WO2016171276A1 - Lithium ion cell - Google Patents

Lithium ion cell Download PDF

Info

Publication number
WO2016171276A1
WO2016171276A1 PCT/JP2016/062835 JP2016062835W WO2016171276A1 WO 2016171276 A1 WO2016171276 A1 WO 2016171276A1 JP 2016062835 W JP2016062835 W JP 2016062835W WO 2016171276 A1 WO2016171276 A1 WO 2016171276A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
lithium ion
negative electrode
ion battery
Prior art date
Application number
PCT/JP2016/062835
Other languages
French (fr)
Japanese (ja)
Inventor
由磨 五行
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2017514225A priority Critical patent/JPWO2016171276A1/en
Publication of WO2016171276A1 publication Critical patent/WO2016171276A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion battery.
  • Lithium ion batteries are high energy density secondary batteries, and are used as power sources for portable devices such as notebook computers and mobile phones, taking advantage of their characteristics.
  • lithium ion batteries have attracted attention as power supplies for electronic devices, power storage power supplies, and electric vehicle power supplies that are becoming smaller in size, and lithium ion batteries that are further excellent in high energy density are required.
  • As a means for improving the energy density for example, there is a method of using, as a positive electrode active material, a spinel type lithium / nickel / manganese composite oxide showing a high operating voltage.
  • a positive electrode active material a spinel type lithium / nickel / manganese composite oxide showing a high operating voltage.
  • the decomposition reaction of the electrolyte solution tends to occur at the contact portion between the positive electrode active material and the electrolyte solution, and sufficient cycle characteristics are obtained. There was a problem that it was not possible.
  • Japanese Patent Application Laid-Open No. 2004-79426 proposes a method using alkylene biscarbonate as an electrolytic solution.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lithium ion battery having excellent charge / discharge cycle characteristics even when a conventional electrolyte for a lithium ion battery is used.
  • the lithium ion battery is excellent in charge / discharge cycle characteristics.
  • a positive electrode including a spinel type lithium / nickel / manganese composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding lithium ions, a separator for insulating the positive electrode and the negative electrode, and electrolysis A battery and a battery exterior body, A lithium ion battery in which a ratio (Y / X) of a volume Y occupied by the electrolytic solution to a volume X in the battery outer body is 0.2 or more.
  • ⁇ 2> The lithium ion battery according to ⁇ 1>, wherein the electrolytic solution contains a non-aqueous solvent and a lithium salt, and a content of chain monocarbonate in a total amount of the non-aqueous solvent exceeds 70% by volume.
  • ⁇ 3> The lithium ion battery according to ⁇ 2>, wherein the chain monocarbonate contains dimethyl carbonate.
  • ⁇ 4> The lithium ion battery according to any one of ⁇ 1> to ⁇ 3>, wherein the electrolytic solution contains a fluorine-containing borate ester.
  • ⁇ 5> The lithium ion battery according to any one of ⁇ 1> to ⁇ 4>, wherein the ratio (Y / X) is 0.8 or less.
  • ⁇ 6> The lithium ion battery according to any one of ⁇ 1> to ⁇ 5>, wherein the separator has a porosity of 20% or more.
  • ⁇ 7> The lithium ion battery according to any one of ⁇ 1> to ⁇ 6>, wherein the negative electrode active material capable of storing lithium ions contains a lithium titanium composite oxide.
  • the spinel-type lithium / nickel / manganese composite oxide contains a compound represented by LiNi X Mn 2-X O 4 (0.3 ⁇ X ⁇ 0.7) ⁇ 1> to ⁇ 7 > The lithium ion battery of any one of>.
  • the present invention it is possible to provide a lithium ion battery excellent in charge / discharge cycle characteristics even when a conventional electrolyte for a lithium ion battery is used.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component means the total content rate or content of the plurality of types of substances when there are a plurality of types of substances corresponding to each component, unless otherwise specified.
  • the particle diameter of each component means a value for a mixture of the plurality of types of particles when there are a plurality of types of particles corresponding to each component, unless otherwise specified.
  • the term “layer” or “film” refers to a part of the region in addition to the case where the layer or the film is formed when the region where the layer or film exists is observed. It is also included when it is formed only.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • size of the member in each figure is notional, The relative relationship of the magnitude
  • symbol is provided to the member which has the substantially same function through all the drawings, and the overlapping description may be abbreviate
  • the lithium ion battery of this embodiment includes a positive electrode including a spinel-type lithium / nickel / manganese composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding lithium ions, the positive electrode, and the negative electrode.
  • a separator to be insulated and an electrolytic solution are provided in the battery outer package, and a ratio (Y / X) of a volume Y occupied by the electrolytic solution to a volume X in the battery outer package is 0.2 or more.
  • lithium ion battery of the present invention will be described in the order of a spinel type lithium / nickel / manganese composite oxide serving as a positive electrode active material, a negative electrode active material capable of occluding lithium ions, and an overall configuration of the lithium ion battery. To do.
  • a lithium ion battery has the following positive electrode applicable to a lithium ion battery.
  • the positive electrode (positive electrode plate) used in the present embodiment has a current collector and a positive electrode mixture layer formed on both surfaces or one surface thereof.
  • the positive electrode mixture layer contains a spinel type lithium / nickel / manganese composite oxide as a positive electrode active material.
  • the spinel-type lithium / nickel / manganese composite oxide serving as the positive electrode active material of the lithium ion battery according to the present embodiment is a compound represented by LiNi X Mn 2-X O 4 (0.3 ⁇ X ⁇ 0.7).
  • a spinel-type lithium / nickel / manganese composite oxide in which defects are generated at the O site can also be used.
  • elements metal elements
  • examples of other elements (metal elements) that can substitute at least one of the Mn site and the Ni site include Ti, V, Cr, Fe, Co, Zn, Cu, W, Mg, Al, and Ru. Can do. Mn sites and Ni sites can be substituted with one or more of these metal elements.
  • Ti is preferably used as the substitution element from the viewpoint of stabilizing the crystal structure.
  • the element that can replace the O site of the spinel type lithium / nickel / manganese composite oxide include F and B.
  • the O site of the spinel type lithium-nickel-manganese composite oxide can be substituted with one or more of these elements.
  • F is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel type lithium / nickel / manganese composite oxide.
  • the spinel-type lithium / nickel / manganese composite oxide preferably has a potential in a fully charged state of 4.5 V to 5 V with respect to Li / Li + from the viewpoint of high energy density, and is preferably 4.6 V to 4 V. More preferably, it is 9V.
  • the fully charged state means a state where the SOC (state of charge) is 100%.
  • the positive electrode active material in the lithium ion battery of this embodiment may contain other positive electrode active materials other than the spinel type lithium / nickel / manganese composite oxide.
  • Other positive electrode active materials other than the spinel type lithium / nickel / manganese composite oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1 1-y O z (in Li x Co y M 1 1-y O z , M 1 is Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb And at least one element selected from the group consisting of V and B), Li x Ni 1-y M 2 y O z (in Li x Ni 1-y M 2 y O z , M 2 is Na, And at least one element selected from the group consisting of Mg, Sc, Y, Mn, Fe, Co, Cu, Zn, Al,
  • x is in the range of 0 to 1.2
  • y is in the range of 0 to 0.9
  • z is in the range of 2.0 to 2.3.
  • the x value indicating the molar ratio of lithium increases or decreases due to charge / discharge.
  • the BET specific surface area of the spinel type lithium / nickel / manganese composite oxide is preferably less than 2.9 m 2 / g, preferably less than 2.8 m 2 / g, from the viewpoint of further improving the storage characteristics. More preferably, it is more preferably less than 1.5 m 2 / g, and particularly preferably less than 1.0 m 2 / g. Further, the BET specific surface area of the spinel type lithium / nickel / manganese composite oxide may be less than 0.3 m 2 / g.
  • the BET specific surface area is preferably at 0.05 m 2 / g or more, more preferably 0.08 m 2 / g or more, 0.1 m 2 / g or more More preferably it is.
  • BET specific surface area of the lithium-nickel-manganese composite oxide of the spinel is preferably less than 0.05 m 2 / g or more 2.9m 2 / g, 0.05m 2 / g or more 2.8 m 2 / g Is more preferably 0.08 m 2 / g or more and less than 1.5 m 2 / g, and particularly preferably 0.1 m 2 / g or more and less than 1.0 m 2 / g.
  • a BET specific surface area can be measured from nitrogen adsorption capacity according to JIS Z 8830: 2013, for example.
  • the evaluation apparatus for example, trade name: AUTOSORB-1 manufactured by QUANTACHROME can be used.
  • pretreatment a measurement cell charged with 0.05 g of a measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C. and held for 3 hours or more, and then kept at a normal temperature ( Cool to 25 ° C).
  • the evaluation temperature is 77 K ( ⁇ 196 ° C.)
  • the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to the saturated vapor pressure) of less than 1.
  • the BET specific surface area of the other positive electrode active material is 2.9 m 2 from the viewpoint of improving storage characteristics. Is preferably less than 2.8 m 2 / g, more preferably less than 1.5 m 2 / g, and particularly preferably less than 1.0 m 2 / g. .
  • the BET specific surface area is preferably at 0.05 m 2 / g or more, more preferably 0.08 m 2 / g or more, 0.1 m 2 / g or more More preferably it is.
  • BET specific surface area of the other of the positive electrode active material is preferably less than 0.05 m 2 / g or more 2.9 m 2 / g, more is less than 0.05 m 2 / g or more 2.8 m 2 / g It is more preferably 0.08 m 2 / g or more and less than 1.5 m 2 / g, and particularly preferably 0.1 m 2 / g or more and less than 1.0 m 2 / g.
  • the BET specific surface area of other positive electrode active materials can be measured by the same method as for spinel type lithium / nickel / manganese composite oxide.
  • a spinel type lithium / nickel / manganese composite oxide is used as a main positive electrode active material.
  • the content of the spinel-type lithium / nickel / manganese composite oxide is preferably 60% by mass to 100% by mass, and preferably 70% by mass to 100% by mass, based on the total amount of the positive electrode active material, from the viewpoint of improving battery capacity. %, More preferably 85% by mass to 100% by mass.
  • the median diameter D50 of the spinel-type lithium / nickel / manganese composite oxide particles (when the primary particles are aggregated to form secondary particles, the median diameter D50 of the secondary particles) is a mixture slurry. From the viewpoint of dispersibility, the thickness is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m.
  • the median diameter D50 can be obtained from the particle size distribution obtained by the laser diffraction / scattering method.
  • the median diameter D50 of the particles of the other positive electrode active material is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m from the viewpoint of dispersibility of the mixture slurry.
  • a lithium ion battery has the following negative electrode applicable to a lithium ion battery.
  • the negative electrode (negative electrode plate) used in this embodiment has a current collector and a negative electrode mixture layer formed on both sides or one side thereof.
  • the negative electrode mixture layer contains a negative electrode active material capable of electrochemically inserting and extracting lithium ions.
  • a carbon material, a lithium titanium composite oxide, or the like is preferable.
  • Carbon materials are roughly classified into graphite-based carbon materials having a uniform crystal structure and non-graphite-based carbon materials having a disordered crystal structure.
  • Examples of the graphite-based carbon material include natural graphite and artificial graphite.
  • Non-graphite-based carbon materials include amorphous carbon and the like, and although the crystal structure is disordered, graphitizable carbon (or graphitizable carbon) that easily becomes graphite when heated at 2000 ° C. to 3000 ° C. ) And non-graphitizable carbon (or non-graphitizable carbon) that is difficult to become graphite.
  • Amorphous carbon can be produced by heat-treating petroleum pitch, polyacene, polyparaphenylene, polyfurfuryl alcohol, polysiloxane, etc., and can be made non-graphitizable carbon by changing the treatment temperature.
  • Graphitized carbon can be used.
  • a treatment temperature of about 500 ° C. to 800 ° C. is suitable for producing non-graphitizable carbon
  • a treatment temperature of about 800 ° C. to 1000 ° C. is suitable for producing graphitizable carbon.
  • the non-graphitizable carbon is defined as having a plane spacing d002 value in the C-axis direction obtained by a wide-angle X-ray diffraction method of 0.36 nm to 0.40 nm.
  • Graphitizable carbon is defined as having a surface spacing d002 value in the C-axis direction obtained by a wide-angle X-ray diffraction method of 0.34 nm or more and less than 0.36 nm.
  • the graphitizable carbon preferably has a C-axis direction spacing d002 value of 0.341 nm or more and 0.355 nm or less obtained by wide-angle X-ray diffraction, and is 0.342 nm or more and 0.35 nm or less. It is more preferable.
  • the content of amorphous carbon is preferably 55% by mass or more and 70% by mass or more with respect to the total amount of the negative electrode active material. More preferably, it is more preferably 90% by mass or more.
  • graphitizable carbon is preferably used from the viewpoint of battery characteristics.
  • easily graphitizable carbon and non-graphitizable carbon may be used in combination.
  • the lithium titanium composite oxide (LTO) serving as the negative electrode active material of the lithium ion battery of this embodiment is preferably a lithium titanium composite oxide having a spinel structure.
  • the basic composition formula of the spinel-structure lithium-titanium composite oxide is represented by Li [Li 1/3 Ti 5/3 ] O 4 , and in order to further stabilize the crystal structure, the spinel-structure lithium-titanium composite oxide It is also possible to use a material in which a part of the Li site or Ti site of the product is replaced with another metal, a material in which excess lithium is present in the crystal, or a part of the O site is replaced with another element. .
  • Li site or Ti site Other elements that can replace the Li site or Ti site include, for example, F, B, Nb, V, Mn, Ni, Cu, Co, Zn, Sn, Pb, Al, Mo, Ba, Sr, Ta , Mg, and Ca.
  • the Li site or Ti site can be substituted with one or more of these elements.
  • the element that can replace the O site include F and B.
  • the O site can be substituted with one or more of these elements.
  • the potential in the fully charged state of the lithium titanium composite oxide is preferably 1 V to 2 V with respect to Li / Li + .
  • the negative electrode active material in the lithium ion battery of the present embodiment may include a negative electrode active material other than a carbon material and a lithium titanium composite oxide.
  • the negative electrode active material capable of occluding lithium ions preferably contains a lithium titanium composite oxide from the viewpoint of cycle characteristics.
  • the content is preferably 70% by mass to 100% by mass in the total amount of the negative electrode active material from the viewpoint of improving battery capacity. 80% by mass to 100% by mass is more preferable, and 90% by mass to 100% by mass is even more preferable.
  • the BET specific surface area of the negative electrode active material is preferably less than 40 m 2 / g, more preferably less than 30 m 2 / g, and even more preferably less than 20 m 2 / g from the viewpoint of improving storage characteristics. Preferably, it is particularly preferably less than 15 m 2 / g. From the viewpoint of improving the input / output characteristics, the BET specific surface area is preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 1 m 2 / g or more. Is more preferable.
  • BET specific surface area of the negative electrode active material is preferably less than 0.1 m 2 / g or more 40 m 2 / g, more preferably less than 0.1 m 2 / g or more 30m 2 / g, 0.5m 2 more preferably less than / g or more 20 m 2 / g, and particularly preferably less than 1 m 2 / g or more 15 m 2 / g.
  • the BET specific surface area of the negative electrode active material can be measured by the same method as for the spinel type lithium / nickel / manganese composite oxide.
  • the median diameter D50 of the negative electrode active material (the median diameter D50 of the secondary particles when primary particles are aggregated to form secondary particles) is 0.5 ⁇ m to 100 ⁇ m from the viewpoint of particle dispersibility.
  • the thickness is 1 ⁇ m to 50 ⁇ m.
  • the median diameter D50 of the negative electrode active material can be measured by the same method as the spinel type lithium / nickel / manganese composite oxide.
  • a spinel type lithium / nickel / manganese composite oxide and, if necessary, the above-mentioned other positive electrode active material are used as a positive electrode active material, and a conductive material is mixed therewith.
  • the positive electrode active material can be composed only of lithium / nickel / manganese composite oxide
  • the spinel type lithium / nickel / manganese composite oxide is well known as an olivine type for the purpose of improving the characteristics of the lithium ion battery.
  • a positive electrode active material may be prepared by mixing lithium salt, chalcogen compound, manganese dioxide and the like.
  • Single-side coating of the current collector of the positive electrode mixture from the viewpoint of energy density and output characteristics, it is preferably, 50g / m 2 ⁇ 200g / m 2 is a 10g / m 2 ⁇ 250g / m 2 More preferably, it is more preferably 130 g / m 2 to 170 g / m 2 .
  • the density of the positive electrode mixture layer from the viewpoint of energy density, it is preferably 1.8g / cm 3 ⁇ 3.2g / cm 3, a 2.0g / cm 3 ⁇ 3.0g / cm 3 More preferably, it is more preferably 2.2 g / cm 3 to 2.8 g / cm 3 .
  • the negative electrode of the lithium ion battery uses a carbon material or a lithium-titanium composite oxide as a negative electrode active material, and a conductive material and a binder are mixed with this, and an appropriate solvent is added as necessary. This is applied to a current collector made of a metal foil such as copper, dried, and then formed by increasing the density of the negative electrode mixture layer by pressing or the like as necessary.
  • the negative electrode active material can be composed only of the carbon material, but for the purpose of improving the characteristics of the lithium ion battery, etc., a known lithium titanium composite oxide is mixed with the carbon material to make the negative electrode active material. It may be.
  • the negative electrode active material can be composed only of the lithium titanium composite oxide, but for the purpose of improving the characteristics of the lithium ion battery, a known carbon material or the like is already mixed with the lithium titanium composite oxide to form the negative electrode active material. It may be.
  • the coating amount of the current collector of the negative electrode mixture is preferably 10g / m 2 ⁇ 200g / m 2, a 50g / m 2 ⁇ 150g / m 2 Is more preferable.
  • Density of the negative electrode mixture layer is preferably 1.0g / cm 3 ⁇ 2.8g / cm 3, to be 1.2g / cm 3 ⁇ 2.6g / cm 3 More preferred.
  • the conductive material is a mixture of one or more of carbon black such as acetylene black and ketjen black, and a carbon material powder such as graphite. Can be used.
  • carbon nanotubes, graphene, or the like can be added as a conductive material to increase the electrical conductivity of at least one of the positive electrode and the negative electrode.
  • the conductive material used for the positive electrode is preferably acetylene black from the viewpoint of improving input / output characteristics.
  • the content of the positive electrode conductive material is preferably 3% by mass or more, more preferably 4% by mass or more, and more preferably 4.5% by mass based on the total amount of the positive electrode mixture from the viewpoint of input / output characteristics. It is still more preferable that it is above. Further, the content of the positive electrode conductive material may be 5% by mass or more or 5.5% by mass or more based on the total amount of the positive electrode mixture. From the viewpoint of battery capacity, the upper limit is preferably 10% by mass or less, more preferably 9% by mass or less, and further preferably 8.5% by mass or less.
  • the conductive material used for the negative electrode is preferably acetylene black from the viewpoint of further improving input / output characteristics.
  • the content of the negative electrode conductive material is preferably 1% by mass or more, more preferably 2% by mass or more, and more preferably 3% by mass or more based on the total amount of the negative electrode mixture. More preferably it is.
  • 4 mass% or more may be sufficient as the content rate of a negative electrode electrically conductive material on the basis of the whole quantity of negative mix, and 6 mass% or more may be sufficient as it.
  • the upper limit is preferably 15% by mass or less, more preferably 12% by mass or less, and still more preferably 10% by mass or less.
  • the binder is not particularly limited, and a material having good solubility or dispersibility in the dispersion solvent is selected.
  • resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine Rubbery polymers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or its hydrogenated product, EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / ethylene copolymers, styrene / isoprene / styrene block copolymers or
  • PVdF polyvinylidene fluoride
  • a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton from the viewpoint of high adhesion, it is preferable to use polyvinylidene fluoride (PVdF) or a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton.
  • the range of the content rate of the binder with respect to the whole quantity of positive mix is as follows.
  • the lower limit of the range is preferably 0.1% by mass or more from the viewpoint of sufficiently binding the positive electrode active material to obtain sufficient mechanical strength of the positive electrode and stabilizing battery performance such as cycle characteristics.
  • the content is more preferably 1% by mass or more, and further preferably 2% by mass or more.
  • the upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less.
  • the range of the content rate of the binder with respect to the total amount of the negative electrode mixture is as follows.
  • the lower limit of the range is preferably 0.1% by mass or more from the viewpoint of sufficiently binding the negative electrode active material to obtain sufficient mechanical strength of the negative electrode and stabilizing battery performance such as cycle characteristics.
  • the content is more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is preferably 40% by mass or less, more preferably 25% by mass or less, and still more preferably 15% by mass or less from the viewpoint of improving battery capacity and conductivity.
  • An organic solvent such as N-methyl-2pyrrolidone can be used as a solvent for dispersing these active materials, conductive materials, binders and the like.
  • the lithium ion battery of the present embodiment includes a separator, an electrolytic solution, and the like that are sandwiched between the positive electrode and the negative electrode, in addition to the positive electrode and the negative electrode.
  • a nonaqueous electrolytic solution is preferable.
  • the separator is not particularly limited as long as it has ion permeability while electronically insulating the positive electrode and the negative electrode and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side.
  • a material (material) of the separator that satisfies such characteristics a resin, an inorganic substance, or the like is used.
  • olefin polymer fluorine polymer, cellulose polymer, polyimide, nylon or the like is used.
  • resin olefin polymer, fluorine polymer, cellulose polymer, polyimide, nylon or the like is used.
  • porous sheets made from polyolefins such as polyethylene and polypropylene, nonwoven fabrics, etc. may be used. preferable.
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, sulfates such as barium sulfate and calcium sulfate, and glass are used.
  • a separator in which the above-mentioned inorganic substance in the form of fibers or particles is made into a non-woven fabric, a woven fabric, or a thin-film shaped substrate such as a microporous film can be used.
  • a substrate having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m is preferably used.
  • the composite porous layer using binders, such as resin can be used as a separator.
  • this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator.
  • a composite porous layer in which alumina particles having a 90% average particle diameter (D90) of less than 1 ⁇ m are bound using a fluororesin as a binder may be formed on the surface of the positive electrode or the surface facing the positive electrode of the separator. Good.
  • the porosity of the separator is preferably 20% or more, more preferably 20% to 80%, further preferably 25% to 70%, and particularly preferably 30% to 60%. preferable.
  • the porosity of the separator is 20% or more, the permeability of the electrolytic solution is improved and a large amount of the electrolytic solution can be injected, so that the cycle characteristics tend to be improved. If the porosity of the separator is 80% or less, the occurrence of a short circuit tends to be suppressed.
  • the porosity of the separator is a value obtained from mercury porosimeter measurement. Conditions for mercury porosimeter measurement are as follows.
  • current collectors are used for the positive electrode and the negative electrode.
  • the material of the current collector is not limited to aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, conductive glass, etc. as the current collector for the positive electrode.
  • Current collector for negative electrode includes copper, stainless steel, nickel, aluminum, titanium, baked carbon, conductive polymer, conductive glass, aluminum-cadmium alloy, etc., adhesiveness, conductivity, reduction resistance, etc.
  • the thickness of the positive electrode current collector and the negative electrode current collector is preferably 1 ⁇ m to 50 ⁇ m independently from the viewpoint of electrode strength and energy density.
  • the non-aqueous electrolyte used in the lithium ion battery of this embodiment is composed of a lithium salt (electrolyte) and a non-aqueous solvent that dissolves the lithium salt (electrolyte).
  • the additives it is preferable to contain a fluorinated boric acid ester from the viewpoint of further extending the life.
  • fluorinated boric acid ester for example, a compound represented by the following general formula (a) is preferable.
  • R 1 , R 2 and R 3 are the same or different linear or branched alkyl groups having 1 to 10 carbon atoms, or linear or branched alkyl groups having 1 to 10 carbon atoms. Represents a fluorine alkyl group, and at least one of R 1 , R 2 and R 3 is a linear or branched fluorine-containing alkyl group having 1 to 10 carbon atoms.
  • the compound represented by the general formula (a) is a compound in which R 1 , R 2 and R 3 are the same or different linear or branched fluorine-containing alkyl groups having 1 to 10 carbon atoms. preferable.
  • the compound represented by the general formula (a) is, for example, tris (trifluoroethyl) borate, methyl bis (trifluoroethyl) borate, tris (tetrafluoroethyl) borate, tris (monofluoroethyl) borate, Tris borate (pentafluoropropyl), tris borate (hexafluoropropyl), tris borate (hexafluoroisopropyl), tris borate (2-methyl-1,1,1,3,3,3-hexafluoropropyl) ) And tris borate (2-phenyl-1,1,1,3,3,3-hexafluoropropyl).
  • the content of the fluorinated boric acid ester is preferably 0.02% by mass to 10% by mass from the viewpoint of cycle characteristics and high temperature storage characteristics, based on the total amount of the nonaqueous electrolytic solution, It is more preferably from 5% by mass to 5% by mass, still more preferably from 0.05% by mass to 4% by mass, and particularly preferably from 0.1% by mass to 3% by mass.
  • Lithium salts include LiPF 6 , LiBF 4 , LiFSI (lithium bisfluorosulfonylimide), LiTFSI (lithium bistrifluoromethanesulfonylimide), LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 and the like. These lithium salts may be used alone or in combination of two or more.
  • lithium hexafluorophosphate (LiPF 6 ) is preferable when comprehensively judging the solubility in a non-aqueous solvent, charge / discharge characteristics in the case of a lithium ion battery, input / output characteristics, cycle characteristics, and the like.
  • the concentration of the lithium salt is preferably 0.5 mol / L to 1.5 mol / L, more preferably 0.7 mol / L to 1.3 mol / L, and more preferably 0.8 mol to the non-aqueous solvent. / L to 1.2 mol / L is more preferable. By setting the concentration of the lithium salt to 0.5 mol / L to 1.5 mol / L, the charge / discharge characteristics can be further improved.
  • Non-aqueous solvents include cyclic carbonates such as ethylene carbonate and propylene carbonate; chain monocarbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, ⁇ -butyrolactone, acetonitrile, 1,2-dimethoxyethane, dimethoxymethane, tetrahydrofuran, Examples include dioxolane, methylene chloride, and methyl acetate. These may be used alone or in combination of two or more, but it is preferable to use a mixed solvent in which a cyclic carbonate and a chain monocarbonate are mixed.
  • the content of the cyclic carbonate and the chain monocarbonate is preferably 80% by volume or more, and 90% by volume from the viewpoint of cycle characteristics with respect to the total amount of the non-aqueous solvent. More preferably, it is more preferably 95% by volume or more.
  • the content is preferably 5% by volume to 70% by volume, more preferably 10% by volume to 60% by volume, and more preferably 20% by volume to 20% by volume with respect to the total amount of the non-aqueous solvent. More preferably, it is 60 volume%.
  • the content is preferably more than 70% by volume with respect to the total amount of the non-aqueous solvent.
  • the content of the chain monocarbonate with respect to the total amount of the non-aqueous solvent exceeds 70% by volume, the electrolyte solution penetrates into the separator and the electrode, and a large amount of the electrolyte solution can be injected, so that the cycle characteristics tend to improve. is there.
  • the content of the chain monocarbonate with respect to the total amount of the non-aqueous solvent is more preferably 75% by volume or more, still more preferably 85% by volume or more, and particularly preferably 90% by volume or more.
  • the content of the chain monocarbonate with respect to the total amount of the non-aqueous solvent may be 100% by volume, but it is preferably 95% by volume or less from the viewpoint of further improving safety.
  • the chain monocarbonate preferably contains dimethyl carbonate.
  • the proportion of dimethyl carbonate in the chain monocarbonate is preferably 75% by volume to 100% by volume, and more preferably 85% by volume to 100% by volume. More preferably, it is 90 volume% to 100 volume%.
  • the additive is not particularly limited as long as it is an additive for a non-aqueous electrolyte solution of a lithium ion battery, and includes a heterocyclic compound containing nitrogen, a heterocyclic compound containing sulfur, and a heterocyclic compound containing nitrogen and sulfur. , Cyclic carboxylic acid ester, fluorine-containing cyclic carbonate, and other compounds having an unsaturated bond in the molecule.
  • other additives such as an overcharge prevention material, a negative electrode film forming material, a positive electrode protective material, and a high input / output material may be used depending on the required function.
  • the other additives mentioned above can improve storage characteristics at high temperatures, cycle characteristics, and input / output characteristics.
  • the lithium ion battery configured as described above can have various shapes such as a cylindrical shape, a laminated shape, a coin shape, and a laminated shape. Regardless of which shape is used, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. Connection is made using a lead or the like, and this electrode body is sealed in a battery case together with a non-aqueous electrolyte to complete a lithium ion battery.
  • a stacked lithium ion battery in which a positive electrode plate and a negative electrode plate are stacked via a separator will be described with reference to FIGS. 1 and 2, but the present invention is not limited thereto.
  • FIG. 1 is a perspective view showing one embodiment of the lithium ion battery of this embodiment.
  • the lithium ion battery 10 is one in which the electrode group 20 and an electrolytic solution are accommodated in the battery outer package of the laminate film 6, and the positive electrode current collecting tab 2 and the negative electrode current collecting tab 4 are taken out of the battery outer package.
  • the electrode group 20 is formed by laminating a positive electrode plate 1 to which a positive electrode current collecting tab 2 is attached, a separator 5, and a negative electrode plate 3 to which a negative electrode current collecting tab 4 is attached.
  • size, shape, etc. of a positive electrode plate, a negative electrode plate, a separator, an electrode group, and a battery can be made into arbitrary things, and are not necessarily limited to what is shown by FIG.1 and FIG.2.
  • Examples of the material for the battery outer package include an aluminum laminate film, aluminum, copper, and stainless steel.
  • FIG. 3 is a cross-sectional view showing another embodiment of the lithium ion battery of this embodiment.
  • the lithium ion battery 11 has a bottomed cylindrical battery outer package 16 made of steel plated with nickel.
  • An electrode group 15 is accommodated in the battery outer package 16.
  • a belt-like positive electrode plate 12 and a negative electrode plate 13 are wound in a spiral cross section via a separator 14 made of a polyethylene porous sheet.
  • the separator 14 has a width of 58 mm and a thickness of 20 ⁇ m.
  • a ribbon-shaped positive electrode tab terminal made of aluminum and having one end fixed to the positive electrode plate 12 is led out on the upper end surface of the electrode group 15.
  • the other end of the positive electrode tab terminal is joined by ultrasonic welding to the lower surface of a disk-shaped battery lid that is disposed above the electrode group 15 and serves as a positive electrode external terminal.
  • a ribbon-like negative electrode tab terminal made of nickel and having one end fixed to the negative electrode plate 13 is led to the lower end surface of the electrode group 15.
  • the other end of the negative electrode tab terminal is joined to the inner bottom of the battery outer package 16 by resistance welding.
  • the positive electrode tab terminal and the negative electrode tab terminal are respectively led out to the opposite sides of the both end surfaces of the electrode group 15.
  • an insulating coating (not shown) is applied to the entire outer peripheral surface of the electrode group 15.
  • the battery lid is caulked and fixed to the upper part of the battery outer package 16 via an insulating resin gasket. For this reason, the inside of the lithium ion battery 11 is sealed.
  • an electrolyte solution (not shown) is injected into the battery outer package 16.
  • size, shape, etc. of a positive electrode plate, a negative electrode plate, a separator, an electrode group, and a battery can be made into arbitrary things, and are not necessarily limited to what is shown by FIG.
  • the ratio of the volume Y of the electrolyte solution to the volume X in the battery casing (Y / X) is 0.2 or more, and from the viewpoint of further extending the life, it is preferably 0.3 or more. More preferably, it is 0.4 or more.
  • the volume of the electrolytic solution refers to the volume at 25 ° C.
  • it is preferably 0.8 or less, and more preferably 0.7 or less. The reason why the life can be extended when the value of the ratio (Y / X) is 0.2 or more is not clear, but is estimated as follows.
  • the capacity ratio (negative electrode capacity / positive electrode capacity) of the positive electrode and the negative electrode is 0.7 or more and less than 1. It is preferable. When the capacity ratio is 0.7 or more, the battery capacity is improved and a high energy density tends to be obtained. On the other hand, when the capacity ratio is less than 1, the decomposition reaction of the electrolytic solution due to the positive electrode being at a high potential hardly occurs, and the cycle characteristics of the lithium ion battery tend to be good. From the viewpoint of energy density and cycle characteristics, the capacity ratio is more preferably 0.75 to 0.95.
  • the “positive electrode capacity” and the “negative electrode capacity” can be used reversibly obtained when a constant-current-constant-voltage charge-constant-current discharge is performed by constituting an electrochemical cell having a counter electrode made of metallic lithium. Means maximum capacity. For example, when a spinel type lithium / nickel / manganese composite oxide is used for the positive electrode active material and LTO is used for the negative electrode active material, the “positive electrode capacity” and the “negative electrode capacity” Obtained when the voltage ranges are set to 4.95 V to 3.5 V and 2 V to 1 V, respectively, and the charge / discharge is evaluated with the current density during constant current charge and constant current discharge being 0.1 mA / cm 2. Capacity.
  • the embodiment of the lithium ion battery of the present invention has been described, the above embodiment is only one embodiment, and the lithium ion battery of the present invention includes various embodiments based on the knowledge of those skilled in the art including the above embodiment.
  • the present invention can be implemented in various forms with modifications and improvements.
  • This slurry was applied to one side of a 20 ⁇ m-thick aluminum foil, which is a positive electrode current collector, so as to be substantially uniformly and uniformly 140 g / m 2 . Thereafter, drying treatment was performed, and consolidation was performed by pressing to a density of 2.3 g / cm 3 to produce a sheet-like positive electrode. This was cut into a width of 31 mm and a length of 46 mm to form a positive electrode plate, and a positive electrode current collecting tab was attached to the positive electrode plate as shown in FIG.
  • the produced positive electrode plate and negative electrode plate are opposed to each other through a polyethylene microporous membrane (a polypropylene / polyethylene / polypropylene three-layer separator) having a thickness of 30 ⁇ m, a width of 35 mm, and a length of 50 mm as a separator. Groups were made. The porosity of the separator was 43%.
  • Nonaqueous electrolyte adjustment Ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 3, and then LiPF 6 as an electrolyte is dissolved in a non-aqueous solvent so that the electrolyte concentration becomes 1.2 mol / L. Adjusted.
  • fluorine-containing boric acid ester tris borate (hexafluoroisopropyl)
  • the amount of tris borate (hexafluoroisopropyl) added was 0.5% by mass with respect to the total amount of the electrolyte (nonaqueous electrolyte + electrolyte additive).
  • the electrode group is housed in a battery exterior body made of an aluminum laminate film, and a nonaqueous electrolyte solution is injected into the battery exterior body at a ratio shown in Table 1 above.
  • the positive electrode current collecting tab and the negative electrode current collecting tab were taken out to seal the opening of the battery outer package, thereby producing lithium ion batteries of Examples 1 to 3 and Comparative Example 1.
  • the aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene or the like).
  • PET polyethylene terephthalate
  • the amount of electrolyte solution described in Table 1 is a value at 25 ° C.
  • the width and length of the electrode group housing were measured.
  • the thickness of the electrode group housing part was calculated by subtracting the thickness of the laminate film from the thickness of the produced lithium ion battery.
  • the negative electrode, electrode group, non-aqueous electrolyte, and lithium ion battery were produced in the same manner as in Examples 1 to 3 and Comparative Example 1.
  • the lithium ion batteries of Reference Examples 1 to 3 were charged at a constant current at a current value of 0.2 C and a charge end voltage of 3.1 V at 25 ° C. using a charge / discharge device (trade name: BATTERY TEST UNIT, manufactured by IEM Co., Ltd.). Then, constant voltage charging was performed at a charging voltage of 3.1 V until the current value reached 0.01C. After resting for 15 minutes, constant current discharge was performed at a current value of 0.2 C and a discharge end voltage of 1.5 V. Charging / discharging is repeated three times under the above charging / discharging conditions, followed by constant current charging at 50 ° C.
  • Cycle characteristics (%) (discharge capacity after 200 cycles / initial discharge capacity) ⁇ 100
  • Examples 1 to 3 Comparative Example 1 and Reference Examples 1 to 3 are stacked lithium ion batteries.
  • Table 1 shows the measurement results.
  • (A) in the table shows a spinel type lithium / nickel / manganese composite oxide
  • (b) shows a mixture of a layered type lithium / nickel / manganese / cobalt composite oxide and a spinel type lithium / manganese composite oxide. .
  • Example in which the positive electrode active material is a spinel type lithium / nickel / manganese composite oxide, and the ratio of the volume Y of the electrolyte to the volume X in the battery casing (Y / X) is 0.2 or more.
  • the high voltage cycle characteristics were excellent as compared with Comparative Example 1.
  • Example 3 containing a fluorine-containing borate ester it has confirmed that it was excellent in the high voltage cycle characteristic compared with Example 2 which does not contain.
  • the electrolyte accounts for the volume X in the battery casing. It was confirmed that the cycle characteristics were excellent regardless of the volume Y ratio. This indicates that when the spinel type lithium / nickel / manganese composite oxide is included as the positive electrode active material, the cycle characteristic is improved by setting the ratio (Y / X) to 0.2 or more.
  • Examples 4 to 7, Comparative Example 2 The positive electrode and negative electrode used in Example 1 were each cut into a predetermined size, and the cut positive electrode and negative electrode were sandwiched between 20 ⁇ m thick polyethylene microporous membranes (polypropylene / polyethylene / polypropylene three-layer separator). Was wound and wound to produce a roll-shaped electrode group.
  • the positive electrode length was 370 cm
  • the negative electrode length was 380 cm
  • the separator length was 830 cm.
  • the positive electrode width was 6.4 cm
  • the negative electrode width was 6.8 cm
  • the separator width was 7.4 cm.
  • the porosity of the separator was 43%.
  • a current collecting lead was attached to this electrode group, the electrode group was inserted into the battery outer package, and then a non-aqueous electrolyte was injected into the battery outer package at a rate shown in Table 2.
  • a non-aqueous electrolyte a solution obtained by dissolving LiPF 6 as an electrolyte at a concentration of 2.0 mol / L in a non-aqueous solvent in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 3 is used. It was. Finally, the battery case was sealed to complete the lithium ion batteries of Examples 4 to 7 and Comparative Example 2.
  • the amount of electrolyte solution described in Table 2 is a value at 25 ° C.
  • Example 6 a fluorinated boric acid ester (tris borate (hexafluoroisopropyl)) was added to the nonaqueous electrolytic solution as an electrolytic solution additive.
  • the amount of tris borate (hexafluoroisopropyl) added was 1.0% by mass with respect to the total amount of the electrolyte (nonaqueous electrolyte + electrolyte additive).
  • Reference Examples 4 and 5 The lithium ion batteries of Reference Examples 4 and 5 were completed in the same manner as in Example 4 except that the positive electrode and the negative electrode used in Reference Example 1 were used.
  • the cycle characteristics of the lithium ion batteries of Examples 4 to 7 and Comparative Example 2 were evaluated under the same conditions as in Examples 1 to 3 and Comparative Example 1.
  • the cycle characteristics of the lithium ion batteries of Reference Examples 4 and 5 were evaluated under the same conditions as in Reference Examples 1 to 3.
  • Table 2 shows the measurement results.
  • (A) in the table shows a spinel type lithium / nickel / manganese composite oxide
  • (b) shows a mixture of a layered type lithium / nickel / manganese / cobalt composite oxide and a spinel type lithium / manganese composite oxide.
  • Examples 4 to 7, Comparative Example 2, and Reference Examples 4 and 5 are cylindrical lithium ion batteries.
  • Example in which the positive electrode active material is a spinel type lithium / nickel / manganese composite oxide, and the ratio of the volume Y occupied by the electrolyte to the volume X in the battery casing (Y / X value) is 0.2 or more. 4 to 7, it was confirmed that the high voltage cycle characteristics were superior to those of Comparative Example 2. Moreover, in Example 6 containing a fluorine-containing boric acid ester, it has confirmed that it was excellent in the high voltage cycle characteristic compared with Example 4 which does not contain.
  • the present invention it is possible to provide a lithium ion battery excellent in charge / discharge cycle characteristics even when a conventional electrolyte for a lithium ion battery is used.

