the like.

図4は、本発明の別のリチウム二次電池30の一例を示す模式図である。図4に示すように、コイン型のリチウム二次電池30は、カップ形状の電池ケース33と、正極活物質を有しこの電池ケース33の内部に設けられた正極合材層34と、負極活物質を有し正極合材層34に対してセパレータ41を介して対向する位置に設けられた負極合材層37と、絶縁材により形成されたガスケット43と、電池ケース33の開口部に配設されガスケット43を介して電池ケース33を密封する封口板36と、を備えている。このリチウム二次電池30は、電池ケース33内にリチウムイオンを伝導する非水電解液42を収容する。電極構造体31は、電池ケース33と正極合材層34とを含む正極35と、封口板36と負極合材層37とを含む負極38と、正極35と負極38とに介在したセパレータ41とを備えている。リチウム二次電池30及び電極構造体31において、セパレータ41は、正極側の層40と負極側の層39とを備えている。そして、正極35(正極合材層34でもよい)、負極38(負極合材層37でもよい)、正極側の層40、負極側の層39の吸液高さA〜Dは、(D−C)/(A−B)>0を満たす。コイン型のリチウム二次電池30のように捲回型でない電池では、吸液高さの測定に用いる試験片の採取方向は特に限定されない。なお、一般的な電極材料やセパレータ材料は、面内異方性が非常に小さいと考えられるため、試験片の採取方向が(D−C)/(A−B)の値に与える影響は非常に小さいと考えられる。なお、電極構造体31は、正極合材層34及び負極合材層37を1層有する構造としたが、多層構造としてもよい。この場合、正極合材層と負極合材層との間のセパレータのうち、1つ以上のセパレータ、好ましくは全てのセパレータ、が2層以上のセパレータで、正極合材層、負極合材層、セパレータの正極側の層、セパレータの負極側の層のそれぞれの吸液高さA〜Dが、(D−C)/(A−B)>0を満たせばよい。   FIG. 4 is a schematic diagram showing an example of another lithium secondary battery 30 of the present invention. As shown in FIG. 4, the coin-type lithium secondary battery 30 includes a cup-shaped battery case 33, a positive electrode mixture layer 34 having a positive electrode active material, provided inside the battery case 33, and a negative electrode active material layer. A negative electrode mixture layer 37 provided at a position facing the positive electrode mixture layer 34 with a separator 41 interposed therebetween, a gasket 43 formed of an insulating material, and an opening in the battery case 33. And a sealing plate 36 for sealing the battery case 33 via a gasket 43. The lithium secondary battery 30 contains a non-aqueous electrolyte 42 that conducts lithium ions in a battery case 33. The electrode structure 31 includes a positive electrode 35 including a battery case 33 and a positive electrode mixture layer 34, a negative electrode 38 including a sealing plate 36 and a negative electrode mixture layer 37, and a separator 41 interposed between the positive electrode 35 and the negative electrode 38. It has. In the lithium secondary battery 30 and the electrode structure 31, the separator 41 includes a layer 40 on the positive electrode side and a layer 39 on the negative electrode side. The liquid absorption heights A to D of the positive electrode 35 (the positive electrode mixture layer 34), the negative electrode 38 (the negative electrode mixture layer 37), the positive electrode side layer 40, and the negative electrode side layer 39 are (D− C) / (AB)> 0 is satisfied. In a battery that is not a wound type, such as a coin-type lithium secondary battery 30, the direction in which the test piece used for measuring the liquid absorption height is not particularly limited. Since general electrode materials and separator materials are considered to have very small in-plane anisotropy, the influence of the direction of sample collection on the value of (DC) / (AB) is very small. It is considered small. The electrode structure 31 has a structure having one positive electrode mixture layer 34 and one negative electrode mixture layer 37, but may have a multilayer structure. In this case, among the separators between the positive electrode mixture layer and the negative electrode mixture layer, one or more separators, preferably all the separators, are two or more separators, a positive electrode mixture layer, a negative electrode mixture layer, The liquid absorption heights A to D of the layer on the positive electrode side of the separator and the layer on the negative electrode side of the separator may satisfy (DC) / (AB)> 0.

