WO2020202661A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2020202661A1
WO2020202661A1 PCT/JP2019/049919 JP2019049919W WO2020202661A1 WO 2020202661 A1 WO2020202661 A1 WO 2020202661A1 JP 2019049919 W JP2019049919 W JP 2019049919W WO 2020202661 A1 WO2020202661 A1 WO 2020202661A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
positive electrode
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2019/049919
Other languages
French (fr)
Japanese (ja)
Inventor
由磨 五行
平澤 学
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2021511105A priority Critical patent/JPWO2020202661A1/ja
Publication of WO2020202661A1 publication Critical patent/WO2020202661A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • Lithium-ion secondary batteries which are a type of non-aqueous electrolyte secondary batteries, are secondary batteries with high energy density, and are used as power sources for portable devices such as laptop computers and mobile phones by taking advantage of their characteristics.
  • lithium-ion secondary batteries have been attracting attention as power supplies for electronic devices, power storage power supplies, power supplies for electric vehicles, etc., which are becoming smaller and smaller, and lithium-ion secondary batteries with even higher energy densities are required.
  • As a means for improving the energy density for example, there is a method of using a spinel-type lithium-nickel-manganese composite oxide showing a high working potential as a positive electrode active material.
  • the cyclic carbonate or chain carbonate may be oxidatively decomposed at the contact portion between the positive electrode active material and the electrolytic solution.
  • the product produced by this oxidative decomposition may be deposited or precipitated on the negative electrode side having a low potential to become a resistance, which may reduce the capacity of the lithium ion secondary battery. Due to these phenomena, there is a problem that a lithium ion secondary battery using a positive electrode active material showing a high working potential cannot obtain sufficient charge / discharge cycle characteristics.
  • a lithium ion secondary using a negative electrode having a lithium titanium composite oxide as a negative electrode active material and an electrolytic solution containing a non-aqueous solvent having a diethyl carbonate (DEC) content of 80% by volume or more is used. Batteries have been proposed (see, for example, Patent Document 1).
  • Patent Document 1 mentions that diethyl carbonate contributes to the reduction of oxidative decomposition of the non-aqueous solvent in the vicinity of the positive electrode. Therefore, according to Patent Document 1, it is considered that the deposition or precipitation of the product generated by the oxidative decomposition of the electrolytic solution on the negative electrode side can be suppressed. However, there is a problem that the lithium titanium composite oxide of the negative electrode acts catalytically to promote the reductive decomposition of non-aqueous solvents such as cyclic carbonate and chain carbonate, and to easily generate gas such as hydrogen.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a lithium ion secondary battery in which gas generation is suppressed.
  • the non-aqueous solvent contains at least one compound selected from the group consisting of a phosphoric acid ester containing a fluorine atom, an ether containing a fluorine atom, and a carboxylic acid ester containing a fluorine atom, and the content of the compound is the non-aqueous solvent.
  • a lithium ion secondary battery that is more than 5% by volume based on the total amount of the aqueous solvent.
  • ⁇ 2> The lithium ion secondary battery according to ⁇ 1>, wherein the content of the compound is 90% by volume or less based on the total amount of the non-aqueous solvent.
  • ⁇ 3> The lithium ion secondary battery according to ⁇ 1> or ⁇ 2>, wherein the non-aqueous solvent further contains dimethyl carbonate.
  • ⁇ 4> The lithium ion secondary battery according to ⁇ 3>, wherein the content of the dimethyl carbonate is 5% by volume to 80% by volume with respect to the total amount of the non-aqueous solvent.
  • the non-aqueous solvent contains the phosphoric acid ester containing the fluorine atom, and the content volume ratio of the phosphoric acid ester containing the fluorine atom to the dimethyl carbonate (phosphate ester containing the fluorine atom / dimethyl carbonate) is determined.
  • the non-aqueous solvent contains the phosphoric acid ester containing the fluorine atom, and the phosphoric acid ester containing the fluorine atom contains tris phosphate (2,2,2-trifluoroethyl) ⁇ 1> to ⁇
  • ⁇ 7> The lithium ion secondary according to any one of ⁇ 1> to ⁇ 6>, wherein the capacity ratio (negative electrode capacity / positive electrode capacity) of the negative electrode capacity of the negative electrode to the positive electrode capacity of the positive electrode is 1 or less.
  • battery. ⁇ 8> The lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 7>, wherein the porosity of the separator is 20% to 80%.
  • the non-aqueous solvent is ethylene carbonate, diethyl carbonate, propylene carbonate, ethyl methyl sulfone, vinylene carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, acetonitrile, 1,2-dimethoxyethane, dimethoxymethane, tetrahydrofuran, dioxolane and chloride.
  • the lithium ion secondary battery according to any one of 1> to ⁇ 8>.
  • the non-aqueous solvent contains the ether containing the fluorine atom, and the ether containing the fluorine atom includes 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether and 1,1.
  • the lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 9>, which contains at least one of 2,2,3,3-tetrafluoropropyl ether.
  • the non-aqueous solvent contains the carboxylic acid ester containing the fluorine atom
  • the carboxylic acid ester containing the fluorine atom contains at least one of ethyl trifluoroacetate and methyl difluoroacetate.
  • the electrolytic solution contains a lithium salt containing at least one boron atom selected from the group consisting of lithium bisoxalate borate, lithium difluoro (oxalate) borate, lithium dicyanooxalate borate and lithium cyanofluorooxalate borate.
  • a lithium salt containing at least one boron atom selected from the group consisting of lithium bisoxalate borate, lithium difluoro (oxalate) borate, lithium dicyanooxalate borate and lithium cyanofluorooxalate borate.
  • the non-aqueous solvent contains a carboxylic acid ester other than a carboxylic acid ester containing a fluorine atom.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the numerical range indicated by using "-" in the present disclosure indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the content rate of each component means the total rate of the plurality of kinds of substances when there are a plurality of kinds of substances corresponding to each component, unless otherwise specified.
  • the particle size of each component means a value for a mixture of the plurality of types of particles when a plurality of types of particles corresponding to each component are present, unless otherwise specified.
  • the term "film” includes not only a shape structure formed on the entire surface but also a shape structure formed on a part thereof when observed as a plan view.
  • the term “layer” includes not only the shape structure formed on the entire surface but also the shape structure formed on a part thereof when observed as a plan view.
  • laminated refers to stacking layers, with two or more layers bonded together and two or more layers detachable.
  • the "solid content" of the positive electrode mixture or the negative electrode mixture means the remaining components obtained by removing volatile components such as organic solvents from the positive electrode mixture or the negative electrode mixture.
  • an active material (hereinafter, may be referred to as "specific positive electrode active material”) into which lithium ions are inserted and removed at a potential of 4.5 V or more with respect to the lithium potential is used as a positive electrode.
  • a positive electrode contained as an active material and an active material in which lithium ions are inserted and removed at a potential of 0.4 V or more with respect to the lithium potential (hereinafter, may be referred to as "specific negative electrode active material”) are used as the negative electrode active material.
  • a negative electrode containing a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution containing a lithium salt and a non-aqueous solvent are provided, and the non-aqueous solvent contains a phosphoric acid ester containing a fluorine atom and a fluorine atom. It contains at least one compound selected from the group consisting of a carboxylic acid ester containing an ether and a fluorine atom, and the content of the compound is more than 5% by volume based on the total amount of the non-aqueous solvent.
  • the lithium ion secondary battery of the present disclosure since the negative electrode contains a negative electrode active material in which lithium ions are inserted and removed at a potential of 0.4 V or more with respect to the lithium potential, the lithium of the present disclosure is disclosed.
  • the ion secondary battery substantially operates as a "battery" when the potential of the negative electrode is 0.4 V or higher. For example, even if the negative electrode potential rises to 0.4 V or higher when a conventional lithium ion secondary battery mainly using graphite for the negative electrode is in an over-discharged state, such a battery Is, in reality, not a lithium ion secondary battery in which the negative electrode operates at a potential of 0.4 V or higher, and is excluded from the scope of the present invention.
  • the negative electrode contains a negative electrode active material into which lithium ions are inserted and removed at a potential of 0.4 V or more with respect to the lithium potential
  • a condition in which a lithium ion secondary battery is normally used is used.
  • At least one compound in which the non-aqueous solvent of the electrolytic solution is selected from the group consisting of a phosphoric acid ester containing a fluorine atom, an ether containing a fluorine atom and a carboxylic acid ester containing a fluorine atom (since it contains more than 5% by volume (hereinafter, may be referred to as "specific compound"), gas generation is suppressed.
  • specific compound since it contains more than 5% by volume
  • a specific compound particularly a phosphoric acid ester containing a fluorine atom
  • a high-potential positive electrode containing a spinel-type lithium-nickel-manganese composite oxide or the like as a positive electrode active material is used. It is hard to be disassembled even if it is present. Furthermore, the specific compound is not easily reduced and decomposed because it is not catalyzed by a lithium titanium composite oxide (LTO) or the like. Therefore, it is considered that the generation of gas due to the decomposition of the non-aqueous solvent is suppressed by containing a predetermined amount of the specific compound in the non-aqueous solvent of the electrolytic solution.
  • LTO lithium titanium composite oxide
  • the specific positive electrode active material is used as the positive electrode active material.
  • the content of the specific positive electrode active material in the positive electrode active material is preferably 50% by mass to 100% by mass. When the content of the specific positive electrode active material in the positive electrode active material is 50% by mass or more, the energy density of the lithium ion secondary battery tends to be further improved.
  • the content of the specific positive electrode active material in the positive electrode active material is more preferably 70% by mass to 100% by mass, and further preferably 80% by mass to 100% by mass.
  • the specific positive electrode active material means that "the insertion reaction and the desorption reaction of lithium ions hardly occur at a potential lower than 4.5V with respect to the lithium potential, and 4.5V or more with respect to the lithium potential. It is an active material that is exclusively used by electric potential. Specifically, “Activities in which the insertion reaction and desorption reaction of lithium ions are carried out at a potential of 4.5 V or more with respect to the lithium potential with an electrochemical capacity of at least 80 mAh / g or more per unit mass of the active material. It means “substance”. For example, a spinel-type lithium-nickel-manganese composite oxide can be mentioned.
  • the spinel-type lithium-nickel-manganese composite oxide that can be used as the positive electrode active material of the lithium ion secondary battery of the present disclosure is represented by LiNi X Mn 2-X O 4 (0.3 ⁇ X ⁇ 0.7). It is preferable that the compound is LiNi X Mn 2-X O 4 (0.4 ⁇ X ⁇ 0.6), and LiNi 0.5 is preferable from the viewpoint of stability. It is more preferably Mn 1.5 O 4 .
  • Examples of the element capable of substituting the Mn or Ni site of the spinel-type lithium-nickel-manganese composite oxide include Ti, V, Cr, Fe, Co, Zn, Cu, W, Mg, Al and Ru. Can be mentioned.
  • the Mn or Nisite of the spinel-type lithium-nickel-manganese composite oxide can be replaced with one or more of these metal elements.
  • Ti is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel-type lithium-nickel-manganese composite oxide.
  • Examples of the element capable of substituting the O-site of the spinel-type lithium-nickel-manganese composite oxide include F and B.
  • the spinel-type lithium-nickel-manganese composite oxide Osite can be replaced with one or more of these elements.
  • F is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel-type lithium-nickel-manganese composite oxide.
  • the spinel-type lithium-nickel-manganese composite oxide preferably has a potential of 4.5 V to 5.1 V with respect to Li / Li + in a charged state, and is preferably 4.6 V to 4.6 V. More preferably, it is 5.0 V.
  • the BET specific surface area of the spinel-type lithium-nickel-manganese composite oxide is preferably less than 2.9 m 2 / g, and more preferably less than 2.8 m 2 / g, from the viewpoint of improving storage characteristics. It is more preferably less than 1.5 m 2 / g, and particularly preferably less than 1.0 m 2 / g. Further, the BET specific surface area of the spinel-type lithium-nickel-manganese composite oxide may be less than 0.3 m 2 / g.
  • the BET specific surface area is preferably at 0.05 m 2 / g or more, more preferably 0.08 m 2 / g or more, 0.1 m 2 / g or more It is more preferable to have.
  • BET specific surface area of the lithium-nickel-manganese composite oxide of the spinel is preferably less than 0.05 m 2 / g or more 2.9m 2 / g, 0.05m 2 / g or more 2.8 m 2 / g It is more preferably less than, more preferably 0.08 m 2 / g or more and less than 1.5 m 2 / g, and particularly preferably 0.1 m 2 / g or more and less than 1.0 m 2 / g.
  • the BET specific surface area of the spinel-type lithium-nickel-manganese composite oxide may be 0.1 m 2 / g or more and less than 0.3 m 2 / g.
  • the BET specific surface area can be measured from the nitrogen adsorption capacity according to, for example, JIS Z 8830: 2013.
  • As the evaluation device for example, QUANTACHROME: AUTOSORB-1 (trade name) can be used.
  • the pretreatment the measurement cell containing 0.05 g of the measurement sample is decompressed to 10 Pa or less with a vacuum pump, kept at a temperature of 110 ° C. for 3 hours or more, and then kept at room temperature (reduced pressure). Naturally cool to 25 ° C.). After this pretreatment, the evaluation temperature is set to 77K, and the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
  • the median diameter D50 of the spinel-type lithium-nickel-manganese composite oxide particles is the dispersion of the particles. From the viewpoint of properties, it is preferably 0.5 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 50 ⁇ m.
  • the median diameter D50 can be obtained from the volume-based particle size distribution obtained by the laser diffraction / scattering method. Specifically, a lithium-nickel-manganese composite oxide is added to pure water so as to be 1% by mass, dispersed by ultrasonic waves for 15 minutes, and then measured by a laser diffraction / scattering method.
  • the positive electrode active material in the lithium ion secondary battery of the present disclosure may contain other positive electrode active materials other than the spinel-type lithium-nickel-manganese composite oxide.
  • Other positive-electrode active material other than the lithium-nickel-manganese composite oxide for example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1 in 1-y O z (Li x Co y M 1 1-y O z, M 1 is Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb, V and Indicates at least one element selected from the group consisting of B), Li x Ni 1-y M 2 y Oz (in Li x Ni 1-y M 2 y Oz , M 2 is Na, Mg, Sc.
  • x Mn 2 O 4 Li x Mn.
  • 2-y M 3 y O 4 Li x Mn 2-y M 3 y O 4 in 2, M 3 is Na, Mg, Sc, Y, Fe, Co, Cu, Zn, Al, Cr, Pb, Sb, V And at least one element selected from the group consisting of B).
  • x is in the range of 0 ⁇ x ⁇ 1.2
  • y is in the range of 0 to 0.9
  • z is in the range of 2.0 to 2.3.
  • the x value indicating the molar ratio of lithium increases or decreases depending on charging and discharging.
  • the BET specific surface area of the other positive electrode active materials is 2.9 m 2 from the viewpoint of improving the storage characteristics. It is preferably less than / g, more preferably less than 2.8 m 2 / g, even more preferably less than 1.5 m 2 / g, and particularly preferably less than 1.0 m 2 / g. .. Further, the BET specific surface area of the other positive electrode active material may be less than 0.3 m 2 / g.
  • the BET specific surface area is preferably at 0.05 m 2 / g or more, more preferably 0.08 m 2 / g or more, 0.1 m 2 / g or more It is more preferable to have.
  • BET specific surface area of the other of the positive electrode active material is preferably less than 0.05 m 2 / g or more 2.9 m 2 / g, more is less than 0.05 m 2 / g or more 2.8 m 2 / g It is more preferably 0.08 m 2 / g or more and less than 1.5 m 2 / g, and particularly preferably 0.1 m 2 / g or more and less than 1.0 m 2 / g.
  • the BET specific surface area of the other positive electrode active material may be 0.1 m 2 / g or more and less than 0.3 m 2 / g.
  • the BET specific surface area of the other positive electrode active material can be measured by the same method as that of the spinel-type lithium-nickel-manganese composite oxide.
  • the median diameter D50 of the particles of the other positive electrode active materials is preferably 0.5 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 50 ⁇ m, from the viewpoint of particle dispersibility.
  • the median diameter D50 of the other positive electrode active material can be measured by the same method as the spinel-type lithium-nickel-manganese composite oxide.
  • a negative electrode active material containing a specific negative electrode active material is used.
  • the content of the specific negative electrode active material in the negative electrode active material is preferably 50% by mass to 100% by mass.
  • the content of the specific negative electrode active material in the negative electrode active material is more preferably 70% by mass to 100% by mass, and further preferably 80% by mass to 100% by mass.
  • the specific negative electrode active material means that "the insertion reaction and the desorption reaction of lithium ions hardly occur at a potential lower than 0.4 V with respect to the lithium potential, and 0.4 V or more with respect to the lithium potential. It is an active material that is exclusively used by electric potential. Specifically, “Activities in which a lithium ion insertion reaction and a desorption reaction are carried out at a potential of 0.4 V or more with respect to a lithium potential with an electrochemical capacity of at least 100 mAh / g or more per unit mass of the active material. It means “substance”.
  • the specific negative electrode active material is a negative electrode active material in which lithium ions are inserted and removed at a potential of 0.8 V or more with respect to the lithium potential in the charged state from the viewpoint of suppressing the precipitation of lithium at the negative electrode. It may be a negative electrode active material in which lithium ions are inserted and removed at a potential of 1.0 V or higher, or a negative electrode active material in which lithium ions are inserted and removed at a potential of 1.2 V or higher. You may.
  • Examples of the specific negative electrode active material include lithium titanium composite oxides such as Li 4 Ti 5 O 12 , molybdenum oxide, niobium pentoxide, iron sulfide, titanium sulfide, titanium dioxide, titanium niobium oxide (TiNb 2 O 7 ), and oxidation.
  • Examples include iron (Fe 2 O 3 ), lithium vanadate (Li 3 VO 4 ), tungsten oxide (WO 3 ), manganese oxide (Mn 2 O 3 ) and Y 2 Ti 2 O 5 S 2 .
  • lithium titanium composite oxide (LTO) is preferable.
  • Examples of the lithium-titanium composite oxide include lithium titanate.
  • the insertion reaction and the desorption reaction of lithium ions almost occur at a potential of 0.4 V or more with respect to the lithium potential, so that the operating potential is higher than that of the carbon-based negative electrode active material, and lithium in the negative electrode is used. Precipitation is suppressed. Further, unlike the case where a carbon-based negative electrode active material is used, the SEI (solid electrolyte) film that suppresses the subsequent decomposition of the non-aqueous solvent is not formed on the surface of the negative electrode at the time of initial charging, and the non-aqueous solvent is decomposed. Is also different.
  • the specific negative electrode active material has a significantly different action from the carbon negative electrode active material such as graphite, and the lithium ion secondary battery using the specific negative electrode active material and the lithium ion secondary battery using the carbon negative electrode active material are different.
  • the type of battery is also very different.
  • the lithium titanium composite oxide that can be used as the negative electrode active material of the lithium ion secondary battery of the present disclosure is preferably a spinel-type lithium titanium composite oxide.
  • the basic formula of the spinel-type lithium-titanium composite oxide is represented by Li [Li 1/3 Ti 5/3] O 4.
  • a part of Li, Ti or O-site of the spinel-type lithium-titanium composite oxide may be replaced with another element.
  • excess lithium may be present in the crystals of the spinel-type lithium titanium composite oxide.
  • a chemical substance having a defect in the O-site of the spinel-type lithium titanium composite oxide can also be used.
  • Examples of the element capable of substituting the Li or Ti site of the spinel-type lithium titanium composite oxide include Nb, V, Mn, Ni, Cu, Co, Zn, Sn, Pb, Al, Mo, Ba, and Sr. , Ta, Mg and Ca.
  • the Li or Ti sites of the spinel-type lithium-titanium composite oxide can be replaced with one or more of these elements.
  • Al is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel-type lithium titanium composite oxide.
  • Examples of the element capable of substituting the O-site of the spinel-type lithium titanium composite oxide include F and B.
  • the O-site of the spinel-type lithium-titanium composite oxide can be replaced with one or more of these elements.
  • F is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel-type lithium titanium composite oxide.
  • the BET specific surface area of the negative electrode active material is preferably less than 40 m 2 / g, more preferably less than 30 m 2 / g, and further preferably less than 20 m 2 / g from the viewpoint of improving storage characteristics. It is preferably less than 15 m 2 / g, especially preferably less than 15 m 2 / g. From the viewpoint of improving the input / output characteristics, the BET specific surface area is preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 1.0 m 2 / g or more. It is more preferable that the amount is 2.0 m 2 / g or more.
  • the BET specific surface area of the negative electrode active material may be less than 2.9 m 2 / g, less than 2.8 m 2 / g, or less than 1.5 m 2 / g. It may be less than 0.3 m 2 / g.
  • BET specific surface area of the negative electrode active material may also be 0.05 m 2 / g or more, may also be 0.08 m 2 / g or more, it may be 0.1 m 2 / g or more.
  • BET specific surface area of the negative electrode active material is preferably less than 0.1 m 2 / g or more 40 m 2 / g, more preferably less than 0.5 m 2 / g or more 30m 2 / g, 1.0m 2 It is more preferably more than / g and less than 20 m 2 / g, and particularly preferably 2.0 m 2 / g or more and less than 15 m 2 / g.
  • BET specific surface area of the negative electrode active material may be less than 0.05 m 2 / g or more 2.9 m 2 / g may be less than 2 / g 0.05m 2 / g or more 2.8m may be less than 0.08 m 2 / g or more 1.5 m 2 / g, may be less than 0.1 m 2 / g or more 0.3 m 2 / g.
  • the BET specific surface area of the negative electrode active material can be measured by the same method as the spinel-type lithium-nickel-manganese composite oxide.
  • the median diameter D50 of the particles of the negative electrode active material (the median diameter D50 of the secondary particles when the primary particles are aggregated to form the secondary particles) is 0.5 ⁇ m from the viewpoint of particle dispersibility.
  • the thickness is preferably from 100 ⁇ m, more preferably from 1 ⁇ m to 50 ⁇ m.
  • the median diameter D50 of the negative electrode active material can be measured by the same method as the spinel-type lithium-nickel-manganese composite oxide.
  • the lithium ion secondary battery of the present disclosure has the following positive electrodes applicable to the lithium ion secondary battery.
  • the positive electrode (positive electrode plate) of the present disclosure has a current collector and a positive electrode mixture formed on both sides or one side thereof.
  • the positive electrode mixture contains the above-mentioned positive electrode active material.
  • a specific positive electrode active material and a conductive agent are mixed, and an appropriate binder and solvent are added as necessary to prepare a paste-like positive electrode mixture, such as an aluminum foil. It can be formed by applying and drying the metal foil on the surface of the current collector, and then increasing the density of the positive electrode mixture by pressing or the like, if necessary.
  • the positive electrode mixture can be composed of the above components, the positive electrode mixture contains known olivine-type lithium salts, chalcogen compounds, manganese dioxide, etc. for the purpose of improving the characteristics of the lithium ion secondary battery. You may let me.
  • the solid content of the positive electrode mixture a 100g / m 2 ⁇ 250g / m 2, 110g / m It is more preferably 2 to 200 g / m 2 , and even more preferably 130 g / m 2 to 170 g / m 2 .
  • Density of the positive electrode mixture from the viewpoint of energy density and output characteristics, it is preferable that the solid content of the positive electrode mixture is 1.8g / cm 3 ⁇ 3.3g / cm 3, 2.0g / cm 3 It is more preferably about 3.2 g / cm 3 , and even more preferably 2.2 g / cm 3 to 3.1 g / cm 3 .
  • the lithium ion secondary battery of the present disclosure has the following negative electrodes applicable to the lithium ion secondary battery.
  • the negative electrode (negative electrode plate) of the present disclosure includes a current collector and a negative electrode mixture formed on both sides or one side thereof.
  • the negative electrode mixture contains the above-mentioned negative electrode active material.
  • a negative electrode active material containing a specific negative electrode active material such as lithium titanium composite oxide and a conductive agent were mixed, and an appropriate binder and solvent were added as necessary to prepare a paste-like negative electrode mixture. It can be formed by applying and drying the material on the surface of a current collector of a metal foil such as copper, and then increasing the density of the negative electrode mixture by pressing or the like, if necessary.
  • the negative electrode mixture can be formed by using the above components, the negative electrode mixture may contain a known carbon material or the like for the purpose of improving the characteristics of the lithium ion secondary battery.
  • Single-side coating of the current collector of the negative electrode mixture is preferably 10g / m 2 ⁇ 225g / m 2, 50g / m It is more preferably 2 to 200 g / m 2 , and even more preferably 80 g / m 2 to 160 g / m 2 .
  • Density of the negative electrode mixture from the viewpoint of energy density and output characteristic, as a solid of the negative electrode mixture component is preferably 1.0g / cm 3 ⁇ 3.3g / cm 3, 1.2g / cm 3 It is more preferably ⁇ 3.2 g / cm 3 , and even more preferably 1.4 g / cm 3 to 2.8 g / cm 3 .
  • the conductive agent used for the positive electrode is preferably acetylene black from the viewpoint of further improving the input / output characteristics.
  • the content of the positive electrode conductive agent is preferably 4% by mass or more, more preferably 5% by mass or more, based on the total solid content of the positive electrode mixture, 5.5. It is more preferably mass% or more.
  • the upper limit is preferably 10% by mass or less, more preferably 9% by mass or less, and further preferably 8.5% by mass or less.
  • the content of the positive electrode conductive agent is preferably 4% by mass to 10% by mass, more preferably 5% by mass to 9% by mass, based on the total solid content of the positive electrode mixture, and is 5.5% by mass. It is more preferably% to 8.5% by mass.
  • the positive electrode conductive agent may contain graphite.
  • graphite include artificial graphite, thermally decomposed graphite, natural graphite, spheroidal graphite, flaky graphite, scaly graphite, scaly graphite, massive graphite, vapor phase carbon fiber, carbon nanotube, graphene, and reduced graphene oxide.
  • the conductive agent used for the negative electrode is preferably acetylene black from the viewpoint of further improving the input / output characteristics.