Abstract

The purpose of the present invention is to provide a lithium ion cell that has excellent charge-discharge cycle properties in spite of using a conventional lithium ion cell electrolyte solution. This lithium ion cell is provided, inside a cell outer casing, with the following: a positive electrode containing a spinel-type lithium-nickel-manganese composite oxide as the positive electrode active substance; a negative electrode containing a negative electrode active substance capable of absorbing lithium ions; a separator for insulating the positive electrode and the negative electrode; and an electrolyte solution. The ratio (Y/X) of the volume Y occupied by the electrolyte solution to the volume X inside the cell outer casing is 0.2 or greater.

Description

リチウムイオン電池Lithium ion battery
 本発明は、リチウムイオン電池に関するものである。 The present invention relates to a lithium ion battery.
 リチウムイオン電池は、高エネルギー密度の二次電池であり、その特性を活かして、ノートパソコン、携帯電話等のポータブル機器の電源に使用されている。 Lithium ion batteries are high energy density secondary batteries, and are used as power sources for portable devices such as notebook computers and mobile phones, taking advantage of their characteristics.
 近年、リチウムイオン電池は、小型化が進む電子機器用電源、電力貯蔵用電源及び電気自動車用電源としても注目されており、更なる高エネルギー密度に優れるリチウムイオン電池が要求されている。
 エネルギー密度を向上させる手段としては、例えば、高い作動電圧を示すスピネル型のリチウム・ニッケル・マンガン複合酸化物を正極活物質に用いる方法がある。しかし、高い電位のため、従来の環状カーボネート及び鎖状モノカーボネートを用いた電解液では、正極活物質と電解液の接触部分で電解液の分解反応が発生し易くなり、充分なサイクル特性が得られないという課題があった。
 これを解決する手段として、特開2004-79426号公報には、電解液としてアルキレンビスカーボネートを用いる方法が提案されている。
In recent years, lithium ion batteries have attracted attention as power supplies for electronic devices, power storage power supplies, and electric vehicle power supplies that are becoming smaller in size, and lithium ion batteries that are further excellent in high energy density are required.
As a means for improving the energy density, for example, there is a method of using, as a positive electrode active material, a spinel type lithium / nickel / manganese composite oxide showing a high operating voltage. However, due to the high potential, in conventional electrolytes using cyclic carbonates and chain monocarbonates, the decomposition reaction of the electrolyte solution tends to occur at the contact portion between the positive electrode active material and the electrolyte solution, and sufficient cycle characteristics are obtained. There was a problem that it was not possible.
As means for solving this problem, Japanese Patent Application Laid-Open No. 2004-79426 proposes a method using alkylene biscarbonate as an electrolytic solution.
 しかしながら、特開2004-79426号公報に記載されているアルキレンビスカーボネートは高価であり、経済性には優れない。 However, the alkylene biscarbonate described in JP-A-2004-79426 is expensive and not economical.
 本発明は上記事情を鑑みてなされたものであり、従来のリチウムイオン電池用の電解液を用いても充放電サイクル特性に優れるリチウムイオン電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lithium ion battery having excellent charge / discharge cycle characteristics even when a conventional electrolyte for a lithium ion battery is used.
 前記課題を達成するための具体的手段は以下のとおりである。
 リチウムイオン電池を下記構成とすることにより、リチウムイオン電池は充放電サイクル特性に優れる。
<1> スピネル型のリチウム・ニッケル・マンガン複合酸化物を正極活物質として含む正極と、リチウムイオンを吸蔵可能な負極活物質を含む負極と、前記正極と前記負極とを絶縁するセパレータと、電解液と、を電池外装体内に備え、
 前記電池外装体内の体積Xに対する前記電解液の占める体積Yの比(Y/X)が0.2以上であるリチウムイオン電池。
<2> 前記電解液は非水系溶媒とリチウム塩とを含有し、前記非水系溶媒の全量に占める鎖状モノカーボネートの含有率は、70体積%を超える<1>に記載のリチウムイオン電池。
<3> 前記鎖状モノカーボネートは、ジメチルカーボネートを含有する<2>に記載のリチウムイオン電池。
<4> 前記電解液は、含フッ素ホウ酸エステルを含有する<1>~<3>のいずれか1項に記載のリチウムイオン電池。
<5> 前記比(Y/X)は、0.8以下である<1>~<4>のいずれか1項に記載のリチウムイオン電池。
<6> 前記セパレータの空孔率は、20%以上である<1>~<5>のいずれか1項に記載のリチウムイオン電池。
<7> 前記リチウムイオンを吸蔵可能な負極活物質は、リチウムチタン複合酸化物を含有する<1>~<6>のいずれか1項に記載のリチウムイオン電池。
<8> 前記スピネル型のリチウム・ニッケル・マンガン複合酸化物は、LiNiMn2-X(0.3<X<0.7)で表される化合物を含有する<1>~<7>のいずれか1項に記載のリチウムイオン電池。
Specific means for achieving the above object are as follows.
By configuring the lithium ion battery as follows, the lithium ion battery is excellent in charge / discharge cycle characteristics.
<1> A positive electrode including a spinel type lithium / nickel / manganese composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding lithium ions, a separator for insulating the positive electrode and the negative electrode, and electrolysis A battery and a battery exterior body,
A lithium ion battery in which a ratio (Y / X) of a volume Y occupied by the electrolytic solution to a volume X in the battery outer body is 0.2 or more.
<2> The lithium ion battery according to <1>, wherein the electrolytic solution contains a non-aqueous solvent and a lithium salt, and a content of chain monocarbonate in a total amount of the non-aqueous solvent exceeds 70% by volume.
<3> The lithium ion battery according to <2>, wherein the chain monocarbonate contains dimethyl carbonate.
<4> The lithium ion battery according to any one of <1> to <3>, wherein the electrolytic solution contains a fluorine-containing borate ester.
<5> The lithium ion battery according to any one of <1> to <4>, wherein the ratio (Y / X) is 0.8 or less.
<6> The lithium ion battery according to any one of <1> to <5>, wherein the separator has a porosity of 20% or more.
<7> The lithium ion battery according to any one of <1> to <6>, wherein the negative electrode active material capable of storing lithium ions contains a lithium titanium composite oxide.
<8> The spinel-type lithium / nickel / manganese composite oxide contains a compound represented by LiNi X Mn 2-X O 4 (0.3 <X <0.7) <1> to <7 > The lithium ion battery of any one of>.
 本発明によれば、従来のリチウムイオン電池用の電解液を用いても充放電サイクル特性に優れるリチウムイオン電池を提供することができる。 According to the present invention, it is possible to provide a lithium ion battery excellent in charge / discharge cycle characteristics even when a conventional electrolyte for a lithium ion battery is used.
本実施形態のリチウムイオン電池の一形態を示す斜視図である。It is a perspective view which shows one form of the lithium ion battery of this embodiment. 電極群を構成する正極板、負極板及びセパレータを示す斜視図である。It is a perspective view which shows the positive electrode plate, negative electrode plate, and separator which comprise an electrode group. 本実施形態のリチウムイオン電池の他の形態を示す断面図である。It is sectional drawing which shows the other form of the lithium ion battery of this embodiment.
 以下、本発明のリチウムイオン電池を実施するための形態について詳細に説明する。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において各成分の含有率又は含有量は、各成分に該当する物質が複数種存在する場合、特に断らない限り、当該複数種の物質の合計の含有率又は含有量を意味する。
 本明細書において各成分の粒子径は、各成分に該当する粒子が複数種存在する場合、特に断らない限り、当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 なお、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、実質的に同一の機能を有する部材には全図面を通して同じ符号を付与し、重複する説明は省略する場合がある。
Hereinafter, the form for implementing the lithium ion battery of this invention is demonstrated in detail.
In this specification, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
In the present specification, numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In this specification, the content rate or content of each component means the total content rate or content of the plurality of types of substances when there are a plurality of types of substances corresponding to each component, unless otherwise specified.
In the present specification, the particle diameter of each component means a value for a mixture of the plurality of types of particles when there are a plurality of types of particles corresponding to each component, unless otherwise specified.
In this specification, the term “layer” or “film” refers to a part of the region in addition to the case where the layer or the film is formed when the region where the layer or film exists is observed. It is also included when it is formed only.
In this specification, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
In addition, the magnitude | size of the member in each figure is notional, The relative relationship of the magnitude | size between members is not limited to this. Moreover, the same code | symbol is provided to the member which has the substantially same function through all the drawings, and the overlapping description may be abbreviate | omitted.
 本実施形態のリチウムイオン電池は、スピネル型のリチウム・ニッケル・マンガン複合酸化物を正極活物質として含む正極と、リチウムイオンを吸蔵可能な負極活物質を含む負極と、前記正極と前記負極とを絶縁するセパレータと、電解液と、を電池外装体内に備え、前記電池外装体内の体積Xに対する前記電解液の占める体積Yの比(Y/X)が0.2以上である。
 以下、本発明のリチウムイオン電池の実施形態について、正極活物質となるスピネル型のリチウム・ニッケル・マンガン複合酸化物、リチウムイオンを吸蔵可能な負極活物質、リチウムイオン電池の全体構成の順で説明する。
The lithium ion battery of this embodiment includes a positive electrode including a spinel-type lithium / nickel / manganese composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding lithium ions, the positive electrode, and the negative electrode. A separator to be insulated and an electrolytic solution are provided in the battery outer package, and a ratio (Y / X) of a volume Y occupied by the electrolytic solution to a volume X in the battery outer package is 0.2 or more.
Hereinafter, embodiments of the lithium ion battery of the present invention will be described in the order of a spinel type lithium / nickel / manganese composite oxide serving as a positive electrode active material, a negative electrode active material capable of occluding lithium ions, and an overall configuration of the lithium ion battery. To do.
<リチウム・ニッケル・マンガン複合酸化物>
 リチウムイオン電池は、リチウムイオン電池に適用可能な以下に示す正極を有する。本実施形態で用いられる正極(正極板)は、集電体及びその両面又は片面に形成された正極合剤層を有する。正極合剤層は、正極活物質としてスピネル型のリチウム・ニッケル・マンガン複合酸化物を含有する。
 本実施形態のリチウムイオン電池の正極活物質となるスピネル型のリチウム・ニッケル・マンガン複合酸化物はLiNiMn2-X(0.3<X<0.7)で表される化合物であることが好ましく、LiNiMn2-X(0.4<X<0.6)で表される化合物であることがより好ましく、安定性の観点からはLiNi0.5Mn1.5で表される化合物であることが更に好ましい。スピネル型のリチウム・ニッケル・マンガン複合酸化物の結晶構造をより安定させるために、スピネル構造のリチウム・ニッケル・マンガン複合酸化物のMnサイト、Niサイト及びOサイトからなる群より選択されるサイトの一部を他の元素で置換したものを、正極活物質として用いることもできる。
 また、過剰のリチウムをスピネル型のリチウム・ニッケル・マンガン複合酸化物の結晶内に存在させてもよい。さらには、スピネル型のリチウム・ニッケル・マンガン複合酸化物のOサイトに欠損を生じさせたものを用いることもできる。
 Mnサイト及びNiサイトの少なくとも一方を置換することのできる他の元素(金属元素)としては、例えば、Ti、V、Cr、Fe、Co、Zn、Cu、W、Mg、Al及びRuを挙げることができる。Mnサイト及びNiサイトは、1種又は2種以上のこれら金属元素で置換することができる。これらの置換可能な金属元素のうち、結晶構造の安定化の観点から、置換元素にTiを用いることが好ましい。
 スピネル型のリチウム・ニッケル・マンガン複合酸化物のOサイトを置換することのできる元素としては、例えば、F及びBを挙げることができる。スピネル型のリチウム・ニッケル・マンガン複合酸化物のOサイトは、1種又は2種以上のこれら元素で置換することができる。これらの置換可能な元素のうち、スピネル型のリチウム・ニッケル・マンガン複合酸化物の結晶構造の更なる安定化の観点からは、Fを用いることが好ましい。
<Lithium / nickel / manganese composite oxide>
A lithium ion battery has the following positive electrode applicable to a lithium ion battery. The positive electrode (positive electrode plate) used in the present embodiment has a current collector and a positive electrode mixture layer formed on both surfaces or one surface thereof. The positive electrode mixture layer contains a spinel type lithium / nickel / manganese composite oxide as a positive electrode active material.
The spinel-type lithium / nickel / manganese composite oxide serving as the positive electrode active material of the lithium ion battery according to the present embodiment is a compound represented by LiNi X Mn 2-X O 4 (0.3 <X <0.7). Preferably, it is a compound represented by LiNi X Mn 2-X O 4 (0.4 <X <0.6). From the viewpoint of stability, LiNi 0.5 Mn 1.5 More preferably, it is a compound represented by O 4 . In order to further stabilize the crystal structure of the spinel type lithium / nickel / manganese composite oxide, the site selected from the group consisting of Mn sites, Ni sites and O sites of the spinel type lithium / nickel / manganese composite oxides What substituted a part with other elements can also be used as a positive electrode active material.
Further, excess lithium may be present in the crystal of the spinel type lithium / nickel / manganese composite oxide. Further, a spinel-type lithium / nickel / manganese composite oxide in which defects are generated at the O site can also be used.
Examples of other elements (metal elements) that can substitute at least one of the Mn site and the Ni site include Ti, V, Cr, Fe, Co, Zn, Cu, W, Mg, Al, and Ru. Can do. Mn sites and Ni sites can be substituted with one or more of these metal elements. Of these substitutable metal elements, Ti is preferably used as the substitution element from the viewpoint of stabilizing the crystal structure.
Examples of the element that can replace the O site of the spinel type lithium / nickel / manganese composite oxide include F and B. The O site of the spinel type lithium-nickel-manganese composite oxide can be substituted with one or more of these elements. Of these substitutable elements, F is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel type lithium / nickel / manganese composite oxide.
 スピネル型のリチウム・ニッケル・マンガン複合酸化物は、高エネルギー密度の観点から、満充電状態における電位がLi/Liに対して、4.5V~5Vであることが好ましく、4.6V~4.9Vであることがより好ましい。なお、満充電状態とは、SOC(state of charge)が100%の状態を意味する。 The spinel-type lithium / nickel / manganese composite oxide preferably has a potential in a fully charged state of 4.5 V to 5 V with respect to Li / Li + from the viewpoint of high energy density, and is preferably 4.6 V to 4 V. More preferably, it is 9V. The fully charged state means a state where the SOC (state of charge) is 100%.
 本実施形態のリチウムイオン電池における正極活物質は、スピネル型のリチウム・ニッケル・マンガン複合酸化物以外のその他の正極活物質を含んでいてもよい。
 スピネル型のリチウム・ニッケル・マンガン複合酸化物以外のその他の正極活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo 1-y(LiCo 1-y中、MはNa、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiNi1-y (LiNi1-y 中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiMn及びLiMn2-y (LiMn2-y 中、MはNa、Mg、Sc、Y、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)が挙げられる。ここで、xは0~1.2の範囲であり、yは0~0.9の範囲であり、zは2.0~2.3の範囲である。また、リチウムのモル比を示すx値は、充放電により増減する。
The positive electrode active material in the lithium ion battery of this embodiment may contain other positive electrode active materials other than the spinel type lithium / nickel / manganese composite oxide.
Other positive electrode active materials other than the spinel type lithium / nickel / manganese composite oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1 1-y O z (in Li x Co y M 1 1-y O z , M 1 is Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb And at least one element selected from the group consisting of V and B), Li x Ni 1-y M 2 y O z (in Li x Ni 1-y M 2 y O z , M 2 is Na, And at least one element selected from the group consisting of Mg, Sc, Y, Mn, Fe, Co, Cu, Zn, Al, Cr, Pb, Sb, V and B.), Li x Mn 2 O 4 and Li x Mn 2-y M 3 y O 4 (Li Among Mn 2-y M 3 y O 4, M 3 at least one is of Na, Mg, Sc, Y, Fe, Co, Cu, Zn, Al, Cr, Pb, Sb, selected from the group consisting of V and B Element).). Here, x is in the range of 0 to 1.2, y is in the range of 0 to 0.9, and z is in the range of 2.0 to 2.3. Further, the x value indicating the molar ratio of lithium increases or decreases due to charge / discharge.
 スピネル型のリチウム・ニッケル・マンガン複合酸化物のBET比表面積は、保存特性をより向上できる観点から、2.9m/g未満であることが好ましく、2.8m/g未満であることがより好ましく、1.5m/g未満であることが更に好ましく、1.0m/g未満であることが特に好ましい。また、スピネル型のリチウム・ニッケル・マンガン複合酸化物のBET比表面積は、0.3m/g未満であってもよい。入出力特性を向上できる観点からは、BET比表面積は、0.05m/g以上であることが好ましく、0.08m/g以上であることがより好ましく、0.1m/g以上であることが更に好ましい。
 スピネル型のリチウム・ニッケル・マンガン複合酸化物のBET比表面積は、0.05m/g以上2.9m/g未満であることが好ましく、0.05m/g以上2.8m/g未満であることがより好ましく、0.08m/g以上1.5m/g未満であることが更に好ましく、0.1m/g以上1.0m/g未満であることが特に好ましい。
 BET比表面積は、例えば、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、例えば、QUANTACHROME社製、商品名:AUTOSORB-1を用いることができる。BET比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、まず、加熱による水分除去の前処理を行うことが好ましい。前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77K(-196℃)とし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
The BET specific surface area of the spinel type lithium / nickel / manganese composite oxide is preferably less than 2.9 m 2 / g, preferably less than 2.8 m 2 / g, from the viewpoint of further improving the storage characteristics. More preferably, it is more preferably less than 1.5 m 2 / g, and particularly preferably less than 1.0 m 2 / g. Further, the BET specific surface area of the spinel type lithium / nickel / manganese composite oxide may be less than 0.3 m 2 / g. In the viewpoint of improving the output characteristics, the BET specific surface area is preferably at 0.05 m 2 / g or more, more preferably 0.08 m 2 / g or more, 0.1 m 2 / g or more More preferably it is.
BET specific surface area of the lithium-nickel-manganese composite oxide of the spinel is preferably less than 0.05 m 2 / g or more 2.9m 2 / g, 0.05m 2 / g or more 2.8 m 2 / g Is more preferably 0.08 m 2 / g or more and less than 1.5 m 2 / g, and particularly preferably 0.1 m 2 / g or more and less than 1.0 m 2 / g.
A BET specific surface area can be measured from nitrogen adsorption capacity according to JIS Z 8830: 2013, for example. As the evaluation apparatus, for example, trade name: AUTOSORB-1 manufactured by QUANTACHROME can be used. When measuring the BET specific surface area, it is considered that the moisture adsorbed on the sample surface and structure affects the gas adsorption capacity. Therefore, it is preferable to first perform pretreatment for moisture removal by heating. . In the pretreatment, a measurement cell charged with 0.05 g of a measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C. and held for 3 hours or more, and then kept at a normal temperature ( Cool to 25 ° C). After this pretreatment, the evaluation temperature is 77 K (−196 ° C.), and the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to the saturated vapor pressure) of less than 1.
