JP2015201335A - lithium ion battery - Google Patents
lithium ion battery Download PDFInfo
- Publication number
- JP2015201335A JP2015201335A JP2014079354A JP2014079354A JP2015201335A JP 2015201335 A JP2015201335 A JP 2015201335A JP 2014079354 A JP2014079354 A JP 2014079354A JP 2014079354 A JP2014079354 A JP 2014079354A JP 2015201335 A JP2015201335 A JP 2015201335A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- negative electrode
- lithium ion
- lithium
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 56
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 239000004020 conductor Substances 0.000 claims abstract description 24
- 239000007774 positive electrode material Substances 0.000 claims abstract description 18
- SWAIALBIBWIKKQ-UHFFFAOYSA-N lithium titanium Chemical compound [Li].[Ti] SWAIALBIBWIKKQ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000007773 negative electrode material Substances 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims description 44
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 229910052744 lithium Inorganic materials 0.000 claims description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 10
- 239000006230 acetylene black Substances 0.000 claims description 9
- 239000008151 electrolyte solution Substances 0.000 claims description 6
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 claims description 2
- ZYXUQEDFWHDILZ-UHFFFAOYSA-N [Ni].[Mn].[Li] Chemical compound [Ni].[Mn].[Li] ZYXUQEDFWHDILZ-UHFFFAOYSA-N 0.000 abstract description 22
- 239000003792 electrolyte Substances 0.000 abstract description 2
- 238000003860 storage Methods 0.000 description 21
- -1 polyethylene Polymers 0.000 description 20
- 239000000463 material Substances 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 238000007600 charging Methods 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229910052596 spinel Inorganic materials 0.000 description 7
- 239000011029 spinel Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 6
- 159000000002 lithium salts Chemical class 0.000 description 6
- 239000011255 nonaqueous electrolyte Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 230000000284 resting effect Effects 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 125000001033 ether group Chemical group 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920002239 polyacrylonitrile Polymers 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000005001 laminate film Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 102100036715 GPALPP motifs-containing protein 1 Human genes 0.000 description 3
- 101001072428 Homo sapiens GPALPP motifs-containing protein 1 Proteins 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000007596 consolidation process Methods 0.000 description 3
- 238000010280 constant potential charging Methods 0.000 description 3
- 150000005676 cyclic carbonates Chemical class 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229910004984 Li(Co1/3Ni1/3Mn1/3)O2 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010941 LiFSI Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013398 LiN(SO2CF2CF3)2 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002589 poly(vinylethylene) polymer Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン電池に関するものである。 The present invention relates to a lithium ion battery.
リチウムイオン電池は、高エネルギー密度の二次電池であり、その特性を活かして、ノートパソコンや携帯電話等のポータブル機器の電源に使用されている。 Lithium ion batteries are secondary batteries with high energy density, and are used as power sources for portable devices such as notebook computers and mobile phones, taking advantage of their characteristics.
近年、小型化が進む電子機器用電源、電力貯蔵用電源及び電気自動車用電源として、入出力特性、エネルギー密度及び充放電サイクル特性に優れるリチウムイオン電池が要求されている。 In recent years, lithium-ion batteries excellent in input / output characteristics, energy density, and charge / discharge cycle characteristics have been required as power supplies for electronic devices, power storage power supplies, and electric vehicle power supplies that are becoming smaller in size.
出力特性、及び充放電サイクル特性を向上させる手段として、下記特許文献1には、特定の比表面積を有するスピネル構造のリチウムチタン複合酸化物を負極活物質に用いたリチウムイオン電池に関する技術が開示されている。
As means for improving output characteristics and charge / discharge cycle characteristics, the following
ところで、リチウムイオン電池は、高温での保存特性を向上させることも求められている。 Incidentally, lithium ion batteries are also required to improve storage characteristics at high temperatures.
本発明は上記事情を鑑みてなされたものであり、高温での保存特性に優れるリチウムイオン電池を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the lithium ion battery which is excellent in the storage characteristic at high temperature.
本発明に係わるリチウムイオン電池は、正極と、負極と、電解液と、を備えるリチウムイオン電池であって、前記正極は、集電体と前記集電体の少なくとも片面に塗布された正極合材とを有し、前記正極合材は、正極活物質としてBET比表面積が0.3m2/g未満であるリチウムマンガンニッケル複合酸化物及び正極導電材を含み、前記負極は、負極活物質としてリチウムチタン複合酸化物及び負極導電材を含む。
本発明に係るチウムイオン電池によれば、高温での保存特性に優れる。
A lithium ion battery according to the present invention is a lithium ion battery comprising a positive electrode, a negative electrode, and an electrolyte solution, wherein the positive electrode is a positive electrode mixture coated on at least one surface of a current collector and the current collector. The positive electrode mixture includes a lithium manganese nickel composite oxide having a BET specific surface area of less than 0.3 m 2 / g and a positive electrode conductive material as a positive electrode active material, and the negative electrode is lithium as a negative electrode active material. Includes titanium composite oxide and negative electrode conductive material.
According to the lithium ion battery of the present invention, the storage characteristics at high temperatures are excellent.
前記正極導電材は、アセチレンブラックであることが好ましい。この場合、入出力特性をより向上することができる。 The positive electrode conductive material is preferably acetylene black. In this case, the input / output characteristics can be further improved.
また、前記正極導電材の含有量は、正極合材の全量を基準として、4〜10質量%であることが好ましい。この場合、入出力特性を更に向上することができる。 Moreover, it is preferable that content of the said positive electrode electrically conductive material is 4-10 mass% on the basis of the whole quantity of positive electrode compound material. In this case, input / output characteristics can be further improved.
本発明によれば、高温での保存特性に優れるリチウムイオン電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the lithium ion battery excellent in the storage characteristic at high temperature can be provided.
以下、本発明のリチウムイオン電池の実施形態について、正極活物質となるリチウムマンガンニッケル複合酸化物、負極活物質となるリチウムチタン複合酸化物、リチウムイオン電池の全体構成の順で説明する。 Hereinafter, embodiments of the lithium ion battery of the present invention will be described in the order of a lithium manganese nickel composite oxide serving as a positive electrode active material, a lithium titanium composite oxide serving as a negative electrode active material, and an overall configuration of the lithium ion battery.