  • the content of the negative electrode conductive agent is preferably 1% by mass or more, more preferably 4% by mass or more, and 6% by mass, based on the total solid content of the negative electrode mixture. The above is more preferable.
  • the upper limit is preferably 15% by mass or less, more preferably 12% by mass or less, and further preferably 10% by mass or less.
  • the content of the negative electrode conductive agent is preferably 1% by mass to 15% by mass, more preferably 4% by mass to 12% by mass, and 6% by mass to 6% by mass, based on the total solid content of the negative electrode mixture. It is more preferably 10% by mass.
  • the binder is not particularly limited, and a material having good solubility or dispersibility in the solvent used for preparing the paste-like positive electrode mixture or negative electrode mixture is selected.
  • resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine.
  • Rubber-like polymers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene-butadiene-styrene block copolymer or hydrogen additive thereof, EPDM (ethylene-propylene-diene ternary copolymer), styrene- Thermoplastic elastomeric polymers such as isoprene-styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene-vinyl acetate copolymers, propylene- ⁇ -olefin copolymers Soft resinous polymers such as coalesced; polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene-ethylene copolymer, polytetrafluoroethylene-vinylidene fluoride
  • Fluorine-based polymers copolymers in which acrylic acid and linear ether groups are added to a polyacrylonitrile skeleton; polymer compositions having ionic conductivity of alkali metal ions (particularly lithium ions) and the like can be mentioned. Of these, one type may be used alone, or two or more types may be used in combination. From the viewpoint of high adhesion, it is preferable to use polyvinylidene fluoride (PVdF) or a copolymer in which acrylic acid and a linear ether group are added to the polyacrylonitrile skeleton for both the positive and negative electrodes, further improving the charge / discharge cycle characteristics. From the viewpoint of the above, a copolymer in which acrylic acid and a linear ether group are added to a polyacrylonitrile skeleton is more preferable.
  • PVdF polyvinylidene fluoride
  • a copolymer in which acrylic acid and a linear ether group are added to a polyacrylonitrile skeleton is more
  • the range of the content of the binder based on the total solid content of the positive electrode mixture is as follows.
  • the lower limit of the range is 0.1% by mass or more from the viewpoint of sufficiently binding the positive electrode active material to obtain sufficient mechanical strength of the positive electrode and stabilizing battery performance such as charge / discharge cycle characteristics. It is preferably 1% by mass or more, more preferably 2% by mass or more.
  • the upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less from the viewpoint of improving the battery capacity and conductivity.
  • the content of the binder based on the total solid content of the positive electrode mixture is preferably 0.1% by mass to 30% by mass, more preferably 1% by mass to 20% by mass, and 2% by mass.
  • the content of the binder based on the total solid content of the negative electrode mixture is as follows.
  • the lower limit of the range is 0.1% by mass or more from the viewpoint of sufficiently binding the negative electrode active material to obtain sufficient mechanical strength of the negative electrode and stabilizing battery performance such as charge / discharge cycle characteristics. It is preferably 0.5% by mass or more, and even more preferably 1% by mass or more.
  • the upper limit is preferably 40% by mass or less, more preferably 25% by mass or less, and further preferably 15% by mass or less from the viewpoint of improving the battery capacity and conductivity.
  • the content of the binder based on the total solid content of the negative electrode mixture is preferably 0.1% by mass to 40% by mass, more preferably 0.5% by mass to 25% by mass. It is more preferably 1% by mass to 15% by mass.
  • An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dissolving or dispersing these active substances, conductive agents, binders and the like.
  • a current collector is used for the positive electrode and the negative electrode.
  • the material of the current collector may be aluminum, titanium, stainless steel, nickel, conductive polymer, etc., as well as aluminum, copper, etc. for the purpose of improving adhesiveness, conductivity, and oxidation resistance.
  • a material that has been treated to adhere carbon, nickel, titanium, silver, etc. to the surface can be used.
  • the material of the current collector is copper, stainless steel, nickel, aluminum, titanium, conductive polymer, aluminum-cadmium alloy, etc., as well as improving adhesiveness, conductivity, and reduction resistance.
  • a material such as copper or aluminum that has been treated to adhere carbon, nickel, titanium, silver or the like to the surface can be used.
  • the separator is not particularly limited as long as it electronically insulates between the positive electrode and the negative electrode, has ion permeability, and has resistance to oxidizing property on the positive electrode side and reducing property on the negative electrode side. ..
  • a resin, an inorganic substance, or the like is used as the material (material) of the separator satisfying such characteristics.
  • an olefin polymer As the resin, an olefin polymer, a fluoropolymer, a cellulosic polymer, a polyimide, a nylon, or the like is used. Specifically, it is preferable to select from materials that are stable to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet or non-woven fabric made of polyolefin such as polyethylene or polypropylene.
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, sulfates such as barium sulfate and calcium sulfate, and glass are used.
  • a sheet in which the above-mentioned inorganic substance in the form of fibers or particles is attached to a thin film-shaped base material such as a non-woven fabric, a woven fabric, or a microporous film can be used as a separator.
  • a base material having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m is preferably used.
  • a sheet obtained by forming a composite porous layer of the above-mentioned inorganic substance having a fiber shape or a particle shape by using a binder such as a resin can be used as a separator.
  • this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to serve as a separator.
  • this composite porous layer may be formed on the surface of another separator to form a multilayer separator.
  • a composite porous layer in which alumina particles having a 90% particle size (D90) of less than 1 ⁇ m are bound using a fluororesin as a binder may be formed on the surface of the positive electrode or the surface of the separator facing the positive electrode. ..
  • the porosity of the separator is preferably 20% or more, more preferably 20% to 80%, further preferably 25% to 70%, and particularly preferably 30% to 70%. preferable.
  • the porosity of the separator is 20% or more, the permeability of the electrolytic solution is improved, and a large amount of the electrolytic solution can be injected, so that the cycle characteristics tend to be improved.
  • an active material in which lithium ions are inserted and removed at a potential of 0.4 V or more with respect to the lithium potential is used as the negative electrode active material, lithium in the negative electrode is used even when the porosity of the separator is high. Precipitation tends to be suppressed.
  • the porosity of the separator is a value obtained from mercury porosimeter measurement. The conditions for measuring the mercury porosimeter are as follows.
  • the electrolytic solution of the present disclosure contains a lithium salt which is an electrolyte and a non-aqueous solvent which dissolves the lithium salt.
  • the non-aqueous solvent used in the present disclosure includes a specific compound which is at least one compound selected from the group consisting of a phosphoric acid ester containing a fluorine atom, an ether containing a fluorine atom and a carboxylic acid ester containing a fluorine atom.
  • ether containing a fluorine atom and carboxylic acid ester containing a fluorine atom have a low melting point, so that it is considered that it is easy to secure battery characteristics at a low temperature.
  • Phosphoric acid esters containing fluorine atoms and ethers containing fluorine atoms are considered to be easy to secure battery characteristics at high temperatures because they are excellent in thermal stability.
  • the specific compound may be used alone or in combination of two or more.
  • the non-aqueous solvent used in the present disclosure contains a phosphoric acid ester containing a fluorine atom and at least one compound selected from the group consisting of an ether containing a fluorine atom and a carboxylic acid ester containing a fluorine atom. You may.
  • the content of the specific compound may exceed 5% by volume, preferably 7% by volume or more, more preferably 10% by volume or more, and 15% by volume, based on the total amount of the non-aqueous solvent.
  • the above is more preferable, and 20% by volume or more is particularly preferable.
  • the content of the specific compound is 10% by volume or more, the melting point of the electrolytic solution is lowered, and the effect of excellent low temperature characteristics can be obtained.
  • the content of the specific compound is preferably 90% by volume or less, more preferably 80% by volume or less, and more preferably 60% by volume or less with respect to the total amount of the non-aqueous solvent. It is more preferable, and it is particularly preferable that it is 50% by volume or less.
  • the content of the phosphoric acid ester containing a fluorine atom preferably exceeds 5% by volume, preferably 7% by volume, based on the total amount of the non-aqueous solvent.
  • the above is more preferable, 10% by volume or more is further preferable, 15% by volume or more is particularly preferable, and 20% by volume or more is extremely preferable.
  • the content of the phosphoric acid ester containing a fluorine atom is 10% by volume or more, the melting point of the electrolytic solution is lowered, and the effect of excellent low temperature characteristics can be obtained.
  • the content of the phosphoric acid ester containing a fluorine atom is preferably 90% by volume or less, more preferably 80% by volume or less, and 60% by volume, based on the total amount of the non-aqueous solvent. It is more preferably% or less, and particularly preferably 50% by volume or less.
  • a phosphoric acid ester containing a fluorine atom has a structure in which all three hydrogen atoms of phosphoric acid are substituted with organic groups, and is not particularly limited as long as at least one of the three organic groups contains a fluorine atom. ..
  • the organic group containing a fluorine atom include a group in which at least one hydrogen atom such as an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heteroaryl group, an aralkyl group or a heteroaralkyl group is substituted with a fluorine atom. ..
  • Examples of the organic group containing no fluorine atom include an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heteroaryl group, an aralkyl group, and a heteroaralkyl group.
  • phosphate ester containing a fluorine atom examples include tris phosphate (trifluoromethyl), tris phosphate (2,2-difluoroethyl), and tris phosphate (2,2,2-trifluoroethyl).
  • tris phosphate (2,2,2-trifluoroethyl) is preferable because it is not particularly affected by the catalytic action of lithium titanium composite oxide (LTO) or the like.
  • LTO lithium titanium composite oxide
  • the phosphoric acid ester containing these fluorine atoms one type may be used alone, or two or more types may be used in combination.
  • the content of the ether containing a fluorine atom preferably exceeds 5% by volume, and is 7% by volume or more, based on the total amount of the non-aqueous solvent. Is more preferable, 10% by volume or more is further preferable, 15% by volume or more is particularly preferable, and 20% by volume or more is extremely preferable.
  • the content of the ether containing a fluorine atom is 10% by volume or more, the melting point of the electrolytic solution is lowered, and the effect of excellent low temperature characteristics can be obtained.
  • the content of the ether containing a fluorine atom is preferably 80% by volume or less, more preferably 70% by volume or less, and 65% by volume or less, based on the total amount of the non-aqueous solvent, from the viewpoint of input / output characteristics. Is more preferable, and less than 55% by volume is particularly preferable.
  • the ether containing a fluorine atom may contain a fluorine atom and an ether bond, and an organic group containing a fluorine atom and a compound containing an ether bond are preferable, and an organic group containing a fluorine atom independently in one ether bond is used. A compound in which the two are bonded is more preferable.
  • the organic group containing a fluorine atom include a group in which at least one hydrogen atom such as an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heteroaryl group, an aralkyl group or a heteroaralkyl group is substituted with a fluorine atom. ..
  • ether containing a fluorine atom examples include 2,2,2-trifluoroethyl methyl ether, 2,2,2-trifluoroethyldifluoromethyl ether, and 1,1,2,2-tetrafluoroethylmethyl.
  • 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether and 1,1,2,2-tetrafluoroethyl 2,2,3,3- Tetrafluoropropyl ether is preferred.
  • the ether containing these fluorine atoms one type may be used alone, or two or more types may be used in combination.
  • the content of the carboxylic acid ester containing a fluorine atom preferably exceeds 5% by volume, preferably 7% by volume, based on the total amount of the non-aqueous solvent.
  • the above is more preferable, 10% by volume or more is further preferable, 15% by volume or more is particularly preferable, and 20% by volume or more is extremely preferable.
  • the content of the carboxylic acid ester containing a fluorine atom is 10% by volume or more, the melting point of the electrolytic solution is lowered, and the effect of excellent low temperature characteristics can be obtained.
  • the content of the carboxylic acid ester containing a fluorine atom is preferably 50% by volume or less, more preferably 40% by volume or less, based on the total amount of the non-aqueous solvent, from the viewpoint of life characteristics at high temperatures. It is more preferably 30% by volume or less, and particularly preferably less than 30% by volume.
  • the carboxylic acid ester containing a fluorine atom may contain a fluorine atom and an ester bond, and an organic group containing a fluorine atom and a compound containing an ester bond are preferable, and an organic group containing a fluorine atom in the carbon atom of the ester bond is preferable.
  • a compound that is bonded and has an organic group that does not contain a fluorine atom bonded to the oxygen atom of the ester bond is more preferable.
  • Examples of the organic group containing a fluorine atom include a group in which at least one hydrogen atom such as an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heteroaryl group, an aralkyl group or a heteroaralkyl group is substituted with a fluorine atom. ..
  • Examples of the organic group containing no fluorine atom include an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heteroaryl group, an aralkyl group, and a heteroaralkyl group.
  • carboxylic acid ester containing a fluorine atom examples include ethyl pentafluoropropionate, methyl 3,3,3-trifluoropropionate, ethyl 3,3,3-trifluoropropionate, 2,2,3.
  • Methyl 3-tetrafluoropropionate 2,2-difluoroethyl acetate, Methyl heptafluoroisobutyrate, Methyl 2,3,3,3-tetrafluoropropionate, Methyl pentafluoropropionate, 2- (trifluoromethyl) -3,3,3-Methyl trifluoropropionate, ethyl heptafluorobutyrate, 2,2,2-trifluoroethyl acetate, ethyl trifluoroacetate, isopropyl trifluoroacetate, tert-butyl trifluoroacetate, 4,4 Ethyl 4-trifluorobutyrate, methyl 4,4,4-trifluorobutyrate, butyl difluoroacetate, ethyl difluoroacetate, methyl difluoroacetate, n-butyl trifluoroacetate, 2,2,3,3-t
  • ethyl trifluoroacetate and methyl difluoroacetate are preferable from the viewpoint of input / output characteristics.
  • the carboxylic acid ester containing these fluorine atoms one type may be used alone, or two or more types may be used in combination.
  • the non-aqueous solvent preferably further contains dimethyl carbonate.
  • Dimethyl carbonate is excellent in oxidation resistance and reduction resistance, and it is presumed that the charge / discharge cycle characteristics of the lithium ion secondary battery are improved by adding it to the electrolytic solution.
  • the content of dimethyl carbonate is preferably 5% by volume or more, preferably 15% by volume or more, based on the total amount of the non-aqueous solvent from the viewpoint of charge / discharge cycle characteristics. More preferably, it is more preferably 30% by volume or more, and particularly preferably 50% by volume or more. Further, from the viewpoint of low temperature characteristics, it is preferably 80% by volume or less, more preferably 70% by volume or less, further preferably 65% by volume or less, and 55 by volume, based on the total amount of the non-aqueous solvent. It is particularly preferable that the volume is% or less.
  • the content volume ratio of the phosphoric acid ester containing a fluorine atom to the dimethyl carbonate is 0.05 to 2.5 from the viewpoint of charge / discharge cycle characteristics and suppression of gas generation. It is preferably 0.05 to 1.5, more preferably 0.1 to 1.4, and particularly preferably 0.15 to 1.2.
  • the electrolytic solution of the present disclosure may or may not contain a specific compound and other non-aqueous solvents other than dimethyl carbonate.
  • Other non-aqueous solvents include ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), ethyl methyl sulfone (EMS), vinylene carbonate (VC), methyl ethyl carbonate, ⁇ -butyrolactone, acetonitrile, 1 , 2-Dimethoxyethane, dimethoxymethane, tetrahydrofuran, dioxolane, methylene chloride, and carboxylic acid esters such as methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate (excluding carboxylic acid esters containing fluorine atoms) It may be selected from the group of
  • the total content of the other non-aqueous solvent is preferably less than 30% by volume, preferably 25% by volume or less, based on the total amount of the non-aqueous solvent. It is more preferably 15% by volume or less, and particularly preferably 10% by volume or less.
  • the total content of the other non-aqueous solvents may be 0% by volume with respect to the total amount of the non-aqueous solvent, but it should be 5% by volume or more from the viewpoint of improving safety, input / output characteristics, low temperature characteristics, etc. I hope there is.
  • the other non-aqueous solvent may be used alone or in combination of two or more.
  • the total content of the other non-aqueous solvents described above shall be read as the content of the other non-aqueous solvents.
  • the electrolytic solution can be made safe by using a solvent having a high flash point such as EC or EMS, but these compounds may be inferior in reduction resistance. Therefore, when another non-aqueous solvent is used, if the content of the other non-aqueous solvent with respect to the total amount of the non-aqueous solvent is less than 30% by volume, the deterioration of the charge / discharge cycle characteristics tends to be suppressed.
  • a carboxylic acid ester having a low melting point such as methyl acetate
  • the content of this carboxylic acid ester is less than 30% by volume based on the total amount of the non-aqueous solvent from the viewpoint of input / output characteristics and low temperature characteristics. Is preferable.
  • the preferred range of the carboxylic acid ester content is the same as the preferred range of the total content of the other non-aqueous solvents described above.
  • Lithium salts include LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiFSI (lithium bisfluorosulfonylimide), LiTFSI (lithium bistrifluoromethanesulfonylimide), LiClO 4 , LiB (C). 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 2 CF 3 ) 2, and the like.
  • the lithium salt preferably contains at least one of lithium hexafluorophosphate and lithium tetrafluoroborate. These lithium salts may be used alone or in combination of two or more.
  • the lithium salt is lithium hexafluorophosphate when comprehensively judging the solubility in a solvent, charge / discharge characteristics in the case of a lithium ion secondary battery, input / discharge characteristics, charge / discharge cycle characteristics, etc. preferable.
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.8 mol / L to 4.0 mol / L, more preferably 1.0 mol / L to 3.0 mol / L. It is more preferably 1.2 mol / L to 2.5 mol / L.
  • the electrolytic solution is selected from the group consisting of lithium bisoxalate borate (LiBOB), lithium difluoro (oxalate) borate (LiDFOB), lithium dicyanooxalate borate and lithium cyanofluorooxalate borate from the viewpoint of suppressing the amount of gas generated. It is preferable to contain a lithium salt containing at least one boron atom.
  • the content of the lithium salt containing a boron atom is preferably 0.02% by mass to 10% by mass, more preferably 0.05% by mass to 5% by mass, and 0, based on the total amount of the electrolytic solution. .1% by mass to 3% by mass is more preferable.
  • the electrolytic solution may contain an additive if necessary.
  • the additive is not particularly limited as long as it is an additive for an electrolytic solution of a lithium ion secondary battery, and is, for example, a nitrogen-containing heterocyclic compound, a sulfur-containing heterocyclic compound, and a nitrogen- and sulfur-containing heterocycle compound. Examples thereof include ring compounds, cyclic carboxylic acid esters, fluorine-containing cyclic carbonates, fluorine-containing boric acid esters, and other compounds having unsaturated bonds in the molecule.
  • other additives such as an overcharge inhibitor, a negative electrode film forming agent, a positive electrode protective agent, and a high input / output agent may be used depending on the required function.
  • the capacity ratio (negative electrode capacity / positive electrode capacity) is preferably 1 or less from the viewpoint of charge / discharge cycle characteristics and energy density.
  • the volume ratio (negative electrode capacity / positive electrode capacity) is 1 or less, an increase in the positive electrode potential can be suppressed, so that the decomposition reaction of a non-aqueous solvent such as dimethyl carbonate can be suppressed, and the charge / discharge cycle characteristics are improved. There is a tendency.
  • a specific compound particularly a phosphoric acid ester containing a fluorine atom
  • the capacity ratio (negative electrode capacity / positive electrode capacity) is preferably 0.6 or more and less than 1. When the capacity ratio is 0.6 or more, the battery capacity tends to be improved and the volumetric energy density tends to be improved.
  • the capacity ratio (negative electrode capacity / positive electrode capacity) is more preferably 0.7 to 0.98, and further preferably 0.75 to 0.95 from the viewpoint of volumetric energy density and input characteristics.
  • the "positive electrode capacity” and “negative electrode capacity” are the maximum capacities that can be reversibly obtained when a constant current charge-constant current discharge is performed by forming an electrochemical cell whose counter electrode is metallic lithium, respectively. Means. Further, the negative electrode capacity indicates [the discharge capacity of the negative electrode], and the positive electrode capacity indicates [the discharge capacity of the positive electrode].
  • [the discharge capacity of the negative electrode] is defined as being calculated by the charging / discharging device when the lithium ions inserted in the negative electrode active material are desorbed. Further, [discharge capacity of the positive electrode] is defined as being calculated by the charging / discharging device when lithium ions are inserted into the positive electrode active material.
  • the “positive electrode capacity” and the “negative electrode capacity” are in the voltage range in the electrochemical cell. 4.95V to 3.5V and 1.0V to 2.0V, respectively, and the current density during constant current charging and constant current discharging is 0.37mA / cm 2 for the positive electrode capacity and 0.37mA for the negative electrode capacity.
  • the capacity is defined as / cm 2 and is the capacity obtained when evaluated by performing the above charging and discharging.
  • the direction in which lithium ions are inserted from the negative electrode active material such as lithium titanium composite oxide is defined as charging, and the direction in which lithium ions are desorbed is defined as discharging. Further, in the electrochemical cell, the direction in which lithium ions are desorbed from the lithium-nickel-manganese composite oxide which is the positive electrode active material is defined as charging, and the direction in which lithium ions are inserted is defined as discharging.
  • the positive electrode capacity tends to increase by increasing the amount of the positive electrode active material contained in the positive electrode, and tends to decrease by decreasing the amount.
  • the negative electrode capacity like the positive electrode capacity, increases or decreases depending on the amount of the negative electrode active material.
  • the shape of the lithium ion secondary battery of the present disclosure can be various shapes such as a cylindrical type, a laminated type, a coin type, and a laminated type. Regardless of the shape, a separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the area between the positive electrode current collector and the negative electrode current collector and the positive electrode terminal and the negative electrode terminal leading to the outside is collected. A lithium ion secondary battery is completed by connecting using an electric lead or the like and sealing this electrode body together with an electrolytic solution in a battery case.
  • a laminated lithium ion secondary battery in which a positive electrode plate and a negative electrode plate are laminated via a separator will be described, but the present disclosure is not limited thereto.
  • FIG. 1 is a perspective view showing an example of the lithium ion secondary battery of the present disclosure.
  • FIG. 2 is a perspective view showing a positive electrode plate, a negative electrode plate, and a separator constituting the electrode group.
  • the size of the members in each figure is conceptual, and the relative relationship between the members is not limited to this. Further, members having substantially the same function may be given the same reference numerals throughout the drawings, and duplicate description may be omitted.
  • the lithium ion secondary battery 10 of FIG. 1 contains an electrode group 20 and an electrolytic solution in a battery exterior body 6 of a laminated film, and has a positive electrode current collecting tab 2 and a negative electrode current collecting tab 4 in the battery exterior body 6. I try to take it out.
  • the electrode group 20 is a stack of a positive electrode plate 1 to which the positive electrode current collecting tab 2 is attached, a separator 5, and a negative electrode plate 3 to which the negative electrode current collecting tab 4 is attached.
  • the size, shape, and the like of the positive electrode plate, the negative electrode plate, the separator, the electrode group, and the battery can be arbitrary, and are not limited to those shown in FIGS. 1 and 2.
  • Examples of the material of the battery exterior 6 include a laminated film made of aluminum, SUS, aluminum, copper, stainless steel and the like.
  • FIG. 3 is a cross-sectional view showing another form of the lithium ion secondary battery of the present disclosure.
  • the lithium ion secondary battery 11 has a battery exterior body 16 made of nickel-plated steel and having a bottomed cylindrical shape.
  • the electrode group 15 is housed in the battery exterior body 16.
  • the strip-shaped positive electrode plate 12 and the negative electrode plate 13 are wound in a spiral cross section via a separator 14 of a porous sheet made of polyolefin such as polyethylene or polypropylene.
  • the separator 14 is set to, for example, a width of 58 mm and a thickness of 20 ⁇ m.
  • a ribbon-shaped positive electrode tab terminal made of aluminum whose one end is fixed to the positive electrode plate 12 is led out.
  • the other end of the positive electrode tab terminal is arranged above the electrode group 15 and is ultrasonically bonded to the lower surface of the disk-shaped battery lid that serves as the positive electrode external terminal.
  • a ribbon-shaped negative electrode tab terminal made of nickel whose one end is fixed to the negative electrode plate 13 is led out.
  • the other end of the negative electrode tab terminal is joined to the inner bottom of the battery exterior 16 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are led out to opposite sides of both end faces of the electrode group 15, respectively.
  • the entire circumference of the outer peripheral surface of the electrode group 15 is provided with an insulating coating (not shown).
  • the battery lid is caulked and fixed to the upper part of the battery exterior 16 via an insulating resin gasket. Therefore, the inside of the lithium ion secondary battery 11 is sealed. Further, an electrolytic solution (not shown) is injected into the battery exterior body 16.
  • the size, shape, and the like of the positive electrode plate, the negative electrode plate, the separator, the electrode group, and the battery can be arbitrary, and are not limited to those shown in FIG.
  • the positive electrode is a spinel-type lithium-nickel-manganese composite oxide (LiNi 0.5 Mn 1.5 O 4 , BET specific surface area: 0.31 m 2 / g, median diameter D50: 16.9 ⁇ m), which is a positive electrode active material.
  • lithium titanate BET specific surface area: 6.5 m 2 / g, median diameter D50: 7.3 ⁇ m
  • acetylene black acetylene black
  • Li400, Denka Co., Ltd. is mixed by 4 parts by mass
  • polyvinylidene fluoride KF polymer # 9130, Kureha Co., Ltd.
  • KF polymer # 9130, Kureha Co., Ltd. is mixed by 5 parts by mass as a binder, and an appropriate amount of N-methyl-2-pyrrolidone is added and kneaded.
  • This slurry was applied to one side of an aluminum foil having a thickness of 15 ⁇ m, which is a current collector for the negative electrode, so as to have a solid content of 100 g / m 2 of the negative electrode mixture. Then, it was dried to obtain a dry coating film. This dried coating film was compacted by pressing until the density became 2.0 g / cm 3 as the solid content of the negative electrode mixture to prepare a sheet-shaped negative electrode. The thickness of the layer containing the negative electrode mixture was 50 ⁇ m. This was cut into a width of 30 mm and a length of 45 mm to obtain a negative electrode plate, and as shown in FIG. 2, a negative electrode current collecting tab was attached to this negative electrode plate.