 正極活物質としてスピネル型のリチウム・ニッケル・マンガン複合酸化物以外のその他の正極活物質が含まれる場合、その他の正極活物質のBET比表面積は、保存特性を向上できる観点から、2.9m/g未満であることが好ましく、2.8m/g未満であることがより好ましく、1.5m/g未満であることが更に好ましく、1.0m/g未満であることが特に好ましい。入出力特性を向上できる観点からは、BET比表面積は、0.05m/g以上であることが好ましく、0.08m/g以上であることがより好ましく、0.1m/g以上であることが更に好ましい。
 その他の正極活物質のBET比表面積は、0.05m/g以上2.9m/g未満であることが好ましく、0.05m/g以上2.8m/g未満であることがより好ましく、0.08m/g以上1.5m/g未満であることが更に好ましく、0.1m/g以上1.0m/g未満であることが特に好ましい。
 その他の正極活物質のBET比表面積は、スピネル型のリチウム・ニッケル・マンガン複合酸化物と同様の方法により、測定できる。
When other positive electrode active materials other than spinel type lithium / nickel / manganese composite oxide are included as the positive electrode active material, the BET specific surface area of the other positive electrode active material is 2.9 m 2 from the viewpoint of improving storage characteristics. Is preferably less than 2.8 m 2 / g, more preferably less than 1.5 m 2 / g, and particularly preferably less than 1.0 m 2 / g. . In the viewpoint of improving the output characteristics, the BET specific surface area is preferably at 0.05 m 2 / g or more, more preferably 0.08 m 2 / g or more, 0.1 m 2 / g or more More preferably it is.
BET specific surface area of the other of the positive electrode active material is preferably less than 0.05 m 2 / g or more 2.9 m 2 / g, more is less than 0.05 m 2 / g or more 2.8 m 2 / g It is more preferably 0.08 m 2 / g or more and less than 1.5 m 2 / g, and particularly preferably 0.1 m 2 / g or more and less than 1.0 m 2 / g.
The BET specific surface area of other positive electrode active materials can be measured by the same method as for spinel type lithium / nickel / manganese composite oxide.
 本実施形態においては、スピネル型のリチウム・ニッケル・マンガン複合酸化物が主たる正極活物質として用いられる。
 スピネル型のリチウム・ニッケル・マンガン複合酸化物の含有率は、電池容量を向上できる観点から、正極活物質の総量中、60質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、85質量%~100質量%であることが更に好ましい。
In the present embodiment, a spinel type lithium / nickel / manganese composite oxide is used as a main positive electrode active material.
The content of the spinel-type lithium / nickel / manganese composite oxide is preferably 60% by mass to 100% by mass, and preferably 70% by mass to 100% by mass, based on the total amount of the positive electrode active material, from the viewpoint of improving battery capacity. %, More preferably 85% by mass to 100% by mass.
 また、スピネル型のリチウム・ニッケル・マンガン複合酸化物の粒子のメジアン径D50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径D50)は、合剤スラリーの分散性の観点から、0.5μm~100μmであることが好ましく、1μm~50μmであることがより好ましい。尚、メジアン径D50は、レーザー回折・散乱法により求めた粒度分布から求めることができる。 The median diameter D50 of the spinel-type lithium / nickel / manganese composite oxide particles (when the primary particles are aggregated to form secondary particles, the median diameter D50 of the secondary particles) is a mixture slurry. From the viewpoint of dispersibility, the thickness is preferably 0.5 μm to 100 μm, more preferably 1 μm to 50 μm. The median diameter D50 can be obtained from the particle size distribution obtained by the laser diffraction / scattering method.
 また、正極活物質としてスピネル型のリチウム・ニッケル・マンガン複合酸化物以外のその他の正極活物質が含まれる場合、その他の正極活物質の粒子のメジアン径D50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径D50)は、合剤スラリーの分散性の観点から、0.5μm~100μmであることが好ましく、1μm~50μmであることがより好ましい。 Further, when the positive electrode active material includes other positive electrode active materials other than the spinel type lithium / nickel / manganese composite oxide, the median diameter D50 of the particles of the other positive electrode active material (the primary particles are aggregated to form secondary particles). Is formed, the median diameter D50) of the secondary particles is preferably 0.5 μm to 100 μm, more preferably 1 μm to 50 μm from the viewpoint of dispersibility of the mixture slurry.
<リチウムイオンを吸蔵可能な負極活物質>
 リチウムイオン電池は、リチウムイオン電池に適用可能な以下に示す負極を有する。本実施形態で用いられる負極(負極板)は、集電体及びその両面又は片面に形成された負極合剤層を有する。負極合剤層は、電気化学的にリチウムイオンを吸蔵・放出可能な負極活物質を含有する。
<Anode active material capable of occluding lithium ions>
A lithium ion battery has the following negative electrode applicable to a lithium ion battery. The negative electrode (negative electrode plate) used in this embodiment has a current collector and a negative electrode mixture layer formed on both sides or one side thereof. The negative electrode mixture layer contains a negative electrode active material capable of electrochemically inserting and extracting lithium ions.
 本実施形態に用いられる負極活物質としては、炭素材料、リチウムチタン複合酸化物等が好ましい。 As the negative electrode active material used in the present embodiment, a carbon material, a lithium titanium composite oxide, or the like is preferable.
[炭素材料]
 炭素材料としては、結晶構造がそろった黒鉛系の炭素材料と、結晶構造が乱れた非黒鉛系の炭素材料に大別される。黒鉛系の炭素材料としては、天然黒鉛、人造黒鉛等が挙げられる。非黒鉛系の炭素材料としては、非晶質炭素等が挙げられ、結晶構造が乱れてはいるものの、2000℃~3000℃の加熱によって黒鉛になりやすい易黒鉛化炭素(又は易黒鉛化性炭素)と、黒鉛になりにくい難黒鉛化炭素(又は難黒鉛化性炭素)が挙げられる。非晶質炭素は、石油ピッチ、ポリアセン、ポリパラフェニレン、ポリフルフリルアルコール、ポリシロキサン等を熱処理することにより製造することが可能であり、処理温度を変えることによって、難黒鉛化炭素としたり、易黒鉛化炭素としたりすることが可能である。例えば、500℃~800℃程度の処理温度は難黒鉛化炭素の製造に適しており、800℃~1000℃程度の処理温度は易黒鉛化炭素の製造に適している。難黒鉛化炭素は、広角X線回折法により得られるC軸方向の面間隔d002値が、0.36nm~0.40nmであるものと定義する。
[Carbon material]
Carbon materials are roughly classified into graphite-based carbon materials having a uniform crystal structure and non-graphite-based carbon materials having a disordered crystal structure. Examples of the graphite-based carbon material include natural graphite and artificial graphite. Non-graphite-based carbon materials include amorphous carbon and the like, and although the crystal structure is disordered, graphitizable carbon (or graphitizable carbon) that easily becomes graphite when heated at 2000 ° C. to 3000 ° C. ) And non-graphitizable carbon (or non-graphitizable carbon) that is difficult to become graphite. Amorphous carbon can be produced by heat-treating petroleum pitch, polyacene, polyparaphenylene, polyfurfuryl alcohol, polysiloxane, etc., and can be made non-graphitizable carbon by changing the treatment temperature. Graphitized carbon can be used. For example, a treatment temperature of about 500 ° C. to 800 ° C. is suitable for producing non-graphitizable carbon, and a treatment temperature of about 800 ° C. to 1000 ° C. is suitable for producing graphitizable carbon. The non-graphitizable carbon is defined as having a plane spacing d002 value in the C-axis direction obtained by a wide-angle X-ray diffraction method of 0.36 nm to 0.40 nm.
 易黒鉛化炭素は、広角X線回折法により得られるC軸方向の面間隔d002値が、0.34nm以上、0.36nm未満であるものと定義する。
 易黒鉛化炭素は、広角X線回折法により得られるC軸方向の面間隔d002値が、0.341nm以上、0.355nm以下であることが好ましく、0.342nm以上、0.35nm以下であることがより好ましい。
Graphitizable carbon is defined as having a surface spacing d002 value in the C-axis direction obtained by a wide-angle X-ray diffraction method of 0.34 nm or more and less than 0.36 nm.
The graphitizable carbon preferably has a C-axis direction spacing d002 value of 0.341 nm or more and 0.355 nm or less obtained by wide-angle X-ray diffraction, and is 0.342 nm or more and 0.35 nm or less. It is more preferable.
 本実施形態において負極活物質として非晶質炭素を用いる場合、非晶質炭素の含有率は、負極活物質の総量に対して、55質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。非晶質炭素としては、電池特性の観点から易黒鉛化炭素を用いることが好ましい。また、非晶質炭素としては、易黒鉛化炭素と難黒鉛化炭素を併用して用いてもよい。 In the present embodiment, when amorphous carbon is used as the negative electrode active material, the content of amorphous carbon is preferably 55% by mass or more and 70% by mass or more with respect to the total amount of the negative electrode active material. More preferably, it is more preferably 90% by mass or more. As the amorphous carbon, graphitizable carbon is preferably used from the viewpoint of battery characteristics. As the amorphous carbon, easily graphitizable carbon and non-graphitizable carbon may be used in combination.
[リチウムチタン複合酸化物]
 本実施形態のリチウムイオン電池の負極活物質となるリチウムチタン複合酸化物(LTO)は、スピネル構造のリチウムチタン複合酸化物であることが好ましい。スピネル構造のリチウムチタン複合酸化物の基本的な組成式は、Li[Li1/3Ti5/3]Oで表され、結晶構造をより安定化させるために、スピネル構造のリチウムチタン複合酸化物のLiサイト又はTiサイトの一部を他の金属で置換したもの、過剰のリチウムを結晶内に存在させたもの、又はOサイトの一部を他の元素で置換したものを用いることもできる。Liサイト又はTiサイトを置換させることのできる他の元素としては、例えば、F、B、Nb、V、Mn、Ni、Cu、Co、Zn、Sn、Pb、Al、Mo、Ba、Sr、Ta、Mg、Caを挙げることができる。Liサイト又はTiサイトは、1種又は2種以上のこれら元素で置換することができる。
 Oサイトを置換することのできる元素としては、F及びBを挙げることができる。Oサイトは、1種又は2種以上のこれら元素で置換することができる。
[Lithium titanium composite oxide]
The lithium titanium composite oxide (LTO) serving as the negative electrode active material of the lithium ion battery of this embodiment is preferably a lithium titanium composite oxide having a spinel structure. The basic composition formula of the spinel-structure lithium-titanium composite oxide is represented by Li [Li 1/3 Ti 5/3 ] O 4 , and in order to further stabilize the crystal structure, the spinel-structure lithium-titanium composite oxide It is also possible to use a material in which a part of the Li site or Ti site of the product is replaced with another metal, a material in which excess lithium is present in the crystal, or a part of the O site is replaced with another element. . Other elements that can replace the Li site or Ti site include, for example, F, B, Nb, V, Mn, Ni, Cu, Co, Zn, Sn, Pb, Al, Mo, Ba, Sr, Ta , Mg, and Ca. The Li site or Ti site can be substituted with one or more of these elements.
Examples of the element that can replace the O site include F and B. The O site can be substituted with one or more of these elements.
 リチウムチタン複合酸化物の満充電状態における電位は、Li/Liに対して1V~2Vとなることが好ましい。 The potential in the fully charged state of the lithium titanium composite oxide is preferably 1 V to 2 V with respect to Li / Li + .
 本実施形態のリチウムイオン電池における負極活物質は、炭素材料、リチウムチタン複合酸化物以外の負極活物質を含んでいてもよい。 The negative electrode active material in the lithium ion battery of the present embodiment may include a negative electrode active material other than a carbon material and a lithium titanium composite oxide.
 リチウムイオンを吸蔵可能な負極活物質は、サイクル特性の観点から、リチウムチタン複合酸化物を含有することが好ましい。 The negative electrode active material capable of occluding lithium ions preferably contains a lithium titanium composite oxide from the viewpoint of cycle characteristics.
 リチウムイオンを吸蔵可能な負極活物質としてリチウムチタン複合酸化物を用いる場合の含有率は、電池容量を向上できる観点から、負極活物質の総量中、70質量%~100質量%であることが好ましく、80質量%~100質量%であることがより好ましく、90質量%~100質量%であることが更に好ましい。 In the case of using a lithium titanium composite oxide as a negative electrode active material capable of occluding lithium ions, the content is preferably 70% by mass to 100% by mass in the total amount of the negative electrode active material from the viewpoint of improving battery capacity. 80% by mass to 100% by mass is more preferable, and 90% by mass to 100% by mass is even more preferable.
 負極活物質のBET比表面積は、保存特性を向上できる観点から、40m/g未満であることが好ましく、30m/g未満であることがより好ましく、20m/g未満であることが更に好ましく、15m/g未満であることが特に好ましい。入出力特性を向上できる観点からは、BET比表面積は、0.1m/g以上であることが好ましく、0.5m/g以上であることがより好ましく、1m/g以上であることが更に好ましい。
 負極活物質のBET比表面積は、0.1m/g以上40m/g未満であることが好ましく、0.1m/g以上30m/g未満であることがより好ましく、0.5m/g以上20m/g未満であることが更に好ましく、1m/g以上15m/g未満であることが特に好ましい。
 負極活物質のBET比表面積は、スピネル型のリチウム・ニッケル・マンガン複合酸化物と同様の方法により、測定できる。
The BET specific surface area of the negative electrode active material is preferably less than 40 m 2 / g, more preferably less than 30 m 2 / g, and even more preferably less than 20 m 2 / g from the viewpoint of improving storage characteristics. Preferably, it is particularly preferably less than 15 m 2 / g. From the viewpoint of improving the input / output characteristics, the BET specific surface area is preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 1 m 2 / g or more. Is more preferable.
BET specific surface area of the negative electrode active material is preferably less than 0.1 m 2 / g or more 40 m 2 / g, more preferably less than 0.1 m 2 / g or more 30m 2 / g, 0.5m 2 more preferably less than / g or more 20 m 2 / g, and particularly preferably less than 1 m 2 / g or more 15 m 2 / g.
The BET specific surface area of the negative electrode active material can be measured by the same method as for the spinel type lithium / nickel / manganese composite oxide.
 また、負極活物質のメジアン径D50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径D50)は、粒子の分散性の観点から、0.5μm~100μmであることが好ましく、1μm~50μmであることがより好ましい。
 負極活物質のメジアン径D50は、スピネル型のリチウム・ニッケル・マンガン複合酸化物と同様の方法により、測定できる。
The median diameter D50 of the negative electrode active material (the median diameter D50 of the secondary particles when primary particles are aggregated to form secondary particles) is 0.5 μm to 100 μm from the viewpoint of particle dispersibility. Preferably, the thickness is 1 μm to 50 μm.
The median diameter D50 of the negative electrode active material can be measured by the same method as the spinel type lithium / nickel / manganese composite oxide.
<リチウムイオン電池の全体構成>
 リチウムイオン電池の正極は、例えば、スピネル型のリチウム・ニッケル・マンガン複合酸化物及び必要に応じて上述のその他の正極活物質を正極活物質とし、これに導電材を混合し、必要に応じ適当な結着材及び溶剤を加えて、ペースト状の正極合剤としたものを、アルミニウム箔等の金属箔の集電体表面に塗布し、乾燥し、その後、必要に応じてプレス等によって正極合剤層の密度を高めることによって形成する。尚、リチウム・ニッケル・マンガン複合酸化物だけで正極活物質を構成することもできるが、リチウムイオン電池の特性改善等を目的として、スピネル型のリチウム・ニッケル・マンガン複合酸化物に公知のオリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等を混合して正極活物質とするものであってもよい。
<Overall configuration of lithium-ion battery>
For the positive electrode of the lithium ion battery, for example, a spinel type lithium / nickel / manganese composite oxide and, if necessary, the above-mentioned other positive electrode active material are used as a positive electrode active material, and a conductive material is mixed therewith. Apply a binder and a solvent to form a paste-like positive electrode mixture on the surface of a current collector of a metal foil such as an aluminum foil, dry it, and then press the positive electrode as necessary. It is formed by increasing the density of the agent layer. Although the positive electrode active material can be composed only of lithium / nickel / manganese composite oxide, the spinel type lithium / nickel / manganese composite oxide is well known as an olivine type for the purpose of improving the characteristics of the lithium ion battery. A positive electrode active material may be prepared by mixing lithium salt, chalcogen compound, manganese dioxide and the like.
 正極合剤の集電体への片面塗布量は、エネルギー密度及び入出力特性の観点から、10g/m~250g/mであることが好ましく、50g/m~200g/mであることがより好ましく、130g/m~170g/mであることが更に好ましい。正極合剤層の密度は、エネルギー密度の観点から、1.8g/cm~3.2g/cmであることが好ましく、2.0g/cm~3.0g/cmであることがより好ましく、2.2g/cm~2.8g/cmであることが更に好ましい。 Single-side coating of the current collector of the positive electrode mixture, from the viewpoint of energy density and output characteristics, it is preferably, 50g / m 2 ~ 200g / m 2 is a 10g / m 2 ~ 250g / m 2 More preferably, it is more preferably 130 g / m 2 to 170 g / m 2 . The density of the positive electrode mixture layer, from the viewpoint of energy density, it is preferably 1.8g / cm 3 ~ 3.2g / cm 3, a 2.0g / cm 3 ~ 3.0g / cm 3 More preferably, it is more preferably 2.2 g / cm 3 to 2.8 g / cm 3 .
 リチウムイオン電池の負極は、炭素材料又はリチウムチタン複合酸化物を負極活物質とし、これに導電材及び結着材を混合し、必要に応じ適当な溶媒を加えて、ペースト状の負極合剤としたものを、銅等の金属箔の集電体に塗布し、乾燥し、その後、必要に応じプレス等によって負極合剤層の密度を高めることによって形成する。尚、炭素材料だけで負極活物質を構成することもできるが、リチウムイオン電池の特性改善等を目的として、炭素材料にすでに公知のリチウムチタン複合酸化物等を混合して負極活物質とするものであってもよい。また、リチウムチタン複合酸化物だけで負極活物質を構成することもできるが、リチウムイオン電池の特性改善等を目的として、リチウムチタン複合酸化物にすでに公知の炭素材料等を混合して負極活物質とするものであってもよい。 The negative electrode of the lithium ion battery uses a carbon material or a lithium-titanium composite oxide as a negative electrode active material, and a conductive material and a binder are mixed with this, and an appropriate solvent is added as necessary. This is applied to a current collector made of a metal foil such as copper, dried, and then formed by increasing the density of the negative electrode mixture layer by pressing or the like as necessary. In addition, the negative electrode active material can be composed only of the carbon material, but for the purpose of improving the characteristics of the lithium ion battery, etc., a known lithium titanium composite oxide is mixed with the carbon material to make the negative electrode active material. It may be. In addition, the negative electrode active material can be composed only of the lithium titanium composite oxide, but for the purpose of improving the characteristics of the lithium ion battery, a known carbon material or the like is already mixed with the lithium titanium composite oxide to form the negative electrode active material. It may be.
 負極合剤の集電体への塗布量は、エネルギー密度及び入出力特性の観点から、10g/m~200g/mであることが好ましく、50g/m~150g/mであることがより好ましい。負極合剤層の密度は、エネルギー密度の観点から、1.0g/cm~2.8g/cmであることが好ましく、1.2g/cm~2.6g/cmであることがより好ましい。 The coating amount of the current collector of the negative electrode mixture, from the viewpoint of energy density and output characteristics, is preferably 10g / m 2 ~ 200g / m 2, a 50g / m 2 ~ 150g / m 2 Is more preferable. Density of the negative electrode mixture layer, from the viewpoint of energy density is preferably 1.0g / cm 3 ~ 2.8g / cm 3, to be 1.2g / cm 3 ~ 2.6g / cm 3 More preferred.
 導電材は、正極及び負極の少なくとも一方の電気導電性を向上できる観点から、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛等の炭素物質粉状体などのうち1種又は2種以上を混合して用いることができる。また、導電材として、カーボンナノチューブ、グラフェン等を添加して、正極及び負極の少なくとも一方の電気導電性を高めることもできる。 From the viewpoint of improving the electrical conductivity of at least one of the positive electrode and the negative electrode, the conductive material is a mixture of one or more of carbon black such as acetylene black and ketjen black, and a carbon material powder such as graphite. Can be used. In addition, carbon nanotubes, graphene, or the like can be added as a conductive material to increase the electrical conductivity of at least one of the positive electrode and the negative electrode.