<リチウムマンガンニッケル複合酸化物>
本実施形態のリチウムイオン電池の正極活物質となるリチウムマンガンニッケル複合酸化物は、スピネル構造のリチウムマンガンニッケル複合酸化物であることが好ましい。スピネル型リチウムマンガンニッケル複合酸化物は、LiNiXMn2−XO4(0.3<X<0.7)で表され、安定性の観点からはLiNi0.5Mn1.5O4がより好ましい。前記スピネル構造のLiNi0.5Mn1.5O4の結晶構造をより安定させるために、このスピネル構造リチウムマンガンニッケル複合酸化物のMn/Niサイトの一部をほかの金属で置換したものを、正極活物質として用いることもできる。
<Lithium manganese nickel composite oxide>
The lithium manganese nickel composite oxide serving as the positive electrode active material of the lithium ion battery of this embodiment is preferably a lithium manganese nickel composite oxide having a spinel structure. The spinel type lithium manganese nickel composite oxide is represented by LiNi X Mn 2 -X O 4 (0.3 <X <0.7). From the viewpoint of stability, LiNi 0.5 Mn 1.5 O 4 is More preferred. In order to further stabilize the crystal structure of LiNi 0.5 Mn 1.5 O 4 having the spinel structure, a part of the Mn / Ni site of the spinel structure lithium manganese nickel composite oxide was replaced with another metal. It can also be used as a positive electrode active material.
また、過剰のリチウムを結晶内に存在させたもの、又はOサイトに欠損を生じさせたものを用いることもできる。Mn/Niサイトを置換させることのできる他の金属としては、例えばTi、V、Cr、Fe、Co、Zn、Cu、W、Mg、Al及びRuを挙げることができる。これらは、1種又は2種以上の金属元素もので置換することができる。これらの置換可能な金属元素のうち、結晶構造の安定化の観点から、置換元素にTiを用いることが好ましい。 Moreover, what made excess lithium exist in a crystal | crystallization, or what produced the defect | deletion in O site can also be used. Examples of other metals that can substitute the Mn / Ni site include Ti, V, Cr, Fe, Co, Zn, Cu, W, Mg, Al, and Ru. These can be substituted with one or more metal elements. Of these substitutable metal elements, Ti is preferably used as the substitution element from the viewpoint of stabilizing the crystal structure.
上記のリチウムマンガンニッケル複合酸化物は、高エネルギー密度の観点から、充電状態における電位がLi/Li+に対して、4.5V以上5V以下で用いることが好ましく、4.6以上4.9V以下で用いることがより好ましい。 From the viewpoint of high energy density, the lithium manganese nickel composite oxide is preferably used with a potential in a charged state of 4.5 V or more and 5 V or less with respect to Li / Li + , and 4.6 or more and 4.9 V or less. It is more preferable to use in.
上記のリチウムマンガンニッケル複合酸化物のBET比表面積は、0.3m2/g未満であるが、高温での保存特性をより向上できる観点から、2.9m2/g未満であることが好ましく、2.8m2/g未満であることがより好ましい。入出力特性(以下、レート特性という場合もある)を向上できる観点からは、BET比表面積は、0.05m2/g以上であることが好ましく、0.08m2/g以上であることがより好ましく、0.1m2/g以上であることが更に好ましい。
BET比表面積は、例えばJIS Z 8830に準じて窒素吸着能から測定することができる。評価装置としては、例えばQUANTACHROME社製:AUTOSORB−1(商品名)などを用いることができる。BET比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、まず、加熱による水分除去の前処理を行うことが好ましい。 前記前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却することが好ましい。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定することが好ましい。
また、上記のリチウムマンガンニッケル複合酸化物の粒子のメジアン径D50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径D50)は、合剤スラリの分散性の観点から、0.5μm以上100μm以下であることが好ましく、1μm以上50μm以下であることがより好ましい。なお、メジアン径D50は、レーザー回折・散乱法により求めた粒度分布から求めることができる。
BET specific surface area of the lithium-manganese-nickel composite oxide is less than 0.3 m 2 / g, from the viewpoint of further improving the storage characteristics at high temperatures, preferably less than 2.9 m 2 / g, More preferably, it is less than 2.8 m 2 / g. Input-output characteristic (hereinafter, sometimes referred rate characteristics) from the point of view that can improve, BET specific surface area is preferably at 0.05 m 2 / g or more, more not less 0.08 m 2 / g or more Preferably, it is more preferably 0.1 m 2 / g or more.
The BET specific surface area can be measured from the nitrogen adsorption capacity according to, for example, JIS Z 8830. As the evaluation device, for example, AUTOSORB-1 (trade name) manufactured by QUANTACHROME can be used. When measuring the BET specific surface area, it is considered that the moisture adsorbed on the sample surface and structure affects the gas adsorption capacity. Therefore, it is preferable to first perform pretreatment for moisture removal by heating. . In the pretreatment, the measurement cell charged with 0.05 g of the measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C., held for 3 hours or more, and kept at a normal temperature while maintaining the depressurized state. It is preferable to naturally cool to (25 ° C.). After performing this pretreatment, it is preferable that the evaluation temperature is 77K and the evaluation pressure range is less than 1 in relative pressure (equilibrium pressure with respect to saturated vapor pressure).
The median diameter D50 of the lithium manganese nickel composite oxide particles (secondary particle median diameter D50 when primary particles are aggregated to form secondary particles) is the dispersibility of the mixture slurry. In view of the above, it is preferably 0.5 μm or more and 100 μm or less, and more preferably 1 μm or more and 50 μm or less. The median diameter D50 can be obtained from the particle size distribution obtained by the laser diffraction / scattering method.
本実施形態のリチウムイオン電池における正極活物質は、リチウムマンガンニッケル複合酸化物以外の正極活物質を含んでいてもよい。 The positive electrode active material in the lithium ion battery of this embodiment may include a positive electrode active material other than the lithium manganese nickel composite oxide.