上述した実施形態では、電極構造体11,31を備えたリチウム二次電池10,30として説明したが、リチウム二次電池に用いる電極構造体11,31としてもよい。こうしても、リチウム二次電池に用いられると、リチウム二次電池と同じ効果を奏する。   In the above-described embodiment, the lithium secondary batteries 10 and 30 including the electrode structures 11 and 31 have been described. However, the electrode structures 11 and 31 used in the lithium secondary battery may be used. Even in this case, when used for a lithium secondary battery, the same effect as that of the lithium secondary battery can be obtained.

上述した実施形態では、電極構造体11,31はリチウム二次電池10,30に用いるものとしたが、リチウム二次電池以外に用いてもよい。例えば、正極や負極が、リチウムに代えて、アルカリ金属、アルカリ土類金属及びオニウムを吸蔵・放出する電池(アルカリ金属二次電池やアルカリ土類金属二次電池、オニウム電池など)に用いてもよい。また、電池に限らず、キャパシタや、電池とキャパシタとを組み合わせたハイブリッドキャパシタ等に用いてもよい。   In the embodiment described above, the electrode structures 11, 31 are used for the lithium secondary batteries 10, 30, but may be used for other than the lithium secondary batteries. For example, the positive electrode and the negative electrode may be used for batteries (alkali metal secondary batteries, alkaline earth metal secondary batteries, onium batteries, etc.) that occlude and release alkali metals, alkaline earth metals, and onium instead of lithium. Good. The invention is not limited to batteries, and may be used for capacitors, hybrid capacitors combining a battery and a capacitor, and the like.

以下には、本発明の電池を具体的に作製した例について、実施例として説明する。ここでは、正極活物質にニッケル・コバルト・マンガン(NCM)系材料を、負極活物質に黒鉛を、電解液に非水系電解液を使用したリチウムイオン二次電池を作製した。   Hereinafter, examples in which the battery of the present invention is specifically manufactured will be described as examples. Here, a lithium-ion secondary battery using a nickel-cobalt-manganese (NCM) -based material as a positive electrode active material, graphite as a negative electrode active material, and a non-aqueous electrolyte as an electrolyte was manufactured.

[実施例1]
(電池の作製)
正極活物質としてNCM系材料物(LiNi1/3Co1/3Mn1/32)を91質量%、導電材としてアセチレンブラック(電気化学工業HS100)を6質量%、結着材としてポリフッ化ビニリデン(呉羽化学工業製KFポリマ)を3質量%用い、混合して正極合材を作製した。得られた正極合材をN−メチル−2−ピロリドン(NMP)に分散させてペーストとし、このペーストを厚さ15μmのアルミニウム箔の両面に塗工して乾燥させ、ロールプレスして正極シート電極を得た。正極合材層の厚みは片面当たり65μmとした。正極シート電極は54mm×450mmとした。
[Example 1]
(Production of battery)
91% by mass of an NCM-based material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) as a positive electrode active material, 6% by mass of acetylene black (Denki Kagaku Kogyo HS100) as a conductive material, and polyfluorinated as a binder A mixture of 3% by mass of vinylidene chloride (KF polymer manufactured by Kureha Chemical Industry) was mixed to prepare a positive electrode mixture. The obtained positive electrode mixture is dispersed in N-methyl-2-pyrrolidone (NMP) to form a paste. This paste is applied to both sides of an aluminum foil having a thickness of 15 μm, dried, and roll-pressed to obtain a positive electrode sheet electrode. I got The thickness of the positive electrode mixture layer was 65 μm per side. The size of the positive electrode was 54 mm × 450 mm.