 正極に用いる導電材(以下、正極導電材という)としては、入出力特性をより向上できる観点から、アセチレンブラックであることが好ましい。正極導電材の含有率は、入出力特性の観点から、正極合剤の全量を基準として、3質量%以上であることが好ましく、4質量%以上であることがより好ましく、4.5質量%以上であることが更に好ましい。また、正極導電材の含有率は、正極合剤の全量を基準として、5質量%以上であってもよく、5.5質量%以上であってもよい。上限は、電池容量の観点から、10質量%以下であることが好ましく、9質量%以下であることがより好ましく、8.5質量%以下であることが更に好ましい。 The conductive material used for the positive electrode (hereinafter referred to as the positive electrode conductive material) is preferably acetylene black from the viewpoint of improving input / output characteristics. The content of the positive electrode conductive material is preferably 3% by mass or more, more preferably 4% by mass or more, and more preferably 4.5% by mass based on the total amount of the positive electrode mixture from the viewpoint of input / output characteristics. It is still more preferable that it is above. Further, the content of the positive electrode conductive material may be 5% by mass or more or 5.5% by mass or more based on the total amount of the positive electrode mixture. From the viewpoint of battery capacity, the upper limit is preferably 10% by mass or less, more preferably 9% by mass or less, and further preferably 8.5% by mass or less.
 また、負極に用いる導電材(以下、負極導電材という)としては、入出力特性をより向上できる観点から、アセチレンブラックであることが好ましい。負極導電材の含有率は、入出力特性の観点から、負極合剤の全量を基準として、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが更に好ましい。また、負極導電材の含有率は、負極合剤の全量を基準として、4質量%以上であってもよく、6質量%以上であってもよい。上限は、電池容量の観点から、15質量%以下であることが好ましく、12質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。 Also, the conductive material used for the negative electrode (hereinafter referred to as negative electrode conductive material) is preferably acetylene black from the viewpoint of further improving input / output characteristics. From the viewpoint of input / output characteristics, the content of the negative electrode conductive material is preferably 1% by mass or more, more preferably 2% by mass or more, and more preferably 3% by mass or more based on the total amount of the negative electrode mixture. More preferably it is. Moreover, 4 mass% or more may be sufficient as the content rate of a negative electrode electrically conductive material on the basis of the whole quantity of negative mix, and 6 mass% or more may be sufficient as it. From the viewpoint of battery capacity, the upper limit is preferably 15% by mass or less, more preferably 12% by mass or less, and still more preferably 10% by mass or less.
 結着材は、特に限定されず、分散溶媒に対する溶解性又は分散性が良好な材料が選択される。具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子;ポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。尚、これらのうち、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。正極及び負極ともに、高密着性の観点から、ポリフッ化ビニリデン(PVdF)又はポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体を用いることが好ましい。 The binder is not particularly limited, and a material having good solubility or dispersibility in the dispersion solvent is selected. Specific examples include resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine Rubbery polymers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or its hydrogenated product, EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / ethylene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate , Ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer and other soft resinous polymers; polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer Polymers, fluorinated polymers such as polytetrafluoroethylene / vinylidene fluoride copolymers; copolymers with acrylic acid and linear ether groups added to the polyacrylonitrile skeleton; ion conduction of alkali metal ions (especially lithium ions) And a polymer composition having the property. Of these, one type may be used alone, or two or more types may be used in combination. For both the positive electrode and the negative electrode, from the viewpoint of high adhesion, it is preferable to use polyvinylidene fluoride (PVdF) or a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton.
 結着材の含有率について、正極合剤の全量に対する結着材の含有率の範囲は次のとおりである。範囲の下限は、正極活物質を充分に結着して充分な正極の機械的強度が得られ、サイクル特性等の電池性能が安定する観点から、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることが更に好ましい。上限は、電池容量及び導電性を向上できる観点から、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
 負極合剤の全量に対する結着材の含有率の範囲は、次のとおりである。範囲の下限は、負極活物質を充分に結着して充分な負極の機械的強度が得られ、サイクル特性等の電池性能が安定する観点から、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることが更に好ましい。上限は、電池容量及び導電性を向上できる観点から、40質量%以下であることが好ましく、25質量%以下であることがより好ましく、15質量%以下であることが更に好ましい。
About the content rate of a binder, the range of the content rate of the binder with respect to the whole quantity of positive mix is as follows. The lower limit of the range is preferably 0.1% by mass or more from the viewpoint of sufficiently binding the positive electrode active material to obtain sufficient mechanical strength of the positive electrode and stabilizing battery performance such as cycle characteristics, The content is more preferably 1% by mass or more, and further preferably 2% by mass or more. From the viewpoint of improving battery capacity and conductivity, the upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less.
The range of the content rate of the binder with respect to the total amount of the negative electrode mixture is as follows. The lower limit of the range is preferably 0.1% by mass or more from the viewpoint of sufficiently binding the negative electrode active material to obtain sufficient mechanical strength of the negative electrode and stabilizing battery performance such as cycle characteristics. The content is more preferably 0.5% by mass or more, and further preferably 1% by mass or more. The upper limit is preferably 40% by mass or less, more preferably 25% by mass or less, and still more preferably 15% by mass or less from the viewpoint of improving battery capacity and conductivity.
 これら活物質、導電材、結着材等を分散させる溶剤としては、N-メチル-2ピロリドン等の有機溶剤を用いることができる。 An organic solvent such as N-methyl-2pyrrolidone can be used as a solvent for dispersing these active materials, conductive materials, binders and the like.
 本実施形態のリチウムイオン電池は、正極及び負極の他に、正極と負極の間に狭装されるセパレータ、電解液等を有する。本実施形態のリチウムイオン電池に用いられる電解液としては、非水電解液が好ましい。 The lithium ion battery of the present embodiment includes a separator, an electrolytic solution, and the like that are sandwiched between the positive electrode and the negative electrode, in addition to the positive electrode and the negative electrode. As the electrolytic solution used in the lithium ion battery of this embodiment, a nonaqueous electrolytic solution is preferable.
 セパレータは、正極及び負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物等が用いられる。 The separator is not particularly limited as long as it has ion permeability while electronically insulating the positive electrode and the negative electrode and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side. As a material (material) of the separator that satisfies such characteristics, a resin, an inorganic substance, or the like is used.
 樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、非水系電解液に対して安定で、保液性の優れた材料の中から選ぶことが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート、不織布などを用いることが好ましい。 As the resin, olefin polymer, fluorine polymer, cellulose polymer, polyimide, nylon or the like is used. Specifically, it is preferable to select from materials that are stable with respect to non-aqueous electrolytes and have excellent liquid retention properties. For example, porous sheets made from polyolefins such as polyethylene and polypropylene, nonwoven fabrics, etc. may be used. preferable.
 無機物としては、アルミナ、二酸化珪素等の酸化物類、窒化アルミニウム、窒化珪素等の窒化物類、硫酸バリウム、硫酸カルシウム等の硫酸塩類、ガラスなどが用いられる。繊維形状又は粒子形状の上記無機物を、不織布としたもの、織布としたもの又は微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。薄膜形状の基材としては、孔径が0.01μm~1μmで、厚さが5μm~50μmのものが好適に用いられる。また、繊維形状又は粒子形状の上記無機物を、樹脂等の結着材を用いて複合多孔層としたものをセパレータとして用いることができる。更に、この複合多孔層を、正極又は負極の表面に形成し、セパレータとしてもよい。例えば、90%平均粒径(D90)が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として結着させた複合多孔層を、正極の表面又はセパレータの正極と対向する面に形成してもよい。 As the inorganic substance, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, sulfates such as barium sulfate and calcium sulfate, and glass are used. A separator in which the above-mentioned inorganic substance in the form of fibers or particles is made into a non-woven fabric, a woven fabric, or a thin-film shaped substrate such as a microporous film can be used. As the thin film-shaped substrate, a substrate having a pore diameter of 0.01 μm to 1 μm and a thickness of 5 μm to 50 μm is preferably used. Moreover, what made the said inorganic substance of fiber shape or particle | grain shape the composite porous layer using binders, such as resin, can be used as a separator. Furthermore, this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator. For example, a composite porous layer in which alumina particles having a 90% average particle diameter (D90) of less than 1 μm are bound using a fluororesin as a binder may be formed on the surface of the positive electrode or the surface facing the positive electrode of the separator. Good.
 セパレータの空孔率は、20%以上であることが好ましく、20%~80%であることがより好ましく、25%~70%であることが更に好ましく、30%~60%であることが特に好ましい。セパレータの空孔率が20%以上であると電解液の浸透性が向上し、多くの電解液を注液できるため、サイクル特性が向上する傾向にある。セパレータの空孔率が80%以下であれば、短絡の発生が抑制される傾向にある。
 セパレータの空孔率は、水銀ポロシメーター測定から得られる値である。水銀ポロシメーター測定の条件は以下に示すとおりである。
・装置:株式会社島津製作所製 オートポアIV 9500
・水銀圧入圧: 0.51psia
・各測定圧力での圧力保持時間: 10s
・試料と水銀との接触角: 140°
・水銀の表面張力: 485dynes/cm
・水銀の密度: 13.5335g/mL
The porosity of the separator is preferably 20% or more, more preferably 20% to 80%, further preferably 25% to 70%, and particularly preferably 30% to 60%. preferable. When the porosity of the separator is 20% or more, the permeability of the electrolytic solution is improved and a large amount of the electrolytic solution can be injected, so that the cycle characteristics tend to be improved. If the porosity of the separator is 80% or less, the occurrence of a short circuit tends to be suppressed.
The porosity of the separator is a value obtained from mercury porosimeter measurement. Conditions for mercury porosimeter measurement are as follows.
・ Device: Autopore IV 9500 manufactured by Shimadzu Corporation
・ Mercury injection pressure: 0.51 psia
・ Pressure holding time at each measurement pressure: 10s
・ Contact angle between sample and mercury: 140 °
・ Surface tension of mercury: 485 dynes / cm
・ Mercury density: 13.5335 g / mL
 更に、正極及び負極には集電体が用いられる。集電体の材質は、正極用の集電体としてはアルミニウム、チタン、ステンレス、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性等を向上させる目的で、アルミニウム、銅等の表面にカーボン、ニッケル、チタン、銀等の処理を施したものが使用できる。負極用の集電体としては、銅、ステンレス、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、アルミニウム-カドミウム合金等の他に、接着性、導電性、耐還元性等を向上させる目的で、銅、アルミニウム等の表面にカーボン、ニッケル、チタン、銀等の処理を施したものが使用できる。尚、正極集電体及び負極集電体の厚さは、電極強度とエネルギー密度の観点から、各々独立に、1μm~50μmであることが好ましい。 Furthermore, current collectors are used for the positive electrode and the negative electrode. The material of the current collector is not limited to aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, conductive glass, etc. as the current collector for the positive electrode. For the purpose of improving, the surface of aluminum, copper or the like subjected to treatment with carbon, nickel, titanium, silver or the like can be used. Current collector for negative electrode includes copper, stainless steel, nickel, aluminum, titanium, baked carbon, conductive polymer, conductive glass, aluminum-cadmium alloy, etc., adhesiveness, conductivity, reduction resistance, etc. For the purpose of improving the surface, it is possible to use a surface of copper, aluminum or the like which has been treated with carbon, nickel, titanium, silver or the like. The thickness of the positive electrode current collector and the negative electrode current collector is preferably 1 μm to 50 μm independently from the viewpoint of electrode strength and energy density.
 本実施形態のリチウムイオン電池に用いられる非水電解液は、リチウム塩(電解質)と、これを溶解する非水系溶媒から構成される。必要に応じて、添加剤を加えてもよい。添加剤の中でも特に、更なる長寿命化の観点から、含フッ素ホウ酸エステルを含むことが好ましい。 The non-aqueous electrolyte used in the lithium ion battery of this embodiment is composed of a lithium salt (electrolyte) and a non-aqueous solvent that dissolves the lithium salt (electrolyte). You may add an additive as needed. Among the additives, it is preferable to contain a fluorinated boric acid ester from the viewpoint of further extending the life.
 含フッ素ホウ酸エステルとしては、例えば、下記一般式(a)で表される化合物が好ましい。 As the fluorinated boric acid ester, for example, a compound represented by the following general formula (a) is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(a)中、R、R及びRは、同一若しくは異なる炭素数1~10の直鎖の、若しくは分岐したアルキル基、又は炭素数1~10の直鎖の、若しくは分岐した含フッ素アルキル基を示し、R、R及びRの少なくとも一つが、炭素数1~10の直鎖の、又は分岐した含フッ素アルキル基である。 In the formula (a), R 1 , R 2 and R 3 are the same or different linear or branched alkyl groups having 1 to 10 carbon atoms, or linear or branched alkyl groups having 1 to 10 carbon atoms. Represents a fluorine alkyl group, and at least one of R 1 , R 2 and R 3 is a linear or branched fluorine-containing alkyl group having 1 to 10 carbon atoms.
 一般式(a)で表される化合物としては、R、R及びRが、同一若しくは異なる炭素数1~10の直鎖の、又は分岐した含フッ素アルキル基である化合物であることが好ましい。
 一般式(a)で表される化合物は、例えば、ホウ酸トリス(トリフルオロエチル)、ホウ酸メチルビス(トリフルオロエチル)、ホウ酸トリス(テトラフルオロエチル)、ホウ酸トリス(モノフルオロエチル)、ホウ酸トリス(ペンタフルオロプロピル)、ホウ酸トリス(ヘキサフルオロプロピル)、ホウ酸トリス(ヘキサフルオロイソプロピル)、ホウ酸トリス(2-メチル-1,1,1,3,3,3-ヘキサフルオロプロピル)及びホウ酸トリス(2-フェニル-1,1,1,3,3,3-ヘキサフルオロプロピル)が挙げられる。これらの中でも特に、ホウ酸トリス(ヘキサフルオロイソプロピル)がサイクル特性をより向上できる観点から特に好ましい。これらの含フッ素ホウ酸エステルは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
The compound represented by the general formula (a) is a compound in which R 1 , R 2 and R 3 are the same or different linear or branched fluorine-containing alkyl groups having 1 to 10 carbon atoms. preferable.
The compound represented by the general formula (a) is, for example, tris (trifluoroethyl) borate, methyl bis (trifluoroethyl) borate, tris (tetrafluoroethyl) borate, tris (monofluoroethyl) borate, Tris borate (pentafluoropropyl), tris borate (hexafluoropropyl), tris borate (hexafluoroisopropyl), tris borate (2-methyl-1,1,1,3,3,3-hexafluoropropyl) ) And tris borate (2-phenyl-1,1,1,3,3,3-hexafluoropropyl). Among these, tris borate (hexafluoroisopropyl) is particularly preferable from the viewpoint of improving the cycle characteristics. These fluorinated boric acid esters may be used alone or in combination of two or more.
 含フッ素ホウ酸エステルの含有率は、非水電解液全量を基準にして、サイクル特性及び高温での保存特性の観点から、0.02質量%~10質量%であることが好ましく、0.05質量%~5質量%であることがより好ましく、0.05質量%~4質量%であることが更に好ましく、0.1質量%~3質量%であることが特に好ましい。
 リチウム塩としては、LiPF、LiBF、LiFSI(リチウムビスフルオロスルホニルイミド)、LiTFSI(リチウムビストリフルオロメタンスルホニルイミド)、LiClO、LiB(C、LiCHSO、LiCFSO、LiN(SOF)、LiN(SOCF、LiN(SOCFCF等が挙げられる。これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。これらの中でも、非水系溶媒に対する溶解性、リチウムイオン電池とした場合の充放電特性、入出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF)が好ましい。
The content of the fluorinated boric acid ester is preferably 0.02% by mass to 10% by mass from the viewpoint of cycle characteristics and high temperature storage characteristics, based on the total amount of the nonaqueous electrolytic solution, It is more preferably from 5% by mass to 5% by mass, still more preferably from 0.05% by mass to 4% by mass, and particularly preferably from 0.1% by mass to 3% by mass.
Lithium salts include LiPF 6 , LiBF 4 , LiFSI (lithium bisfluorosulfonylimide), LiTFSI (lithium bistrifluoromethanesulfonylimide), LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 and the like. These lithium salts may be used alone or in combination of two or more. Among these, lithium hexafluorophosphate (LiPF 6 ) is preferable when comprehensively judging the solubility in a non-aqueous solvent, charge / discharge characteristics in the case of a lithium ion battery, input / output characteristics, cycle characteristics, and the like.
 リチウム塩の濃度は、非水系溶媒に対して0.5mol/L~1.5mol/Lであることが好ましく、0.7mol/L~1.3mol/Lであることがより好ましく、0.8mol/L~1.2mol/Lであることが更に好ましい。リチウム塩の濃度を0.5mol/L~1.5mol/Lとすることで、充放電特性をより向上することができる。 The concentration of the lithium salt is preferably 0.5 mol / L to 1.5 mol / L, more preferably 0.7 mol / L to 1.3 mol / L, and more preferably 0.8 mol to the non-aqueous solvent. / L to 1.2 mol / L is more preferable. By setting the concentration of the lithium salt to 0.5 mol / L to 1.5 mol / L, the charge / discharge characteristics can be further improved.
 非水系溶媒としては、エチレンカーボネート、プロピレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状モノカーボネート、γ-ブチロラクトン、アセトニトリル、1,2-ジメトキシエタン、ジメトキシメタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、酢酸メチルなどが挙げられる。これらは単独で用いても、2種類以上を併用してもよいが、環状カーボネート及び鎖状モノカーボネートを混合した混合溶媒を用いることが好ましい。
 環状カーボネート及び鎖状モノカーボネートを含む場合の環状カーボネート及び鎖状モノカーボネートの含有量は、非水系溶媒の全量に対して、サイクル特性の観点から80体積%以上であることが好ましく、90体積%以上であることがより好ましく、95体積%以上であることが更に好ましい。
Non-aqueous solvents include cyclic carbonates such as ethylene carbonate and propylene carbonate; chain monocarbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane, dimethoxymethane, tetrahydrofuran, Examples include dioxolane, methylene chloride, and methyl acetate. These may be used alone or in combination of two or more, but it is preferable to use a mixed solvent in which a cyclic carbonate and a chain monocarbonate are mixed.