リチウムマンガンニッケル複合酸化物以外の正極活物質としては、例えばLixCoO2、LixNiO2、LixMnO2、LixCoyNi1−yO2、LixCoyM1−yOz、LixNi1−yMyOz、LixMn2O4及びLixMn2−yMyO4(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。x=0〜1.2、y=0〜0.9、z=2.0〜2.3である。)が挙げられる。ここで、リチウムのモル比を示すx値は、充放電により増減する。 Examples of positive electrode active materials other than lithium manganese nickel composite oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-y O. z, Li x Ni 1-y M y O z, Li x Mn 2 O 4 and Li x Mn 2-y M y O 4 ( in each of the formulas above, M is Na, Mg, Sc, Y, Mn, Fe, It represents at least one element selected from the group consisting of Co, Cu, Zn, Al, Cr, Pb, Sb, V and B. x = 0 to 1.2, y = 0 to 0.9, z = 2. 0.0 to 2.3.). Here, x value which shows the molar ratio of lithium increases / decreases by charging / discharging.
上記リチウムマンガンニッケル複合酸化物の含有量は、電池容量を向上できる観点から、正極活物質の総量中、60〜100質量%が好ましく、70〜100質量%がより好ましく、85〜100質量%であることが更に好ましい。 From the viewpoint of improving the battery capacity, the content of the lithium manganese nickel composite oxide is preferably 60 to 100% by mass, more preferably 70 to 100% by mass, and 85 to 100% by mass in the total amount of the positive electrode active material. More preferably it is.
<リチウムチタン複合酸化物>
本実施形態のリチウムイオン電池の負極活物質となるリチウムチタン複合酸化物は、スピネル構造のリチウムチタン複合酸化物であることが好ましい。スピネル構造リチウムチタン複合酸化物の基本的な組成式は、Li[Li1/3Ti5/3]O4で表され、結晶構造をより安定化させるために、スピネル構造リチウムチタン複合酸化物のLi又はTiサイトの一部をほかの金属で置換したもの、過剰のリチウムを結晶内に存在させたもの、又はOサイトの一部をほかの元素で置換したものを用いることもできる。置換させることのできる他の金属としては、例えばF、B、Nb、V、Mn、Ni、Cu、Co、Zn、Sn、Pb、Al、Mo、Ba、Sr、Ta、Mg、Caを挙げることができる。これらは、1種又は2種以上の金属原子もので置換することができる。
<Lithium titanium composite oxide>
The lithium titanium composite oxide serving as the negative electrode active material of the lithium ion battery of the present embodiment is preferably a lithium titanium composite oxide having a spinel structure. The basic composition formula of the spinel structure lithium titanium composite oxide is represented by Li [Li 1/3 Ti 5/3 ] O 4 , and in order to further stabilize the crystal structure, the spinel structure lithium titanium composite oxide A material in which a part of the Li or Ti site is substituted with another metal, a material in which excess lithium is present in the crystal, or a material in which a part of the O site is substituted with another element can also be used. Examples of other metals that can be substituted include F, B, Nb, V, Mn, Ni, Cu, Co, Zn, Sn, Pb, Al, Mo, Ba, Sr, Ta, Mg, and Ca. Can do. These can be substituted with one or more metal atoms.
上記のリチウムチタン複合酸化物の充電状態における電位は、Li/Li+に対して1V以上2V以下となることが好ましい。 The potential in the charged state of the lithium titanium composite oxide is preferably 1 V or more and 2 V or less with respect to Li / Li + .
本実施形態のリチウムイオン電池における負極活物質は、リチウムチタン複合酸化物以外の負極活物質を含んでいてもよい。 The negative electrode active material in the lithium ion battery of the present embodiment may include a negative electrode active material other than the lithium titanium composite oxide.
リチウムチタン複合酸化物以外の負極活物質としては、例えば、炭素材料が挙げられる。 Examples of the negative electrode active material other than the lithium titanium composite oxide include a carbon material.
リチウムチタン複合酸化物の含有量は、安全性及びサイクル特性を向上できる観点から、負極活物質の総量中、70〜100質量%が好ましく、80〜100質量%がより好ましく、90〜100質量%であることが更に好ましい。 The content of the lithium titanium composite oxide is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and more preferably 90 to 100% by mass in the total amount of the negative electrode active material from the viewpoint of improving safety and cycle characteristics. More preferably.
<リチウムイオン電池の全体構成>
リチウムイオン電池の正極は、上記リチウムマンガンニッケル複合酸化物を正極活物質とし、これに導電材を混合し、必要に応じ適当な結着材及び溶剤を加えて、ペースト状の正極合剤としたものを、アルミニウム箔等の金属箔の集電体表面に塗布、乾燥し、その後、必要に応じてプレス等によって正極合剤の密度を高めることによって形成する。尚、本リチウムマンガンニッケル複合酸化物だけで正極活物質を構成することもできるが、リチウムイオン電池の特性改善等を目的にとして、リチウムマンガンニッケル複合酸化物に公知のLiCoO2、LiNiO2、LiMn2O4、LiFePO4、Li(Co1/3Ni1/3Mn1/3)O2等のリチウム複合酸化物を混合して正極活物質とするものであってもよい。
<Overall configuration of lithium-ion battery>
The positive electrode of the lithium ion battery uses the above lithium manganese nickel composite oxide as a positive electrode active material, and a conductive material is mixed therewith, and an appropriate binder and solvent are added as necessary to obtain a paste-like positive electrode mixture. A thing is apply | coated to the collector surface of metal foils, such as aluminum foil, it dries, and it forms after that, after that, raises the density of positive mix by a press etc. as needed. In addition, although the positive electrode active material can be constituted only by the present lithium manganese nickel composite oxide, for the purpose of improving the characteristics of the lithium ion battery, etc., known LiCoO 2 , LiNiO 2 , LiMn are known for the lithium manganese nickel composite oxide. A lithium composite oxide such as 2 O 4 , LiFePO 4 , or Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 may be mixed to obtain a positive electrode active material.
正極合材の集電体への片面塗布量は、エネルギー密度及び入出力特性の観点から、10g/m2以上250g/m2以下であることが好ましく、50g/m2以上200g/m2以下であることがより好ましい。
正極合材の密度は、エネルギー密度の観点から、1.8g/cm3以上3.2g/cm3以下が好ましい。2.0g/cm3以上3.0g/cm3以下がより好ましい。
From the viewpoint of energy density and input / output characteristics, the single-side coating amount of the positive electrode mixture on the current collector is preferably 10 g / m 2 or more and 250 g / m 2 or less, and 50 g / m 2 or more and 200 g / m 2 or less. It is more preferable that
The density of the positive electrode mixture is preferably 1.8 g / cm 3 or more and 3.2 g / cm 3 or less from the viewpoint of energy density. 2.0 g / cm 3 or more and 3.0 g / cm 3 or less is more preferable.