負極活物質として黒鉛を98質量%、増粘材としてカルボキシルメチルセルロース(CMC)を1質量%、バインダとしてスチレンブタジエンゴム(SBR)を1質量%用い、混合して負極合材を作製した。得られた負極合材を水に分散させてペーストとし、このペーストを厚さ10μm銅箔の両面に塗工して乾燥させ、ロールプレスして負極シート電極を得た。負極合材層の厚みは片面当たり68μmとした。負極シート電極は56mm×500mmとした。   98% by mass of graphite as a negative electrode active material, 1% by mass of carboxymethyl cellulose (CMC) as a thickener, and 1% by mass of styrene butadiene rubber (SBR) as a binder were mixed to prepare a negative electrode mixture. The obtained negative electrode mixture was dispersed in water to form a paste. This paste was applied to both sides of a 10-μm-thick copper foil, dried, and roll-pressed to obtain a negative electrode sheet electrode. The thickness of the negative electrode mixture layer was 68 μm per side. The negative electrode sheet electrode was 56 mm × 500 mm.

エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)を体積比でEC:DMC:EMC=30:40:30の割合となるように混合した非水溶媒に、六フッ化リン酸リチウムを1mol/Lになるように加えて、電解液を得た。   Phosphorus hexafluoride was added to a nonaqueous solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of EC: DMC: EMC = 30: 40: 30. Lithium oxide was added to 1 mol / L to obtain an electrolyte solution.

上記の正・負極シート電極を、厚み15μmの正極側の層と、厚み15μmの負極側の層とを溶着したセパレータ1(58mm×500mm)を介してロール状に捲回し、試験用18650型電池缶に挿入し、上記の電解液を注入した後に、トップキャップをかしめて密閉した。   The above positive / negative electrode sheet electrode was wound into a roll via a separator 1 (58 mm × 500 mm) in which a 15 μm-thick layer on the positive electrode side and a 15 μm-thick negative electrode layer were welded, and a 18650-type battery for testing was obtained. After inserting into a can and injecting the above electrolyte, the top cap was caulked and sealed.

((D−C)/(A−B)の導出)
セパレータおよび電極について、JIS L 1907:2010のバイレック法に準じて以下の評価を行った。セパレータの2層を分離したものと、正極および負極をそれぞれ2.5cm×20cmにカットして評価用の試験片を作製した。その際、電池の軸方向が試験片の長手方向となるように試験片を作製した。次にそれぞれ試験片の長手方向の一端を、適切な高さに固定を行ったクリップで挟み、長手方向の他の一方に錘を装着して吊り下げた。プロピレンカーボネート(PC)の入った容器に、錘を付けた側の試験片の一部(下端部約2cm)を浸漬した。浸漬を開始した時間を0分として、プロピレンカーボネートの液面の位置から、10分間で試験片が吸液した高さを測定した。そして、正極の吸液高さA(mm)、負極の吸液高さB(mm)、正極に対向するセパレータ層の吸液高さC(mm)、負極に対向するセパレータ層の吸液高さD(mm)を測定し、(D−C)/(A−B)の値を求めた。
(Derivation of (DC) / (AB))
With respect to the separator and the electrode, the following evaluation was performed according to the Bilek method of JIS L 1907: 2010. A test piece for evaluation was prepared by cutting the separator into two layers, and cutting each of the positive electrode and the negative electrode into 2.5 cm × 20 cm. At that time, the test piece was prepared such that the axial direction of the battery was the longitudinal direction of the test piece. Next, one end in the longitudinal direction of each test piece was sandwiched between clips fixed at an appropriate height, and a weight was attached to the other end in the longitudinal direction and suspended. A part (about 2 cm at the lower end) of the test piece on the side to which the weight was attached was immersed in a container containing propylene carbonate (PC). The time at which the immersion was started was set to 0 minute, and the height at which the test piece absorbed the liquid over 10 minutes was measured from the position of the liquid surface of propylene carbonate. The liquid absorption height A (mm) of the positive electrode, the liquid absorption height B (mm) of the negative electrode, the liquid absorption height C (mm) of the separator layer facing the positive electrode, and the liquid absorption height of the separator layer facing the negative electrode The value D (mm) was measured, and the value of (DC) / (AB) was obtained.