When the cyclic carbonate and the chain monocarbonate are contained, the content of the cyclic carbonate and the chain monocarbonate is preferably 80% by volume or more, and 90% by volume from the viewpoint of cycle characteristics with respect to the total amount of the non-aqueous solvent. More preferably, it is more preferably 95% by volume or more.
 環状カーボネートを含む場合の含有量は、非水系溶媒の全量に対して、5体積%~70体積%であることが好ましく、10体積%~60体積%であることがより好ましく、20体積%~60体積%であることが更に好ましい。 When the cyclic carbonate is contained, the content is preferably 5% by volume to 70% by volume, more preferably 10% by volume to 60% by volume, and more preferably 20% by volume to 20% by volume with respect to the total amount of the non-aqueous solvent. More preferably, it is 60 volume%.
 鎖状モノカーボネートを含む場合の含有率は、非水系溶媒の全量に対して、70体積%を超えることが好ましい。
 非水系溶媒の全量に対する鎖状モノカーボネートの含有率が70体積%を超えるとセパレータ及び電極への電解液の浸透がよくなり、多くの電解液を注液できるため、サイクル特性が向上する傾向にある。鎖状モノカーボネートの非水系溶媒の全量に対する含有率は、75体積%以上であることがより好ましく、85体積%以上であることが更に好ましく、90体積%以上であることが特に好ましい。鎖状モノカーボネートの非水系溶媒の全量に対する含有率は100体積%であってもよいが、より安全性を向上する観点から、95体積%以下であるとよい。
 鎖状モノカーボネートは、ジメチルカーボネートを含有することが好ましい。鎖状モノカーボネートがジメチルカーボネートを含有する場合、鎖状モノカーボネートに占めるジメチルカーボネートの割合は、75体積%~100体積%であることが好ましく、85体積%~100体積%であることがより好ましく、90体積%~100体積%であることが更に好ましい。
When the chain monocarbonate is contained, the content is preferably more than 70% by volume with respect to the total amount of the non-aqueous solvent.
When the content of the chain monocarbonate with respect to the total amount of the non-aqueous solvent exceeds 70% by volume, the electrolyte solution penetrates into the separator and the electrode, and a large amount of the electrolyte solution can be injected, so that the cycle characteristics tend to improve. is there. The content of the chain monocarbonate with respect to the total amount of the non-aqueous solvent is more preferably 75% by volume or more, still more preferably 85% by volume or more, and particularly preferably 90% by volume or more. The content of the chain monocarbonate with respect to the total amount of the non-aqueous solvent may be 100% by volume, but it is preferably 95% by volume or less from the viewpoint of further improving safety.
The chain monocarbonate preferably contains dimethyl carbonate. When the chain monocarbonate contains dimethyl carbonate, the proportion of dimethyl carbonate in the chain monocarbonate is preferably 75% by volume to 100% by volume, and more preferably 85% by volume to 100% by volume. More preferably, it is 90 volume% to 100 volume%.
 添加剤としては、リチウムイオン電池の非水電解液用の添加剤であれば特に制限はなく、窒素を含有する複素環化合物、硫黄を含有する複素環化合物、窒素及び硫黄を含有する複素環化合物、環状カルボン酸エステル、フッ素含有環状カーボネート、その他の分子内に不飽和結合を有する化合物等が挙げられる。また、上記添加剤以外に、求められる機能に応じて過充電防止材、負極皮膜形成材、正極保護材、高入出力材等の他の添加剤を用いてもよい。 The additive is not particularly limited as long as it is an additive for a non-aqueous electrolyte solution of a lithium ion battery, and includes a heterocyclic compound containing nitrogen, a heterocyclic compound containing sulfur, and a heterocyclic compound containing nitrogen and sulfur. , Cyclic carboxylic acid ester, fluorine-containing cyclic carbonate, and other compounds having an unsaturated bond in the molecule. In addition to the above additives, other additives such as an overcharge prevention material, a negative electrode film forming material, a positive electrode protective material, and a high input / output material may be used depending on the required function.
 上記他の添加剤により、高温での保存特性、サイクル特性及び入出力特性の向上を図ることができる。 The other additives mentioned above can improve storage characteristics at high temperatures, cycle characteristics, and input / output characteristics.
 以上のように構成させるリチウムイオン電池の形状は、円筒型、積層型、コイン型、ラミネート型等、種々のものとすることができる。いずれの形状をとる場合であっても、正極及び負極にセパレータを狭装させ電極体とし、正極集電体及び負極集電体から外部に通ずる正極端子及び負極端子までの間を、集電用リード等を用いて接続し、この電極体を非水電解液とともに電池ケースに密閉してリチウムイオン電池が完成する。
 本発明の実施形態の一例として、正極板と負極板とをセパレータを介して積層した積層型リチウムイオン電池について図1及び図2に基づき説明するが、本発明はこれに制限されない。
The lithium ion battery configured as described above can have various shapes such as a cylindrical shape, a laminated shape, a coin shape, and a laminated shape. Regardless of which shape is used, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. Connection is made using a lead or the like, and this electrode body is sealed in a battery case together with a non-aqueous electrolyte to complete a lithium ion battery.
As an example of an embodiment of the present invention, a stacked lithium ion battery in which a positive electrode plate and a negative electrode plate are stacked via a separator will be described with reference to FIGS. 1 and 2, but the present invention is not limited thereto.
 図1は本実施形態のリチウムイオン電池の一形態を示す斜視図である。
 リチウムイオン電池10は、ラミネートフィルム6の電池外装体内に、電極群20と電解液を収容したものであり、正極集電タブ2と負極集電タブ4を電池外装体外に取り出すようにしている。
FIG. 1 is a perspective view showing one embodiment of the lithium ion battery of this embodiment.
The lithium ion battery 10 is one in which the electrode group 20 and an electrolytic solution are accommodated in the battery outer package of the laminate film 6, and the positive electrode current collecting tab 2 and the negative electrode current collecting tab 4 are taken out of the battery outer package.
 そして、図2に示すように、電極群20は正極集電タブ2を取り付けた正極板1、セパレータ5、及び負極集電タブ4を取り付けた負極板3を積層したものである。
 尚、正極板、負極板、セパレータ、電極群及び電池の大きさ、形状等は任意のものとすることができ、図1及び図2に示されるものに限定されるわけではない。
 電池外装体の材質としては、例えば、アルミニウム製のラミネートフィルム、アルミニウム、銅及びステンレスが挙げられる。
As shown in FIG. 2, the electrode group 20 is formed by laminating a positive electrode plate 1 to which a positive electrode current collecting tab 2 is attached, a separator 5, and a negative electrode plate 3 to which a negative electrode current collecting tab 4 is attached.
In addition, the magnitude | size, shape, etc. of a positive electrode plate, a negative electrode plate, a separator, an electrode group, and a battery can be made into arbitrary things, and are not necessarily limited to what is shown by FIG.1 and FIG.2.
Examples of the material for the battery outer package include an aluminum laminate film, aluminum, copper, and stainless steel.
 本発明の他の実施形態としては、例えば、正極板と負極板とをセパレータを介し積層してなる積層体を巻回して得られた電極群を円筒型の電池外装体内に封入した円筒型リチウムイオン電池を挙げることができる。
 図3は本実施形態のリチウムイオン電池の他の形態を示す断面図である。
 図3に示すように、リチウムイオン電池11は、ニッケルメッキが施されたスチール製で有底円筒状の電池外装体16を有している。電池外装体16には、電極群15が収容されている。電極群15は、帯状の正極板12及び負極板13がポリエチレン製多孔質シートのセパレータ14を介して断面渦巻状に捲回されている。セパレータ14は、例えば、幅が58mm、厚さが20μmに設定される。電極群15の上端面には、一端部を正極板12に固定されたアルミニウム製でリボン状の正極タブ端子が導出されている。正極タブ端子の他端部は、電極群15の上側に配置され正極外部端子となる円盤状の電池蓋の下面に超音波溶接で接合されている。一方、電極群15の下端面には、一端部を負極板13に固定されたニッケル製でリボン状の負極タブ端子が導出されている。負極タブ端子の他端部は、電池外装体16の内底部に抵抗溶接で接合されている。したがって、正極タブ端子及び負極タブ端子は、それぞれ電極群15の両端面の互いに反対側に導出されている。なお、電極群15の外周面全周には、図示を省略した絶縁被覆が施されている。電池蓋は、絶縁性の樹脂製ガスケットを介して電池外装体16の上部にカシメ固定されている。このため、リチウムイオン電池11の内部は密封されている。また、電池外装体16内には、図示しない電解液が注液されている。
 尚、正極板、負極板、セパレータ、電極群及び電池の大きさ、形状等は任意のものとすることができ、図3に示されるものに限定されるわけではない。
As another embodiment of the present invention, for example, a cylindrical lithium in which an electrode group obtained by winding a laminated body in which a positive electrode plate and a negative electrode plate are laminated via a separator is enclosed in a cylindrical battery casing. An ion battery can be mentioned.
FIG. 3 is a cross-sectional view showing another embodiment of the lithium ion battery of this embodiment.
As shown in FIG. 3, the lithium ion battery 11 has a bottomed cylindrical battery outer package 16 made of steel plated with nickel. An electrode group 15 is accommodated in the battery outer package 16. In the electrode group 15, a belt-like positive electrode plate 12 and a negative electrode plate 13 are wound in a spiral cross section via a separator 14 made of a polyethylene porous sheet. For example, the separator 14 has a width of 58 mm and a thickness of 20 μm. A ribbon-shaped positive electrode tab terminal made of aluminum and having one end fixed to the positive electrode plate 12 is led out on the upper end surface of the electrode group 15. The other end of the positive electrode tab terminal is joined by ultrasonic welding to the lower surface of a disk-shaped battery lid that is disposed above the electrode group 15 and serves as a positive electrode external terminal. On the other hand, a ribbon-like negative electrode tab terminal made of nickel and having one end fixed to the negative electrode plate 13 is led to the lower end surface of the electrode group 15. The other end of the negative electrode tab terminal is joined to the inner bottom of the battery outer package 16 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are respectively led out to the opposite sides of the both end surfaces of the electrode group 15. Note that an insulating coating (not shown) is applied to the entire outer peripheral surface of the electrode group 15. The battery lid is caulked and fixed to the upper part of the battery outer package 16 via an insulating resin gasket. For this reason, the inside of the lithium ion battery 11 is sealed. In addition, an electrolyte solution (not shown) is injected into the battery outer package 16.
In addition, the magnitude | size, shape, etc. of a positive electrode plate, a negative electrode plate, a separator, an electrode group, and a battery can be made into arbitrary things, and are not necessarily limited to what is shown by FIG.
 電池外装体内の体積Xに対する電解液の占める体積Yの比(Y/X)の値は、0.2以上であり、更なる長寿命化の観点からは、0.3以上であることが好ましく、0.4以上であることがより好ましい。本実施形態において、電解液の体積は、25℃における体積をいう。
 また、比(Y/X)の値に上限はないが、実用的な観点からは、0.8以下であることが好ましく、0.7以下であることがより好ましい。
 比(Y/X)の値が0.2以上であると長寿命化できる理由は明らかではないが、以下のように推測している。
The ratio of the volume Y of the electrolyte solution to the volume X in the battery casing (Y / X) is 0.2 or more, and from the viewpoint of further extending the life, it is preferably 0.3 or more. More preferably, it is 0.4 or more. In the present embodiment, the volume of the electrolytic solution refers to the volume at 25 ° C.
Moreover, although there is no upper limit to the value of the ratio (Y / X), from a practical viewpoint, it is preferably 0.8 or less, and more preferably 0.7 or less.
The reason why the life can be extended when the value of the ratio (Y / X) is 0.2 or more is not clear, but is estimated as follows.
 スピネル型のリチウム・ニッケル・マンガン複合酸化物の電位はLiに対して、一般に4.4V以上と高い。電解液はこの電位範囲で安定に存在できず、分解反応が微小な速度で常に進んでいる。このため電解液量が少ないと分解による影響が早い段階で発現し、電池が劣化する。一方、比(Y/X)の値が0.2以上であれば、分解の悪影響が発現するまでに充分な余裕があり、必要な長寿命化を達成することができると推測している。 Spinel type lithium / nickel / manganese composite oxide generally has a high potential of 4.4V or higher with respect to Li. The electrolytic solution cannot exist stably in this potential range, and the decomposition reaction always proceeds at a minute rate. For this reason, if there is little amount of electrolyte solution, the influence by decomposition will appear at an early stage, and a battery will deteriorate. On the other hand, if the value of the ratio (Y / X) is 0.2 or more, it is presumed that there is a sufficient margin until the adverse effect of decomposition appears, and the necessary long life can be achieved.
(リチウムイオン電池の負極と正極の容量比)
 スピネル型のリチウム・ニッケル・マンガン複合酸化物を正極活物質として用いる本実施形態のリチウムイオン電池においては、正極と負極との容量比(負極容量/正極容量)が0.7以上1未満とすることが好ましい。この容量比が0.7以上の場合は、電池容量が向上し、高エネルギー密度が得られる傾向となる。また、容量比が1未満の場合には、正極が高電位になることによる電解液の分解反応が生じにくく、リチウムイオン電池のサイクル特性が良好となる傾向がある。エネルギー密度とサイクル特性の観点からは、容量比を0.75~0.95とすることがより好ましい。
(Capacity ratio of the negative electrode to the positive electrode of the lithium ion battery)
In the lithium ion battery of this embodiment using spinel type lithium / nickel / manganese composite oxide as the positive electrode active material, the capacity ratio (negative electrode capacity / positive electrode capacity) of the positive electrode and the negative electrode is 0.7 or more and less than 1. It is preferable. When the capacity ratio is 0.7 or more, the battery capacity is improved and a high energy density tends to be obtained. On the other hand, when the capacity ratio is less than 1, the decomposition reaction of the electrolytic solution due to the positive electrode being at a high potential hardly occurs, and the cycle characteristics of the lithium ion battery tend to be good. From the viewpoint of energy density and cycle characteristics, the capacity ratio is more preferably 0.75 to 0.95.
 尚、「正極容量」及び「負極容量」とは、それぞれ、対極を金属リチウムとする電気化学セルを構成して定電流定電圧充電-定電流放電を行ったときに得られる可逆的に利用できる最大の容量を意味する。例えば、正極活物質にはスピネル型のリチウム・ニッケル・マンガン複合酸化物を、負極活物質にはLTOを用いた場合には、「正極容量」及び「負極容量」は、上記電気化学セルにおいて、電圧範囲をそれぞれ4.95V~3.5V及び2V~1Vとし、定電流充電及び定電流放電の際の電流密度を0.1mA/cmとする上記充放電を行って評価した場合に得られる容量とする。 The “positive electrode capacity” and the “negative electrode capacity” can be used reversibly obtained when a constant-current-constant-voltage charge-constant-current discharge is performed by constituting an electrochemical cell having a counter electrode made of metallic lithium. Means maximum capacity. For example, when a spinel type lithium / nickel / manganese composite oxide is used for the positive electrode active material and LTO is used for the negative electrode active material, the “positive electrode capacity” and the “negative electrode capacity” Obtained when the voltage ranges are set to 4.95 V to 3.5 V and 2 V to 1 V, respectively, and the charge / discharge is evaluated with the current density during constant current charge and constant current discharge being 0.1 mA / cm 2. Capacity.
 以上、本発明のリチウムイオン電池の実施形態について説明したが、上記実施形態は一実施形態に過ぎず、本発明のリチウムイオン電池は、上記実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の形態で実施することができる。 As mentioned above, although the embodiment of the lithium ion battery of the present invention has been described, the above embodiment is only one embodiment, and the lithium ion battery of the present invention includes various embodiments based on the knowledge of those skilled in the art including the above embodiment. The present invention can be implemented in various forms with modifications and improvements.
 以下、実施例に基づき本実施形態を更に詳細に説明する。尚、本発明は以下の実施例によって限定されるものではない。 Hereinafter, the present embodiment will be described in more detail based on examples. The present invention is not limited to the following examples.
[実施例1~3、比較例1]
 正極活物質であるスピネル型のリチウム・ニッケル・マンガン複合酸化物(LiNi0.5Mn1.5)を93質量部、導電材としてアセチレンブラック(電気化学工業株式会社製)を5質量部、並びに結着材としてポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体(日立化成株式会社製、商品名:LSR7)を2質量部混合し、適量のN-メチル-2-ピロリドンを添加して混練することでペースト状の正極合剤スラリーを得た。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の片面に実質的に均等かつ均質に140g/mになるように塗布した。その後、乾燥処理を施し、密度2.3g/cmまでプレスにより圧密化し、シート状の正極を作製した。これを幅31mm、長さ46mmに切断して正極板とし、図2に示すようにこの正極板に正極集電タブを取り付けた。
[Examples 1 to 3, Comparative Example 1]
93 parts by mass of spinel-type lithium / nickel / manganese composite oxide (LiNi 0.5 Mn 1.5 O 4 ), which is a positive electrode active material, and 5 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material 2 parts by mass of a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton as a binder (trade name: LSR7, manufactured by Hitachi Chemical Co., Ltd.) and mixing an appropriate amount of N-methyl-2- By adding pyrrolidone and kneading, a paste-like positive electrode mixture slurry was obtained. This slurry was applied to one side of a 20 μm-thick aluminum foil, which is a positive electrode current collector, so as to be substantially uniformly and uniformly 140 g / m 2 . Thereafter, drying treatment was performed, and consolidation was performed by pressing to a density of 2.3 g / cm 3 to produce a sheet-like positive electrode. This was cut into a width of 31 mm and a length of 46 mm to form a positive electrode plate, and a positive electrode current collecting tab was attached to the positive electrode plate as shown in FIG.
 リチウムチタン複合酸化物(LiTi12)を91質量部、導電材としてアセチレンブラック(電気化学工業株式会社製)を4質量部、及び結着材としてポリフッ化ビニリデンを5質量部混合し、適量のN-メチル-2-ピロリドンを添加して混練することでペースト状の負極合剤スラリーを得た。このスラリーを負極用の集電体である厚さ10μmの銅箔の片面に85g/mになるように塗布した。その後、乾燥処理を施し、密度1.9g/cmまでプレスにより圧密化し、シート状の負極を作製した。これを幅30mm、長さ45mmに切断して負極板とし、図2に示すようにこの負極板に負極集電タブを取り付けた。 91 parts by mass of lithium titanium composite oxide (Li 4 Ti 5 O 12 ), 4 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, and 5 parts by mass of polyvinylidene fluoride as a binder Then, an appropriate amount of N-methyl-2-pyrrolidone was added and kneaded to obtain a paste-like negative electrode mixture slurry. This slurry was applied to one side of a 10 μm thick copper foil, which is a negative electrode current collector, at 85 g / m 2 . Thereafter, a drying treatment was performed, and the sheet was consolidated by pressing to a density of 1.9 g / cm 3 to produce a sheet-like negative electrode. This was cut into a width of 30 mm and a length of 45 mm to form a negative electrode plate, and a negative electrode current collecting tab was attached to the negative electrode plate as shown in FIG.
(電極群の作製)
 作製した正極板と負極板とを、セパレータである厚さ30μm、幅35mm、長さ50mmのポリエチレン微多孔膜(ポリプロピレン/ポリエチレン/ポリプロピレンの三層製セパレータ)を介して対向させ、積層状の電極群を作製した。セパレータの空孔率は、43%であった。
(Production of electrode group)