負極は、上記リチウムチタン複合酸化物を負極活物質とし、これに導電材及び結着材を混合し、必要に応じ適当な溶媒を加えて、ペースト状の負極合剤としたものを、銅等の金属箔の集電体に塗布、乾燥し、その後必要に応じプレス等によって負極合剤の密度を高めることによって形成する。尚、リチウムチタン複合酸化物だけで負極活物質を構成することもできるが、リチウムイオン電池の特性改善等を目的として、リチウムチタン複合酸化物にすでに公知の炭素材料等を混合して負極活物質とするものであってもよい。 For the negative electrode, the lithium titanium composite oxide is used as a negative electrode active material, and a conductive material and a binder are mixed therein, and an appropriate solvent is added as necessary to obtain a paste-like negative electrode mixture such as copper. It is applied to a current collector of the metal foil, dried, and then formed by increasing the density of the negative electrode mixture by pressing or the like as necessary. In addition, the negative electrode active material can be composed only of the lithium titanium composite oxide, but for the purpose of improving the characteristics of the lithium ion battery, a known carbon material or the like is already mixed with the lithium titanium composite oxide, and the negative electrode active material. It may be.
負極合材の集電体への塗布量は、エネルギー密度及び入出力特性の観点から、10g/m2以上200g/m2以下であることが好ましく、50g/m2以上150g/m2以下であることがより好ましい。
負極合材の密度は、エネルギー密度の観点から、1.0g/cm3以上2.8g/cm3以下が好ましい。1.2g/cm3以上2.6g/cm3以下がより好ましい。
The amount of the negative electrode mixture applied to the current collector is preferably 10 g / m 2 or more and 200 g / m 2 or less, and 50 g / m 2 or more and 150 g / m 2 or less from the viewpoint of energy density and input / output characteristics. More preferably.
The density of the negative electrode mixture is preferably 1.0 g / cm 3 or more and 2.8 g / cm 3 or less from the viewpoint of energy density. 1.2 g / cm 3 or more and 2.6 g / cm 3 or less is more preferable.
前記導電材は、正極及び負極の電気導電性を向上できる観点から、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛等の炭素物質粉状体のうち1種又は2種以上を混合して用いることができる。また、導電材として、カーボンナノチューブ、グラフェン等を少量添加して、正極及び/又は負極の電気導電性を高めることもできる。 From the viewpoint of improving the electrical conductivity of the positive electrode and the negative electrode, the conductive material is used by mixing one or more of carbon powders such as acetylene black and ketjen black, and carbon material powders such as graphite. be able to. In addition, a small amount of carbon nanotubes, graphene, or the like can be added as a conductive material to increase the electrical conductivity of the positive electrode and / or the negative electrode.
正極に用いる導電材(以下、正極導電材という)としては、レート特性をより向上できる観点から、アセチレンブラックが好ましい。
正極導電材の含有量は、レート特性の観点から、正極合材の全量を基準として、4質量%以上が好ましく、5質量%以上がより好ましく、5.5質量%以上が更に好ましい。上限は、電池容量の観点から、10質量%以下が好ましく、9質量%以下がより好ましく、8.5質量%以下が更に好ましい。
As the conductive material used for the positive electrode (hereinafter referred to as the positive electrode conductive material), acetylene black is preferable from the viewpoint of improving the rate characteristics.
From the viewpoint of rate characteristics, the content of the positive electrode conductive material is preferably 4% by mass or more, more preferably 5% by mass or more, and still more preferably 5.5% by mass or more, based on the total amount of the positive electrode mixture. The upper limit is preferably 10% by mass or less, more preferably 9% by mass or less, and still more preferably 8.5% by mass or less from the viewpoint of battery capacity.
また、負極に用いる導電材(以下、負極導電材という)としては、レート特性をより向上できる観点から、アセチレンブラックが好ましい。
負極導電材の含有量は、レート特性の観点から、負極合材の全量を基準として、1質量%以上が好ましく、4質量%以上がより好ましく、6質量%以上が更に好ましい。上限は、電池容量の観点から、15質量%以下が好ましく、12質量%以下がより好ましく、10質量%以下が更に好ましい。
Moreover, as a electrically conductive material (henceforth a negative electrode electrically conductive material) used for a negative electrode, from a viewpoint which can improve a rate characteristic more, acetylene black is preferable.
From the viewpoint of rate characteristics, the content of the negative electrode conductive material is preferably 1% by mass or more, more preferably 4% by mass or more, and still more preferably 6% by mass or more, based on the total amount of the negative electrode mixture. From the viewpoint of battery capacity, the upper limit is preferably 15% by mass or less, more preferably 12% by mass or less, and still more preferably 10% by mass or less.
結着材は、特に限定されず、分散溶媒に対する溶解性又は分散性が良好な材料が選択される。具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1、2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子、ポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。尚、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。正極、負極ともに、高密着性の観点から、ポリフッ化ビニリデン(PVdF)又はポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体を用いることが好ましい。 The binder is not particularly limited, and a material having good solubility or dispersibility in the dispersion solvent is selected. Specific examples include resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine Rubbery polymers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / ethylene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1, 2-polybutadiene, polyvinyl acetate , Ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer and other soft resinous polymers; polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer Polymers, fluorinated polymers such as polytetrafluoroethylene / vinylidene fluoride copolymers, copolymers obtained by adding acrylic acid and linear ether groups to the polyacrylonitrile skeleton, ion conduction of alkali metal ions (especially lithium ions) And a polymer composition having the property. Of these, one type may be used alone, or two or more types may be used in combination. For both the positive electrode and the negative electrode, from the viewpoint of high adhesion, it is preferable to use a polyvinylidene fluoride (PVdF) or a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton.