(充放電試験)
作製した電池は、最初に活性化用充放電サイクル(コンディショニング)を実施し、その後、ハイレート劣化耐久試験を行い、ハイレート劣化の耐久性能を評価した。ハイレート劣化耐久試験の試験条件は以下のとおりである。評価はすべて20℃環境下で実施した。先ず電池をSOC60%に調整した。そして10Cのレートで10秒間放電して5秒間休止した。続いて2.5Cのレートで40秒間充電することによりSOCを60%に戻した後、5秒間の休止を入れた。この充放電サイクルを8000回行った。
(Charging / discharging test)
The prepared battery was first subjected to a charge / discharge cycle for activation (conditioning), and then subjected to a high-rate deterioration endurance test to evaluate the high-rate deterioration endurance performance. The test conditions for the high-rate degradation endurance test are as follows. All evaluations were performed in a 20 ° C. environment. First, the battery was adjusted to SOC 60%. Then, the battery was discharged at a rate of 10 C for 10 seconds and stopped for 5 seconds. Subsequently, the SOC was returned to 60% by charging at a rate of 2.5 C for 40 seconds, followed by a 5 second pause. This charge / discharge cycle was performed 8000 times.

(抵抗測定)
抵抗は、I−V抵抗で評価した。I−V抵抗の測定は、20℃の温度環境で、評価セルをSOC60%に調整し、10分間休止後、セルを30Cの定電流で10秒間放電した(CC放電)。ここで放電時の下限電圧は3.0Vとした。ここからV=IRの傾き(R=V/I)をI−V抵抗とした。この抵抗測定を上述したハイレート劣化耐久試験前後に行い、ハイレート劣化耐久試験前の内部抵抗R0[V]及びハイレート劣化耐久試験後の内部抵抗R[V]を導出し、R×100/R0 で表される内部抵抗上昇率を導出した。
(Resistance measurement)
Resistance was evaluated by IV resistance. In the measurement of IV resistance, the evaluation cell was adjusted to SOC 60% in a temperature environment of 20 ° C., and after a pause of 10 minutes, the cell was discharged at a constant current of 30 C for 10 seconds (CC discharge). Here, the lower limit voltage during discharging was 3.0 V. From this, the slope of V = IR (R = V / I) was defined as IV resistance. This resistance measurement is performed before and after the above-described high-rate degradation durability test, and the internal resistance R 0 [V] before the high-rate degradation durability test and the internal resistance R [V] after the high-rate degradation durability test are derived, and R × 100 / R 0 The internal resistance increase rate expressed by

[実施例2]
セパレータ1に代えて、厚み25μmの正極側の層と、厚み15μmの負極側の層とを溶着したセパレータ2(58mm×500mm)を用いた以外は、実施例1と同様に評価を行った。
[Example 2]
Evaluation was performed in the same manner as in Example 1 except that the separator 1 was replaced with a separator 2 (58 mm × 500 mm) in which a layer on the positive electrode side having a thickness of 25 μm and a layer on the negative electrode side having a thickness of 15 μm were used.

[実施例3]
セパレータ1に代えて、厚み50μmの正極側の層と、厚み15μmの負極側の層とを溶着したセパレータ3(58mm×500mm)を用いた以外は、実施例1と同様に評価を行った。
[Example 3]
Evaluation was performed in the same manner as in Example 1 except that the separator 1 was replaced with a separator 3 (58 mm × 500 mm) in which a layer on the positive electrode side having a thickness of 50 μm and a layer on the negative electrode side having a thickness of 15 μm were welded.

[実施例4]
セパレータ1に代えて、厚み15μmの正極側の層と、厚み15μmの負極側の層とを溶着したセパレータ4(58mm×500mm)を用い、正極合材層の厚みを片面当たり112μmとした以外は、実施例1と同様に評価を行った。
[Example 4]
Instead of the separator 1, a separator 4 (58 mm × 500 mm) in which a 15 μm-thick layer on the positive electrode side and a 15 μm-thick negative electrode layer were welded, and the thickness of the positive electrode mixture layer was 112 μm per side was used. Evaluation was performed in the same manner as in Example 1.