  • an aqueous solution prepared by dissolving 0.968 g of ammonium persulfate as a polymerization initiator in 76 g of purified water was added, and immediately, 183.8 g of acrylonitrile as a nitrile group-containing monomer and 9.7 g of acrylic acid as a carboxyl group-containing monomer ( A ratio of 0.039 mol to 1 mol of acrylonitrile) and 6.5 g of monomeric methoxytriethylene glycol acrylate (Shin-Nakamura Chemical Industry Co., Ltd., trade name: NK ester AM-30G) (to 1 mol of acrylonitrile)
  • the mixed solution (at a ratio of 0.0085 mol) was added dropwise over 2 hours while maintaining the temperature of the reaction system at 74 ⁇ 2 ° C.
  • an aqueous solution prepared by dissolving 0.25 g of ammonium persulfate in 21.3 g of purified water was added to the suspended reaction system, the temperature was raised to 84 ° C., and then the temperature of the reaction system was maintained at 84 ⁇ 2 ° C. The reaction proceeded for 2.5 hours. Then, after cooling to 40 ° C. over 1 hour, stirring was stopped and the mixture was allowed to cool overnight at room temperature to obtain a reaction solution in which the binder resin composition was precipitated. The reaction solution was suction-filtered, and the collected wet precipitate was washed 3 times with 1800 g of purified water and then vacuum-dried at 80 ° C. for 10 hours to isolate and purify to obtain a binder resin composition.
  • the prepared positive electrode plate and the negative electrode plate were opposed to each other via a separator made of a polypropylene single-layer film (vacancy ratio 50%) having a thickness of 15 ⁇ m, a width of 35 mm, and a length of 50 mm to prepare a laminated electrode group.
  • a separator made of a polypropylene single-layer film (vacancy ratio 50%) having a thickness of 15 ⁇ m, a width of 35 mm, and a length of 50 mm to prepare a laminated electrode group.
  • the electrode group is housed in a battery exterior body made of an aluminum laminate film, and after injecting an electrolytic solution into the battery exterior body, the positive electrode current collecting tab and the negative electrode collection are described.
  • the lithium ion secondary battery of Comparative Example 1 was produced by closing the opening of the battery container so as to take out the electric tab to the outside.
  • the aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene or the like).
  • the prepared lithium ion secondary battery was left at room temperature for half a day, and then subjected to constant current charging and constant current discharging for 3 cycles in a voltage range of 2.0 V to 3.5 V at 40 ° C. and a current value of 0.2 C.
  • this electrode group is housed in a battery outer body made of an aluminum laminated film, and after injecting an electrolytic solution into the battery outer body, a positive electrode current collecting tab and a counter electrode current collecting tab are used.
  • a lithium ion secondary battery was produced by sealing the opening of the battery exterior body so as to take out the battery to the outside.
  • the aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene or the like).
  • PET polyethylene terephthalate
  • aluminum foil / sealant layer polypropylene or the like.
  • an electrolytic solution an EC / DMC mixed solvent having a LiPF 6 concentration of 1.2 mol / L (EC: DMC has a volume ratio of 3: 7) was used.
  • the positive electrode capacity is the discharge capacity obtained when evaluated by charging / discharging with a voltage range of 4.95 V to 3.5 V and a current density of 0.37 mA / cm 2 during constant current charging and constant current discharging. did. As a result of the measurement, the capacity of the positive electrode for Comparative Example 1 was 25 mAh.
  • the volume of the lithium ion secondary battery of Comparative Example 1 was measured with a hydrometer (MDS-300, Alpha Mirage Co., Ltd.) (initial volume).
  • the above lithium ion secondary battery is constantly charged at 50 ° C. with a current value of 1C and a charge termination voltage of 3.5V using a charging / discharging device (BATTERY TEST UNIT, IEM Co., Ltd.), and paused for 15 minutes. After that, constant current discharge was performed with a current value of 1C and a discharge end voltage of 2.6V.
  • C used as a unit of a current value means "current value (A) / battery capacity (Ah)".
  • Example 1 to 11 Lithium-ion secondary batteries of Examples 1 to 11 and Comparative Example 2 were produced in the same manner as in Comparative Example 1 except that the composition of the non-aqueous solvent was changed as shown in Table 1, and the same as in Comparative Example 1. evaluated. The obtained evaluation results are shown in Table 1.
  • the one-sided coating amount of the positive electrode mixture and the density of the positive electrode mixture were fixed so that the volume ratio (negative electrode capacity / positive electrode capacity) was 0.85.
  • the single-sided coating amount of the negative electrode mixture and the density of the negative electrode mixture were changed.
  • Example 1 in which the electrolytic solution contains more than 5% by volume of a specific compound, the amount of gas generated is 0.3 mL or less, and Comparative Example 1 and the electrolytic solution containing 5% by volume of the specific compound are specified. The amount of gas generated was suppressed as compared with Comparative Example 2 which did not contain the compound of.
  • Lithium-ion secondary batteries of Examples 12 to 17 were prepared in the same manner as in Comparative Example 1 except that the composition of the non-aqueous solvent was changed as shown in Table 2, and evaluated in the same manner as in Comparative Example 1.
  • the volume after 300 cycles was also measured, and the amount of gas generated from 100 cycles to 300 cycles was also calculated by the following formula.
  • the volume of Comparative Example 2 after 300 cycles was also measured, and the amount of gas generated from 100 cycles to 300 cycles was calculated by the following formula.
  • Amount of gas generated from 100 cycles to 300 cycles (mL) (volume after 300 cycles)-(volume after 100 cycles) The obtained evaluation results are shown in Table 2.
  • ethers containing fluorine atoms are as follows.
  • FE1 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether
  • FE2 2,2,3,3,4,5,5-octafluoropentyl 1,1, 2,2-Tetrafluoroethyl ether
  • FE3 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether
  • Example 18 to 26 Lithium-ion secondary batteries of Examples 18 to 26 were prepared in the same manner as in Comparative Example 1 except that the composition of the non-aqueous solvent was changed as shown in Table 3, and evaluated in the same manner as in Comparative Example 1. Further, in Examples 18 to 24 and 26, FE1 (1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether) was used as the ether containing a fluorine atom. The obtained evaluation results are shown in Table 3. In Examples 18 to 26, the negative electrode mixture was prepared after fixing the one-sided coating amount of the positive electrode mixture and the positive electrode mixture density so that the volume ratio (negative electrode capacity / positive electrode capacity) was 0.85. The single-side coating amount and the negative electrode mixture density were changed.
  • Example 18 to 26 in which the electrolytic solution contains more than 5% by volume of the specific compound, the amount of gas generated is 0.3 mL or less, and Comparative Example 1 containing the specific compound in which the electrolytic solution contains 5% by volume and the electrolytic solution are specified. The amount of gas generated was suppressed as compared with Comparative Example 2 which did not contain the compound of.

Abstract

A lithium ion secondary battery which is provided with: a positive electrode that contains, as a positive electrode active material, an active material into which lithium ions are intercalated and deintercalated at a potential of 4.5 V or more with respect to the lithium potential; a negative electrode that contains, as a negative electrode active material, an active material into which lithium ions are intercalated and deintercalated at a potential of 0.4 V or more with respect to the lithium potential; a separator that is interposed between the positive electrode and the negative electrode; and an electrolyte solution that contains a lithium salt and a nonaqueous solvent. This lithium ion secondary battery is configured such that: the nonaqueous solvent contains at least one compound that is selected from the group consisting of phosphoric acid esters which contain fluorine atoms, ethers which contain fluorine atoms and carboxylic acid esters which contain fluorine atoms; and the content of the compound is more than 5% by volume with respect to the total amount of the nonaqueous solvent.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
 非水電解質二次電池の一種であるリチウムイオン二次電池は、高エネルギー密度の二次電池であり、その特性を活かして、ノートパソコン、携帯電話等のポータブル機器の電源に使用されている。 Lithium-ion secondary batteries, which are a type of non-aqueous electrolyte secondary batteries, are secondary batteries with high energy density, and are used as power sources for portable devices such as laptop computers and mobile phones by taking advantage of their characteristics.
 リチウムイオン二次電池は、近年、小型化が進む電子機器用電源、電力貯蔵用電源、電気自動車用電源等としても注目されており、更なる高エネルギー密度のリチウムイオン二次電池が要求されている。
 エネルギー密度を向上させる手段としては、例えば、高い作動電位を示すスピネル型のリチウム・ニッケル・マンガン複合酸化物を正極活物質に用いる方法がある。しかし、高い電位のため、従来の環状カーボネート及び鎖状カーボネートを用いた電解液では、正極活物質と電解液との接触部分で環状カーボネート又は鎖状カーボネートが酸化分解することがある。さらに、この酸化分解により生じた生成物は、低電位である負極側に堆積又は析出して抵抗になり、リチウムイオン二次電池の容量を低下させることがある。これらの現象により、高い作動電位を示す正極活物質を用いるリチウムイオン二次電池では、十分な充放電サイクル特性が得られないという課題があった。
 これを解決する手段として、負極活物質としてリチウムチタン複合酸化物を有する負極と、ジエチルカーボネート(DEC)の含有率が80体積%以上の非水溶媒を含む電解液と、を用いるリチウムイオン二次電池が提案されている(例えば、特許文献1参照)。
In recent years, lithium-ion secondary batteries have been attracting attention as power supplies for electronic devices, power storage power supplies, power supplies for electric vehicles, etc., which are becoming smaller and smaller, and lithium-ion secondary batteries with even higher energy densities are required. There is.
As a means for improving the energy density, for example, there is a method of using a spinel-type lithium-nickel-manganese composite oxide showing a high working potential as a positive electrode active material. However, due to the high potential, in the conventional electrolytic solution using cyclic carbonate and chain carbonate, the cyclic carbonate or chain carbonate may be oxidatively decomposed at the contact portion between the positive electrode active material and the electrolytic solution. Further, the product produced by this oxidative decomposition may be deposited or precipitated on the negative electrode side having a low potential to become a resistance, which may reduce the capacity of the lithium ion secondary battery. Due to these phenomena, there is a problem that a lithium ion secondary battery using a positive electrode active material showing a high working potential cannot obtain sufficient charge / discharge cycle characteristics.
As a means for solving this, a lithium ion secondary using a negative electrode having a lithium titanium composite oxide as a negative electrode active material and an electrolytic solution containing a non-aqueous solvent having a diethyl carbonate (DEC) content of 80% by volume or more is used. Batteries have been proposed (see, for example, Patent Document 1).
特開2006-66341号公報Japanese Unexamined Patent Publication No. 2006-66341
 特許文献1には、ジエチルカーボネートは、正極近傍での非水溶媒の酸化分解の低減に貢献する点が言及されている。そのため、特許文献1によれば、電解液の酸化分解により生じた生成物の負極側での堆積又は析出を抑制することができるようになると考えられる。
 しかしながら、負極のリチウムチタン複合酸化物が触媒的に働くことにより、環状カーボネート、鎖状カーボネート等の非水溶媒の還元分解が促進され、水素等のガスが発生しやすいという問題がある。
Patent Document 1 mentions that diethyl carbonate contributes to the reduction of oxidative decomposition of the non-aqueous solvent in the vicinity of the positive electrode. Therefore, according to Patent Document 1, it is considered that the deposition or precipitation of the product generated by the oxidative decomposition of the electrolytic solution on the negative electrode side can be suppressed.
However, there is a problem that the lithium titanium composite oxide of the negative electrode acts catalytically to promote the reductive decomposition of non-aqueous solvents such as cyclic carbonate and chain carbonate, and to easily generate gas such as hydrogen.
 本開示は、上記事情に鑑みてなされたものであり、ガスの発生が抑制されたリチウムイオン二次電池を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a lithium ion secondary battery in which gas generation is suppressed.
 前記課題を解決するための具体的手段は以下の通りである。
<1> リチウム電位に対して4.5V以上の電位にてリチウムイオンが挿入及び脱離する活物質を正極活物質として含む正極と、
 リチウム電位に対して0.4V以上の電位にてリチウムイオンが挿入及び脱離する活物質を負極活物質として含む負極と、
 前記正極と前記負極との間に介在するセパレータと、
 リチウム塩及び非水溶媒を含む電解液と、を備え、
 前記非水溶媒は、フッ素原子を含むリン酸エステル、フッ素原子を含むエーテル及びフッ素原子を含むカルボン酸エステルからなる群より選択される少なくとも1つの化合物を含み、前記化合物の含有率は、前記非水溶媒の全量に対して5体積%超であるリチウムイオン二次電池。
<2> 前記化合物の含有率は、前記非水溶媒の全量に対して90体積%以下である<1>に記載のリチウムイオン二次電池。
<3> 前記非水溶媒は、ジメチルカーボネートをさらに含む<1>又は<2>に記載のリチウムイオン二次電池。
<4> 前記ジメチルカーボネートの含有率は、前記非水溶媒の全量に対して5体積%~80体積%である<3>に記載のリチウムイオン二次電池。
<5> 前記非水溶媒が前記フッ素原子を含むリン酸エステルを含み、前記フッ素原子を含むリン酸エステルと前記ジメチルカーボネートとの含有体積比(フッ素原子を含むリン酸エステル/ジメチルカーボネート)は、0.05~2.5である<3>又は<4>に記載のリチウムイオン二次電池。
<6> 前記非水溶媒が前記フッ素原子を含むリン酸エステルを含み、前記フッ素原子を含むリン酸エステルは、リン酸トリス(2,2,2-トリフルオロエチル)を含む<1>~<5>のいずれか1つに記載のリチウムイオン二次電池。
<7> 前記負極の負極容量と前記正極の正極容量との容量比(負極容量/正極容量)は、1以下である<1>~<6>のいずれか1つに記載のリチウムイオン二次電池。
<8> 前記セパレータの空孔率は、20%~80%である<1>~<7>のいずれか1つに記載のリチウムイオン二次電池。
<9> 前記非水溶媒は、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチルメチルスルホン、ビニレンカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、アセトニトリル、1,2-ジメトキシエタン、ジメトキシメタン、テトラヒドロフラン、ジオキソラン及び塩化メチレンからなる群より選択されるその他の非水溶媒をいずれも含まないか、又は、前記その他の非水溶媒の合計含有率は、前記非水溶媒の全量に対して30体積%未満である<1>~<8>のいずれか1つに記載のリチウムイオン二次電池。
<10> 前記非水溶媒が前記フッ素原子を含むエーテルを含み、前記フッ素原子を含むエーテルは、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル及び1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテルの少なくとも一方を含む<1>~<9>のいずれか1つに記載のリチウムイオン二次電池。
<11> 前記非水溶媒が前記フッ素原子を含むカルボン酸エステルを含み、前記フッ素原子を含むカルボン酸エステルは、トリフルオロ酢酸エチル及びジフルオロ酢酸メチルの少なくとも一方を含む<1>~<10>のいずれか1つに記載のリチウムイオン二次電池。
<12> 前記電解液は、リチウムビスオキサレートボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムジシアノオキサレートボレート及びリチウムシアノフルオロオキサレートボレートからなる群より選択される少なくとも1つのホウ素原子を含むリチウム塩を含み、
 前記ホウ素原子を含むリチウム塩の含有率は、前記電解液の全量に対して0.02質量%~10質量%である<1>~<11>のいずれか1つに記載のリチウムイオン二次電池。
<13> 前記リチウム塩は、ヘキサフルオロリン酸リチウム及びテトラフルオロホウ酸リチウムの少なくとも一方を含む<1>~<12>のいずれか1つに記載のリチウムイオン二次電池。
<14> 前記非水溶媒は、フッ素原子を含むカルボン酸エステルを除くカルボン酸エステルを含み、
 前記フッ素原子を含むカルボン酸エステルを除くカルボン酸エステルの含有率は、前記非水溶媒の全量に対して30体積%未満である<1>~<13>のいずれか1つに記載のリチウムイオン二次電池。
Specific means for solving the above problems are as follows.
<1> A positive electrode containing an active material in which lithium ions are inserted and removed at a potential of 4.5 V or more with respect to the lithium potential as a positive electrode active material, and
A negative electrode containing an active material in which lithium ions are inserted and removed at a potential of 0.4 V or more with respect to the lithium potential as a negative electrode active material, and a negative electrode.
A separator interposed between the positive electrode and the negative electrode,
With an electrolytic solution containing a lithium salt and a non-aqueous solvent,
The non-aqueous solvent contains at least one compound selected from the group consisting of a phosphoric acid ester containing a fluorine atom, an ether containing a fluorine atom, and a carboxylic acid ester containing a fluorine atom, and the content of the compound is the non-aqueous solvent. A lithium ion secondary battery that is more than 5% by volume based on the total amount of the aqueous solvent.
<2> The lithium ion secondary battery according to <1>, wherein the content of the compound is 90% by volume or less based on the total amount of the non-aqueous solvent.
<3> The lithium ion secondary battery according to <1> or <2>, wherein the non-aqueous solvent further contains dimethyl carbonate.
<4> The lithium ion secondary battery according to <3>, wherein the content of the dimethyl carbonate is 5% by volume to 80% by volume with respect to the total amount of the non-aqueous solvent.
<5> The non-aqueous solvent contains the phosphoric acid ester containing the fluorine atom, and the content volume ratio of the phosphoric acid ester containing the fluorine atom to the dimethyl carbonate (phosphate ester containing the fluorine atom / dimethyl carbonate) is determined. The lithium ion secondary battery according to <3> or <4>, which is 0.05 to 2.5.
<6> The non-aqueous solvent contains the phosphoric acid ester containing the fluorine atom, and the phosphoric acid ester containing the fluorine atom contains tris phosphate (2,2,2-trifluoroethyl) <1> to < The lithium ion secondary battery according to any one of 5>.
<7> The lithium ion secondary according to any one of <1> to <6>, wherein the capacity ratio (negative electrode capacity / positive electrode capacity) of the negative electrode capacity of the negative electrode to the positive electrode capacity of the positive electrode is 1 or less. battery.
<8> The lithium ion secondary battery according to any one of <1> to <7>, wherein the porosity of the separator is 20% to 80%.
<9> The non-aqueous solvent is ethylene carbonate, diethyl carbonate, propylene carbonate, ethyl methyl sulfone, vinylene carbonate, methyl ethyl carbonate, γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane, dimethoxymethane, tetrahydrofuran, dioxolane and chloride. It does not contain any of the other non-aqueous solvents selected from the group consisting of methylene, or the total content of the other non-aqueous solvents is less than 30% by volume based on the total amount of the non-aqueous solvent < The lithium ion secondary battery according to any one of 1> to <8>.
<10> The non-aqueous solvent contains the ether containing the fluorine atom, and the ether containing the fluorine atom includes 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether and 1,1. , 2,2-Tetrafluoroethyl The lithium ion secondary battery according to any one of <1> to <9>, which contains at least one of 2,2,3,3-tetrafluoropropyl ether.
<11> In <1> to <10>, the non-aqueous solvent contains the carboxylic acid ester containing the fluorine atom, and the carboxylic acid ester containing the fluorine atom contains at least one of ethyl trifluoroacetate and methyl difluoroacetate. The lithium ion secondary battery according to any one.
<12> The electrolytic solution contains a lithium salt containing at least one boron atom selected from the group consisting of lithium bisoxalate borate, lithium difluoro (oxalate) borate, lithium dicyanooxalate borate and lithium cyanofluorooxalate borate. Including
The lithium ion secondary according to any one of <1> to <11>, wherein the content of the lithium salt containing a boron atom is 0.02% by mass to 10% by mass with respect to the total amount of the electrolytic solution. battery.
<13> The lithium ion secondary battery according to any one of <1> to <12>, wherein the lithium salt contains at least one of lithium hexafluorophosphate and lithium tetrafluoroborate.
<14> The non-aqueous solvent contains a carboxylic acid ester other than a carboxylic acid ester containing a fluorine atom.
The lithium ion according to any one of <1> to <13>, wherein the content of the carboxylic acid ester excluding the carboxylic acid ester containing a fluorine atom is less than 30% by volume based on the total amount of the non-aqueous solvent. Secondary battery.
 本開示によれば、ガスの発生が抑制されたリチウムイオン二次電池を提供することができる。 According to the present disclosure, it is possible to provide a lithium ion secondary battery in which gas generation is suppressed.
本開示のリチウムイオン二次電池の一例を示す斜視図である。It is a perspective view which shows an example of the lithium ion secondary battery of this disclosure. 電極群を構成する正極板、負極板及びセパレータを示す斜視図である。It is a perspective view which shows the positive electrode plate, the negative electrode plate and a separator which constitute an electrode group. 本開示のリチウムイオン二次電池の他の形態を示す断面図である。It is sectional drawing which shows the other form of the lithium ion secondary battery of this disclosure.
 以下、本発明のリチウムイオン二次電池の実施形態について説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本開示において各成分の含有率は、各成分に該当する物質が複数種存在する場合、特に断らない限り、当該複数種の物質の合計率を意味する。また、本開示において各成分の粒径は、各成分に該当する粒子が複数種存在する場合、特に断らない限り、当該複数種の粒子の混合物についての値を意味する。
 本開示において「膜」とは、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。
 本開示において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において、正極合剤又は負極合剤の「固形分」とは、正極合剤又は負極合剤から有機溶剤等の揮発性成分を除いた残りの成分を意味する。
Hereinafter, embodiments of the lithium ion secondary battery of the present invention will be described. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention.
The numerical range indicated by using "-" in the present disclosure indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
Further, in the present disclosure, the content rate of each component means the total rate of the plurality of kinds of substances when there are a plurality of kinds of substances corresponding to each component, unless otherwise specified. Further, in the present disclosure, the particle size of each component means a value for a mixture of the plurality of types of particles when a plurality of types of particles corresponding to each component are present, unless otherwise specified.
In the present disclosure, the term "film" includes not only a shape structure formed on the entire surface but also a shape structure formed on a part thereof when observed as a plan view.
In the present disclosure, the term "layer" includes not only the shape structure formed on the entire surface but also the shape structure formed on a part thereof when observed as a plan view. The term "laminated" refers to stacking layers, with two or more layers bonded together and two or more layers detachable.
In the present disclosure, the "solid content" of the positive electrode mixture or the negative electrode mixture means the remaining components obtained by removing volatile components such as organic solvents from the positive electrode mixture or the negative electrode mixture.
〔リチウムイオン二次電池〕
 本開示のリチウムイオン二次電池は、リチウム電位に対して4.5V以上の電位にてリチウムイオンが挿入及び脱離する活物質(以下、「特定正極活物質」と称することがある)を正極活物質として含む正極と、リチウム電位に対して0.4V以上の電位にてリチウムイオンが挿入及び脱離する活物質(以下、「特定負極活物質」と称することがある)を負極活物質として含む負極と、前記正極と前記負極との間に介在するセパレータと、リチウム塩及び非水溶媒を含む電解液と、を備え、前記非水溶媒は、フッ素原子を含むリン酸エステル、フッ素原子を含むエーテル及びフッ素原子を含むカルボン酸エステルからなる群より選択される少なくとも1つの化合物を含み、前記化合物の含有率は、前記非水溶媒の全量に対して5体積%超である。
[Lithium-ion secondary battery]
In the lithium ion secondary battery of the present disclosure, an active material (hereinafter, may be referred to as "specific positive electrode active material") into which lithium ions are inserted and removed at a potential of 4.5 V or more with respect to the lithium potential is used as a positive electrode. A positive electrode contained as an active material and an active material in which lithium ions are inserted and removed at a potential of 0.4 V or more with respect to the lithium potential (hereinafter, may be referred to as "specific negative electrode active material") are used as the negative electrode active material. A negative electrode containing a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution containing a lithium salt and a non-aqueous solvent are provided, and the non-aqueous solvent contains a phosphoric acid ester containing a fluorine atom and a fluorine atom. It contains at least one compound selected from the group consisting of a carboxylic acid ester containing an ether and a fluorine atom, and the content of the compound is more than 5% by volume based on the total amount of the non-aqueous solvent.
 なお、本開示のリチウムイオン二次電池は、負極が、リチウム電位に対して0.4V以上の電位にてリチウムイオンが挿入及び脱離する負極活物質を含有しているため、本開示のリチウムイオン二次電池は、負極の電位が0.4V以上において「電池」として実質的に作動するものである。例えば、負極に黒鉛を主に用いた従来型のリチウムイオン二次電池を過放電状態としたときに負極電位が上昇して0.4V以上に至ることが仮にあったとしても、このような電池は、実態として、負極が0.4V以上の電位で作動するリチウムイオン二次電池とはいえず、本発明の範囲から除外される。本発明において、負極がリチウム電位に対して0.4V以上の電位にてリチウムイオンが挿入及び脱離する負極活物質を含んでいるというためには、リチウムイオン二次電池が通常使用される条件下において放電が行われるとき、その放電電気量の少なくとも50%以上が、負極電位が0.4V以上の負極作動領域と対応して担われていることを要する。すなわち、実質的に、負極の作動電位がLi/Liに対して0.4V以上であることを要する。 In the lithium ion secondary battery of the present disclosure, since the negative electrode contains a negative electrode active material in which lithium ions are inserted and removed at a potential of 0.4 V or more with respect to the lithium potential, the lithium of the present disclosure is disclosed. The ion secondary battery substantially operates as a "battery" when the potential of the negative electrode is 0.4 V or higher. For example, even if the negative electrode potential rises to 0.4 V or higher when a conventional lithium ion secondary battery mainly using graphite for the negative electrode is in an over-discharged state, such a battery Is, in reality, not a lithium ion secondary battery in which the negative electrode operates at a potential of 0.4 V or higher, and is excluded from the scope of the present invention. In the present invention, in order to say that the negative electrode contains a negative electrode active material into which lithium ions are inserted and removed at a potential of 0.4 V or more with respect to the lithium potential, a condition in which a lithium ion secondary battery is normally used is used. When discharging is performed underneath, it is required that at least 50% or more of the amount of discharged electricity is carried in correspondence with the negative electrode operating region having a negative electrode potential of 0.4 V or more. That is, it is substantially required that the operating potential of the negative electrode is 0.4 V or more with respect to Li / Li + .