前記結着材の含有量について、正極合材の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、正極活物質を充分に結着して充分な正極の機械的強度が得られ、サイクル特性等の電池性能が安定する観点から、0.1質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上が更に好ましい。上限は、電池容量及び導電性を向上できる観点から、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が更に好ましい。負極合材の全量に対する結着材の含有量は、次のとおりである。範囲の下限は、負極活物質を充分に結着して充分な負極の機械的強度が得られ、サイクル特性等の電池性能が安定する観点で、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましい。上限は、電池容量及び導電性を向上できる観点から、40質量%以下が好ましく、25質量%以下がより好ましく、15質量%以下が更に好ましい。 Regarding the content of the binder, the range of the content of the binder relative to the mass of the positive electrode mixture is as follows. The lower limit of the range is preferably 0.1% by mass or more from the viewpoint of sufficiently binding the positive electrode active material to obtain sufficient mechanical strength of the positive electrode and stabilizing battery performance such as cycle characteristics. The above is more preferable, and 2% by mass or more is more preferable. From the viewpoint of improving battery capacity and conductivity, the upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less. The content of the binder with respect to the total amount of the negative electrode mixture is as follows. The lower limit of the range is preferably 0.1% by mass or more from the viewpoint of sufficiently binding the negative electrode active material to obtain sufficient mechanical strength of the negative electrode and stabilizing battery performance such as cycle characteristics. More preferably, it is more preferably 1% by mass or more. The upper limit is preferably 40% by mass or less, more preferably 25% by mass or less, and still more preferably 15% by mass or less from the viewpoint of improving battery capacity and conductivity.
これら活物質、導電材、結着材等を分散させる溶剤としては、N−メチル−2ピロリドン等の有機溶剤を用いることができる。 An organic solvent such as N-methyl-2pyrrolidone can be used as a solvent for dispersing these active materials, conductive materials, binders and the like.
本実施形態のリチウムイオン電池は、正極及び負極のほかに、正極と負極の間に狭装されるセパレータ、非水電解液等を有することが好ましい。 In addition to the positive electrode and the negative electrode, the lithium ion battery of this embodiment preferably has a separator, a non-aqueous electrolyte, or the like that is sandwiched between the positive electrode and the negative electrode.
セパレータは、正極及び負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物、ガラス繊維等が用いられる。 The separator is not particularly limited as long as it has ion permeability while electronically insulating between the positive electrode and the negative electrode, and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side. As a material (material) of the separator satisfying such characteristics, a resin, an inorganic material, glass fiber, or the like is used.
上記樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、非水系電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いることが好ましい。また、正極の電位がLi/Li+に対して4.7〜4.8Vと高くなる可能性があることを考慮すると、ポリエチレンを耐高電位であるポリプロピレンで挟んだポリプロピレン/ポリエチレン/ポリプロピレンの三層構造を含むものが好ましい。 As the resin, olefin polymer, fluorine polymer, cellulose polymer, polyimide, nylon and the like are used. Specifically, it is preferable to select from materials that are stable with respect to non-aqueous electrolytes and have excellent liquid retention properties. For example, porous sheets or nonwoven fabrics made from polyolefins such as polyethylene and polypropylene may be used. preferable. In addition, considering that the potential of the positive electrode may be as high as 4.7 to 4.8 V with respect to Li / Li + , three types of polypropylene / polyethylene / polypropylene in which polyethylene is sandwiched between polypropylenes having high potential resistance. Those including a layer structure are preferred.
無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミニウムや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられる。例えば、繊維形状又は粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。薄膜形状の基材としては、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。また、例えば、繊維形状又は粒子形状の上記無機物を、樹脂等の結着材を用いて複合多孔層としたものをセパレータとして用いることができる。更に、この複合多孔層を、正極又は負極の表面に形成し、セパレータとしてもよい。例えば、90%平均粒径(D90)が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として結着させた複合多孔層を、正極の表面又はセパレータの正極と対抗する面に形成してもよい。 As the inorganic material, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used. For example, what made the said inorganic substance of fiber shape or particle shape adhere to thin film-shaped base materials, such as a nonwoven fabric, a woven fabric, and a microporous film, can be used as a separator. As a thin film-shaped substrate, a substrate having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm is preferably used. In addition, for example, a separator in which a composite porous layer is formed using the above-described inorganic material in a fiber shape or a particle shape by using a binder such as a resin can be used as a separator. Furthermore, this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator. For example, a composite porous layer in which alumina particles having a 90% average particle diameter (D90) of less than 1 μm are bound using a fluororesin as a binder may be formed on the surface of the positive electrode or the surface facing the positive electrode of the separator. Good.
更に、前記正、負極活物質には正、負極集電体が用いられるが、その材質は、正極としてはアルミニウム、チタン、ステンレス、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的でアルミニウムや銅等の表面にカーボン、ニッケル、チタン、銀等の処理を施したものが使用でき、負極としては銅、ステンレス、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、アルミニウム−カドミウム合金等の他に、接着性、導電性、耐還元性向上の目的で銅やアルミニウム等の表面にカーボン、ニッケル、チタン、銀等の処理を施したものが使用できる。尚、正、負極集電体厚さは、電極強度とエネルギー密度の観点から、1〜50μmが好ましい。 In addition, positive and negative electrode current collectors are used for the positive and negative electrode active materials, and the material for the positive electrode is aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc. In addition, the surface of aluminum, copper, etc. treated with carbon, nickel, titanium, silver, etc. can be used for the purpose of improving adhesion, conductivity, oxidation resistance, and the negative electrode is copper, stainless steel, nickel, aluminum In addition to titanium, baked carbon, conductive polymer, conductive glass, aluminum-cadmium alloy, etc., carbon, nickel, titanium, etc. on the surface of copper, aluminum, etc. for the purpose of improving adhesion, conductivity, reduction resistance Those treated with silver or the like can be used. The positive and negative electrode current collector thickness is preferably 1 to 50 μm from the viewpoint of electrode strength and energy density.
本実施の形態の電解液は、リチウム塩(電解質)と、これを溶解する非水系溶媒から構成される。必要に応じて、添加材を加えてもよい。 The electrolytic solution of the present embodiment includes a lithium salt (electrolyte) and a non-aqueous solvent that dissolves the lithium salt. You may add an additive as needed.