[実施例5]
セパレータ1に代えて、厚み25μmの正極側の層と、厚み15μmの負極側の層とを溶着したセパレータ5(58mm×500mm)を用い、正極合材層の厚みを片面当たり112μmとした以外は、実施例1と同様に評価を行った。
[Example 5]
Instead of the separator 1, a separator 5 (58 mm × 500 mm) in which a 25 μm-thick layer on the positive electrode side and a 15 μm-thick layer on the negative electrode side were used, and the thickness of the positive electrode mixture layer was 112 μm per side was used. Evaluation was performed in the same manner as in Example 1.

[実施例6]
セパレータ1に代えて、厚み50μmの正極側の層と、厚み15μmの負極側の層とを溶着したセパレータ6(58mm×500mm)を用い、正極合材層の厚みを片面当たり112μmとした以外は、実施例1と同様に評価を行った。
[Example 6]
A separator 6 (58 mm × 500 mm) in which a 50 μm-thick positive electrode layer and a 15 μm-thick negative electrode layer were welded in place of the separator 1, and the thickness of the positive electrode mixture layer was 112 μm per side was used. Evaluation was performed in the same manner as in Example 1.

[比較例1]
セパレータ1に代えて、湿式法で作製されたポリエチレン製25μm厚の単層のセパレータ7(58mm×500mm)を用いた以外は、実施例1と同様に評価を行った。
[Comparative Example 1]
Evaluation was performed in the same manner as in Example 1 except that the separator 1 was replaced with a single-layer separator 7 (58 mm × 500 mm) made of polyethylene and having a thickness of 25 μm manufactured by a wet method.

[比較例2]
セパレータ1に代えて、厚み15μmの正極側の層と、厚み25μmの負極側の層とを溶着したセパレータ8(58mm×500mm)を用いた以外は、実施例1と同様に評価を行った。
[Comparative Example 2]
Evaluation was performed in the same manner as in Example 1 except that the separator 1 was replaced with a separator 8 (58 mm × 500 mm) in which a 15 μm-thick layer on the positive electrode side and a 25 μm-thick layer on the negative electrode side were welded.

[実験結果]
表1にA,B,C,Dの値、(D−C)/(A−B)の値及び抵抗上昇率を示した。表1に示すように、(D−C)/(A−B)>0を満たす実施例1〜6では、これを満たさない比較例1,2よりも抵抗上昇率が低かった。このことから、本発明では、内部抵抗の増加をより抑制できることがわかった。実施例のうち、(D−C)/(A−B)の値が41.5と最も大きかった実施例6では、抵抗上昇率がその他のものよりも大きかったことから、(D−C)/(A−B)の値は大きすぎてもよくないと推察され、例えば、100以下などが好ましいと推察された。また、|A−B|の値が4と最も小さかった実施例6では、抵抗上昇率がその他のものよりも大きかったことから、|A−B|の値は小さすぎるとよくないと推察され、例えば、|A−B|≧1などがより好ましいと推察された。
[Experimental result]
Table 1 shows the values of A, B, C, and D, the value of (DC) / (AB), and the rate of increase in resistance. As shown in Table 1, in Examples 1 to 6 satisfying (DC) / (AB)> 0, the resistance increase rate was lower than Comparative Examples 1 and 2 not satisfying this. From this, it was found that in the present invention, an increase in internal resistance can be further suppressed. Among the examples, in Example 6, in which the value of (DC) / (AB) was the largest, at 41.5, the rate of increase in resistance was larger than that of the others, so that (DC) It was presumed that the value of / (AB) may not be too large, and it was presumed that, for example, 100 or less was preferable. In Example 6, in which the value of | AB | was the smallest at 4, the rate of increase in resistance was larger than the others, and it is inferred that the value of | AB | For example, it was presumed that | AB | ≧ 1 was more preferable.