The produced positive electrode plate and negative electrode plate are opposed to each other through a polyethylene microporous membrane (a polypropylene / polyethylene / polypropylene three-layer separator) having a thickness of 30 μm, a width of 35 mm, and a length of 50 mm as a separator. Groups were made. The porosity of the separator was 43%.
(非水電解液の調整)
 エチレンカーボネートとジメチルカーボネートとを体積比で1:3の割合で混合し、次に電解質であるLiPFを非水系溶媒に溶解し、電解質濃度が1.2mol/Lとなるように非水電解液を調整した。
 尚、実施例3においては、非水電解液に電解液添加剤として含フッ素ホウ酸エステル(ホウ酸トリス(ヘキサフルオロイソプロピル))を加えた。ホウ酸トリス(ヘキサフルオロイソプロピル)の添加量は、電解液全量(非水電解液+電解液添加剤)に対して0.5質量%とした。
(Nonaqueous electrolyte adjustment)
Ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 3, and then LiPF 6 as an electrolyte is dissolved in a non-aqueous solvent so that the electrolyte concentration becomes 1.2 mol / L. Adjusted.
In Example 3, fluorine-containing boric acid ester (tris borate (hexafluoroisopropyl)) was added to the nonaqueous electrolytic solution as an electrolytic solution additive. The amount of tris borate (hexafluoroisopropyl) added was 0.5% by mass with respect to the total amount of the electrolyte (nonaqueous electrolyte + electrolyte additive).
(リチウムイオン電池の作製)
 この電極群を、図1に示すように、アルミニウム製のラミネートフィルムで構成された電池外装体内に収容させると共に、この電池外装体内に、非水電解液を表1に示す割合で注入後、上記の正極集電タブと負極集電タブとを外部に取り出すようにして電池外装体の開口部を封口させて、実施例1~3及び比較例1のリチウムイオン電池を作製した。尚、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。なお、表1に記載の電解液量は、25℃における値である。
(Production of lithium ion battery)
As shown in FIG. 1, the electrode group is housed in a battery exterior body made of an aluminum laminate film, and a nonaqueous electrolyte solution is injected into the battery exterior body at a ratio shown in Table 1 above. The positive electrode current collecting tab and the negative electrode current collecting tab were taken out to seal the opening of the battery outer package, thereby producing lithium ion batteries of Examples 1 to 3 and Comparative Example 1. The aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene or the like). In addition, the amount of electrolyte solution described in Table 1 is a value at 25 ° C.
(電池外装体内の体積の算出)
 封口後に電極群収容部の幅と長さを実測した。電極群収容部の厚さは、作製したリチウムイオン電池の厚さからラミネートフィルムの厚さを減算することで算出した。得られた電極群収容部の幅と長さと厚さを用いて、以下の式で外装体内の体積を算出した。
 電極群収容部の幅(cm)×電極群収容部の長さ(cm)×電極群収容部の厚さ(cm)=3.2×4.7×0.216=3.2(mL)
(Calculation of volume inside battery case)
After sealing, the width and length of the electrode group housing were measured. The thickness of the electrode group housing part was calculated by subtracting the thickness of the laminate film from the thickness of the produced lithium ion battery. Using the width, length, and thickness of the obtained electrode group housing part, the volume in the exterior body was calculated by the following formula.
Width of electrode group housing part (cm) × length of electrode group housing part (cm) × thickness of electrode group housing part (cm) = 3.2 × 4.7 × 0.216 = 3.2 (mL)
(高電圧サイクル特性)
 実施例1~3及び比較例1のリチウムイオン電池を、充放電装置(商品名:BATTERY TEST UNIT、株式会社IEM製)を用いて、25℃において電流値0.2C、充電終止電圧3.4Vで定電流充電し、次いで充電電圧3.4Vで電流値が0.01Cになるまで定電圧充電を行った。尚、電流値の単位として用いたCとは、“電流値(A)/電池容量(Ah)”を意味する。15分間休止後、電流値0.2C、放電終止電圧1.5Vで定電流放電を行った。前記の充放電条件で充放電を3回繰り返した後に、50℃において電流値1C、充電終止電圧3.8Vで定電流充電し、次いで充電電圧3.8Vで電流値が0.01Cになるまで定電圧充電を行い、15分間休止後、電流値1C、放電終止電圧2.0Vで定電流放電を行った。このときの放電容量を初期放電容量とし、この操作を200回繰り返した際の放電容量を測定した(200サイクル後の放電容量)。そして、以下の式から200サイクル後の劣化率を算出した。
 高電圧サイクル特性(%)=(200サイクル後の放電容量/初期放電容量)×100
(High voltage cycle characteristics)
The lithium ion batteries of Examples 1 to 3 and Comparative Example 1 were charged with a charge / discharge device (trade name: BATTERY TEST UNIT, manufactured by IEM Co., Ltd.) at 25 ° C. with a current value of 0.2 C and a charge end voltage of 3.4 V. Then, constant current charging was performed at a charging voltage of 3.4 V until the current value reached 0.01C. C used as a unit of current value means “current value (A) / battery capacity (Ah)”. After resting for 15 minutes, constant current discharge was performed at a current value of 0.2 C and a discharge end voltage of 1.5 V. Charging / discharging is repeated three times under the above-mentioned charging / discharging conditions, followed by constant current charging at a current value of 1 C and a charge end voltage of 3.8 V at 50 ° C., and then until the current value becomes 0.01 C at a charging voltage of 3.8 V Constant voltage charging was performed, and after resting for 15 minutes, constant current discharging was performed at a current value of 1 C and a discharge end voltage of 2.0 V. The discharge capacity at this time was defined as the initial discharge capacity, and the discharge capacity when this operation was repeated 200 times was measured (discharge capacity after 200 cycles). And the deterioration rate after 200 cycles was computed from the following formula | equation.
High voltage cycle characteristics (%) = (discharge capacity after 200 cycles / initial discharge capacity) × 100
[参考例1~3]
 正極活物質である層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型のリチウム・マンガン複合酸化物(sp-Mn)とを質量比3/7(NMC/sp-Mn)で混合し、正極活物質混合物を得た。正極活物質混合物を90質量部、導電材としてアセチレンブラック(電気化学工業株式会社製)を5質量部、及び結着材としてポリフッ化ビニリデンを5質量部混合し、適量のN-メチル-2-ピロリドンを添加して混練することでペースト状の正極合剤スラリーを得た。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の片面に実質的に均等かつ均質に195g/mになるように塗布した。その後、乾燥処理を施し、密度2.55g/cmまでプレスにより圧密化し、シート状の正極を作製した。これを幅31mm、長さ46mmに切断して正極板とし、図2に示すようにこの正極板に正極集電タブを取り付けた。
[Reference Examples 1 to 3]
Layered type lithium / nickel / manganese / cobalt composite oxide (NMC) and spinel type lithium / manganese composite oxide (sp-Mn) as a positive electrode active material at a mass ratio of 3/7 (NMC / sp-Mn) By mixing, a positive electrode active material mixture was obtained. 90 parts by mass of the positive electrode active material mixture, 5 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, and 5 parts by mass of polyvinylidene fluoride as a binder are mixed to obtain an appropriate amount of N-methyl-2- By adding pyrrolidone and kneading, a paste-like positive electrode mixture slurry was obtained. This slurry was applied to one side of a 20 μm-thick aluminum foil, which is a positive electrode current collector, so as to be substantially 195 g / m 2 substantially uniformly and uniformly. Thereafter, drying treatment was performed, and consolidation was performed by pressing to a density of 2.55 g / cm 3 to produce a sheet-like positive electrode. This was cut into a width of 31 mm and a length of 46 mm to form a positive electrode plate, and a positive electrode current collecting tab was attached to the positive electrode plate as shown in FIG.
 負極、電極群、非水電解液、リチウムイオン電池は実施例1~3、比較例1と同様に作製した。 The negative electrode, electrode group, non-aqueous electrolyte, and lithium ion battery were produced in the same manner as in Examples 1 to 3 and Comparative Example 1.
(サイクル特性)
 参考例1~3のリチウムイオン電池を、充放電装置(商品名:BATTERY TEST UNIT、株式会社IEM製)を用いて、25℃において電流値0.2C、充電終止電圧3.1Vで定電流充電し、次いで充電電圧3.1Vで電流値が0.01Cになるまで定電圧充電を行った。15分間休止後、電流値0.2C、放電終止電圧1.5Vで定電流放電を行った。前記の充放電条件で充放電を3回繰り返した後に、50℃において電流値1C、充電終止電圧3.1Vで定電流充電し、次いで充電電圧3.1Vで電流値が0.01Cになるまで定電圧充電を行い、15分間休止後、電流値1C、放電終止電圧1.5Vで定電流放電を行った。このときの放電容量を初期放電容量とし、この操作を200回繰り返した際の放電容量を測定した(200サイクル後の放電容量)。そして、以下の式から200サイクル後の劣化率を算出した。
  サイクル特性(%)=(200サイクル後の放電容量/初期放電容量)×100
(Cycle characteristics)
The lithium ion batteries of Reference Examples 1 to 3 were charged at a constant current at a current value of 0.2 C and a charge end voltage of 3.1 V at 25 ° C. using a charge / discharge device (trade name: BATTERY TEST UNIT, manufactured by IEM Co., Ltd.). Then, constant voltage charging was performed at a charging voltage of 3.1 V until the current value reached 0.01C. After resting for 15 minutes, constant current discharge was performed at a current value of 0.2 C and a discharge end voltage of 1.5 V. Charging / discharging is repeated three times under the above charging / discharging conditions, followed by constant current charging at 50 ° C. with a current value of 1 C and a charge end voltage of 3.1 V, and then at a charging voltage of 3.1 V until the current value reaches 0.01 C. Constant voltage charge was performed, and after a 15-minute pause, constant current discharge was performed at a current value of 1 C and a discharge end voltage of 1.5 V. The discharge capacity at this time was defined as the initial discharge capacity, and the discharge capacity when this operation was repeated 200 times was measured (discharge capacity after 200 cycles). And the deterioration rate after 200 cycles was computed from the following formula | equation.
Cycle characteristics (%) = (discharge capacity after 200 cycles / initial discharge capacity) × 100
 実施例1~3、比較例1及び参考例1~3は、積層型のリチウムイオン電池である。
 表1に測定結果を示す。表中の(a)はスピネル型のリチウム・ニッケル・マンガン複合酸化物を、(b)は層状型リチウム・ニッケル・マンガン・コバルト複合酸化物とスピネル型のリチウム・マンガン複合酸化物の混合物を示す。
Examples 1 to 3, Comparative Example 1 and Reference Examples 1 to 3 are stacked lithium ion batteries.
Table 1 shows the measurement results. (A) in the table shows a spinel type lithium / nickel / manganese composite oxide, and (b) shows a mixture of a layered type lithium / nickel / manganese / cobalt composite oxide and a spinel type lithium / manganese composite oxide. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 正極活物質がスピネル型のリチウム・ニッケル・マンガン複合酸化物であって、電池外装体内の体積Xに対する電解液の占める体積Yの比(Y/X)の値が0.2以上である実施例1~3では、比較例1に比べて高電圧サイクル特性に優れていることが確認できた。
 また、含フッ素ホウ酸エステルを含む実施例3では、含まない実施例2に比べて高電圧サイクル特性に優れていることが確認できた。
 正極に層状型リチウム・ニッケル・マンガン・コバルト複合酸化物とスピネル型のリチウム・マンガン複合酸化物の混合物を用いた場合(参考例1~3)では、電池外装体内の体積Xに対する電解液の占める体積Yの比に関わらず、サイクル特性に優れていることが確認できた。このことから、正極活物質としてスピネル型のリチウム・ニッケル・マンガン複合酸化物を含む場合に、比(Y/X)の値を0.2以上とすることでサイクル特性が向上することがわかる。
Example in which the positive electrode active material is a spinel type lithium / nickel / manganese composite oxide, and the ratio of the volume Y of the electrolyte to the volume X in the battery casing (Y / X) is 0.2 or more. In 1 to 3, it was confirmed that the high voltage cycle characteristics were excellent as compared with Comparative Example 1.
Moreover, in Example 3 containing a fluorine-containing borate ester, it has confirmed that it was excellent in the high voltage cycle characteristic compared with Example 2 which does not contain.
When a mixture of layered lithium / nickel / manganese / cobalt composite oxide and spinel type lithium / manganese composite oxide is used for the positive electrode (Reference Examples 1 to 3), the electrolyte accounts for the volume X in the battery casing. It was confirmed that the cycle characteristics were excellent regardless of the volume Y ratio. This indicates that when the spinel type lithium / nickel / manganese composite oxide is included as the positive electrode active material, the cycle characteristic is improved by setting the ratio (Y / X) to 0.2 or more.
[実施例4~7、比較例2]
 実施例1で用いられた正極及び負極をそれぞれ所定の大きさに裁断し、裁断した正極と負極とを、その間に厚さ20μmのポリエチレン微多孔膜(ポリプロピレン/ポリエチレン/ポリプロピレンの三層製セパレータ)を挟装して捲回し、ロール状の電極群を作製した。なお、正極の長さを370cmとし、負極の長さを380cmとし、セパレータの長さを830cmとした。また、正極の幅を6.4cmとし、負極の幅を6.8cmとし、セパレータの幅を7.4cmとした。セパレータの空孔率は、43%であった。
 この電極群に集電用リードを付設し、電極群を電池外装体に挿入し、その後、電池外装体内に非水電解液を表2に示す割合で注入した。非水電解液には、エチレンカーボネートとジメチルカーボネートとを体積比で1:3の割合で混合した非水系溶媒に、電解質であるLiPFを2.0mol/Lの濃度で溶解させたものを用いた。最後に、電池ケースを密封して、実施例4~7及び比較例2のリチウムイオン電池を完成させた。なお、表2に記載の電解液量は、25℃における値である。
 尚、実施例6においては、非水電解液に電解液添加剤として含フッ素ホウ酸エステル(ホウ酸トリス(ヘキサフルオロイソプロピル))を加えた。ホウ酸トリス(ヘキサフルオロイソプロピル)の添加量は、電解液全量(非水電解液+電解液添加剤)に対して1.0質量%とした。
[Examples 4 to 7, Comparative Example 2]
The positive electrode and negative electrode used in Example 1 were each cut into a predetermined size, and the cut positive electrode and negative electrode were sandwiched between 20 μm thick polyethylene microporous membranes (polypropylene / polyethylene / polypropylene three-layer separator). Was wound and wound to produce a roll-shaped electrode group. The positive electrode length was 370 cm, the negative electrode length was 380 cm, and the separator length was 830 cm. The positive electrode width was 6.4 cm, the negative electrode width was 6.8 cm, and the separator width was 7.4 cm. The porosity of the separator was 43%.
A current collecting lead was attached to this electrode group, the electrode group was inserted into the battery outer package, and then a non-aqueous electrolyte was injected into the battery outer package at a rate shown in Table 2. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 as an electrolyte at a concentration of 2.0 mol / L in a non-aqueous solvent in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 3 is used. It was. Finally, the battery case was sealed to complete the lithium ion batteries of Examples 4 to 7 and Comparative Example 2. In addition, the amount of electrolyte solution described in Table 2 is a value at 25 ° C.
In Example 6, a fluorinated boric acid ester (tris borate (hexafluoroisopropyl)) was added to the nonaqueous electrolytic solution as an electrolytic solution additive. The amount of tris borate (hexafluoroisopropyl) added was 1.0% by mass with respect to the total amount of the electrolyte (nonaqueous electrolyte + electrolyte additive).
[参考例4及び5]
 参考例1で用いられた正極及び負極を用いた以外は実施例4と同様にして、参考例4及び5のリチウムイオン電池を完成させた。
[Reference Examples 4 and 5]
The lithium ion batteries of Reference Examples 4 and 5 were completed in the same manner as in Example 4 except that the positive electrode and the negative electrode used in Reference Example 1 were used.
(外装体内の体積の算出)
 電池外装体における電極群収容部の内径と高さを実測した。電極群収容部の高さは、電池外装体の高さから電池底部の高さと電池蓋の高さを減算することで算出した。得られた電極群収容部の内径の半径と高さを用いて、以下の式で電池外装体内の体積を算出した。
 電極群収容部の内径の半径(cm)×電極群収容部の内径の半径(cm)×円周率×電極群収容部の高さ(cm)=2.1×2.1×3.14×8=111(mL)
(Calculation of the volume in the exterior body)
The inner diameter and height of the electrode group housing part in the battery outer package were measured. The height of the electrode group housing portion was calculated by subtracting the height of the battery bottom and the height of the battery lid from the height of the battery outer package. Using the radius and height of the inner diameter of the obtained electrode group housing part, the volume in the battery outer package was calculated by the following formula.
Radius of inner diameter of electrode group housing part (cm) x Radius of inner diameter of electrode group housing part (cm) x Circumference ratio x Height of electrode group housing part (cm) = 2.1 x 2.1 x 3.14 × 8 = 111 (mL)
 実施例4~7及び比較例2のリチウムイオン電池についてのサイクル特性は、実施例1~3及び比較例1と同様の条件で評価した。参考例4及び5のリチウムイオン電池についてのサイクル特性は参考例1~3と同様の条件で評価した。表2に測定結果を示す。表中の(a)はスピネル型のリチウム・ニッケル・マンガン複合酸化物を、(b)は層状型リチウム・ニッケル・マンガン・コバルト複合酸化物とスピネル型のリチウム・マンガン複合酸化物の混合物を示す。
 実施例4~7、比較例2並びに参考例4及び5は、円筒型のリチウムイオン電池である。
The cycle characteristics of the lithium ion batteries of Examples 4 to 7 and Comparative Example 2 were evaluated under the same conditions as in Examples 1 to 3 and Comparative Example 1. The cycle characteristics of the lithium ion batteries of Reference Examples 4 and 5 were evaluated under the same conditions as in Reference Examples 1 to 3. Table 2 shows the measurement results. (A) in the table shows a spinel type lithium / nickel / manganese composite oxide, and (b) shows a mixture of a layered type lithium / nickel / manganese / cobalt composite oxide and a spinel type lithium / manganese composite oxide. .
Examples 4 to 7, Comparative Example 2, and Reference Examples 4 and 5 are cylindrical lithium ion batteries.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 正極活物質がスピネル型のリチウム・ニッケル・マンガン複合酸化物であって、電池外装体内の体積Xに対する電解液の占める体積Yの比(Y/Xの値)が0.2以上である実施例4~7では、比較例2に比べて高電圧サイクル特性に優れていることが確認できた。
 また、含フッ素ホウ酸エステルを含む実施例6では、含まない実施例4に比べて高電圧サイクル特性に優れていることが確認できた。
 正極に層状型リチウム・ニッケル・マンガン・コバルト複合酸化物とスピネル型のリチウム・マンガン複合酸化物の混合物を用いた場合(参考例4及び5)では、電池外装体内の体積Xに対する電解液の占める体積Yの比に関わらず、サイクル特性に優れることが確認できた。このことから、正極活物質としてスピネル型のリチウム・ニッケル・マンガン複合酸化物を含む場合に、比(Y/X)の値を0.2以上とすることでサイクル特性が向上することがわかる。
Example in which the positive electrode active material is a spinel type lithium / nickel / manganese composite oxide, and the ratio of the volume Y occupied by the electrolyte to the volume X in the battery casing (Y / X value) is 0.2 or more. 4 to 7, it was confirmed that the high voltage cycle characteristics were superior to those of Comparative Example 2.
Moreover, in Example 6 containing a fluorine-containing boric acid ester, it has confirmed that it was excellent in the high voltage cycle characteristic compared with Example 4 which does not contain.
When a mixture of layered lithium-nickel-manganese-cobalt composite oxide and spinel-type lithium-manganese composite oxide is used for the positive electrode (Reference Examples 4 and 5), the electrolyte accounts for the volume X in the battery casing. It was confirmed that the cycle characteristics were excellent regardless of the volume Y ratio. This indicates that when the spinel type lithium / nickel / manganese composite oxide is included as the positive electrode active material, the cycle characteristic is improved by setting the ratio (Y / X) to 0.2 or more.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
 本発明によれば、従来のリチウムイオン電池用の電解液を用いても充放電サイクル特性に優れるリチウムイオン電池を提供することができる。 According to the present invention, it is possible to provide a lithium ion battery excellent in charge / discharge cycle characteristics even when a conventional electrolyte for a lithium ion battery is used.