リチウム塩としては、LiPF6、LiBF4、LiFSI(リチウムビスフルオロスルホニルイミド)、LiTFSI(リチウムビストリフルオロメタンスルホニルイミド)、LiClO4、LiB(C6H5)4、LiCH3SO3、LiCF3SO3、LiN(SO2F)2、LiN(SO2CF3)2、LiN(SO2CF2CF3)2等が挙げられる。これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。これらの中でも、溶媒に対する溶解性、リチウムイオン電池とした場合の充放電特性、入出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF6)が好ましい。 Lithium salts include LiPF 6 , LiBF 4 , LiFSI (lithium bisfluorosulfonylimide), LiTFSI (lithium bistrifluoromethanesulfonylimide), LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 and the like. These lithium salts may be used alone or in combination of two or more. Among these, lithium hexafluorophosphate (LiPF 6 ) is preferable when comprehensively judging solubility in a solvent, charge / discharge characteristics in the case of a lithium ion battery, input / output characteristics, cycle characteristics, and the like.
上記リチウム塩の濃度は、非水溶媒に対して0.5mol/L〜1.5mol/Lであることが好ましく、0.7mol/L〜1.3mol/Lであることがより好ましく、0.8mol/L〜1.2mol/Lであることが更に好ましい。リチウム塩の濃度を0.5mol/L〜1.5mol/Lとすることで、充放電特性をより向上することができる。 The concentration of the lithium salt is preferably 0.5 mol / L to 1.5 mol / L, more preferably 0.7 mol / L to 1.3 mol / L with respect to the nonaqueous solvent. More preferably, it is 8 mol / L to 1.2 mol / L. By setting the concentration of the lithium salt to 0.5 mol / L to 1.5 mol / L, the charge / discharge characteristics can be further improved.
非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート、γ−ブチルラクトン、アセトニトリル、1,2−ジメトキシエタン、ジメトキシメタン、テトラヒドロフラン、ジオキソラン、塩化メチレン及び酢酸メチルが挙げられる。これらは単独で用いても、2種類以上を併用してもよいが、環状カーボネート及び鎖状カーボネートを混合した混合溶媒を用いることが好ましい。 Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, γ-butyllactone, acetonitrile, 1,2-dimethoxyethane, dimethoxymethane, Tetrahydrofuran, dioxolane, methylene chloride and methyl acetate. These may be used alone or in combination of two or more, but it is preferable to use a mixed solvent in which a cyclic carbonate and a chain carbonate are mixed.
環状カーボネートを含む場合の含有量は、非水溶媒の全量に対して、10〜70体積%が好ましく、20〜60体積%がより好ましく、35〜55体積%が更に好ましい。 When the cyclic carbonate is contained, the content is preferably 10 to 70% by volume, more preferably 20 to 60% by volume, and still more preferably 35 to 55% by volume with respect to the total amount of the nonaqueous solvent.
添加材としては、リチウムイオン電池の非水系電解液用の添加材であれば特に制限はないが、例えば、窒素、硫黄又は窒素及び硫黄を含有する複素環化合物、環状カルボン酸エステル、フッ素含有環状カーボネート、その他の分子内に不飽和結合を有する化合物が挙げられる。また、上記添加材以外に、求められる機能に応じて過充電防止材、負極皮膜形成材、正極保護材、高入出力材等の他の添加材を用いてもよい。 The additive is not particularly limited as long as it is an additive for a non-aqueous electrolyte solution of a lithium ion battery. For example, nitrogen, sulfur or a heterocyclic compound containing nitrogen and sulfur, a cyclic carboxylic acid ester, a fluorine-containing cyclic Examples thereof include carbonates and other compounds having an unsaturated bond in the molecule. In addition to the above additives, other additives such as an overcharge prevention material, a negative electrode film forming material, a positive electrode protective material, and a high input / output material may be used depending on the required function.
上記他の添加材により、高温での保存特性、サイクル特性及び入出力特性の向上を図ることができる。 With the other additives, it is possible to improve storage characteristics at high temperatures, cycle characteristics, and input / output characteristics.
以上のように構成させるリチウムイオン電池は、その形状は円筒型、積層型、コイン型等、種々のものとすることができる。いずれの形状をとる場合であっても、正極及び負極にセパレータを狭装させ電極体とし、正極集電体及び負極集電体から外部に通ずる正極端子及び負極端子までの間を、集電用リード等を用いて接続し、この電極体を非水電解液とともに電池ケースに密閉してリチウムイオン電池が完成する。
本発明の実施形態として、正極板と負極板とをセパレータを介して積層した積層型リチウムイオン電池について説明するが、本発明の実施形態はこれに制限されない。他の実施形態としては、例えば、正極板と負極板とをセパレータを介し積層してなる積層体を巻回した巻回形リチウムイオン電池等を挙げることができる。
The lithium ion battery configured as described above can have various shapes such as a cylindrical shape, a stacked shape, and a coin shape. Regardless of which shape is used, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. Connection is made using a lead or the like, and this electrode body is sealed in a battery case together with a non-aqueous electrolyte to complete a lithium ion battery.
As an embodiment of the present invention, a laminated lithium ion battery in which a positive electrode plate and a negative electrode plate are laminated via a separator will be described, but the embodiment of the present invention is not limited thereto. Other embodiments include, for example, a wound lithium ion battery in which a laminate formed by laminating a positive electrode plate and a negative electrode plate via a separator is wound.
図1は本発明のリチウムイオン二次電池の一実施形態を示す斜視図である。リチウムイオン二次電池10は、ラミネートフィルム6の電池容器内に、電極群20と電解液を収容したものであり、正極集電タブ2と負極集電タブ4を電池容器外に取り出すようにしている。
FIG. 1 is a perspective view showing an embodiment of the lithium ion secondary battery of the present invention. The lithium ion
そして、図2に示すように、電極群20は正極集電タブ2を取り付けた正極板1、セパレータ5、及び負極集電タブ4を取り付けた負極板3を積層したものである。
なお、正極板、負極板、セパレータ、電極群及び電池の大きさ、形状等は任意のものとすることができ、図1及び図2に示されるものに限定されるわけではない。
As shown in FIG. 2, the
In addition, the magnitude | size, shape, etc. of a positive electrode plate, a negative electrode plate, a separator, an electrode group, and a battery can be made into arbitrary things, and are not necessarily limited to what is shown by FIG.1 and FIG.2.
本実施形態に用いるリチウムイオン電池は、高温での保存特性の観点から、BET比表面積を0.3m2/g未満にすることが好ましい。BET比表面積を0.3m2/g未満にすることで高温での保存特性が良好とる理由は、正極活物質表面での電解液の酸化分解が低下するためと考える。 The lithium ion battery used in the present embodiment preferably has a BET specific surface area of less than 0.3 m 2 / g from the viewpoint of storage characteristics at high temperatures. The reason why the storage property at high temperature is good when the BET specific surface area is less than 0.3 m 2 / g is considered to be because the oxidative decomposition of the electrolytic solution on the surface of the positive electrode active material is reduced.