 本開示のリチウムイオン二次電池は、電解液の非水溶媒がフッ素原子を含むリン酸エステル、フッ素原子を含むエーテル及びフッ素原子を含むカルボン酸エステルからなる群より選択される少なくとも1つの化合物(以下、「特定の化合物」と称することがある)を5体積%超含むため、ガスの発生が抑制されている。その理由は明確ではないが、以下のように推察される。
 特定の化合物(特にフッ素原子を含むリン酸エステルが好ましい)は、耐酸化性に優れるため、スピネル型のリチウム・ニッケル・マンガン複合酸化物等を正極活物質として含むような高電位の正極を用いた場合でも分解されにくい。さらに、特定の化合物は、リチウムチタン複合酸化物(LTO)等の触媒作用を受けないため還元分解されにくい。よって、電解液の非水溶媒が特定の化合物を所定量含むことで、非水溶媒の分解によるガスの発生が抑制されていると考えられる。
In the lithium ion secondary battery of the present disclosure, at least one compound in which the non-aqueous solvent of the electrolytic solution is selected from the group consisting of a phosphoric acid ester containing a fluorine atom, an ether containing a fluorine atom and a carboxylic acid ester containing a fluorine atom ( Since it contains more than 5% by volume (hereinafter, may be referred to as "specific compound"), gas generation is suppressed. The reason is not clear, but it can be inferred as follows.
Since a specific compound (particularly a phosphoric acid ester containing a fluorine atom) has excellent oxidation resistance, a high-potential positive electrode containing a spinel-type lithium-nickel-manganese composite oxide or the like as a positive electrode active material is used. It is hard to be disassembled even if it is present. Furthermore, the specific compound is not easily reduced and decomposed because it is not catalyzed by a lithium titanium composite oxide (LTO) or the like. Therefore, it is considered that the generation of gas due to the decomposition of the non-aqueous solvent is suppressed by containing a predetermined amount of the specific compound in the non-aqueous solvent of the electrolytic solution.
(正極活物質)
 本開示のリチウムイオン二次電池では、特定正極活物質が正極活物質として用いられる。正極活物質に占める特定正極活物質の含有率は、50質量%~100質量%であることが好ましい。正極活物質に占める特定正極活物質の含有率が50質量%以上であれば、リチウムイオン二次電池のエネルギー密度がより向上する傾向にある。
 正極活物質に占める特定正極活物質の含有率は、70質量%~100質量%であることがより好ましく、80質量%~100質量%であることがさらに好ましい。
(Positive electrode active material)
In the lithium ion secondary battery of the present disclosure, the specific positive electrode active material is used as the positive electrode active material. The content of the specific positive electrode active material in the positive electrode active material is preferably 50% by mass to 100% by mass. When the content of the specific positive electrode active material in the positive electrode active material is 50% by mass or more, the energy density of the lithium ion secondary battery tends to be further improved.
The content of the specific positive electrode active material in the positive electrode active material is more preferably 70% by mass to 100% by mass, and further preferably 80% by mass to 100% by mass.
 本開示において、特定正極活物質とは、「リチウムイオンの挿入反応及び脱離反応が、リチウム電位に対して4.5Vより卑な電位ではほとんど起こらず、リチウム電位に対して4.5V以上の電位にて専らなされる活物質」のことである。
 具体的には、「リチウム電位に対して4.5V以上の電位においてリチウムイオンの挿入反応及び脱離反応が活物質の単位質量当たり少なくとも80mAh/g以上の電気化学的容量を伴ってなされる活物質」のことである。例えば、スピネル型のリチウム・ニッケル・マンガン複合酸化物が挙げられる。
In the present disclosure, the specific positive electrode active material means that "the insertion reaction and the desorption reaction of lithium ions hardly occur at a potential lower than 4.5V with respect to the lithium potential, and 4.5V or more with respect to the lithium potential. It is an active material that is exclusively used by electric potential.
Specifically, "Activities in which the insertion reaction and desorption reaction of lithium ions are carried out at a potential of 4.5 V or more with respect to the lithium potential with an electrochemical capacity of at least 80 mAh / g or more per unit mass of the active material. It means "substance". For example, a spinel-type lithium-nickel-manganese composite oxide can be mentioned.
 本開示のリチウムイオン二次電池の正極活物質に用いられ得るスピネル型のリチウム・ニッケル・マンガン複合酸化物は、LiNiMn2-X(0.3<X<0.7)で表される化合物であることが好ましく、LiNiMn2-X(0.4<X<0.6)で表される化合物であることがより好ましく、安定性の観点からはLiNi0.5Mn1.5であることがさらに好ましい。 The spinel-type lithium-nickel-manganese composite oxide that can be used as the positive electrode active material of the lithium ion secondary battery of the present disclosure is represented by LiNi X Mn 2-X O 4 (0.3 <X <0.7). It is preferable that the compound is LiNi X Mn 2-X O 4 (0.4 <X <0.6), and LiNi 0.5 is preferable from the viewpoint of stability. It is more preferably Mn 1.5 O 4 .
 スピネル型のリチウム・ニッケル・マンガン複合酸化物の結晶構造をより安定させるために、スピネル型のリチウム・ニッケル・マンガン複合酸化物のMn、Ni又はOサイトの一部をほかの元素で置換してもよい。
 また、過剰のリチウムをスピネル型のリチウム・ニッケル・マンガン複合酸化物の結晶内に存在させてもよい。さらには、スピネル型のリチウム・ニッケル・マンガン複合酸化物のOサイトに欠損を生じさせた化学物質を用いることもできる。
In order to make the crystal structure of the spinel-type lithium-nickel-manganese composite oxide more stable, a part of Mn, Ni or O-site of the spinel-type lithium-nickel-manganese composite oxide is replaced with another element. May be good.
In addition, excess lithium may be present in the crystals of the spinel-type lithium-nickel-manganese composite oxide. Furthermore, a chemical substance having a defect in the O-site of the spinel-type lithium-nickel-manganese composite oxide can also be used.
 スピネル型のリチウム・ニッケル・マンガン複合酸化物のMn又はNiサイトを置換することのできる元素としては、例えば、Ti、V、Cr、Fe、Co、Zn、Cu、W、Mg、Al及びRuを挙げることができる。スピネル型のリチウム・ニッケル・マンガン複合酸化物のMn又はNiサイトは、1種又は2種以上のこれら金属元素で置換することができる。これらの置換可能な元素のうち、スピネル型のリチウム・ニッケル・マンガン複合酸化物の結晶構造の更なる安定化の観点からは、Tiを用いるのが好ましい。
 スピネル型のリチウム・ニッケル・マンガン複合酸化物のOサイトを置換することのできる元素としては、例えば、F及びBを挙げることができる。スピネル型のリチウム・ニッケル・マンガン複合酸化物のOサイトは、1種又は2種以上のこれら元素で置換することができる。これらの置換可能な元素のうち、スピネル型のリチウム・ニッケル・マンガン複合酸化物の結晶構造の更なる安定化の観点からは、Fを用いるのが好ましい。
Examples of the element capable of substituting the Mn or Ni site of the spinel-type lithium-nickel-manganese composite oxide include Ti, V, Cr, Fe, Co, Zn, Cu, W, Mg, Al and Ru. Can be mentioned. The Mn or Nisite of the spinel-type lithium-nickel-manganese composite oxide can be replaced with one or more of these metal elements. Of these substitutable elements, Ti is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel-type lithium-nickel-manganese composite oxide.
Examples of the element capable of substituting the O-site of the spinel-type lithium-nickel-manganese composite oxide include F and B. The spinel-type lithium-nickel-manganese composite oxide Osite can be replaced with one or more of these elements. Of these substitutable elements, F is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel-type lithium-nickel-manganese composite oxide.
 スピネル型のリチウム・ニッケル・マンガン複合酸化物は、高エネルギー密度の観点から、充電状態における電位がLi/Liに対して、4.5V~5.1Vであることが好ましく、4.6V~5.0Vであることがより好ましい。 From the viewpoint of high energy density, the spinel-type lithium-nickel-manganese composite oxide preferably has a potential of 4.5 V to 5.1 V with respect to Li / Li + in a charged state, and is preferably 4.6 V to 4.6 V. More preferably, it is 5.0 V.
 スピネル型のリチウム・ニッケル・マンガン複合酸化物のBET比表面積は、保存特性を向上できる観点から、2.9m/g未満であることが好ましく、2.8m/g未満であることがより好ましく、1.5m/g未満であることがさらに好ましく、1.0m/g未満であることが特に好ましい。また、スピネル型のリチウム・ニッケル・マンガン複合酸化物のBET比表面積は、0.3m/g未満であってもよい。入出力特性を向上できる観点からは、BET比表面積は、0.05m/g以上であることが好ましく、0.08m/g以上であることがより好ましく、0.1m/g以上であることがさらに好ましい。
 スピネル型のリチウム・ニッケル・マンガン複合酸化物のBET比表面積は、0.05m/g以上2.9m/g未満であることが好ましく、0.05m/g以上2.8m/g未満であることがより好ましく、0.08m/g以上1.5m/g未満であることがさらに好ましく、0.1m/g以上1.0m/g未満であることが特に好ましい。また、スピネル型のリチウム・ニッケル・マンガン複合酸化物のBET比表面積は、0.1m/g以上0.3m/g未満であってもよい。
The BET specific surface area of the spinel-type lithium-nickel-manganese composite oxide is preferably less than 2.9 m 2 / g, and more preferably less than 2.8 m 2 / g, from the viewpoint of improving storage characteristics. It is more preferably less than 1.5 m 2 / g, and particularly preferably less than 1.0 m 2 / g. Further, the BET specific surface area of the spinel-type lithium-nickel-manganese composite oxide may be less than 0.3 m 2 / g. In the viewpoint of improving the output characteristics, the BET specific surface area is preferably at 0.05 m 2 / g or more, more preferably 0.08 m 2 / g or more, 0.1 m 2 / g or more It is more preferable to have.
BET specific surface area of the lithium-nickel-manganese composite oxide of the spinel is preferably less than 0.05 m 2 / g or more 2.9m 2 / g, 0.05m 2 / g or more 2.8 m 2 / g It is more preferably less than, more preferably 0.08 m 2 / g or more and less than 1.5 m 2 / g, and particularly preferably 0.1 m 2 / g or more and less than 1.0 m 2 / g. The BET specific surface area of the spinel-type lithium-nickel-manganese composite oxide may be 0.1 m 2 / g or more and less than 0.3 m 2 / g.
 BET比表面積は、例えば、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、例えば、QUANTACHROME社:AUTOSORB-1(商品名)を用いることができる。BET比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、まず、加熱による水分除去の前処理を行うことが好ましい。
 前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃の温度下に3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
The BET specific surface area can be measured from the nitrogen adsorption capacity according to, for example, JIS Z 8830: 2013. As the evaluation device, for example, QUANTACHROME: AUTOSORB-1 (trade name) can be used. When measuring the BET specific surface area, it is considered that the water adsorbed on the sample surface and structure affects the gas adsorption capacity. Therefore, it is preferable to first perform a pretreatment for removing water by heating. ..
In the pretreatment, the measurement cell containing 0.05 g of the measurement sample is decompressed to 10 Pa or less with a vacuum pump, kept at a temperature of 110 ° C. for 3 hours or more, and then kept at room temperature (reduced pressure). Naturally cool to 25 ° C.). After this pretreatment, the evaluation temperature is set to 77K, and the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
 また、スピネル型のリチウム・ニッケル・マンガン複合酸化物の粒子のメジアン径D50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径D50)は、粒子の分散性の観点から、0.5μm~100μmであることが好ましく、1μm~50μmであることがより好ましい。
 なお、メジアン径D50は、レーザー回折・散乱法により得られた体積基準の粒度分布から求めることができる。具体的には、純水中に1質量%となるようにリチウム・ニッケル・マンガン複合酸化物を投入し、超音波で15分間分散し、その後、レーザー回折・散乱法により測定する。
Further, the median diameter D50 of the spinel-type lithium-nickel-manganese composite oxide particles (the median diameter D50 of the secondary particles when the primary particles are aggregated to form the secondary particles) is the dispersion of the particles. From the viewpoint of properties, it is preferably 0.5 μm to 100 μm, and more preferably 1 μm to 50 μm.
The median diameter D50 can be obtained from the volume-based particle size distribution obtained by the laser diffraction / scattering method. Specifically, a lithium-nickel-manganese composite oxide is added to pure water so as to be 1% by mass, dispersed by ultrasonic waves for 15 minutes, and then measured by a laser diffraction / scattering method.
 本開示のリチウムイオン二次電池における正極活物質は、スピネル型のリチウム・ニッケル・マンガン複合酸化物以外のその他の正極活物質を含んでいてもよい。
 リチウム・ニッケル・マンガン複合酸化物以外のその他の正極活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo 1-y(LiCo 1-y中、MはNa、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiNi1-y (LiNi1-y 中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiMn及びLiMn2-y (LiMn2-y 中、MはNa、Mg、Sc、Y、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)が挙げられる。ここで、xは0<x≦1.2の範囲であり、yは0~0.9の範囲であり、zは2.0~2.3の範囲である。また、リチウムのモル比を示すx値は、充放電により増減する。
The positive electrode active material in the lithium ion secondary battery of the present disclosure may contain other positive electrode active materials other than the spinel-type lithium-nickel-manganese composite oxide.
Other positive-electrode active material other than the lithium-nickel-manganese composite oxide, for example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1 in 1-y O z (Li x Co y M 1 1-y O z, M 1 is Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb, V and Indicates at least one element selected from the group consisting of B), Li x Ni 1-y M 2 y Oz (in Li x Ni 1-y M 2 y Oz , M 2 is Na, Mg, Sc. , Y, Mn, Fe, Co, Cu, Zn, Al, Cr, Pb, Sb, V and at least one element selected from the group consisting of B), Li x Mn 2 O 4 and Li x Mn. 2-y M 3 y O 4 (Li x Mn 2-y M 3 y O 4 in 2, M 3 is Na, Mg, Sc, Y, Fe, Co, Cu, Zn, Al, Cr, Pb, Sb, V And at least one element selected from the group consisting of B). Here, x is in the range of 0 <x ≦ 1.2, y is in the range of 0 to 0.9, and z is in the range of 2.0 to 2.3. Further, the x value indicating the molar ratio of lithium increases or decreases depending on charging and discharging.
 正極活物質としてスピネル型のリチウム・ニッケル・マンガン複合酸化物以外のその他の正極活物質が含まれる場合、その他の正極活物質のBET比表面積は、保存特性を向上できる観点から、2.9m/g未満であることが好ましく、2.8m/g未満であることがより好ましく、1.5m/g未満であることがさらに好ましく、1.0m/g未満であることが特に好ましい。また、その他の正極活物質のBET比表面積は、0.3m/g未満であってもよい。入出力特性を向上できる観点からは、BET比表面積は、0.05m/g以上であることが好ましく、0.08m/g以上であることがより好ましく、0.1m/g以上であることがさらに好ましい。
 その他の正極活物質のBET比表面積は、0.05m/g以上2.9m/g未満であることが好ましく、0.05m/g以上2.8m/g未満であることがより好ましく、0.08m/g以上1.5m/g未満であることがさらに好ましく、0.1m/g以上1.0m/g未満であることが特に好ましい。また、その他の正極活物質のBET比表面積は、0.1m/g以上0.3m/g未満であってもよい。
 その他の正極活物質のBET比表面積は、スピネル型のリチウム・ニッケル・マンガン複合酸化物と同様の方法により、測定できる。
When the positive electrode active material contains other positive electrode active materials other than the spinel-type lithium-nickel-manganese composite oxide, the BET specific surface area of the other positive electrode active materials is 2.9 m 2 from the viewpoint of improving the storage characteristics. It is preferably less than / g, more preferably less than 2.8 m 2 / g, even more preferably less than 1.5 m 2 / g, and particularly preferably less than 1.0 m 2 / g. .. Further, the BET specific surface area of the other positive electrode active material may be less than 0.3 m 2 / g. In the viewpoint of improving the output characteristics, the BET specific surface area is preferably at 0.05 m 2 / g or more, more preferably 0.08 m 2 / g or more, 0.1 m 2 / g or more It is more preferable to have.
BET specific surface area of the other of the positive electrode active material is preferably less than 0.05 m 2 / g or more 2.9 m 2 / g, more is less than 0.05 m 2 / g or more 2.8 m 2 / g It is more preferably 0.08 m 2 / g or more and less than 1.5 m 2 / g, and particularly preferably 0.1 m 2 / g or more and less than 1.0 m 2 / g. The BET specific surface area of the other positive electrode active material may be 0.1 m 2 / g or more and less than 0.3 m 2 / g.
The BET specific surface area of the other positive electrode active material can be measured by the same method as that of the spinel-type lithium-nickel-manganese composite oxide.
 また、正極活物質としてスピネル型のリチウム・ニッケル・マンガン複合酸化物以外のその他の正極活物質が含まれる場合、その他の正極活物質の粒子のメジアン径D50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径D50)は、粒子の分散性の観点から、0.5μm~100μmであることが好ましく、1μm~50μmであることがより好ましい。なお、その他の正極活物質のメジアン径D50は、スピネル型のリチウム・ニッケル・マンガン複合酸化物と同様の方法により、測定できる。 When the positive electrode active material contains other positive electrode active materials other than the spinel-type lithium-nickel-manganese composite oxide, the median diameter D50 of the particles of the other positive electrode active materials (primary particles are aggregated to form secondary particles). The median diameter D50) of the secondary particles is preferably 0.5 μm to 100 μm, and more preferably 1 μm to 50 μm, from the viewpoint of particle dispersibility. The median diameter D50 of the other positive electrode active material can be measured by the same method as the spinel-type lithium-nickel-manganese composite oxide.
(負極活物質)
 本開示のリチウムイオン二次電池では、特定負極活物質を含む負極活物質が用いられる。負極活物質に占める特定負極活物質の含有率は、50質量%~100質量%であることが好ましい。負極活物質に占める特定負極活物質の含有率が50質量%以上であれば、リチウムイオン二次電池のエネルギー密度がより向上する傾向にある。
 負極活物質に占める特定負極活物質の含有率は、70質量%~100質量%であることがより好ましく、80質量%~100質量%であることがさらに好ましい。
(Negative electrode active material)
In the lithium ion secondary battery of the present disclosure, a negative electrode active material containing a specific negative electrode active material is used. The content of the specific negative electrode active material in the negative electrode active material is preferably 50% by mass to 100% by mass. When the content of the specific negative electrode active material in the negative electrode active material is 50% by mass or more, the energy density of the lithium ion secondary battery tends to be further improved.
The content of the specific negative electrode active material in the negative electrode active material is more preferably 70% by mass to 100% by mass, and further preferably 80% by mass to 100% by mass.
 本開示において、特定負極活物質とは、「リチウムイオンの挿入反応及び脱離反応が、リチウム電位に対して0.4Vより卑な電位ではほとんど起こらず、リチウム電位に対して0.4V以上の電位にて専らなされる活物質」のことである。
 具体的には、「リチウム電位に対して0.4V以上の電位においてリチウムイオンの挿入反応及び脱離反応が活物質の単位質量当たり少なくとも100mAh/g以上の電気化学的容量を伴ってなされる活物質」のことである。
In the present disclosure, the specific negative electrode active material means that "the insertion reaction and the desorption reaction of lithium ions hardly occur at a potential lower than 0.4 V with respect to the lithium potential, and 0.4 V or more with respect to the lithium potential. It is an active material that is exclusively used by electric potential.
Specifically, "Activities in which a lithium ion insertion reaction and a desorption reaction are carried out at a potential of 0.4 V or more with respect to a lithium potential with an electrochemical capacity of at least 100 mAh / g or more per unit mass of the active material. It means "substance".
 特定負極活物質は、負極でのリチウムの析出を抑制する観点から、充電状態における電位がリチウム電位に対して、0.8V以上の電位にてリチウムイオンが挿入及び脱離する負極活物質であってもよく、1.0V以上の電位にてリチウムイオンが挿入及び脱離する負極活物質であってもよく、1.2V以上の電位にてリチウムイオンが挿入及び脱離する負極活物質であってもよい。 The specific negative electrode active material is a negative electrode active material in which lithium ions are inserted and removed at a potential of 0.8 V or more with respect to the lithium potential in the charged state from the viewpoint of suppressing the precipitation of lithium at the negative electrode. It may be a negative electrode active material in which lithium ions are inserted and removed at a potential of 1.0 V or higher, or a negative electrode active material in which lithium ions are inserted and removed at a potential of 1.2 V or higher. You may.
 特定負極活物質としては、例えば、LiTi12等のリチウムチタン複合酸化物、酸化モリブデン、五酸化ニオブ、硫化鉄、硫化チタン、二酸化チタン、チタンニオブ酸化物(TiNb)、酸化鉄(Fe)、バナジウム酸リチウム(LiVO)、酸化タングステン(WO)、酸化マンガン(Mn)及びYTiが挙げられる。これらの中でも、リチウムチタン複合酸化物(LTO)であることが好ましい。リチウムチタン複合酸化物としては、例えば、チタン酸リチウムが挙げられる。 Examples of the specific negative electrode active material include lithium titanium composite oxides such as Li 4 Ti 5 O 12 , molybdenum oxide, niobium pentoxide, iron sulfide, titanium sulfide, titanium dioxide, titanium niobium oxide (TiNb 2 O 7 ), and oxidation. Examples include iron (Fe 2 O 3 ), lithium vanadate (Li 3 VO 4 ), tungsten oxide (WO 3 ), manganese oxide (Mn 2 O 3 ) and Y 2 Ti 2 O 5 S 2 . Among these, lithium titanium composite oxide (LTO) is preferable. Examples of the lithium-titanium composite oxide include lithium titanate.
 特定負極活物質は、リチウムイオンの挿入反応及び脱離反応が、リチウム電位に対して0.4V以上の電位でほとんど起こるため、カーボン系負極活物質に比べて作動電位が高く、負極でのリチウムの析出が抑制される。さらに、カーボン系負極活物質を用いたときのように初回充電時に負極表面にその後の非水溶媒の分解を抑制するSEI(固体電解質)の皮膜が生成されず、非水溶媒が分解される挙動も相違する。そのため、特定負極活物質は、黒鉛等のカーボン系負極活物質と作用が大きく異なり、特定負極活物質を用いたリチウムイオン二次電池とカーボン系負極活物質を用いたリチウムイオン二次電池とは、電池の種類としても大きく相違する。 In the specific negative electrode active material, the insertion reaction and the desorption reaction of lithium ions almost occur at a potential of 0.4 V or more with respect to the lithium potential, so that the operating potential is higher than that of the carbon-based negative electrode active material, and lithium in the negative electrode is used. Precipitation is suppressed. Further, unlike the case where a carbon-based negative electrode active material is used, the SEI (solid electrolyte) film that suppresses the subsequent decomposition of the non-aqueous solvent is not formed on the surface of the negative electrode at the time of initial charging, and the non-aqueous solvent is decomposed. Is also different. Therefore, the specific negative electrode active material has a significantly different action from the carbon negative electrode active material such as graphite, and the lithium ion secondary battery using the specific negative electrode active material and the lithium ion secondary battery using the carbon negative electrode active material are different. , The type of battery is also very different.
 本開示のリチウムイオン二次電池の負極活物質に用いられ得るリチウムチタン複合酸化物は、スピネル型のリチウムチタン複合酸化物であることが好ましい。スピネル型のリチウムチタン複合酸化物の基本的な組成式は、Li[Li1/3Ti5/3]Oで表される。
 スピネル型のリチウムチタン複合酸化物の結晶構造をより安定化させるために、スピネル型のリチウムチタン複合酸化物のLi、Ti又はOサイトの一部をほかの元素で置換してもよい。
 また、過剰のリチウムをスピネル型のリチウムチタン複合酸化物の結晶内に存在させてもよい。さらには、スピネル型のリチウムチタン複合酸化物のOサイトに欠損を生じさせた化学物質を用いることもできる。
The lithium titanium composite oxide that can be used as the negative electrode active material of the lithium ion secondary battery of the present disclosure is preferably a spinel-type lithium titanium composite oxide. The basic formula of the spinel-type lithium-titanium composite oxide is represented by Li [Li 1/3 Ti 5/3] O 4.
In order to further stabilize the crystal structure of the spinel-type lithium-titanium composite oxide, a part of Li, Ti or O-site of the spinel-type lithium-titanium composite oxide may be replaced with another element.
In addition, excess lithium may be present in the crystals of the spinel-type lithium titanium composite oxide. Furthermore, a chemical substance having a defect in the O-site of the spinel-type lithium titanium composite oxide can also be used.
 スピネル型のリチウムチタン複合酸化物のLi又はTiサイトを置換することのできる元素としては、例えば、Nb、V、Mn、Ni、Cu、Co、Zn、Sn、Pb、Al、Mo、Ba、Sr、Ta、Mg及びCaを挙げることができる。スピネル型のリチウムチタン複合酸化物のLi又はTiサイトは、1種又は2種以上のこれら元素で置換することができる。これらの置換可能な元素のうち、スピネル型のリチウムチタン複合酸化物の結晶構造の更なる安定化の観点からは、Alを用いるのが好ましい。
 スピネル型のリチウムチタン複合酸化物のOサイトを置換することのできる元素としては、例えば、F及びBを挙げることができる。スピネル型のリチウムチタン複合酸化物のOサイトは、1種又は2種以上のこれら元素で置換することができる。これらの置換可能な元素のうち、スピネル型のリチウムチタン複合酸化物の結晶構造の更なる安定化の観点からは、Fを用いるのが好ましい。
Examples of the element capable of substituting the Li or Ti site of the spinel-type lithium titanium composite oxide include Nb, V, Mn, Ni, Cu, Co, Zn, Sn, Pb, Al, Mo, Ba, and Sr. , Ta, Mg and Ca. The Li or Ti sites of the spinel-type lithium-titanium composite oxide can be replaced with one or more of these elements. Of these substitutable elements, Al is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel-type lithium titanium composite oxide.