Claims (8)

  1. スピネル型のリチウム・ニッケル・マンガン複合酸化物を正極活物質として含む正極と、リチウムイオンを吸蔵可能な負極活物質を含む負極と、前記正極と前記負極とを絶縁するセパレータと、電解液と、を電池外装体内に備え、
     前記電池外装体内の体積Xに対する前記電解液の占める体積Yの比(Y/X)が0.2以上であるリチウムイオン電池。
    A positive electrode including a spinel-type lithium / nickel / manganese composite oxide as a positive electrode active material; a negative electrode including a negative electrode active material capable of occluding lithium ions; a separator that insulates the positive electrode from the negative electrode; In the battery case,
    A lithium ion battery in which a ratio (Y / X) of a volume Y occupied by the electrolytic solution to a volume X in the battery outer body is 0.2 or more.
  2. 前記電解液は非水系溶媒とリチウム塩とを含有し、前記非水系溶媒の全量に占める鎖状モノカーボネートの含有率は、70体積%を超える請求項1に記載のリチウムイオン電池。 2. The lithium ion battery according to claim 1, wherein the electrolytic solution contains a non-aqueous solvent and a lithium salt, and a content of chain monocarbonate in a total amount of the non-aqueous solvent exceeds 70% by volume.
  3. 前記鎖状モノカーボネートは、ジメチルカーボネートを含有する請求項2に記載のリチウムイオン電池。 The lithium ion battery according to claim 2, wherein the chain monocarbonate contains dimethyl carbonate.
  4. 前記電解液は、含フッ素ホウ酸エステルを含有する請求項1~請求項3のいずれか1項に記載のリチウムイオン電池。 The lithium ion battery according to any one of claims 1 to 3, wherein the electrolytic solution contains a fluorine-containing borate ester.
  5. 前記比(Y/X)は、0.8以下である請求項1~請求項4のいずれか1項に記載のリチウムイオン電池。 The lithium ion battery according to any one of claims 1 to 4, wherein the ratio (Y / X) is 0.8 or less.
  6. 前記セパレータの空孔率は、20%以上である請求項1~請求項5のいずれか1項に記載のリチウムイオン電池。 The lithium ion battery according to any one of claims 1 to 5, wherein the separator has a porosity of 20% or more.
  7. 前記リチウムイオンを吸蔵可能な負極活物質は、リチウムチタン複合酸化物を含有する請求項1~請求項6のいずれか1項に記載のリチウムイオン電池。 The lithium ion battery according to any one of claims 1 to 6, wherein the negative electrode active material capable of occluding lithium ions contains a lithium titanium composite oxide.
  8. 前記スピネル型のリチウム・ニッケル・マンガン複合酸化物は、LiNiMn2-X(0.3<X<0.7)で表される化合物を含有する請求項1~請求項7のいずれか1項に記載のリチウムイオン電池。 The spinel type lithium-nickel-manganese composite oxide contains a compound represented by LiNi X Mn 2-X O 4 (0.3 <X <0.7). The lithium ion battery according to claim 1.
PCT/JP2016/062835 2015-04-24 2016-04-22 Lithium ion cell WO2016171276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017514225A JPWO2016171276A1 (en) 2015-04-24 2016-04-22 Lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015089275 2015-04-24
JP2015-089275 2015-04-24