本実施形態に用いるリチウムイオン電池は、入力特性の観点から、正極と負極との容量比(負極容量/正極容量)が0.7以上1未満とすることが好ましい。この容量比が0.7以上の場合は、電池容量が向上し、高エネルギー密度が得られる傾向となる。また、容量比が1未満の場合には、正極が高電位になることによる電解液の分解反応が生じにくく、リチウムイオン電池のサイクル特性が良好となる傾向がある。エネルギー密度と入力特性の観点からは、容量比を0.75以上0.95以下とすることがより好ましい。 In the lithium ion battery used in the present embodiment, the capacity ratio (negative electrode capacity / positive electrode capacity) between the positive electrode and the negative electrode is preferably 0.7 or more and less than 1 from the viewpoint of input characteristics. When the capacity ratio is 0.7 or more, the battery capacity is improved and a high energy density tends to be obtained. On the other hand, when the capacity ratio is less than 1, the decomposition reaction of the electrolytic solution due to the positive electrode being at a high potential hardly occurs, and the cycle characteristics of the lithium ion battery tend to be good. From the viewpoint of energy density and input characteristics, the capacity ratio is more preferably 0.75 or more and 0.95 or less.
尚、「正極容量」及び「負極容量」とは、それぞれ、対極を金属リチウムとする電気化学セルを構成して定電流定電圧充電−定電流放電を行った時に得られる可逆的に利用できる最大の容量を意味する。本明細書では、「正極容量」及び「負極容量」は、上記電気化学セルにおいて、電圧範囲をそれぞれ4.95V〜3.5V及び2V〜1Vとし、定電流充電及び定電流放電時の電流密度を0.1mA/cm2とする上記充放電を行って評価した場合に得られる容量とする。 The "positive electrode capacity" and the "negative electrode capacity" are the maximum reversibly available when a constant current constant voltage charge-constant current discharge is performed with an electrochemical cell having a counter electrode made of metallic lithium. Means capacity. In the present specification, the “positive electrode capacity” and the “negative electrode capacity” are the current densities during constant current charging and constant current discharging in the electrochemical cell, respectively, with voltage ranges of 4.95 V to 3.5 V and 2 V to 1 V, respectively. The capacity obtained when the above charging / discharging is evaluated to 0.1 mA / cm 2 .
以上、本発明のリチウムイオン電池の実施形態について説明したが、上記実施形態は一実施形態に過ぎず、本発明のリチウムイオン電池は、上記実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の形態で実施することができる。 As mentioned above, although the embodiment of the lithium ion battery of the present invention has been described, the above embodiment is only one embodiment, and the lithium ion battery of the present invention includes various embodiments based on the knowledge of those skilled in the art including the above embodiment. The present invention can be implemented in various forms with modifications and improvements.
以下、実施例に基づき本実施の形態を更に詳細に説明する。尚、本発明は以下の実施例によって限定されるものではない。 Hereinafter, the present embodiment will be described in more detail based on examples. The present invention is not limited to the following examples.
[実施例1]
正極は、BET比表面積が0.1m2/g、平均粒径(D50)が28.8μmであるリチウムマンガンニッケル複合酸化物(LiNi0.5Mn1.5O4)を88質量部、導電材としてアセチレンブラック(電気化学工業株式会社製)を6質量部、結着材としてポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体(日立化成株式会社製、商品名:LSR7)を6質量部混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の正極合剤スラリーを得た。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の片面に実質的に均等かつ均質に140g/m2になるように塗布した。その後、乾燥処理を施し、密度2.3g/cm3までプレスにより圧密化し、シート状の正極を作製した。これを幅30mm、長さ45mmに切断して正極板とし、図2に示すようにこの正極板に正極集電タブを取り付けた。
[Example 1]
The positive electrode is 88 parts by mass of lithium manganese nickel composite oxide (LiNi 0.5 Mn 1.5 O 4 ) having a BET specific surface area of 0.1 m 2 / g and an average particle diameter (D50) of 28.8 μm, conductive 6 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a material, and a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton as a binder (manufactured by Hitachi Chemical Co., Ltd., trade name: LSR7) 6 parts by mass, and an appropriate amount of N-methyl-2-pyrrolidone was added and kneaded to obtain a paste-like positive electrode mixture slurry. This slurry was applied to one side of a 20 μm-thick aluminum foil, which is a positive electrode current collector, so as to be substantially uniformly and uniformly 140 g / m 2 . Thereafter, drying treatment was performed, and consolidation was performed by pressing to a density of 2.3 g / cm 3 to produce a sheet-like positive electrode. This was cut into a width of 30 mm and a length of 45 mm to form a positive electrode plate, and a positive electrode current collecting tab was attached to the positive electrode plate as shown in FIG.
負極は、リチウムチタン複合酸化物を87質量部、導電材としてアセチレンブラック(電気化学工業株式会社製)を8質量部、結着材としてポリフッ化ビニリデンを5質量部混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の負極合剤スラリーを得た。このスラリーを負極用の集電体である厚さ10μmの銅箔の片面に110g/m2になるように塗布した。その後、乾燥処理を施し、密度1.7g/cm3までプレスにより圧密化し、シート状の負極を作製した。これを幅31mm、長さ46mmに切断して負極板とし、図2に示すようにこの負極板に負極集電タブを取り付けた。 The negative electrode was mixed with 87 parts by mass of lithium titanium composite oxide, 8 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, and 5 parts by mass of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl. A paste-like negative electrode mixture slurry was obtained by adding -2-pyrrolidone and kneading. This slurry was applied to one side of a 10 μm-thick copper foil, which is a negative electrode current collector, at 110 g / m 2 . Thereafter, a drying treatment was performed, and the sheet was consolidated by pressing to a density of 1.7 g / cm 3 to produce a sheet-like negative electrode. This was cut into a width of 31 mm and a length of 46 mm to form a negative electrode plate, and a negative electrode current collecting tab was attached to the negative electrode plate as shown in FIG.