Examples of the element capable of substituting the O-site of the spinel-type lithium titanium composite oxide include F and B. The O-site of the spinel-type lithium-titanium composite oxide can be replaced with one or more of these elements. Of these substitutable elements, F is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel-type lithium titanium composite oxide.
 負極活物質のBET比表面積は、保存特性を向上できる観点から、40m/g未満であることが好ましく、30m/g未満であることがより好ましく、20m/g未満であることがさらに好ましく、15m/g未満であることが特に好ましい。入出力特性を向上できる観点からは、BET比表面積は、0.1m/g以上であることが好ましく、0.5m/g以上であることがより好ましく、1.0m/g以上であることがさらに好ましく、2.0m/g以上であることが特に好ましい。また、負極活物質のBET比表面積は、2.9m/g未満であってもよく、2.8m/g未満であってもよく、1.5m/g未満であってもよく、0.3m/g未満であってもよい。一方、負極活物質のBET比表面積は、0.05m/g以上であってもよく、0.08m/g以上であってもよく、0.1m/g以上であってもよい。
 負極活物質のBET比表面積は、0.1m/g以上40m/g未満であることが好ましく、0.5m/g以上30m/g未満であることがより好ましく、1.0m/g以上20m/g未満であることがさらに好ましく、2.0m/g以上15m/g未満であることが特に好ましい。また、負極活物質のBET比表面積は、0.05m/g以上2.9m/g未満であってもよく、0.05m/g以上2.8m/g未満であってもよく、0.08m/g以上1.5m/g未満であってもよく、0.1m/g以上0.3m/g未満であってもよい。
 負極活物質のBET比表面積は、スピネル型のリチウム・ニッケル・マンガン複合酸化物と同様の方法により、測定できる。
The BET specific surface area of the negative electrode active material is preferably less than 40 m 2 / g, more preferably less than 30 m 2 / g, and further preferably less than 20 m 2 / g from the viewpoint of improving storage characteristics. It is preferably less than 15 m 2 / g, especially preferably less than 15 m 2 / g. From the viewpoint of improving the input / output characteristics, the BET specific surface area is preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 1.0 m 2 / g or more. It is more preferable that the amount is 2.0 m 2 / g or more. Further, the BET specific surface area of the negative electrode active material may be less than 2.9 m 2 / g, less than 2.8 m 2 / g, or less than 1.5 m 2 / g. It may be less than 0.3 m 2 / g. On the other hand, BET specific surface area of the negative electrode active material may also be 0.05 m 2 / g or more, may also be 0.08 m 2 / g or more, it may be 0.1 m 2 / g or more.
BET specific surface area of the negative electrode active material is preferably less than 0.1 m 2 / g or more 40 m 2 / g, more preferably less than 0.5 m 2 / g or more 30m 2 / g, 1.0m 2 It is more preferably more than / g and less than 20 m 2 / g, and particularly preferably 2.0 m 2 / g or more and less than 15 m 2 / g. Further, BET specific surface area of the negative electrode active material may be less than 0.05 m 2 / g or more 2.9 m 2 / g may be less than 2 / g 0.05m 2 / g or more 2.8m may be less than 0.08 m 2 / g or more 1.5 m 2 / g, may be less than 0.1 m 2 / g or more 0.3 m 2 / g.
The BET specific surface area of the negative electrode active material can be measured by the same method as the spinel-type lithium-nickel-manganese composite oxide.
 また、負極活物質の粒子のメジアン径D50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径D50)は、粒子の分散性の観点から、0.5μm~100μmであることが好ましく、1μm~50μmであることがより好ましい。
 負極活物質のメジアン径D50は、スピネル型のリチウム・ニッケル・マンガン複合酸化物と同様の方法により、測定できる。
Further, the median diameter D50 of the particles of the negative electrode active material (the median diameter D50 of the secondary particles when the primary particles are aggregated to form the secondary particles) is 0.5 μm from the viewpoint of particle dispersibility. The thickness is preferably from 100 μm, more preferably from 1 μm to 50 μm.
The median diameter D50 of the negative electrode active material can be measured by the same method as the spinel-type lithium-nickel-manganese composite oxide.
<リチウムイオン二次電池の全体構成>
(正極)
 本開示のリチウムイオン二次電池は、リチウムイオン二次電池に適用可能な以下に示す正極を有する。本開示の正極(正極板)は、集電体及びその両面又は片面に形成された正極合剤を有する。正極合剤は、上述の正極活物質を含有する。
<Overall configuration of lithium-ion secondary battery>
(Positive electrode)
The lithium ion secondary battery of the present disclosure has the following positive electrodes applicable to the lithium ion secondary battery. The positive electrode (positive electrode plate) of the present disclosure has a current collector and a positive electrode mixture formed on both sides or one side thereof. The positive electrode mixture contains the above-mentioned positive electrode active material.
 リチウムイオン二次電池の正極は、特定正極活物質と、導電剤とを混合し、必要に応じ適当な結着剤及び溶剤を加えて、ペースト状の正極合剤としたものを、アルミニウム箔等の金属箔の集電体表面に塗布及び乾燥し、その後、必要に応じてプレス等によって正極合剤の密度を高めることによって形成することができる。
 なお、上記成分を用いて正極合剤を構成することもできるが、リチウムイオン二次電池の特性改善等を目的として、正極合剤に公知のオリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等を含有させてもよい。
For the positive electrode of a lithium ion secondary battery, a specific positive electrode active material and a conductive agent are mixed, and an appropriate binder and solvent are added as necessary to prepare a paste-like positive electrode mixture, such as an aluminum foil. It can be formed by applying and drying the metal foil on the surface of the current collector, and then increasing the density of the positive electrode mixture by pressing or the like, if necessary.
Although the positive electrode mixture can be composed of the above components, the positive electrode mixture contains known olivine-type lithium salts, chalcogen compounds, manganese dioxide, etc. for the purpose of improving the characteristics of the lithium ion secondary battery. You may let me.
 正極合剤の集電体への片面塗布量は、エネルギー密度及び入出力特性の観点から、正極合剤の固形分として、100g/m~250g/mであることが好ましく、110g/m~200g/mであることがより好ましく、130g/m~170g/mであることがさらに好ましい。
 正極合剤の密度は、エネルギー密度と入出力特性の観点から、正極合剤の固形分として、1.8g/cm~3.3g/cmであることが好ましく、2.0g/cm~3.2g/cmであることがより好ましく、2.2g/cm~3.1g/cmであることがさらに好ましい。
Single-side coating of the current collector of the positive electrode mixture, from the viewpoint of energy density and output characteristics, it is preferable that the solid content of the positive electrode mixture, a 100g / m 2 ~ 250g / m 2, 110g / m It is more preferably 2 to 200 g / m 2 , and even more preferably 130 g / m 2 to 170 g / m 2 .
Density of the positive electrode mixture, from the viewpoint of energy density and output characteristics, it is preferable that the solid content of the positive electrode mixture is 1.8g / cm 3 ~ 3.3g / cm 3, 2.0g / cm 3 It is more preferably about 3.2 g / cm 3 , and even more preferably 2.2 g / cm 3 to 3.1 g / cm 3 .
(負極)
 本開示のリチウムイオン二次電池は、リチウムイオン二次電池に適用可能な以下に示す負極を有する。本開示の負極(負極板)は、集電体及びその両面又は片面に形成された負極合剤を有する。負極合剤は、上述の負極活物質を含有する。
(Negative electrode)
The lithium ion secondary battery of the present disclosure has the following negative electrodes applicable to the lithium ion secondary battery. The negative electrode (negative electrode plate) of the present disclosure includes a current collector and a negative electrode mixture formed on both sides or one side thereof. The negative electrode mixture contains the above-mentioned negative electrode active material.
 負極は、リチウムチタン複合酸化物等の特定負極活物質を含む負極活物質と、導電剤とを混合し、必要に応じ適当な結着剤及び溶媒を加えて、ペースト状の負極合剤としたものを、銅等の金属箔の集電体表面に塗布及び乾燥し、その後、必要に応じプレス等によって負極合剤の密度を高めることによって形成することができる。
 なお、上記成分を用いて負極合剤を構成することもできるが、リチウムイオン二次電池の特性改善等を目的として、負極合剤に公知の炭素材料等を含有させてもよい。
For the negative electrode, a negative electrode active material containing a specific negative electrode active material such as lithium titanium composite oxide and a conductive agent were mixed, and an appropriate binder and solvent were added as necessary to prepare a paste-like negative electrode mixture. It can be formed by applying and drying the material on the surface of a current collector of a metal foil such as copper, and then increasing the density of the negative electrode mixture by pressing or the like, if necessary.
Although the negative electrode mixture can be formed by using the above components, the negative electrode mixture may contain a known carbon material or the like for the purpose of improving the characteristics of the lithium ion secondary battery.
 負極合剤の集電体への片面塗布量は、エネルギー密度及び入出力特性の観点から、負極合剤の固形分として、10g/m~225g/mであることが好ましく、50g/m~200g/mであることがより好ましく、80g/m~160g/mであることがさらに好ましい。
 負極合剤の密度は、エネルギー密度と入出力特性の観点から、負極合剤の固形分として、1.0g/cm~3.3g/cmであることが好ましく、1.2g/cm~3.2g/cmであることがより好ましく、1.4g/cm~2.8g/cmであることがさらに好ましい。
Single-side coating of the current collector of the negative electrode mixture, from the viewpoint of energy density and output characteristic, as a solid of the negative electrode mixture component is preferably 10g / m 2 ~ 225g / m 2, 50g / m It is more preferably 2 to 200 g / m 2 , and even more preferably 80 g / m 2 to 160 g / m 2 .
Density of the negative electrode mixture, from the viewpoint of energy density and output characteristic, as a solid of the negative electrode mixture component is preferably 1.0g / cm 3 ~ 3.3g / cm 3, 1.2g / cm 3 It is more preferably ~ 3.2 g / cm 3 , and even more preferably 1.4 g / cm 3 to 2.8 g / cm 3 .
 正極に用いる導電剤(以下、正極導電剤という)としては、入出力特性をより向上できる観点から、アセチレンブラックであることが好ましい。正極導電剤の含有率は、入出力特性の観点から、正極合剤の固形分全量を基準として、4質量%以上であることが好ましく、5質量%以上であることがより好ましく、5.5質量%以上であることがさらに好ましい。上限は、電池容量の観点から、10質量%以下であることが好ましく、9質量%以下であることがより好ましく、8.5質量%以下であることがさらに好ましい。
 正極導電剤の含有率は、正極合剤の固形分全量を基準として、4質量%~10質量%であることが好ましく、5質量%~9質量%であることがより好ましく、5.5質量%~8.5質量%であることがさらに好ましい。
The conductive agent used for the positive electrode (hereinafter referred to as the positive electrode conductive agent) is preferably acetylene black from the viewpoint of further improving the input / output characteristics. From the viewpoint of input / output characteristics, the content of the positive electrode conductive agent is preferably 4% by mass or more, more preferably 5% by mass or more, based on the total solid content of the positive electrode mixture, 5.5. It is more preferably mass% or more. From the viewpoint of battery capacity, the upper limit is preferably 10% by mass or less, more preferably 9% by mass or less, and further preferably 8.5% by mass or less.
The content of the positive electrode conductive agent is preferably 4% by mass to 10% by mass, more preferably 5% by mass to 9% by mass, based on the total solid content of the positive electrode mixture, and is 5.5% by mass. It is more preferably% to 8.5% by mass.
 ガスの発生をより抑制する観点から、正極導電剤は黒鉛を含んでいてもよい。黒鉛としては、人造黒鉛、熱分解黒鉛、天然黒鉛、球状黒鉛、薄片黒鉛、鱗状黒鉛、鱗片状黒鉛、塊状黒鉛、気相法炭素繊維、カーボンナノチューブ、グラフェン、還元型酸化グラフェン等が挙げられる。 From the viewpoint of further suppressing the generation of gas, the positive electrode conductive agent may contain graphite. Examples of graphite include artificial graphite, thermally decomposed graphite, natural graphite, spheroidal graphite, flaky graphite, scaly graphite, scaly graphite, massive graphite, vapor phase carbon fiber, carbon nanotube, graphene, and reduced graphene oxide.
 また、負極に用いる導電剤(以下、負極導電剤という)としては、入出力特性をより向上できる観点から、アセチレンブラックであることが好ましい。負極導電剤の含有率は、入出力特性の観点から、負極合剤の固形分全量を基準として、1質量%以上であることが好ましく、4質量%以上であることがより好ましく、6質量%以上であることがさらに好ましい。上限は、電池容量の観点から、15質量%以下であることが好ましく、12質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 負極導電剤の含有率は、負極合剤の固形分全量を基準として、1質量%~15質量%であることが好ましく、4質量%~12質量%であることがより好ましく、6質量%~10質量%であることがさらに好ましい。
Further, the conductive agent used for the negative electrode (hereinafter referred to as the negative electrode conductive agent) is preferably acetylene black from the viewpoint of further improving the input / output characteristics. From the viewpoint of input / output characteristics, the content of the negative electrode conductive agent is preferably 1% by mass or more, more preferably 4% by mass or more, and 6% by mass, based on the total solid content of the negative electrode mixture. The above is more preferable. From the viewpoint of battery capacity, the upper limit is preferably 15% by mass or less, more preferably 12% by mass or less, and further preferably 10% by mass or less.
The content of the negative electrode conductive agent is preferably 1% by mass to 15% by mass, more preferably 4% by mass to 12% by mass, and 6% by mass to 6% by mass, based on the total solid content of the negative electrode mixture. It is more preferably 10% by mass.
(結着剤)
 結着剤は、特に限定されず、ペースト状の正極合剤又は負極合剤の調製に用いられる溶媒に対する溶解性又は分散性が良好な材料が選択される。具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム状高分子;スチレン-ブタジエン-スチレンブロック共重合体又はその水素添加物、EPDM(エチレン-プロピレン-ジエン三元共重合体)、スチレン-イソプレン-スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、プロピレン-α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン-エチレン共重合体、ポリテトラフルオロエチレン-フッ化ビニリデン共重合体等のフッ素系高分子;ポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。なお、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。正極及び負極ともに、高密着性の観点から、ポリフッ化ビニリデン(PVdF)又はポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体を用いることが好ましく、更なる充放電サイクル特性の向上の観点からポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体がより好ましい。
(Binder)
The binder is not particularly limited, and a material having good solubility or dispersibility in the solvent used for preparing the paste-like positive electrode mixture or negative electrode mixture is selected. Specific examples include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine. Rubber-like polymers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene-butadiene-styrene block copolymer or hydrogen additive thereof, EPDM (ethylene-propylene-diene ternary copolymer), styrene- Thermoplastic elastomeric polymers such as isoprene-styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene-vinyl acetate copolymers, propylene-α-olefin copolymers Soft resinous polymers such as coalesced; polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene-ethylene copolymer, polytetrafluoroethylene-vinylidene fluoride copolymer, etc. Fluorine-based polymers; copolymers in which acrylic acid and linear ether groups are added to a polyacrylonitrile skeleton; polymer compositions having ionic conductivity of alkali metal ions (particularly lithium ions) and the like can be mentioned. Of these, one type may be used alone, or two or more types may be used in combination. From the viewpoint of high adhesion, it is preferable to use polyvinylidene fluoride (PVdF) or a copolymer in which acrylic acid and a linear ether group are added to the polyacrylonitrile skeleton for both the positive and negative electrodes, further improving the charge / discharge cycle characteristics. From the viewpoint of the above, a copolymer in which acrylic acid and a linear ether group are added to a polyacrylonitrile skeleton is more preferable.
 結着剤の含有率について、正極合剤の固形分全量を基準とする結着剤の含有率の範囲は次のとおりである。範囲の下限は、正極活物質を充分に結着して充分な正極の機械的強度が得られ、充放電サイクル特性等の電池性能が安定する観点から、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。上限は、電池容量及び導電性を向上できる観点から、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 正極合剤の固形分全量を基準とする結着剤の含有率は、0.1質量%~30質量%であることが好ましく、1質量%~20質量%であることがより好ましく、2質量%~10質量%であることがさらに好ましい。
 負極合剤の固形分全量を基準とする結着剤の含有率は、次のとおりである。範囲の下限は、負極活物質を充分に結着して充分な負極の機械的強度が得られ、充放電サイクル特性等の電池性能が安定する観点から、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。上限は、電池容量及び導電性を向上できる観点から、40質量%以下であることが好ましく、25質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。
 負極合剤の固形分全量を基準とする結着剤の含有率は、0.1質量%~40質量%であることが好ましく、0.5質量%~25質量%であることがより好ましく、1質量%~15質量%であることがさらに好ましい。
Regarding the content of the binder, the range of the content of the binder based on the total solid content of the positive electrode mixture is as follows. The lower limit of the range is 0.1% by mass or more from the viewpoint of sufficiently binding the positive electrode active material to obtain sufficient mechanical strength of the positive electrode and stabilizing battery performance such as charge / discharge cycle characteristics. It is preferably 1% by mass or more, more preferably 2% by mass or more. The upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less from the viewpoint of improving the battery capacity and conductivity.
The content of the binder based on the total solid content of the positive electrode mixture is preferably 0.1% by mass to 30% by mass, more preferably 1% by mass to 20% by mass, and 2% by mass. It is more preferably% to 10% by mass.
The content of the binder based on the total solid content of the negative electrode mixture is as follows. The lower limit of the range is 0.1% by mass or more from the viewpoint of sufficiently binding the negative electrode active material to obtain sufficient mechanical strength of the negative electrode and stabilizing battery performance such as charge / discharge cycle characteristics. It is preferably 0.5% by mass or more, and even more preferably 1% by mass or more. The upper limit is preferably 40% by mass or less, more preferably 25% by mass or less, and further preferably 15% by mass or less from the viewpoint of improving the battery capacity and conductivity.
The content of the binder based on the total solid content of the negative electrode mixture is preferably 0.1% by mass to 40% by mass, more preferably 0.5% by mass to 25% by mass. It is more preferably 1% by mass to 15% by mass.
 これら活物質、導電剤、結着剤等を溶解又は分散させる溶剤としては、N-メチル-2-ピロリドン等の有機溶剤を用いることができる。 An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dissolving or dispersing these active substances, conductive agents, binders and the like.
(集電体)
 正極及び負極には、集電体が用いられる。集電体の材料は、正極集電体としては、アルミニウム、チタン、ステンレス、ニッケル、導電性高分子等の他に、接着性、導電性及び耐酸化性向上の目的で、アルミニウム、銅等の表面にカーボン、ニッケル、チタン、銀等を付着させる処理を施した材料などが使用できる。
 集電体の材料は、負極集電体としては、銅、ステンレス、ニッケル、アルミニウム、チタン、導電性高分子、アルミニウム-カドミウム合金等の他に、接着性、導電性及び耐還元性を向上させる目的で、銅、アルミニウム等の表面にカーボン、ニッケル、チタン、銀等を付着させる処理を施した材料などが使用できる。
(Current collector)
A current collector is used for the positive electrode and the negative electrode. The material of the current collector may be aluminum, titanium, stainless steel, nickel, conductive polymer, etc., as well as aluminum, copper, etc. for the purpose of improving adhesiveness, conductivity, and oxidation resistance. A material that has been treated to adhere carbon, nickel, titanium, silver, etc. to the surface can be used.
As the negative electrode current collector, the material of the current collector is copper, stainless steel, nickel, aluminum, titanium, conductive polymer, aluminum-cadmium alloy, etc., as well as improving adhesiveness, conductivity, and reduction resistance. For the purpose, a material such as copper or aluminum that has been treated to adhere carbon, nickel, titanium, silver or the like to the surface can be used.
(セパレータ)
 セパレータは、正極と負極との間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物等が用いられる。
(Separator)
The separator is not particularly limited as long as it electronically insulates between the positive electrode and the negative electrode, has ion permeability, and has resistance to oxidizing property on the positive electrode side and reducing property on the negative electrode side. .. As the material (material) of the separator satisfying such characteristics, a resin, an inorganic substance, or the like is used.
 上記樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート、不織布などを用いることが好ましい。 As the resin, an olefin polymer, a fluoropolymer, a cellulosic polymer, a polyimide, a nylon, or the like is used. Specifically, it is preferable to select from materials that are stable to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet or non-woven fabric made of polyolefin such as polyethylene or polypropylene.
 無機物としては、アルミナ、二酸化珪素等の酸化物類、窒化アルミニウム、窒化珪素等の窒化物類、硫酸バリウム、硫酸カルシウム等の硫酸塩類、ガラスなどが用いられる。例えば、繊維形状又は粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたシートをセパレータとして用いることができる。
 薄膜形状の基材としては、孔径が0.01μm~1μmであり、厚さが5μm~50μmの基材が好適に用いられる。また、例えば、繊維形状又は粒子形状の上記無機物を、樹脂等の結着剤を用いて複合多孔層としたシートをセパレータとして用いることができる。さらに、この複合多孔層を、正極又は負極の表面に形成し、セパレータとしてもよい。或いは、この複合多孔層を他のセパレータの表面に形成し、多層セパレータとしてもよい。例えば、90%粒径(D90)が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として結着させた複合多孔層を、正極の表面又はセパレータの正極と対向する面に形成してもよい。
As the inorganic substance, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, sulfates such as barium sulfate and calcium sulfate, and glass are used. For example, a sheet in which the above-mentioned inorganic substance in the form of fibers or particles is attached to a thin film-shaped base material such as a non-woven fabric, a woven fabric, or a microporous film can be used as a separator.
As the thin film-shaped base material, a base material having a pore diameter of 0.01 μm to 1 μm and a thickness of 5 μm to 50 μm is preferably used. Further, for example, a sheet obtained by forming a composite porous layer of the above-mentioned inorganic substance having a fiber shape or a particle shape by using a binder such as a resin can be used as a separator. Further, this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to serve as a separator. Alternatively, this composite porous layer may be formed on the surface of another separator to form a multilayer separator. For example, a composite porous layer in which alumina particles having a 90% particle size (D90) of less than 1 μm are bound using a fluororesin as a binder may be formed on the surface of the positive electrode or the surface of the separator facing the positive electrode. ..
 セパレータの空孔率は、20%以上であることが好ましく、20%~80%であることがより好ましく、25%~70%であることがさらに好ましく、30%~70%であることが特に好ましい。
 セパレータの空孔率が20%以上であると電解液の浸透性が向上し、多くの電解液を注液できるため、サイクル特性が向上する傾向にある。さらに、リチウム電位に対して0.4V以上の電位にてリチウムイオンが挿入及び脱離する活物質を負極活物質として用いているため、セパレータの空孔率が高い場合であっても負極におけるリチウムの析出が抑制される傾向にある。また、比較的粘度が高い化合物、例えばフッ素原子を含むリン酸エステルを用いた場合であっても、セパレータの空孔率を高めることにより、入出力特性の低下を抑制できると考えられる。
 セパレータの空孔率が80%以下であれば、短絡の発生が抑制される傾向にある。
 セパレータの空孔率は、水銀ポロシメーター測定から得られる値である。水銀ポロシメーター測定の条件は以下に示すとおりである。
・装置:株式会社島津製作所 オートポアIV 9500
・水銀圧入圧: 0.51psia
・各測定圧力での圧力保持時間: 10s
・試料と水銀との接触角: 140°
・水銀の表面張力: 485dynes/cm
・水銀の密度: 13.5335g/mL
The porosity of the separator is preferably 20% or more, more preferably 20% to 80%, further preferably 25% to 70%, and particularly preferably 30% to 70%. preferable.
When the porosity of the separator is 20% or more, the permeability of the electrolytic solution is improved, and a large amount of the electrolytic solution can be injected, so that the cycle characteristics tend to be improved. Further, since an active material in which lithium ions are inserted and removed at a potential of 0.4 V or more with respect to the lithium potential is used as the negative electrode active material, lithium in the negative electrode is used even when the porosity of the separator is high. Precipitation tends to be suppressed. Further, even when a compound having a relatively high viscosity, for example, a phosphoric acid ester containing a fluorine atom is used, it is considered that the deterioration of the input / output characteristics can be suppressed by increasing the porosity of the separator.
When the porosity of the separator is 80% or less, the occurrence of a short circuit tends to be suppressed.
The porosity of the separator is a value obtained from mercury porosimeter measurement. The conditions for measuring the mercury porosimeter are as follows.
・ Equipment: Shimadzu Corporation Autopore IV 9500
・ Mercury press-fitting pressure: 0.51 psia
・ Pressure holding time at each measured pressure: 10s
・ Contact angle between sample and mercury: 140 °
-Surface tension of mercury: 485 days / cm
-Mercury density: 13.535 g / mL
(電解液)
 本開示の電解液は、電解質であるリチウム塩と、これを溶解する非水溶媒とを含む。
 本開示で用いられる非水溶媒は、フッ素原子を含むリン酸エステル、フッ素原子を含むエーテル及びフッ素原子を含むカルボン酸エステルからなる群より選択される少なくとも1つの化合物である特定の化合物を含む。特定の化合物の中でもフッ素原子を含むエーテル及びフッ素原子を含むカルボン酸エステルは融点が低いため、低温で電池特性を確保しやすいと考えられる。フッ素原子を含むリン酸エステル及びフッ素原子を含むエーテルは熱安定性に優れるため、高温で電池特性を確保しやすいと考えられる。
 特定の化合物は、1種単独でもよく、2種以上の組み合わせでもよい。例えば、本開示で用いられる非水溶媒は、フッ素原子を含むリン酸エステルと、フッ素原子を含むエーテル及びフッ素原子を含むカルボン酸エステルからなる群より選択される少なくとも1つの化合物と、を含んでいてもよい。
(Electrolytic solution)
The electrolytic solution of the present disclosure contains a lithium salt which is an electrolyte and a non-aqueous solvent which dissolves the lithium salt.