Publications (1)

Publication Number Publication Date
WO2016171276A1 true WO2016171276A1 (en) 2016-10-27

Family

ID=57143177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062835 WO2016171276A1 (en) 2015-04-24 2016-04-22 Lithium ion cell

Country Status (2)

Country Link
JP (1) JPWO2016171276A1 (en)
WO (1) WO2016171276A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180076345A (en) * 2016-12-27 2018-07-05 도요타 지도샤(주) Lithium ion secondary battery
WO2020202307A1 (en) * 2019-03-29 2020-10-08 日立化成株式会社 Lithium ion secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040496A (en) * 1998-07-23 2000-02-08 Matsushita Electric Ind Co Ltd Sealed battery
JP2002042868A (en) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2006134833A1 (en) * 2005-06-14 2006-12-21 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2009043597A (en) * 2007-08-09 2009-02-26 Sony Corp Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using the same
JP2009117372A (en) * 2008-12-26 2009-05-28 Ube Ind Ltd Nonaqueous electrolyte secondary battery
JP2012169138A (en) * 2011-02-14 2012-09-06 Tosoh Finechem Corp Additive for nonaqueous electrolyte and electrolyte for nonaqueous secondary battery
WO2013042720A1 (en) * 2011-09-20 2013-03-28 日産化学工業株式会社 Slurry composition for use in forming lithium-ion secondary battery electrode, containing cellulose fiber as binder, and lithium-ion secondary battery electrode
JP2014525666A (en) * 2011-09-02 2014-09-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluorinated electrolyte composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4281297B2 (en) * 2002-06-06 2009-06-17 日本電気株式会社 Secondary battery
JP5007508B2 (en) * 2006-01-31 2012-08-22 ソニー株式会社 Non-aqueous electrolyte composition for secondary battery and non-aqueous electrolyte secondary battery
JP5568853B2 (en) * 2008-11-06 2014-08-13 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5350168B2 (en) * 2009-10-09 2013-11-27 古河電池株式会社 Method for producing lithium ion secondary battery
JP6218348B2 (en) * 2010-12-10 2017-10-25 日立化成株式会社 Lithium ion secondary battery and manufacturing method thereof
JP6102062B2 (en) * 2012-02-28 2017-03-29 株式会社Gsユアサ Electricity storage element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040496A (en) * 1998-07-23 2000-02-08 Matsushita Electric Ind Co Ltd Sealed battery
JP2002042868A (en) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2006134833A1 (en) * 2005-06-14 2006-12-21 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2009043597A (en) * 2007-08-09 2009-02-26 Sony Corp Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using the same
JP2009117372A (en) * 2008-12-26 2009-05-28 Ube Ind Ltd Nonaqueous electrolyte secondary battery
JP2012169138A (en) * 2011-02-14 2012-09-06 Tosoh Finechem Corp Additive for nonaqueous electrolyte and electrolyte for nonaqueous secondary battery
JP2014525666A (en) * 2011-09-02 2014-09-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluorinated electrolyte composition
WO2013042720A1 (en) * 2011-09-20 2013-03-28 日産化学工業株式会社 Slurry composition for use in forming lithium-ion secondary battery electrode, containing cellulose fiber as binder, and lithium-ion secondary battery electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180076345A (en) * 2016-12-27 2018-07-05 도요타 지도샤(주) Lithium ion secondary battery
JP2018106950A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Lithium ion secondary battery
KR102025776B1 (en) 2016-12-27 2019-09-26 도요타 지도샤(주) Lithium ion secondary battery
US10784537B2 (en) 2016-12-27 2020-09-22 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery
WO2020202307A1 (en) * 2019-03-29 2020-10-08 日立化成株式会社 Lithium ion secondary battery
WO2020202661A1 (en) * 2019-03-29 2020-10-08 日立化成株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JPWO2016171276A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
CN110137442B (en) Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
JP5997383B2 (en) Lithium secondary battery including multiple active material layers
US9484599B2 (en) Non-aqueous electrolyte secondary battery
EP3322024B1 (en) Nonaqueous electrolyte battery and battery pack
JP2016207313A (en) Nonaqueous electrolyte secondary battery and battery pack thereof
JP6210166B2 (en) Lithium ion battery
US20180198120A1 (en) Lithium secondary battery
EP3451437B1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
US10957936B2 (en) Lithium ion secondary battery
TWI635640B (en) Lithium secondary cell and electrolyte for lithium secondary cell
JP2014179248A (en) Nonaqueous electrolyte secondary battery
JPWO2017213149A1 (en) Lithium ion secondary battery and battery pack
JP6406267B2 (en) Lithium ion battery system
WO2016171276A1 (en) Lithium ion cell
JPWO2013084840A1 (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JP2017010716A (en) Lithium ion battery and lithium ion battery system
CN108701857B (en) Lithium ion secondary battery
JP6668848B2 (en) Lithium ion secondary battery
WO2020202661A1 (en) Lithium ion secondary battery
JP2014110228A (en) Electrolyte for nonaqueous power storage device and lithium ion secondary battery
JP2015201335A (en) lithium ion battery
JP6453105B2 (en) Nonaqueous electrolyte secondary battery
JP2021180084A (en) Lithium ion secondary battery
JP2010205547A (en) Nonaqueous electrolyte secondary battery
JP2015053230A (en) Active material for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783297

Country of ref document: EP

Kind code of ref document: A1