Figure 0006658182
Figure 0006658182

また、本実施例において、(D−C)/(A−B)の値と抵抗上昇率との間に関連性を見いだすことができたことから、JIS L 1907:2010のバイレック法に準じた簡便な方法によって、電解液保持力等を評価できることがわかった。   Further, in the present embodiment, a relationship was found between the value of (DC) / (AB) and the rate of increase in resistance, and therefore, the bireck method according to JIS L 1907: 2010 was used. It was found that the electrolytic solution holding power and the like could be evaluated by a simple method.

なお、本発明は上述した実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It is to be noted that the present invention is not limited to the above-described embodiment at all, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

本発明は、電池産業の分野等に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used in the field of the battery industry and the like.

10 リチウム二次電池、11 電極構造体、13 集電体、14 正極合材層、15 正極シート、16 集電体、17 負極合材層、18 負極シート、19 負極側の層、20 正極側の層、21 セパレータ、22 非水電解液、23 円筒ケース、24 正極端子、26 負極端子、30 リチウム二次電池、31 電極構造体、33 電池ケース、34 正極合材層、35 正極、36 封口板、37 負極合材層、38 負極、39 負極側の層、40 正極側の層、41セパレータ、42非水電解液、43 ガスケット、50 水平棒、52 容器、60 試験片、62 下端部、64 錘、66 試液。   Reference Signs List 10 lithium secondary battery, 11 electrode structure, 13 current collector, 14 positive electrode mixture layer, 15 positive electrode sheet, 16 current collector, 17 negative electrode mixture layer, 18 negative electrode sheet, 19 negative electrode side layer, 20 positive electrode side Layer, 21 separator, 22 non-aqueous electrolyte, 23 cylindrical case, 24 positive electrode terminal, 26 negative electrode terminal, 30 lithium secondary battery, 31 electrode structure, 33 battery case, 34 positive electrode mixture layer, 35 positive electrode, 36 sealing Plate, 37 negative electrode mixture layer, 38 negative electrode, 39 negative electrode side layer, 40 positive electrode side layer, 41 separator, 42 non-aqueous electrolyte, 43 gasket, 50 horizontal bar, 52 container, 60 test piece, 62 lower end, 64 weights, 66 reagents.

Claims (6)

正極と、負極と、前記正極と負極との間に介在する2層以上のセパレータと、を備え、
バイレック法により試液を10分間吸液させて測定した、前記正極の吸液高さをA(mm)、前記負極の吸液高さをB(mm)、前記セパレータの正極側の層の吸液高さをC(mm)、前記セパレータの負極側の層の吸液高さをD(mm)としたときに、0<(D−C)/(A−B)≦100を満たす、
電極構造体。
A positive electrode, a negative electrode, and two or more separators interposed between the positive electrode and the negative electrode,
The liquid absorption height of the positive electrode was A (mm), the liquid absorption height of the negative electrode was B (mm), and the liquid absorption of the layer on the positive electrode side of the separator was measured by absorbing a test solution for 10 minutes by a birec method. When the height is C (mm) and the liquid absorption height of the layer on the negative electrode side of the separator is D (mm), 0 <(DC) / (AB) ≦ 100 is satisfied.
Electrode structure.
正極と、負極と、前記正極と負極との間に介在する2層以上のセパレータと、を備え、
バイレック法により試液を10分間吸液させて測定した、前記正極の吸液高さをA(mm)、前記負極の吸液高さをB(mm)、前記セパレータの正極側の層の吸液高さをC(mm)、前記セパレータの負極側の層の吸液高さをD(mm)としたときに、(D−C)/(A−B)>0及び|A−B|≧1を満たす、
電極構造体。
A positive electrode, a negative electrode, and two or more separators interposed between the positive electrode and the negative electrode,
The liquid absorption height of the positive electrode was A (mm), the liquid absorption height of the negative electrode was B (mm), and the liquid absorption of the layer on the positive electrode side of the separator was measured by absorbing a test solution for 10 minutes by a birec method. When the height is C (mm) and the liquid absorption height of the layer on the negative electrode side of the separator is D (mm), (DC) / (AB)> 0 and | AB | ≧ Satisfy 1
Electrode structure.
0<(D−C)/(A−B)≦100を満たす、請求項に記載の電極構造体。 The electrode structure according to claim 2 , wherein 0 <(DC) / (AB) ≦ 100 is satisfied. 前記試液は、プロピレンカーボネートである、請求項1〜3のいずれか1項に記載の電極構造体。   The electrode structure according to any one of claims 1 to 3, wherein the reagent is propylene carbonate. 前記電極構造体は、捲回型の電極構造体であり、
前記吸液高さは、軸方向の吸液高さである、請求項1〜4のいずれか1項に記載の電極構造体。
The electrode structure is a wound electrode structure,
The electrode structure according to claim 1, wherein the liquid absorption height is an axial liquid absorption height.
請求項1〜5のいずれか1項に記載の電極構造体と、
前記正極と前記負極との間に介在しリチウムイオンを伝導する非水電解液と、
を備えたリチウム二次電池。
An electrode structure according to any one of claims 1 to 5,
A non-aqueous electrolyte interposed between the positive electrode and the negative electrode and conducting lithium ions,
Rechargeable lithium battery.
JP2016059751A 2016-03-24 2016-03-24 Electrode structure and lithium secondary battery Active JP6658182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016059751A JP6658182B2 (en) 2016-03-24 2016-03-24 Electrode structure and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016059751A JP6658182B2 (en) 2016-03-24 2016-03-24 Electrode structure and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2017174647A JP2017174647A (en) 2017-09-28
JP6658182B2 true JP6658182B2 (en) 2020-03-04