The non-aqueous solvent used in the present disclosure includes a specific compound which is at least one compound selected from the group consisting of a phosphoric acid ester containing a fluorine atom, an ether containing a fluorine atom and a carboxylic acid ester containing a fluorine atom. Among specific compounds, ether containing a fluorine atom and carboxylic acid ester containing a fluorine atom have a low melting point, so that it is considered that it is easy to secure battery characteristics at a low temperature. Phosphoric acid esters containing fluorine atoms and ethers containing fluorine atoms are considered to be easy to secure battery characteristics at high temperatures because they are excellent in thermal stability.
The specific compound may be used alone or in combination of two or more. For example, the non-aqueous solvent used in the present disclosure contains a phosphoric acid ester containing a fluorine atom and at least one compound selected from the group consisting of an ether containing a fluorine atom and a carboxylic acid ester containing a fluorine atom. You may.
 特定の化合物の含有率は、非水溶媒の全量に対して5体積%を超えていればよく、7体積%以上であることが好ましく、10体積%以上であることがより好ましく、15体積%以上であることがさらに好ましく、20体積%以上であることが特に好ましい。特定の化合物の含有率が10体積%以上であることにより、電解液の融点が下がり、低温特性に優れるという効果が得られる。
 特定の化合物の含有率は、入出力特性の観点から、非水溶媒の全量に対して90体積%以下であることが好ましく、80体積%以下であることがより好ましく、60体積%以下であることがさらに好ましく、50体積%以下であることが特に好ましい。
The content of the specific compound may exceed 5% by volume, preferably 7% by volume or more, more preferably 10% by volume or more, and 15% by volume, based on the total amount of the non-aqueous solvent. The above is more preferable, and 20% by volume or more is particularly preferable. When the content of the specific compound is 10% by volume or more, the melting point of the electrolytic solution is lowered, and the effect of excellent low temperature characteristics can be obtained.
From the viewpoint of input / output characteristics, the content of the specific compound is preferably 90% by volume or less, more preferably 80% by volume or less, and more preferably 60% by volume or less with respect to the total amount of the non-aqueous solvent. It is more preferable, and it is particularly preferable that it is 50% by volume or less.
 非水溶媒が、フッ素原子を含むリン酸エステルを含む場合、フッ素原子を含むリン酸エステルの含有率は、非水溶媒の全量に対して5体積%を超えていることが好ましく、7体積%以上であることがより好ましく、10体積%以上であることがさらに好ましく、15体積%以上であることが特に好ましく、20体積%以上であることが極めて好ましい。フッ素原子を含むリン酸エステルの含有率が10体積%以上であることにより、電解液の融点が下がり、低温特性に優れるという効果が得られる。
 フッ素原子を含むリン酸エステルの含有率は、入出力特性の観点から、非水溶媒の全量に対して90体積%以下であることが好ましく、80体積%以下であることがより好ましく、60体積%以下であることがさらに好ましく、50体積%以下であることが特に好ましい。
When the non-aqueous solvent contains a phosphoric acid ester containing a fluorine atom, the content of the phosphoric acid ester containing a fluorine atom preferably exceeds 5% by volume, preferably 7% by volume, based on the total amount of the non-aqueous solvent. The above is more preferable, 10% by volume or more is further preferable, 15% by volume or more is particularly preferable, and 20% by volume or more is extremely preferable. When the content of the phosphoric acid ester containing a fluorine atom is 10% by volume or more, the melting point of the electrolytic solution is lowered, and the effect of excellent low temperature characteristics can be obtained.
From the viewpoint of input / output characteristics, the content of the phosphoric acid ester containing a fluorine atom is preferably 90% by volume or less, more preferably 80% by volume or less, and 60% by volume, based on the total amount of the non-aqueous solvent. It is more preferably% or less, and particularly preferably 50% by volume or less.
 フッ素原子を含むリン酸エステルは、リン酸が持つ三つの水素原子の全てが有機基で置換された構造を備えており、三つの有機基の少なくとも一つがフッ素原子を含んでいれば特に限定されない。
 フッ素原子を含む有機基としては、アルキル基、アルケニル基、アラルキル基、アリール基、ヘテロアリール基、アラルキル基、ヘテロアラルキル基等の少なくとも一つの水素原子がフッ素原子に置換されている基が挙げられる。
 また、フッ素原子を含まない有機基としては、アルキル基、アルケニル基、アラルキル基、アリール基、ヘテロアリール基、アラルキル基、ヘテロアラルキル基等が挙げられる。
A phosphoric acid ester containing a fluorine atom has a structure in which all three hydrogen atoms of phosphoric acid are substituted with organic groups, and is not particularly limited as long as at least one of the three organic groups contains a fluorine atom. ..
Examples of the organic group containing a fluorine atom include a group in which at least one hydrogen atom such as an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heteroaryl group, an aralkyl group or a heteroaralkyl group is substituted with a fluorine atom. ..
Examples of the organic group containing no fluorine atom include an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heteroaryl group, an aralkyl group, and a heteroaralkyl group.
 フッ素原子を含むリン酸エステルとしては、具体的には、リン酸トリス(トリフルオロメチル)、リン酸トリス(2,2-ジフルオロエチル)、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(2,2,3,3-テトラフルオロプロピル)、リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)、リン酸トリス(ヘキサフルオロイソプロピル)、リン酸トリス(2,2,3,3,4,4,5,5-オクタフルオロペンチル)、リン酸トリス(2,2,3,3,4,4,5,5,5-ノナフルオロペンチル)、リン酸トリス(3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル)、リン酸ビス(2,2,2-トリフルオロエチル)メチル、リン酸ビス(2,2,2-トリフルオロエチル)エチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2-ジフルオロエチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル、リン酸ビス(2,2,3,3-テトラフルオロプロピル)2,2,2-トリフルオロエチル及びリン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル等が挙げられる。中でも、リチウムチタン複合酸化物(LTO)等の触媒作用を特に受けないため、リン酸トリス(2,2,2-トリフルオロエチル)が好ましい。これらフッ素原子を含むリン酸エステルとしては、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the phosphate ester containing a fluorine atom include tris phosphate (trifluoromethyl), tris phosphate (2,2-difluoroethyl), and tris phosphate (2,2,2-trifluoroethyl). , Tris phosphate (2,2,3,3-tetrafluoropropyl), Tris phosphate (2,2,3,3,3-pentafluoropropyl), Tris phosphate (hexafluoroisopropyl), Tris phosphate ( 2,2,3,3,4,5,5-octafluoropentyl), tris phosphate (2,2,3,3,4,5,5,5-nonafluoropentyl), phosphoric acid Tris (3,3,4,5,5,6,6,6-nonafluorohexyl), bis (2,2,2-trifluoroethyl) methyl phosphate, bis phosphate (2,2,2) -Trifluoroethyl) ethyl, bis phosphate (2,2,2-trifluoroethyl) 2,2-difluoroethyl, bis phosphate (2,2,2-trifluoroethyl) 2,2,3,3- Tetrafluoropropyl, bis phosphate (2,2,3,3-tetrafluoropropyl) 2,2,2-trifluoroethyl and bis phosphate (2,2,2-trifluoroethyl) 2,2,3 Examples thereof include 3-tetrafluoropropyl. Of these, tris phosphate (2,2,2-trifluoroethyl) is preferable because it is not particularly affected by the catalytic action of lithium titanium composite oxide (LTO) or the like. As the phosphoric acid ester containing these fluorine atoms, one type may be used alone, or two or more types may be used in combination.
 非水溶媒が、フッ素原子を含むエーテルを含む場合、フッ素原子を含むエーテルの含有率は、非水溶媒の全量に対して5体積%を超えていることが好ましく、7体積%以上であることがより好ましく、10体積%以上であることがさらに好ましく、15体積%以上であることが特に好ましく、20体積%以上であることが極めて好ましい。フッ素原子を含むエーテルの含有率が10体積%以上であることにより、電解液の融点が下がり、低温特性に優れるという効果が得られる。
 フッ素原子を含むエーテルの含有率は、入出力特性の観点から、非水溶媒の全量に対して80体積%以下であることが好ましく、70体積%以下であることがより好ましく、65体積%以下であることがさらに好ましく、55体積%未満であることが特に好ましい。
When the non-aqueous solvent contains ether containing a fluorine atom, the content of the ether containing a fluorine atom preferably exceeds 5% by volume, and is 7% by volume or more, based on the total amount of the non-aqueous solvent. Is more preferable, 10% by volume or more is further preferable, 15% by volume or more is particularly preferable, and 20% by volume or more is extremely preferable. When the content of the ether containing a fluorine atom is 10% by volume or more, the melting point of the electrolytic solution is lowered, and the effect of excellent low temperature characteristics can be obtained.
The content of the ether containing a fluorine atom is preferably 80% by volume or less, more preferably 70% by volume or less, and 65% by volume or less, based on the total amount of the non-aqueous solvent, from the viewpoint of input / output characteristics. Is more preferable, and less than 55% by volume is particularly preferable.
 フッ素原子を含むエーテルは、フッ素原子及びエーテル結合が含まれていればよく、フッ素原子を含む有機基及びエーテル結合を含む化合物が好ましく、1つのエーテル結合にそれぞれ独立にフッ素原子を含む有機基が2つ結合している化合物がより好ましい。
 フッ素原子を含む有機基としては、アルキル基、アルケニル基、アラルキル基、アリール基、ヘテロアリール基、アラルキル基、ヘテロアラルキル基等の少なくとも一つの水素原子がフッ素原子に置換されている基が挙げられる。
The ether containing a fluorine atom may contain a fluorine atom and an ether bond, and an organic group containing a fluorine atom and a compound containing an ether bond are preferable, and an organic group containing a fluorine atom independently in one ether bond is used. A compound in which the two are bonded is more preferable.
Examples of the organic group containing a fluorine atom include a group in which at least one hydrogen atom such as an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heteroaryl group, an aralkyl group or a heteroaralkyl group is substituted with a fluorine atom. ..
 フッ素原子を含むエーテルとしては、具体的には、2,2,2-トリフルオロエチルメチルエーテル、2,2,2-トリフルオロエチルジフルオロメチルエーテル、1,1,2,2-テトラフルオロエチルメチルエーテル、2,2,3,3,3-ペンタフルオロプロピルメチルエーテル、2,2,3,3,3-ペンタフルオロプロピルジフルオロメチルエーテル、1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテル、ヘキサフルオロイソプロピルメチルエーテル、ヘキサフルオロイソプロピルジフルオロメチルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピルメチルエーテル、2,2,3,3,3-ペンタフルオロプロピル1,1,2,2-テトラフルオロエチルエーテル、1,1,3,3,3-ペンタフルオロ-2-トリフルオロメチルプロピルメチルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピルエチルエーテル、2,2,3,4,4,4-ヘキサフルオロブチルジフルオロメチルエーテル、2,2,3,3,4,4,5,5-オクタフルオロペンチル1,1,2,2-テトラフルオロエチルエーテル等が挙げられる。中でも、入出力特性の観点から、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル及び1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテルが好ましい。これらフッ素原子を含むエーテルとしては、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the ether containing a fluorine atom include 2,2,2-trifluoroethyl methyl ether, 2,2,2-trifluoroethyldifluoromethyl ether, and 1,1,2,2-tetrafluoroethylmethyl. Ether, 2,2,3,3,3-pentafluoropropylmethyl ether, 2,2,3,3,3-pentafluoropropyldifluoromethyl ether, 1,1,2,2-tetrafluoroethyl ether, 1, 1,2,2-Tetrafluoroethyl 2,2,2-trifluoroethyl ether, 2,2,3,3-tetrafluoropropyldifluoromethyl ether, 1,1,2,2-tetrafluoroethyl 2,2 3,3-Tetrafluoropropyl ether, hexafluoroisopropylmethyl ether, hexafluoroisopropyldifluoromethyl ether, 1,1,2,3,3,3-hexafluoropropylmethyl ether, 2,2,3,3-3 Pentafluoropropyl 1,1,2,2-tetrafluoroethyl ether, 1,1,3,3,3-pentafluoro-2-trifluoromethylpropylmethyl ether, 1,1,2,3,3-3 Hexafluoropropyl ethyl ether, 2,2,3,4,4,4-hexafluorobutyldifluoromethyl ether, 2,2,3,3,4,5,5-octafluoropentyl 1,1,2, Examples thereof include 2-tetrafluoroethyl ether. Above all, from the viewpoint of input / output characteristics, 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether and 1,1,2,2-tetrafluoroethyl 2,2,3,3- Tetrafluoropropyl ether is preferred. As the ether containing these fluorine atoms, one type may be used alone, or two or more types may be used in combination.
 非水溶媒は、フッ素原子を含むカルボン酸エステルを含む場合、フッ素原子を含むカルボン酸エステルの含有率は、非水溶媒の全量に対して5体積%を超えていることが好ましく、7体積%以上であることがより好ましく、10体積%以上であることがさらに好ましく、15体積%以上であることが特に好ましく、20体積%以上であることが極めて好ましい。フッ素原子を含むカルボン酸エステルの含有率が10体積%以上であることにより、電解液の融点が下がり、低温特性に優れるという効果が得られる。
 フッ素原子を含むカルボン酸エステルの含有率は、高温での寿命特性の観点から、非水溶媒の全量に対して50体積%以下であることが好ましく、40体積%以下であることがより好ましく、30体積%以下であることがさらに好ましく、30体積%未満であることが特に好ましい。
When the non-aqueous solvent contains a carboxylic acid ester containing a fluorine atom, the content of the carboxylic acid ester containing a fluorine atom preferably exceeds 5% by volume, preferably 7% by volume, based on the total amount of the non-aqueous solvent. The above is more preferable, 10% by volume or more is further preferable, 15% by volume or more is particularly preferable, and 20% by volume or more is extremely preferable. When the content of the carboxylic acid ester containing a fluorine atom is 10% by volume or more, the melting point of the electrolytic solution is lowered, and the effect of excellent low temperature characteristics can be obtained.
The content of the carboxylic acid ester containing a fluorine atom is preferably 50% by volume or less, more preferably 40% by volume or less, based on the total amount of the non-aqueous solvent, from the viewpoint of life characteristics at high temperatures. It is more preferably 30% by volume or less, and particularly preferably less than 30% by volume.
 フッ素原子を含むカルボン酸エステルは、フッ素原子及びエステル結合が含まれていればよく、フッ素原子を含む有機基及びエステル結合を含む化合物が好ましく、エステル結合の炭素原子にフッ素原子を含む有機基が結合し、エステル結合の酸素原子にフッ素原子を含まない有機基が結合してる化合物がより好ましい。
 フッ素原子を含む有機基としては、アルキル基、アルケニル基、アラルキル基、アリール基、ヘテロアリール基、アラルキル基、ヘテロアラルキル基等の少なくとも一つの水素原子がフッ素原子に置換されている基が挙げられる。
 また、フッ素原子を含まない有機基としては、アルキル基、アルケニル基、アラルキル基、アリール基、ヘテロアリール基、アラルキル基、ヘテロアラルキル基等が挙げられる。
The carboxylic acid ester containing a fluorine atom may contain a fluorine atom and an ester bond, and an organic group containing a fluorine atom and a compound containing an ester bond are preferable, and an organic group containing a fluorine atom in the carbon atom of the ester bond is preferable. A compound that is bonded and has an organic group that does not contain a fluorine atom bonded to the oxygen atom of the ester bond is more preferable.
Examples of the organic group containing a fluorine atom include a group in which at least one hydrogen atom such as an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heteroaryl group, an aralkyl group or a heteroaralkyl group is substituted with a fluorine atom. ..
Examples of the organic group containing no fluorine atom include an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heteroaryl group, an aralkyl group, and a heteroaralkyl group.
 フッ素原子を含むカルボン酸エステルとしては、具体的には、ペンタフルオロプロピオン酸エチル、3,3,3-トリフルオロプロピオン酸メチル、3,3,3-トリフルオロプロピオン酸エチル、2,2,3,3-テトラフルオロプロピオン酸メチル、酢酸2,2-ジフルオロエチル、ヘプタフルオロイソ酪酸メチル、2,3,3,3-テトラフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸メチル、2-(トリフルオロメチル)-3,3,3-トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸エチル、酢酸2,2,2-トリフルオロエチル、トリフルオロ酢酸エチル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸tert-ブチル、4,4,4-トリフルオロ酪酸エチル、4,4,4-トリフルオロ酪酸メチル、ジフルオロ酢酸ブチル、ジフルオロ酢酸エチル、ジフルオロ酢酸メチル、トリフルオロ酢酸n-ブチル、酢酸2,2,3,3-テトラフルオロプロピル、3-(トリフルオロメチル)酪酸エチル、テトラフルオロ-2-(メトキシ)プロピオン酸メチル、3,3,3-トリフルオロプロピオン酸3,3,3トリフルオロプロピル、トリフルオロ酢酸2,2,3,3-テトラフルオロプロピル、酢酸1H,1H-ヘプタフルオロブチル、ヘプタフルオロ酪酸メチル等が挙げられる。中でも、入出力特性の観点から、トリフルオロ酢酸エチル及びジフルオロ酢酸メチルが好ましい。これらフッ素原子を含むカルボン酸エステルとしては、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the carboxylic acid ester containing a fluorine atom include ethyl pentafluoropropionate, methyl 3,3,3-trifluoropropionate, ethyl 3,3,3-trifluoropropionate, 2,2,3. , Methyl 3-tetrafluoropropionate, 2,2-difluoroethyl acetate, Methyl heptafluoroisobutyrate, Methyl 2,3,3,3-tetrafluoropropionate, Methyl pentafluoropropionate, 2- (trifluoromethyl) -3,3,3-Methyl trifluoropropionate, ethyl heptafluorobutyrate, 2,2,2-trifluoroethyl acetate, ethyl trifluoroacetate, isopropyl trifluoroacetate, tert-butyl trifluoroacetate, 4,4 Ethyl 4-trifluorobutyrate, methyl 4,4,4-trifluorobutyrate, butyl difluoroacetate, ethyl difluoroacetate, methyl difluoroacetate, n-butyl trifluoroacetate, 2,2,3,3-tetrafluoropropyl acetate, Ethyl 3- (trifluoromethyl) butyrate, methyl tetrafluoro-2- (methoxy) propionate, 3,3,3- trifluoropropionic acid 3,3,3 trifluoropropyl, trifluoroacetic acid 2,2,3 Examples thereof include 3-tetrafluoropropyl, 1H acetic acid, 1H-heptafluorobutyl, methyl heptafluorobutyrate and the like. Of these, ethyl trifluoroacetate and methyl difluoroacetate are preferable from the viewpoint of input / output characteristics. As the carboxylic acid ester containing these fluorine atoms, one type may be used alone, or two or more types may be used in combination.
 非水溶媒は、ジメチルカーボネートをさらに含むことが好ましい。ジメチルカーボネートは、耐酸化性及び耐還元性に優れており、電解液に添加することでリチウムイオン二次電池の充放電サイクル特性が向上すると推察される。 The non-aqueous solvent preferably further contains dimethyl carbonate. Dimethyl carbonate is excellent in oxidation resistance and reduction resistance, and it is presumed that the charge / discharge cycle characteristics of the lithium ion secondary battery are improved by adding it to the electrolytic solution.
 非水溶媒がジメチルカーボネートを含む場合、ジメチルカーボネートの含有率は、充放電サイクル特性の観点から、非水溶媒の全量に対して、5体積%以上であることが好ましく、15体積%以上であることがより好ましく、30体積%以上であることがさらに好ましく、50体積%以上であることが特に好ましい。また、低温特性の観点から、非水溶媒の全量に対して、80体積%以下であることが好ましく、70体積%以下であることがより好ましく、65体積%以下であることがさらに好ましく、55体積%以下であることが特に好ましい。 When the non-aqueous solvent contains dimethyl carbonate, the content of dimethyl carbonate is preferably 5% by volume or more, preferably 15% by volume or more, based on the total amount of the non-aqueous solvent from the viewpoint of charge / discharge cycle characteristics. More preferably, it is more preferably 30% by volume or more, and particularly preferably 50% by volume or more. Further, from the viewpoint of low temperature characteristics, it is preferably 80% by volume or less, more preferably 70% by volume or less, further preferably 65% by volume or less, and 55 by volume, based on the total amount of the non-aqueous solvent. It is particularly preferable that the volume is% or less.
 フッ素原子を含むリン酸エステルとジメチルカーボネートとの含有体積比(フッ素原子を含むリン酸エステル/ジメチルカーボネート)は、充放電サイクル特性及びガス発生抑制の観点から、0.05~2.5であることが好ましく、0.05~1.5であることがより好ましく、0.1~1.4であることがさらに好ましく、0.15~1.2であることが特に好ましい。 The content volume ratio of the phosphoric acid ester containing a fluorine atom to the dimethyl carbonate (phosphate containing a fluorine atom / dimethyl carbonate) is 0.05 to 2.5 from the viewpoint of charge / discharge cycle characteristics and suppression of gas generation. It is preferably 0.05 to 1.5, more preferably 0.1 to 1.4, and particularly preferably 0.15 to 1.2.
 本開示の電解液は、特定の化合物及びジメチルカーボネート以外のその他の非水溶媒を含んでいてもよく、含んでいなくてもよい。
 その他の非水溶媒としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、エチルメチルスルホン(EMS)、ビニレンカーボネート(VC)、メチルエチルカーボネート、γ-ブチロラクトン、アセトニトリル、1,2-ジメトキシエタン、ジメトキシメタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、及び酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル等のカルボン酸エステル(フッ素原子を含むカルボン酸エステルを除く)からなる群より選択されるものであってもよい。
The electrolytic solution of the present disclosure may or may not contain a specific compound and other non-aqueous solvents other than dimethyl carbonate.
Other non-aqueous solvents include ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), ethyl methyl sulfone (EMS), vinylene carbonate (VC), methyl ethyl carbonate, γ-butyrolactone, acetonitrile, 1 , 2-Dimethoxyethane, dimethoxymethane, tetrahydrofuran, dioxolane, methylene chloride, and carboxylic acid esters such as methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate (excluding carboxylic acid esters containing fluorine atoms) It may be selected from the group of
 電解液がその他の非水溶媒を含む場合、その他の非水溶媒の合計含有率は、非水溶媒の全量に対して、30体積%未満であることが好ましく、25体積%以下であることがより好ましく、15体積%以下であることがさらに好ましく、10体積%以下であることが特に好ましい。その他の非水溶媒の合計含有率は、非水溶媒の全量に対して、0体積%であってもよいが、安全性、入出力特性、低温特性等を向上させる観点から5体積%以上であるとよい。
 電解液がその他の非水溶媒を含む場合、その他の非水溶媒は、1種単独でもよく、2種以上の組み合わせでもよい。1種単独の場合、前述のその他の非水溶媒の合計含有率は、その他の非水溶媒の含有率と読み替えるものとする。
 EC、EMS等の引火点が高い溶媒を用いることで、電解液を安全化することができるが、これら化合物は耐還元性に劣ることがある。そのため、その他の非水溶媒を用いる場合、非水溶媒の全量に対するその他の非水溶媒の含有率が30体積%未満であれば、充放電サイクル特性の低下を抑制できる傾向にある。
 酢酸メチル等の融点の低いカルボン酸エステルを溶媒として用いることで、低温特性を改善することができる。
 電解液がフッ素原子を含むカルボン酸エステルを除くカルボン酸エステルを含む場合、このカルボン酸エステルの含有率は、入出力特性、低温特性の観点から、非水溶媒の全量に対して30体積%未満であることが好ましい。このカルボン酸エステルの含有率の好ましい範囲は、前述のその他の非水溶媒の合計含有率の好ましい範囲と同様である。
When the electrolytic solution contains other non-aqueous solvent, the total content of the other non-aqueous solvent is preferably less than 30% by volume, preferably 25% by volume or less, based on the total amount of the non-aqueous solvent. It is more preferably 15% by volume or less, and particularly preferably 10% by volume or less. The total content of the other non-aqueous solvents may be 0% by volume with respect to the total amount of the non-aqueous solvent, but it should be 5% by volume or more from the viewpoint of improving safety, input / output characteristics, low temperature characteristics, etc. I hope there is.
When the electrolytic solution contains other non-aqueous solvent, the other non-aqueous solvent may be used alone or in combination of two or more. In the case of one type alone, the total content of the other non-aqueous solvents described above shall be read as the content of the other non-aqueous solvents.
The electrolytic solution can be made safe by using a solvent having a high flash point such as EC or EMS, but these compounds may be inferior in reduction resistance. Therefore, when another non-aqueous solvent is used, if the content of the other non-aqueous solvent with respect to the total amount of the non-aqueous solvent is less than 30% by volume, the deterioration of the charge / discharge cycle characteristics tends to be suppressed.
By using a carboxylic acid ester having a low melting point such as methyl acetate as a solvent, the low temperature characteristics can be improved.
When the electrolytic solution contains a carboxylic acid ester other than a carboxylic acid ester containing a fluorine atom, the content of this carboxylic acid ester is less than 30% by volume based on the total amount of the non-aqueous solvent from the viewpoint of input / output characteristics and low temperature characteristics. Is preferable. The preferred range of the carboxylic acid ester content is the same as the preferred range of the total content of the other non-aqueous solvents described above.
 リチウム塩としては、LiPF(ヘキサフルオロリン酸リチウム)、LiBF(テトラフルオロホウ酸リチウム)、LiFSI(リチウムビスフルオロスルホニルイミド)、LiTFSI(リチウムビストリフルオロメタンスルホニルイミド)、LiClO、LiB(C、LiCHSO、LiCFSO、LiN(SOCFCF等が挙げられる。中でも、リチウム塩は、ヘキサフルオロリン酸リチウム及びテトラフルオロホウ酸リチウムの少なくとも一方を含むことが好ましい。
 これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 これらの中でも、溶媒に対する溶解性、リチウムイオン二次電池とした場合の充放電特性、入出力特性、充放電サイクル特性等を総合的に判断すると、リチウム塩はヘキサフルオロリン酸リチウムであることが好ましい。
Lithium salts include LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiFSI (lithium bisfluorosulfonylimide), LiTFSI (lithium bistrifluoromethanesulfonylimide), LiClO 4 , LiB (C). 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 2 CF 3 ) 2, and the like. Among them, the lithium salt preferably contains at least one of lithium hexafluorophosphate and lithium tetrafluoroborate.
These lithium salts may be used alone or in combination of two or more.
Among these, the lithium salt is lithium hexafluorophosphate when comprehensively judging the solubility in a solvent, charge / discharge characteristics in the case of a lithium ion secondary battery, input / discharge characteristics, charge / discharge cycle characteristics, etc. preferable.
 電解液におけるリチウム塩の濃度は、安全性の観点から、0.8mol/L~4.0mol/Lであることが好ましく、1.0mol/L~3.0mol/Lであることがより好ましく、1.2mol/L~2.5mol/Lであることがさらに好ましい。リチウム塩の濃度を1.2mol/L~2.0mol/Lと高濃度化することで、引火点を上げ、電解液をより安全化することができる。 From the viewpoint of safety, the concentration of the lithium salt in the electrolytic solution is preferably 0.8 mol / L to 4.0 mol / L, more preferably 1.0 mol / L to 3.0 mol / L. It is more preferably 1.2 mol / L to 2.5 mol / L. By increasing the concentration of the lithium salt to 1.2 mol / L to 2.0 mol / L, the flash point can be raised and the electrolytic solution can be made safer.
 電解液は、ガス発生量を抑制する観点から、リチウムビスオキサレートボレート(LiBOB)、リチウムジフルオロ(オキサラト)ボレート(LiDFOB)、リチウムジシアノオキサレートボレート及びリチウムシアノフルオロオキサレートボレートからなる群より選択される少なくとも1つのホウ素原子を含むリチウム塩を含むことが好ましい。 The electrolytic solution is selected from the group consisting of lithium bisoxalate borate (LiBOB), lithium difluoro (oxalate) borate (LiDFOB), lithium dicyanooxalate borate and lithium cyanofluorooxalate borate from the viewpoint of suppressing the amount of gas generated. It is preferable to contain a lithium salt containing at least one boron atom.
 ホウ素原子を含むリチウム塩の含有率は、電解液の全量に対して0.02質量%~10質量%であることが好ましく、0.05質量%~5質量%であることがより好ましく、0.1質量%~3質量%であることがさらに好ましい。 The content of the lithium salt containing a boron atom is preferably 0.02% by mass to 10% by mass, more preferably 0.05% by mass to 5% by mass, and 0, based on the total amount of the electrolytic solution. .1% by mass to 3% by mass is more preferable.
 電解液は、必要に応じて添加剤を含んでもよい。
 添加剤としては、リチウムイオン二次電池の電解液用の添加剤であれば特に制限されず、例えば、窒素を含有する複素環化合物、硫黄を含有する複素環化合物、窒素及び硫黄を含有する複素環化合物、環状カルボン酸エステル、フッ素含有環状カーボネート、含フッ素ホウ酸エステル並びにその他の分子内に不飽和結合を有する化合物が挙げられる。また、上記添加剤以外に、求められる機能に応じて過充電防止剤、負極皮膜形成剤、正極保護剤、高入出力剤等の他の添加剤を用いてもよい。
The electrolytic solution may contain an additive if necessary.
The additive is not particularly limited as long as it is an additive for an electrolytic solution of a lithium ion secondary battery, and is, for example, a nitrogen-containing heterocyclic compound, a sulfur-containing heterocyclic compound, and a nitrogen- and sulfur-containing heterocycle compound. Examples thereof include ring compounds, cyclic carboxylic acid esters, fluorine-containing cyclic carbonates, fluorine-containing boric acid esters, and other compounds having unsaturated bonds in the molecule. In addition to the above additives, other additives such as an overcharge inhibitor, a negative electrode film forming agent, a positive electrode protective agent, and a high input / output agent may be used depending on the required function.
 電解液が添加剤を含むことにより、高温での保存特性、充放電サイクル特性及び入出力特性の向上を図ることができる。 By containing additives in the electrolytic solution, it is possible to improve storage characteristics at high temperatures, charge / discharge cycle characteristics, and input / output characteristics.
(負極の負極容量と正極の正極容量との容量比)
 本開示において、容量比(負極容量/正極容量)は、充放電サイクル特性とエネルギー密度の観点から1以下であることが好ましい。例えば、容量比(負極容量/正極容量)が1以下であることにより、正極電位の上昇を抑制できるため、ジメチルカーボネート等の非水溶媒の分解反応を抑制でき、充放電サイクル特性が良好となる傾向にある。さらに、前述のように非水溶媒として特定の化合物(特にフッ素原子を含むリン酸エステルが好ましい)を用いることにより、負極側でのガス発生も抑制できる。
(Capacity ratio of negative electrode capacity of negative electrode to positive electrode capacity of positive electrode)
In the present disclosure, the capacity ratio (negative electrode capacity / positive electrode capacity) is preferably 1 or less from the viewpoint of charge / discharge cycle characteristics and energy density. For example, when the volume ratio (negative electrode capacity / positive electrode capacity) is 1 or less, an increase in the positive electrode potential can be suppressed, so that the decomposition reaction of a non-aqueous solvent such as dimethyl carbonate can be suppressed, and the charge / discharge cycle characteristics are improved. There is a tendency. Furthermore, by using a specific compound (particularly a phosphoric acid ester containing a fluorine atom) as the non-aqueous solvent as described above, gas generation on the negative electrode side can be suppressed.
 容量比(負極容量/正極容量)は0.6以上1未満であることが好ましい。容量比が0.6以上の場合は、電池容量が向上し、体積エネルギー密度が向上する傾向となる。容量比(負極容量/正極容量)は、0.7~0.98であることがより好ましく、体積エネルギー密度及び入力特性の観点から0.75~0.95であることがさらに好ましい。 The capacity ratio (negative electrode capacity / positive electrode capacity) is preferably 0.6 or more and less than 1. When the capacity ratio is 0.6 or more, the battery capacity tends to be improved and the volumetric energy density tends to be improved. The capacity ratio (negative electrode capacity / positive electrode capacity) is more preferably 0.7 to 0.98, and further preferably 0.75 to 0.95 from the viewpoint of volumetric energy density and input characteristics.
 なお、「正極容量」及び「負極容量」は、それぞれ、対極を金属リチウムとする電気化学セルを構成して定電流充電-定電流放電を行ったときに得られる可逆的に利用できる最大の容量を意味する。
 また、負極容量とは、[負極の放電容量]を示し、正極容量とは、[正極の放電容量]を示す。
 ここで、[負極の放電容量]とは、負極活物質に挿入されているリチウムイオンが脱離するときに充放電装置で算出されるものと定義する。また、[正極の放電容量]とは、正極活物質へリチウムイオンが挿入されるときに充放電装置で算出されるものと定義する。
 例えば、正極活物質にスピネル型のリチウム・ニッケル・マンガン複合酸化物を、負極活物質にLTOを用いた場合には、「正極容量」及び「負極容量」は、上記電気化学セルにおいて、電圧範囲をそれぞれ4.95V~3.5V及び1.0V~2.0Vとし、定電流充電及び定電流放電時の電流密度を、正極容量については0.37mA/cm、負極容量については0.37mA/cmとする上記充放電を行って評価した場合に得られる容量とする。
 なお、上記電気化学セルにおいて、リチウムチタン複合酸化物等の負極活物質から、リチウムイオンが挿入される方向を充電と、リチウムイオンが脱離する方向を放電と、定義する。また、上記電気化学セルにおいて、正極活物質であるリチウム・ニッケル・マンガン複合酸化物から、リチウムイオンが脱離する方向を充電と、リチウムイオンが挿入される方向を放電と、定義する。
The "positive electrode capacity" and "negative electrode capacity" are the maximum capacities that can be reversibly obtained when a constant current charge-constant current discharge is performed by forming an electrochemical cell whose counter electrode is metallic lithium, respectively. Means.
Further, the negative electrode capacity indicates [the discharge capacity of the negative electrode], and the positive electrode capacity indicates [the discharge capacity of the positive electrode].
Here, [the discharge capacity of the negative electrode] is defined as being calculated by the charging / discharging device when the lithium ions inserted in the negative electrode active material are desorbed. Further, [discharge capacity of the positive electrode] is defined as being calculated by the charging / discharging device when lithium ions are inserted into the positive electrode active material.
For example, when a spinel-type lithium-nickel-manganese composite oxide is used as the positive electrode active material and LTO is used as the negative electrode active material, the “positive electrode capacity” and the “negative electrode capacity” are in the voltage range in the electrochemical cell. 4.95V to 3.5V and 1.0V to 2.0V, respectively, and the current density during constant current charging and constant current discharging is 0.37mA / cm 2 for the positive electrode capacity and 0.37mA for the negative electrode capacity. The capacity is defined as / cm 2 and is the capacity obtained when evaluated by performing the above charging and discharging.
In the electrochemical cell, the direction in which lithium ions are inserted from the negative electrode active material such as lithium titanium composite oxide is defined as charging, and the direction in which lithium ions are desorbed is defined as discharging. Further, in the electrochemical cell, the direction in which lithium ions are desorbed from the lithium-nickel-manganese composite oxide which is the positive electrode active material is defined as charging, and the direction in which lithium ions are inserted is defined as discharging.
 本開示において、正極容量は、正極に含まれる正極活物質の量を多くすることにより大きくなり、量を少なくすることにより小さくなる傾向にある。負極容量は、正極容量と同様、負極活物質の量によって増減する。正極容量及び負極容量を調整することで、本開示のリチウムイオン二次電池の容量比(負極容量/正極容量)を1以下に調整することが可能となる。 In the present disclosure, the positive electrode capacity tends to increase by increasing the amount of the positive electrode active material contained in the positive electrode, and tends to decrease by decreasing the amount. The negative electrode capacity, like the positive electrode capacity, increases or decreases depending on the amount of the negative electrode active material. By adjusting the positive electrode capacity and the negative electrode capacity, it is possible to adjust the capacity ratio (negative electrode capacity / positive electrode capacity) of the lithium ion secondary battery of the present disclosure to 1 or less.
 本開示のリチウムイオン二次電池の形状は、円筒型、積層型、コイン型、ラミネート型等、種々の形状とすることができる。いずれの形状をとる場合であっても、正極と負極との間にセパレータを介在させ電極体とし、正極集電体及び負極集電体から外部に通ずる正極端子及び負極端子までの間を、集電用リード等を用いて接続し、この電極体を電解液とともに電池ケースに密閉してリチウムイオン二次電池が完成する。
 以下に、正極板と負極板とをセパレータを介して積層した積層型リチウムイオン二次電池について説明するが、本開示はこれに制限されない。
The shape of the lithium ion secondary battery of the present disclosure can be various shapes such as a cylindrical type, a laminated type, a coin type, and a laminated type. Regardless of the shape, a separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the area between the positive electrode current collector and the negative electrode current collector and the positive electrode terminal and the negative electrode terminal leading to the outside is collected. A lithium ion secondary battery is completed by connecting using an electric lead or the like and sealing this electrode body together with an electrolytic solution in a battery case.
Hereinafter, a laminated lithium ion secondary battery in which a positive electrode plate and a negative electrode plate are laminated via a separator will be described, but the present disclosure is not limited thereto.
 図1は本開示のリチウムイオン二次電池の一例を示す斜視図である。また、図2は、電極群を構成する正極板、負極板及びセパレータを示す斜視図である。
 なお、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、実質的に同一の機能を有する部材には全図面を通して同じ符号を付与し、重複する説明は省略する場合がある。
 図1のリチウムイオン二次電池10は、ラミネートフィルムの電池外装体6内に、電極群20と電解液を収容したものであり、正極集電タブ2と負極集電タブ4を電池外装体6外に取り出すようにしている。
FIG. 1 is a perspective view showing an example of the lithium ion secondary battery of the present disclosure. Further, FIG. 2 is a perspective view showing a positive electrode plate, a negative electrode plate, and a separator constituting the electrode group.
The size of the members in each figure is conceptual, and the relative relationship between the members is not limited to this. Further, members having substantially the same function may be given the same reference numerals throughout the drawings, and duplicate description may be omitted.
The lithium ion secondary battery 10 of FIG. 1 contains an electrode group 20 and an electrolytic solution in a battery exterior body 6 of a laminated film, and has a positive electrode current collecting tab 2 and a negative electrode current collecting tab 4 in the battery exterior body 6. I try to take it out.
 そして、図2に示すように、電極群20は正極集電タブ2を取り付けた正極板1、セパレータ5、及び負極集電タブ4を取り付けた負極板3を積層したものである。
 なお、正極板、負極板、セパレータ、電極群及び電池の大きさ、形状等は任意のものとすることができ、図1及び図2に示されるものに限定されるわけではない。
 電池外装体6の材料としては、アルミニウム製のラミネートフィルム、SUS、アルミニウム、銅、ステンレス等が挙げられる。
Then, as shown in FIG. 2, the electrode group 20 is a stack of a positive electrode plate 1 to which the positive electrode current collecting tab 2 is attached, a separator 5, and a negative electrode plate 3 to which the negative electrode current collecting tab 4 is attached.
The size, shape, and the like of the positive electrode plate, the negative electrode plate, the separator, the electrode group, and the battery can be arbitrary, and are not limited to those shown in FIGS. 1 and 2.
Examples of the material of the battery exterior 6 include a laminated film made of aluminum, SUS, aluminum, copper, stainless steel and the like.
 リチウムイオン二次電池の他の実施形態としては、例えば、正極板と負極板とをセパレータを介し積層してなる積層体を巻回して得られた電極群を円筒型の電池外装体内に封入した円筒型リチウムイオン二次電池を挙げることができる。
 図3は本開示のリチウムイオン二次電池の他の形態を示す断面図である。
 図3に示すように、リチウムイオン二次電池11は、ニッケルメッキが施されたスチール製で有底円筒状の電池外装体16を有している。電池外装体16には、電極群15が収容されている。電極群15は、帯状の正極板12及び負極板13がポリエチレン、ポリプロピレン等のポリオレフィン製多孔質シートのセパレータ14を介して断面渦巻状に捲回されている。セパレータ14は、例えば、幅が58mm、厚さが20μmに設定される。電極群15の上端面には、一端部を正極板12に固定されたアルミニウム製でリボン状の正極タブ端子が導出されている。正極タブ端子の他端部は、電極群15の上側に配置され正極外部端子となる円盤状の電池蓋の下面に超音波溶接で接合されている。一方、電極群15の下端面には、一端部を負極板13に固定されたニッケル製でリボン状の負極タブ端子が導出されている。負極タブ端子の他端部は、電池外装体16の内底部に抵抗溶接で接合されている。したがって、正極タブ端子及び負極タブ端子は、それぞれ電極群15の両端面の互いに反対側に導出されている。なお、電極群15の外周面全周には、図示を省略した絶縁被覆が施されている。電池蓋は、絶縁性の樹脂製ガスケットを介して電池外装体16の上部にカシメ固定されている。このため、リチウムイオン二次電池11の内部は密封されている。また、電池外装体16内には、図示しない電解液が注液されている。
 なお、正極板、負極板、セパレータ、電極群及び電池の大きさ、形状等は任意のものとすることができ、図3に示されるものに限定されるわけではない。
As another embodiment of the lithium ion secondary battery, for example, an electrode group obtained by winding a laminate formed by laminating a positive electrode plate and a negative electrode plate via a separator is enclosed in a cylindrical battery exterior. A cylindrical lithium ion secondary battery can be mentioned.
FIG. 3 is a cross-sectional view showing another form of the lithium ion secondary battery of the present disclosure.
As shown in FIG. 3, the lithium ion secondary battery 11 has a battery exterior body 16 made of nickel-plated steel and having a bottomed cylindrical shape. The electrode group 15 is housed in the battery exterior body 16. In the electrode group 15, the strip-shaped positive electrode plate 12 and the negative electrode plate 13 are wound in a spiral cross section via a separator 14 of a porous sheet made of polyolefin such as polyethylene or polypropylene. The separator 14 is set to, for example, a width of 58 mm and a thickness of 20 μm. On the upper end surface of the electrode group 15, a ribbon-shaped positive electrode tab terminal made of aluminum whose one end is fixed to the positive electrode plate 12 is led out. The other end of the positive electrode tab terminal is arranged above the electrode group 15 and is ultrasonically bonded to the lower surface of the disk-shaped battery lid that serves as the positive electrode external terminal. On the other hand, on the lower end surface of the electrode group 15, a ribbon-shaped negative electrode tab terminal made of nickel whose one end is fixed to the negative electrode plate 13 is led out. The other end of the negative electrode tab terminal is joined to the inner bottom of the battery exterior 16 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are led out to opposite sides of both end faces of the electrode group 15, respectively. The entire circumference of the outer peripheral surface of the electrode group 15 is provided with an insulating coating (not shown). The battery lid is caulked and fixed to the upper part of the battery exterior 16 via an insulating resin gasket. Therefore, the inside of the lithium ion secondary battery 11 is sealed. Further, an electrolytic solution (not shown) is injected into the battery exterior body 16.
The size, shape, and the like of the positive electrode plate, the negative electrode plate, the separator, the electrode group, and the battery can be arbitrary, and are not limited to those shown in FIG.
 以下、実施例に基づき本開示をさらに詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。 Hereinafter, the present disclosure will be described in more detail based on the examples. The present invention is not limited to the following examples.
[比較例1]
 正極は、正極活物質であるスピネル型リチウム・ニッケル・マンガン複合酸化物(LiNi0.5Mn1.5、BET比表面積:0.31m/g、メジアン径D50:16.9μm)を93質量部、導電剤としてアセチレンブラック(デンカ株式会社)を5質量部、結着剤としてポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体(合成例1のバインダ樹脂組成物)を2質量部混合し、適量のN-メチル-2-ピロリドンを添加して混練することでペースト状の正極合剤スラリーを得た。このスラリーを正極用の集電体である厚さ15μmのアルミニウム箔の片面に実質的に均等かつ均質に正極合剤の固形分として145g/mになるように塗布した。その後、乾燥処理を施し、乾燥塗膜を得た。この乾燥塗膜を、正極合剤の固形分として密度が2.3g/cmになるまでプレスにより圧密化し、シート状の正極を作製した。正極合剤を含む層の厚さは63μmであった。これを幅30mm、長さ45mmに切断して正極板とし、図2に示すようにこの正極板に正極集電タブを取り付けた。
[Comparative Example 1]
The positive electrode is a spinel-type lithium-nickel-manganese composite oxide (LiNi 0.5 Mn 1.5 O 4 , BET specific surface area: 0.31 m 2 / g, median diameter D50: 16.9 μm), which is a positive electrode active material. 93 parts by mass, 5 parts by mass of acetylene black (Denka Co., Ltd.) as a conductive agent, and a copolymer in which acrylic acid and a linear ether group are added to a polyacrylonitrile skeleton as a binder (binder resin composition of Synthesis Example 1). Was mixed by 2 parts by mass, an appropriate amount of N-methyl-2-pyrrolidone was added, and the mixture was kneaded to obtain a paste-like positive electrode mixture slurry. This slurry was applied to one side of an aluminum foil having a thickness of 15 μm, which is a current collector for the positive electrode, so as to have a solid content of 145 g / m 2 of the positive electrode mixture substantially evenly and uniformly. Then, it was dried to obtain a dry coating film. This dried coating film was compacted by pressing until the density became 2.3 g / cm 3 as the solid content of the positive electrode mixture to prepare a sheet-shaped positive electrode. The thickness of the layer containing the positive electrode mixture was 63 μm. This was cut into a width of 30 mm and a length of 45 mm to obtain a positive electrode plate, and as shown in FIG. 2, a positive electrode current collecting tab was attached to this positive electrode plate.
 負極は、負極活物質としてリチウムチタン複合酸化物の一種であるチタン酸リチウム(BET比表面積:6.5m/g、メジアン径D50:7.3μm)を91質量部、導電剤としてアセチレンブラック(Li400、デンカ株式会社)を4質量部、結着剤としてポリフッ化ビニリデン(KFポリマー#9130、株式会社クレハ)を5質量部混合し、適量のN-メチル-2-ピロリドンを添加して混練することでペースト状の負極合剤スラリーを得た。このスラリーを負極用の集電体である厚さ15μmのアルミニウム箔の片面に負極合剤の固形分として100g/mになるように塗布した。その後、乾燥処理を施し、乾燥塗膜を得た。この乾燥塗膜を、負極合剤の固形分として密度が2.0g/cmになるまでプレスにより圧密化し、シート状の負極を作製した。負極合剤を含む層の厚さは50μmであった。これを幅30mm、長さ45mmに切断して負極板とし、図2に示すようにこの負極板に負極集電タブを取り付けた。 For the negative electrode, 91 parts by mass of lithium titanate (BET specific surface area: 6.5 m 2 / g, median diameter D50: 7.3 μm), which is a kind of lithium titanium composite oxide, as the negative electrode active material, and acetylene black (acetylene black) as the conductive agent. Li400, Denka Co., Ltd.) is mixed by 4 parts by mass, and polyvinylidene fluoride (KF polymer # 9130, Kureha Co., Ltd.) is mixed by 5 parts by mass as a binder, and an appropriate amount of N-methyl-2-pyrrolidone is added and kneaded. As a result, a paste-like negative electrode mixture slurry was obtained. This slurry was applied to one side of an aluminum foil having a thickness of 15 μm, which is a current collector for the negative electrode, so as to have a solid content of 100 g / m 2 of the negative electrode mixture. Then, it was dried to obtain a dry coating film. This dried coating film was compacted by pressing until the density became 2.0 g / cm 3 as the solid content of the negative electrode mixture to prepare a sheet-shaped negative electrode. The thickness of the layer containing the negative electrode mixture was 50 μm. This was cut into a width of 30 mm and a length of 45 mm to obtain a negative electrode plate, and as shown in FIG. 2, a negative electrode current collecting tab was attached to this negative electrode plate.
 正極で使用した結着剤の合成例を以下に示す。 An example of synthesizing the binder used for the positive electrode is shown below.
<合成例1>
 撹拌機、温度計、冷却管及び窒素ガス導入管を装備した3リットルのセパラブルフラスコに、精製水1804gを仕込み、窒素ガス通気量200ml/分の条件下、撹拌しながら、74℃まで昇温した後、窒素ガスの通気を止めた。次いで、重合開始剤の過硫酸アンモニウム0.968gを精製水76gに溶かした水溶液を添加し、直ちに、ニトリル基含有単量体のアクリロニトリル183.8g、カルボキシル基含有単量体のアクリル酸9.7g(アクリロニトリル1モルに対して0.039モルの割合)及び単量体のメトキシトリエチレングリコールアクリレート(新中村化学工業株式会社、商品名:NKエステルAM-30G)6.5g(アクリロニトリル1モルに対して0.0085モルの割合)の混合液を、反応系の温度を74±2℃に保ちながら、2時間かけて滴下した。続いて、懸濁した反応系に、過硫酸アンモニウム0.25gを精製水21.3gに溶かした水溶液を添加し、84℃まで昇温した後、反応系の温度を84±2℃に保ちながら、2.5時間反応を進めた。その後、1時間かけて40℃まで冷却した後、撹拌を止めて一晩室温で放冷し、バインダ樹脂組成物が沈殿した反応液を得た。この反応液を吸引ろ過し、回収した湿潤状態の沈殿を精製水1800gで3回洗浄した後、80℃で10時間真空乾燥して、単離及び精製し、バインダ樹脂組成物を得た。
<Synthesis example 1>
1804 g of purified water was placed in a 3 liter separable flask equipped with a stirrer, a thermometer, a cooling tube and a nitrogen gas introduction tube, and the temperature was raised to 74 ° C. while stirring under the condition of a nitrogen gas aeration rate of 200 ml / min. After that, the ventilation of nitrogen gas was stopped. Next, an aqueous solution prepared by dissolving 0.968 g of ammonium persulfate as a polymerization initiator in 76 g of purified water was added, and immediately, 183.8 g of acrylonitrile as a nitrile group-containing monomer and 9.7 g of acrylic acid as a carboxyl group-containing monomer ( A ratio of 0.039 mol to 1 mol of acrylonitrile) and 6.5 g of monomeric methoxytriethylene glycol acrylate (Shin-Nakamura Chemical Industry Co., Ltd., trade name: NK ester AM-30G) (to 1 mol of acrylonitrile) The mixed solution (at a ratio of 0.0085 mol) was added dropwise over 2 hours while maintaining the temperature of the reaction system at 74 ± 2 ° C. Subsequently, an aqueous solution prepared by dissolving 0.25 g of ammonium persulfate in 21.3 g of purified water was added to the suspended reaction system, the temperature was raised to 84 ° C., and then the temperature of the reaction system was maintained at 84 ± 2 ° C. The reaction proceeded for 2.5 hours. Then, after cooling to 40 ° C. over 1 hour, stirring was stopped and the mixture was allowed to cool overnight at room temperature to obtain a reaction solution in which the binder resin composition was precipitated. The reaction solution was suction-filtered, and the collected wet precipitate was washed 3 times with 1800 g of purified water and then vacuum-dried at 80 ° C. for 10 hours to isolate and purify to obtain a binder resin composition.
(電極群の作製)
 作製した正極板と負極板とを、厚さ15μm、幅35mm、長さ50mmのポリプロピレン単層膜(空孔率50%)からなるセパレータを介して対向させ、積層状の電極群を作製した。
(Preparation of electrode group)
The prepared positive electrode plate and the negative electrode plate were opposed to each other via a separator made of a polypropylene single-layer film (vacancy ratio 50%) having a thickness of 15 μm, a width of 35 mm, and a length of 50 mm to prepare a laminated electrode group.
(電解液の調製)
 下記表1に示す非水溶媒に、電解質であるLiPFを1.0mol/Lの濃度で溶解させ、電解液を調製した。なお、表1中のECはエチレンカーボネートを表し、TFEPはリン酸トリス(2,2,2-トリフルオロエチル)を表し、DMCはジメチルカーボネートを表す。
(Preparation of electrolyte)
The electrolyte, LiPF 6 , was dissolved in the non-aqueous solvent shown in Table 1 below at a concentration of 1.0 mol / L to prepare an electrolytic solution. In addition, EC in Table 1 represents ethylene carbonate, TFEP represents tris phosphate (2,2,2-trifluoroethyl), and DMC represents dimethyl carbonate.