Family

ID=59971447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016059751A Active JP6658182B2 (en) 2016-03-24 2016-03-24 Electrode structure and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6658182B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11205799B2 (en) * 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP2022112528A (en) * 2019-06-17 2022-08-03 株式会社クラレ Separator for nonaqueous electrolyte secondary battery, and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706214B2 (en) * 2011-03-30 2015-04-22 帝人株式会社 Separator
JP5871158B2 (en) * 2011-11-18 2016-03-01 トヨタ自動車株式会社 Non-aqueous secondary battery
JP5839233B2 (en) * 2012-04-17 2016-01-06 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2014137985A (en) * 2013-01-18 2014-07-28 Toyota Motor Corp Secondary battery
TWI497803B (en) * 2014-02-11 2015-08-21 Benq Materials Corp Heat-resistant porous separator film and method for manufacturing the same

Also Published As

Publication number Publication date
JP2017174647A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP5357517B2 (en) Lithium ion secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP6428243B2 (en) Non-aqueous lithium secondary battery and manufacturing method thereof
JP2017174648A (en) Power storage device
JP6205889B2 (en) Lithium secondary battery
JP5223494B2 (en) Lithium ion secondary battery
JP5749882B2 (en) Lithium secondary battery
JP5487598B2 (en) Lithium secondary battery and method of using the same
JP2016100278A (en) Electrode structure and lithium secondary battery
JP6658182B2 (en) Electrode structure and lithium secondary battery
JP2012216500A (en) Lithium secondary battery
JP5271751B2 (en) Lithium ion secondary battery
JP5413945B2 (en) Multilayer laminated nonaqueous electrolyte secondary battery
WO2018079452A1 (en) Secondary battery
JP2016009532A (en) Lithium ion battery
WO2016171276A1 (en) Lithium ion cell
JP2018085213A (en) Lithium secondary battery
JP2012226963A (en) Lithium secondary battery
JP2017134974A (en) Lithium secondary battery
JP6763810B2 (en) Lithium ion secondary battery
JP2015230824A (en) Electrode structure and lithium secondary battery
JP2009238433A (en) Method of manufacturing lithium-ion secondary battery, and lithium-ion secondary battery
JP2016143577A (en) Lithium ion secondary battery
JP2018181758A (en) Lithium ion secondary battery
JP2019075278A (en) Laminated structure, lithium secondary battery and method of manufacturing laminated structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6658182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150