(リチウムイオン二次電池の作製)
 上記電極群を、図1に示すように、アルミニウム製のラミネートフィルムで構成された電池外装体内に収容させると共に、この電池外装体内に、電解液を注入後、上記の正極集電タブと負極集電タブとを外部に取り出すようにして電池容器の開口部を封口させて、比較例1のリチウムイオン二次電池を作製した。なお、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。
 作製したリチウムイオン二次電池について、室温で半日放置後、40℃、電流値0.2Cで2.0V~3.5Vの電圧範囲で定電流充電及び定電流放電を3サイクル行った。
(Manufacturing of lithium ion secondary battery)
As shown in FIG. 1, the electrode group is housed in a battery exterior body made of an aluminum laminate film, and after injecting an electrolytic solution into the battery exterior body, the positive electrode current collecting tab and the negative electrode collection are described. The lithium ion secondary battery of Comparative Example 1 was produced by closing the opening of the battery container so as to take out the electric tab to the outside. The aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene or the like).
The prepared lithium ion secondary battery was left at room temperature for half a day, and then subjected to constant current charging and constant current discharging for 3 cycles in a voltage range of 2.0 V to 3.5 V at 40 ° C. and a current value of 0.2 C.
(正極容量及び負極容量の測定)
-正極容量の測定-
 幅31mm、長さ46mmに切断した厚さ0.5mmのリチウム箔を、幅31mm、長さ46mmに切断した銅メッシュに貼り付け、対極とした。対極には、集電タブを取り付けた。作製した正極板と対極とを、厚さ15μm、幅35mm、長さ50mmのポリプロピレン単層膜(空孔率50%)からなるセパレータを介して対向させ、積層状の電極群を作製した。この電極群を、図1に示すように、アルミニウム製のラミネートフィルムで構成された電池外装体内に収容させ、この電池外装体内に、電解液を注入後、正極集電タブと対極の集電タブとを外部に取り出すようにして電池外装体の開口部を封口させて、リチウムイオン二次電池を作製した。なお、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。電解液はLiPF濃度が1.2mol/LのEC/DMC混合溶媒(EC:DMCは体積比で3:7)を用いた。正極容量は、電圧範囲を4.95V~3.5Vとし、定電流充電及び定電流放電時の電流密度を0.37mA/cmとする充放電を行って評価した場合に得られる放電容量とした。
 なお、測定の結果、比較例1についての正極の容量は25mAhであった。
(Measurement of positive electrode capacity and negative electrode capacity)
-Measurement of positive electrode capacity-
A lithium foil having a thickness of 0.5 mm cut into a width of 31 mm and a length of 46 mm was attached to a copper mesh cut into a width of 31 mm and a length of 46 mm to serve as a counter electrode. A current collecting tab was attached to the opposite pole. The prepared positive electrode plate and the counter electrode were opposed to each other via a separator made of a polypropylene single-layer film (vacancy ratio 50%) having a thickness of 15 μm, a width of 35 mm, and a length of 50 mm to prepare a laminated electrode group. As shown in FIG. 1, this electrode group is housed in a battery outer body made of an aluminum laminated film, and after injecting an electrolytic solution into the battery outer body, a positive electrode current collecting tab and a counter electrode current collecting tab are used. A lithium ion secondary battery was produced by sealing the opening of the battery exterior body so as to take out the battery to the outside. The aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene or the like). As the electrolytic solution, an EC / DMC mixed solvent having a LiPF 6 concentration of 1.2 mol / L (EC: DMC has a volume ratio of 3: 7) was used. The positive electrode capacity is the discharge capacity obtained when evaluated by charging / discharging with a voltage range of 4.95 V to 3.5 V and a current density of 0.37 mA / cm 2 during constant current charging and constant current discharging. did.
As a result of the measurement, the capacity of the positive electrode for Comparative Example 1 was 25 mAh.
-負極容量の測定-
 正極容量の測定において、作製した正極板に替えて負極板を用い、電圧範囲1.0V~2.0Vとし、定電流充電及び定電流放電時の電流密度を0.30mA/cmとする充放電を行って評価した以外は正極容量の測定と同様にして、負極容量の測定を行った。
 なお、測定の結果、比較例1についての負極の容量は21mAhであった。
 比較例1についての正極の容量と負極の容量とから、容量比(負極容量/正極容量)は0.85と算出された。
-Measurement of negative electrode capacity-
In the measurement of the positive electrode capacity, a negative electrode plate is used instead of the produced positive electrode plate, the voltage range is 1.0V to 2.0V, and the current density during constant current charging and constant current discharging is 0.30 mA / cm 2. The negative electrode capacity was measured in the same manner as the positive electrode capacity measurement except that the evaluation was performed by discharging.
As a result of the measurement, the capacity of the negative electrode for Comparative Example 1 was 21 mAh.
The capacity ratio (negative electrode capacity / positive electrode capacity) was calculated to be 0.85 from the positive electrode capacity and the negative electrode capacity in Comparative Example 1.
(ガスの発生量の測定)
 比較例1のリチウムイオン二次電池の体積を比重計(MDS-300、アルファーミラージュ株式会社)で測定した(初期体積)。
 次に、上記のリチウムイオン二次電池を、充放電装置(BATTERY TEST UNIT、株式会社IEM)を用いて、50℃において電流値1C、充電終止電圧3.5Vで定電流充電し、15分間休止後、電流値1C、放電終止電圧2.6Vで定電流放電を行った。なお、電流値の単位として用いたCとは、“電流値(A)/電池容量(Ah)”を意味する。この操作を100回繰り返した後、このリチウムイオン二次電池の体積を上記の比重計を用いて測定した(100サイクル後の体積)。
 以下の式から100サイクル後のガスの発生量を算出した。得られた結果を表1及び図4に示す。
 ガスの発生量(mL)=(100サイクル後の体積)-(初期体積)
(Measurement of gas generation amount)
The volume of the lithium ion secondary battery of Comparative Example 1 was measured with a hydrometer (MDS-300, Alpha Mirage Co., Ltd.) (initial volume).
Next, the above lithium ion secondary battery is constantly charged at 50 ° C. with a current value of 1C and a charge termination voltage of 3.5V using a charging / discharging device (BATTERY TEST UNIT, IEM Co., Ltd.), and paused for 15 minutes. After that, constant current discharge was performed with a current value of 1C and a discharge end voltage of 2.6V. In addition, C used as a unit of a current value means "current value (A) / battery capacity (Ah)". After repeating this operation 100 times, the volume of the lithium ion secondary battery was measured using the above hydrometer (volume after 100 cycles).
The amount of gas generated after 100 cycles was calculated from the following formula. The results obtained are shown in Table 1 and FIG.
Gas generation amount (mL) = (volume after 100 cycles)-(initial volume)
[実施例1~11、比較例2]
 非水溶媒の配合を表1に記載のように変更した以外は、比較例1と同様にして実施例1~11及び比較例2のリチウムイオン二次電池を作製し、比較例1と同様に評価した。得られた評価結果を表1に示す。
 なお、実施例1~11及び比較例2については、容量比(負極容量/正極容量)が0.85となるように、正極合剤の片面塗布量と正極合剤密度を固定したうえで、負極合剤の片面塗布量及び負極合剤密度を変更した。
[Examples 1 to 11, Comparative Example 2]
Lithium-ion secondary batteries of Examples 1 to 11 and Comparative Example 2 were produced in the same manner as in Comparative Example 1 except that the composition of the non-aqueous solvent was changed as shown in Table 1, and the same as in Comparative Example 1. evaluated. The obtained evaluation results are shown in Table 1.
In Examples 1 to 11 and Comparative Example 2, the one-sided coating amount of the positive electrode mixture and the density of the positive electrode mixture were fixed so that the volume ratio (negative electrode capacity / positive electrode capacity) was 0.85. The single-sided coating amount of the negative electrode mixture and the density of the negative electrode mixture were changed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 電解液が特定の化合物を5体積%超含む実施例1~11では、ガス発生量が0.3mL以下であり、電解液が5体積%の特定の化合物を含む比較例1及び電解液が特定の化合物を含まない比較例2に比べてガスの発生量が抑制されていた。 In Examples 1 to 11 in which the electrolytic solution contains more than 5% by volume of a specific compound, the amount of gas generated is 0.3 mL or less, and Comparative Example 1 and the electrolytic solution containing 5% by volume of the specific compound are specified. The amount of gas generated was suppressed as compared with Comparative Example 2 which did not contain the compound of.
[実施例12~17]
 非水溶媒の配合を表2に記載のように変更した以外は、比較例1と同様にして実施例12~17のリチウムイオン二次電池を作製し、比較例1と同様に評価した。なお、実施例12~15については300サイクル後の体積も測定し、100サイクルから300サイクルにかけて発生したガス量も以下の式で算出した。また、比較のため、比較例2についても300サイクル後の体積も測定し、100サイクルから300サイクルにかけて発生したガス量を以下の式で算出した。
 100サイクルから300サイクルにかけて発生したガス量(mL)=(300サイクル後の体積)-(100サイクル後の体積)
 得られた評価結果を表2に示す。
 フッ素原子を含むエーテルの略号は以下のとおりである。
FE1:1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテル
FE2:2,2,3,3,4,4,5,5-オクタフルオロペンチル1,1,2,2-テトラフルオロエチルエーテル
FE3:1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル
 なお、実施例12~17及び比較例2については、容量比(負極容量/正極容量)が0.85となるように、正極合剤の片面塗布量と正極合剤密度を固定したうえで、負極合剤の片面塗布量及び負極合剤密度を変更した。
[Examples 12 to 17]
Lithium-ion secondary batteries of Examples 12 to 17 were prepared in the same manner as in Comparative Example 1 except that the composition of the non-aqueous solvent was changed as shown in Table 2, and evaluated in the same manner as in Comparative Example 1. For Examples 12 to 15, the volume after 300 cycles was also measured, and the amount of gas generated from 100 cycles to 300 cycles was also calculated by the following formula. For comparison, the volume of Comparative Example 2 after 300 cycles was also measured, and the amount of gas generated from 100 cycles to 300 cycles was calculated by the following formula.
Amount of gas generated from 100 cycles to 300 cycles (mL) = (volume after 300 cycles)-(volume after 100 cycles)
The obtained evaluation results are shown in Table 2.
The abbreviations for ethers containing fluorine atoms are as follows.
FE1: 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether FE2: 2,2,3,3,4,5,5-octafluoropentyl 1,1, 2,2-Tetrafluoroethyl ether FE3: 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether For Examples 12 to 17 and Comparative Example 2, the volume ratio (negative electrode capacity) The single-sided coating amount of the positive electrode mixture and the positive electrode mixture density were fixed so that the positive electrode capacity) was 0.85, and then the single-sided coating amount of the negative electrode mixture and the negative electrode mixture density were changed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例13~15の通り、FE1が30%以上含まれると、最初の100サイクルは比較例2と比べてガス量が増加した。しかし、100サイクルから300サイクルにかけてはガス量が抑制された。詳細は不明だが、FE1に含まれる水分が原因と予想される。100サイクルまではFE1に含まれる水分が分解するため、比較例2よりもガス発生量が増加したと考えられる。100サイクルから300サイクルにかけては、水分が既にすべて分解して無くなったため、水分の分解によるガス発生が生じず、かつFE1が含まれることにより比較例2よりもガス量が抑制されたと考えられる。 As shown in Examples 13 to 15, when FE1 was contained in an amount of 30% or more, the amount of gas increased in the first 100 cycles as compared with Comparative Example 2. However, the amount of gas was suppressed from 100 cycles to 300 cycles. Details are unknown, but it is presumed that the cause is the water contained in FE1. Since the water contained in FE1 is decomposed up to 100 cycles, it is considered that the amount of gas generated is increased as compared with Comparative Example 2. From 100 cycles to 300 cycles, it is considered that since all the water was already decomposed and disappeared, gas generation due to the decomposition of water did not occur, and the amount of gas was suppressed as compared with Comparative Example 2 due to the inclusion of FE1.
[実施例18~26]
 非水溶媒の配合を表3に記載のように変更した以外は、比較例1と同様にして実施例18~26のリチウムイオン二次電池を作製し、比較例1と同様に評価した。また、実施例18~24、26において、フッ素原子を含むエーテルとしてFE1(1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテル)を用いた。
 得られた評価結果を表3に示す。
 なお、実施例18~26については、容量比(負極容量/正極容量)が0.85となるように、正極合剤の片面塗布量と正極合剤密度を固定したうえで、負極合剤の片面塗布量及び負極合剤密度を変更した。
[Examples 18 to 26]
Lithium-ion secondary batteries of Examples 18 to 26 were prepared in the same manner as in Comparative Example 1 except that the composition of the non-aqueous solvent was changed as shown in Table 3, and evaluated in the same manner as in Comparative Example 1. Further, in Examples 18 to 24 and 26, FE1 (1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether) was used as the ether containing a fluorine atom.
The obtained evaluation results are shown in Table 3.
In Examples 18 to 26, the negative electrode mixture was prepared after fixing the one-sided coating amount of the positive electrode mixture and the positive electrode mixture density so that the volume ratio (negative electrode capacity / positive electrode capacity) was 0.85. The single-side coating amount and the negative electrode mixture density were changed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 電解液が特定の化合物を5体積%超含む実施例18~26では、ガス発生量が0.3mL以下であり、電解液が5体積%の特定の化合物を含む比較例1及び電解液が特定の化合物を含まない比較例2に比べてガスの発生量が抑制されていた。 In Examples 18 to 26 in which the electrolytic solution contains more than 5% by volume of the specific compound, the amount of gas generated is 0.3 mL or less, and Comparative Example 1 containing the specific compound in which the electrolytic solution contains 5% by volume and the electrolytic solution are specified. The amount of gas generated was suppressed as compared with Comparative Example 2 which did not contain the compound of.
 2019年3月29日に出願されたPCT/JP2019/014152の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of PCT / JP 2019/014152 filed on March 29, 2019 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
 1、12…正極板、2…正極集電タブ、3、13…負極板、4…負極集電タブ、5、14…セパレータ、6、16…電池外装体、10、11…リチウムイオン二次電池、15、20…電極群 1, 12 ... Positive electrode plate, 2 ... Positive electrode current collecting tab, 3, 13 ... Negative electrode plate, 4 ... Negative electrode current collecting tab, 5, 14 ... Separator, 6, 16 ... Battery exterior, 10, 11 ... Lithium ion secondary Batteries, 15, 20 ... Electrode group

Claims (14)

  1.  リチウム電位に対して4.5V以上の電位にてリチウムイオンが挿入及び脱離する活物質を正極活物質として含む正極と、
     リチウム電位に対して0.4V以上の電位にてリチウムイオンが挿入及び脱離する活物質を負極活物質として含む負極と、
     前記正極と前記負極との間に介在するセパレータと、
     リチウム塩及び非水溶媒を含む電解液と、を備え、
     前記非水溶媒は、フッ素原子を含むリン酸エステル、フッ素原子を含むエーテル及びフッ素原子を含むカルボン酸エステルからなる群より選択される少なくとも1つの化合物を含み、前記化合物の含有率は、前記非水溶媒の全量に対して5体積%超であるリチウムイオン二次電池。
    A positive electrode containing an active material in which lithium ions are inserted and removed at a potential of 4.5 V or higher with respect to the lithium potential as a positive electrode active material, and
    A negative electrode containing an active material in which lithium ions are inserted and removed at a potential of 0.4 V or more with respect to the lithium potential as a negative electrode active material, and a negative electrode.
    A separator interposed between the positive electrode and the negative electrode,
    With an electrolytic solution containing a lithium salt and a non-aqueous solvent,
    The non-aqueous solvent contains at least one compound selected from the group consisting of a phosphoric acid ester containing a fluorine atom, an ether containing a fluorine atom, and a carboxylic acid ester containing a fluorine atom, and the content of the compound is the non-aqueous solvent. A lithium ion secondary battery that is more than 5% by volume based on the total amount of the aqueous solvent.
  2.  前記化合物の含有率は、前記非水溶媒の全量に対して90体積%以下である請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the content of the compound is 90% by volume or less based on the total amount of the non-aqueous solvent.
  3.  前記非水溶媒は、ジメチルカーボネートをさらに含む請求項1又は請求項2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1 or 2, wherein the non-aqueous solvent further contains dimethyl carbonate.
  4.  前記ジメチルカーボネートの含有率は、前記非水溶媒の全量に対して5体積%~80体積%である請求項3に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 3, wherein the content of the dimethyl carbonate is 5% by volume to 80% by volume with respect to the total amount of the non-aqueous solvent.
  5.  前記非水溶媒が前記フッ素原子を含むリン酸エステルを含み、前記フッ素原子を含むリン酸エステルと前記ジメチルカーボネートとの含有体積比(フッ素原子を含むリン酸エステル/ジメチルカーボネート)は、0.05~2.5である請求項3又は請求項4に記載のリチウムイオン二次電池。 The non-aqueous solvent contains the phosphoric acid ester containing the fluorine atom, and the content volume ratio of the phosphoric acid ester containing the fluorine atom to the dimethyl carbonate (phosphoric acid ester containing the fluorine atom / dimethyl carbonate) is 0.05. The lithium ion secondary battery according to claim 3 or 4, which is ~ 2.5.
  6.  前記非水溶媒が前記フッ素原子を含むリン酸エステルを含み、前記フッ素原子を含むリン酸エステルは、リン酸トリス(2,2,2-トリフルオロエチル)を含む請求項1~請求項5のいずれか1項に記載のリチウムイオン二次電池。 The non-aqueous solvent contains the phosphoric acid ester containing the fluorine atom, and the phosphoric acid ester containing the fluorine atom contains tris phosphate (2,2,2-trifluoroethyl), according to claims 1 to 5. The lithium ion secondary battery according to any one item.
  7.  前記負極の負極容量と前記正極の正極容量との容量比(負極容量/正極容量)は、1以下である請求項1~請求項6のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 6, wherein the capacity ratio (negative electrode capacity / positive electrode capacity) of the negative electrode capacity of the negative electrode to the positive electrode capacity of the positive electrode is 1 or less.
  8.  前記セパレータの空孔率は、20%~80%である請求項1~請求項7のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 7, wherein the porosity of the separator is 20% to 80%.
  9.  前記非水溶媒は、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチルメチルスルホン、ビニレンカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、アセトニトリル、1,2-ジメトキシエタン、ジメトキシメタン、テトラヒドロフラン、ジオキソラン及び塩化メチレンからなる群より選択されるその他の非水溶媒をいずれも含まないか、又は、前記その他の非水溶媒の合計含有率は、前記非水溶媒の全量に対して30体積%未満である請求項1~請求項8のいずれか1項に記載のリチウムイオン二次電池。 The non-aqueous solvent comprises ethylene carbonate, diethyl carbonate, propylene carbonate, ethyl methyl sulfone, vinylene carbonate, methyl ethyl carbonate, γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane, dimethoxymethane, tetrahydrofuran, dioxolane and methylene chloride. Claims 1 to 1, which do not contain any of the other non-aqueous solvents selected from the group, or the total content of the other non-aqueous solvents is less than 30% by volume based on the total amount of the non-aqueous solvent. The lithium ion secondary battery according to any one of claim 8.
  10.  前記非水溶媒が前記フッ素原子を含むエーテルを含み、前記フッ素原子を含むエーテルは、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル及び1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテルの少なくとも一方を含む請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池。 The non-aqueous solvent contains the ether containing the fluorine atom, and the ether containing the fluorine atom includes 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether and 1,1,2, The lithium ion secondary battery according to any one of claims 1 to 9, which comprises at least one of 2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether.
  11.  前記非水溶媒が前記フッ素原子を含むカルボン酸エステルを含み、前記フッ素原子を含むカルボン酸エステルは、トリフルオロ酢酸エチル及びジフルオロ酢酸メチルの少なくとも一方を含む請求項1~請求項10のいずれか1項に記載のリチウムイオン二次電池。 Any one of claims 1 to 10, wherein the non-aqueous solvent contains the carboxylic acid ester containing the fluorine atom, and the carboxylic acid ester containing the fluorine atom contains at least one of ethyl trifluoroacetate and methyl difluoroacetate. The lithium ion secondary battery described in the section.
  12.  前記電解液は、リチウムビスオキサレートボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムジシアノオキサレートボレート及びリチウムシアノフルオロオキサレートボレートからなる群より選択される少なくとも1つのホウ素原子を含むリチウム塩を含み、
     前記ホウ素原子を含むリチウム塩の含有率は、前記電解液の全量に対して0.02質量%~10質量%である請求項1~請求項11のいずれか1項に記載のリチウムイオン二次電池。
    The electrolytic solution contains a lithium salt containing at least one boron atom selected from the group consisting of lithium bisoxalate borate, lithium difluoro (oxalate) borate, lithium dicyanooxalate borate and lithium cyanofluorooxalate borate.
    The lithium ion secondary according to any one of claims 1 to 11, wherein the content of the lithium salt containing a boron atom is 0.02% by mass to 10% by mass with respect to the total amount of the electrolytic solution. battery.
  13.  前記リチウム塩は、ヘキサフルオロリン酸リチウム及びテトラフルオロホウ酸リチウムの少なくとも一方を含む請求項1~請求項12のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 12, wherein the lithium salt contains at least one of lithium hexafluorophosphate and lithium tetrafluoroborate.
  14.  前記非水溶媒は、フッ素原子を含むカルボン酸エステルを除くカルボン酸エステルを含み、
     前記フッ素原子を含むカルボン酸エステルを除くカルボン酸エステルの含有率は、前記非水溶媒の全量に対して30体積%未満である請求項1~請求項13のいずれか1項に記載のリチウムイオン二次電池。
    The non-aqueous solvent contains a carboxylic acid ester other than a carboxylic acid ester containing a fluorine atom.
    The lithium ion according to any one of claims 1 to 13, wherein the content of the carboxylic acid ester excluding the carboxylic acid ester containing a fluorine atom is less than 30% by volume based on the total amount of the non-aqueous solvent. Secondary battery.
PCT/JP2019/049919 2019-03-29 2019-12-19 Lithium ion secondary battery WO2020202661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511105A JPWO2020202661A1 (en) 2019-03-29 2019-12-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/014152 WO2020202307A1 (en) 2019-03-29 2019-03-29 Lithium ion secondary battery
JPPCT/JP2019/014152 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202661A1 true WO2020202661A1 (en) 2020-10-08

Family

ID=72666492

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/014152 WO2020202307A1 (en) 2019-03-29 2019-03-29 Lithium ion secondary battery
PCT/JP2019/049919 WO2020202661A1 (en) 2019-03-29 2019-12-19 Lithium ion secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014152 WO2020202307A1 (en) 2019-03-29 2019-03-29 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JPWO2020202661A1 (en)
WO (2) WO2020202307A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117638233A (en) * 2024-01-27 2024-03-01 河南师范大学 Flame-retardant lithium-rich manganese-based lithium ion battery high-voltage electrolyte

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129428A1 (en) * 2012-03-02 2013-09-06 日本電気株式会社 Lithium secondary cell
JP2014525667A (en) * 2011-09-02 2014-09-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Lithium ion battery
JP2014209436A (en) * 2013-03-26 2014-11-06 株式会社東芝 Nonaqueous electrolyte battery, and battery pack
WO2016171276A1 (en) * 2015-04-24 2016-10-27 日立化成株式会社 Lithium ion cell
WO2017145497A1 (en) * 2016-02-26 2017-08-31 日立化成株式会社 Lithium ion secondary battery
JP2018063916A (en) * 2016-10-14 2018-04-19 日立化成株式会社 Lithium ion secondary battery
WO2018123526A1 (en) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525667A (en) * 2011-09-02 2014-09-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Lithium ion battery
WO2013129428A1 (en) * 2012-03-02 2013-09-06 日本電気株式会社 Lithium secondary cell
JP2014209436A (en) * 2013-03-26 2014-11-06 株式会社東芝 Nonaqueous electrolyte battery, and battery pack
WO2016171276A1 (en) * 2015-04-24 2016-10-27 日立化成株式会社 Lithium ion cell
WO2017145497A1 (en) * 2016-02-26 2017-08-31 日立化成株式会社 Lithium ion secondary battery
JP2018063916A (en) * 2016-10-14 2018-04-19 日立化成株式会社 Lithium ion secondary battery
WO2018123526A1 (en) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
WO2020202307A1 (en) 2020-10-08
JPWO2020202661A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US9484599B2 (en) Non-aqueous electrolyte secondary battery
US10062925B2 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery
JP2006066341A (en) Nonaqueous electrolyte secondary cell
JP2006252895A (en) Battery
JP6350673B2 (en) Lithium ion battery
EP3322024A1 (en) Nonaqueous electrolyte battery and battery pack
JP2010287431A (en) Battery
EP3451437B1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
US10957936B2 (en) Lithium ion secondary battery
WO2016060253A1 (en) Lithium ion cell
KR20160036577A (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
CN111052486B (en) Nonaqueous electrolyte secondary battery
WO2020202661A1 (en) Lithium ion secondary battery
JP6766863B2 (en) Lithium ion secondary battery
JP6668848B2 (en) Lithium ion secondary battery
WO2016171276A1 (en) Lithium ion cell
JP7454796B2 (en) Non-aqueous electrolyte secondary battery and electrolyte used therein
JP2018063916A (en) Lithium ion secondary battery
JP2016207447A (en) Nonaqueous electrolyte secondary battery
CN112913051A (en) Secondary battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP4346395B2 (en) Nonaqueous electrolyte secondary battery
US20240063437A1 (en) Organic electrolyte and secondary battery comprising same
WO2020158299A1 (en) Non-aqueous electrolyte secondary battery and electrolytic solution used therefor
JP2021180084A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03-01-2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19922916

Country of ref document: EP

Kind code of ref document: A1