(電極群の作製)
作製した正極板と負極板とを、厚さ30μm、幅35mm、長さ50mmのポリエチレン微多孔膜からなるセパレータを介して対向させ、積層状の電極群を作製した。
(Production of electrode group)
The produced positive electrode plate and the negative electrode plate were opposed to each other through a separator made of a polyethylene microporous film having a thickness of 30 μm, a width of 35 mm, and a length of 50 mm to produce a laminated electrode group.
(リチウムイオン電池の作製)
この電極群を、図1に示すように、アルミニウム製のラミネートフィルムで構成された電池容器内に収容させると共に、この電池容器内に、非水電解液を1ml注入後、上記の正極集電タブと負極集電タブとを外部に取り出すようにして電池容器の開口部を封口させて、実施例1〜5及び比較例1〜3のリチウムイオン電池を作製した。非水電解液にはエチレンカーボネートとジメチルカーボネートとを体積比で3:7に混合した混合溶媒に、LiPF6を1Mの濃度で溶解させたものを用いた。なお、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。
(Production of lithium ion battery)
As shown in FIG. 1, the electrode group is housed in a battery container made of an aluminum laminate film, and 1 ml of a nonaqueous electrolyte is injected into the battery container, and then the positive electrode current collecting tab is used. The lithium ion batteries of Examples 1 to 5 and Comparative Examples 1 to 3 were fabricated by sealing the opening of the battery container so that the negative electrode current collecting tab and the negative electrode current collecting tab were taken out. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1M in a mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 3: 7 was used. The aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene, etc.).
(初期放電容量)
上記のリチウムイオン電池を、充放電装置(BATTERY TEST UNIT、株式会社IEM製)を用いて、25℃において電流値0.2C、充電終止電圧3.4Vで定電流充電し、次いで充電電圧3.4Vで電流値が0.01Cになるまで定電圧充電を行った。尚、電流値の単位として用いたCとは、“電流値(A)/電池容量(Ah)”を意味する。15分間休止後、電流値0.2C、放電終止電圧2.0Vで定電流放電を行った。前記の充放電条件で充放電を4回繰り返し、4回目の電流値0.2C、放電終止電圧2.0Vで定電流放電試験において、放電容量を測定したものを初期放電容量とした。
(Initial discharge capacity)
The above lithium ion battery was charged with a constant current at 25 ° C. with a current value of 0.2 C and a charge end voltage of 3.4 V using a charging / discharging device (BATTERY TEST UNIT, manufactured by IEM Co., Ltd.), and then a charging voltage of 3. Constant voltage charging was performed until the current value reached 0.01 C at 4V. C used as a unit of current value means “current value (A) / battery capacity (Ah)”. After resting for 15 minutes, constant current discharge was performed at a current value of 0.2 C and a discharge end voltage of 2.0 V. Charging / discharging was repeated four times under the above-mentioned charging / discharging conditions, and the initial discharge capacity was determined by measuring the discharge capacity in a constant current discharge test at a fourth current value of 0.2 C and a final discharge voltage of 2.0 V.
(入力特性)
前記の初期放電容量を測定したリチウムイオン電池を用いて、前記放電の15分間休止後、25℃において電流値0.5C、充電終止電圧3.4Vで定電流充電し、次いで、充電終止電圧3.4Vで電流値が0.01Cになるまで定電圧充電を行い、充電容量を測定した(0.5Cでの充電容量)。15分間休止後、25℃で電流値0.5C、終止電圧2Vの定電流放電を行った。次いで、15分間休止後、25℃において電流値5C、充電終止電圧3.4Vで定電流充電を行い、充電容量を測定した(5Cでの充電容量)。そして、以下の式から入力特性を算出した。
入力特性(%)=(5Cでの充電容量/0.5Cでの充電容量)×100
(Input characteristics)
Using the lithium ion battery whose initial discharge capacity was measured, after the discharge was stopped for 15 minutes, it was charged with a constant current at 25 ° C. with a current value of 0.5 C and a charge end voltage of 3.4 V, and then a charge end voltage of 3 Constant voltage charging was performed until the current value reached 0.01 C at 4 V, and the charge capacity was measured (charge capacity at 0.5 C). After resting for 15 minutes, a constant current discharge was performed at 25 ° C. with a current value of 0.5 C and a final voltage of 2 V. Next, after resting for 15 minutes, a constant current charge was performed at 25 ° C. with a current value of 5 C and a charge end voltage of 3.4 V, and the charge capacity was measured (charge capacity at 5 C). And the input characteristic was computed from the following formula | equation.
Input characteristics (%) = (charge capacity at 5C / charge capacity at 0.5C) × 100
(出力特性)
前記の入力特性を測定したリチウムイオン電池を用いて、前記充電の15分間休止後、25℃において電流値0.5C、終止電圧2Vの定電流放電を行った。15分間休止を行った後に、25℃において電流値0.5C、充電終止電圧3.4Vで定電流充電し、次いで、充電終止電圧3.4Vで電流値が0.01Cになるまで定電圧充電を行った。15分間休止後、25℃で電流値0.5C、終止電圧2Vの定電流放電を行い、放電容量を測定した(0.5Cでの放電容量)。次いで、15分間後、25℃において電流値0.5C、充電終止電圧3.4Vで定電流充電し、次いで、充電終止電圧3.4Vで電流値が0.01Cになるまで定電圧充電を行った。15分間休止後、25℃で電流値5C、終止電圧2Vの定電流放電を行い、放電容量を測定した(5Cでの放電容量)。そして、以下の式から出力特性を算出した。
出力特性(%)=(5Cでの放電容量/0.5Cでの放電容量)×100
(Output characteristics)
Using the lithium ion battery in which the input characteristics were measured, after charging was stopped for 15 minutes, a constant current discharge with a current value of 0.5 C and a final voltage of 2 V was performed at 25 ° C. After a 15-minute pause, charge at a constant current of 0.5 C and a charge end voltage of 3.4 V at 25 ° C., and then charge at a constant voltage until the current value reaches 0.01 C at a charge end voltage of 3.4 V. Went. After resting for 15 minutes, a constant current discharge was performed at 25 ° C. with a current value of 0.5 C and a final voltage of 2 V, and the discharge capacity was measured (discharge capacity at 0.5 C). Next, 15 minutes later, constant current charging was performed at 25 ° C. with a current value of 0.5 C and a charge end voltage of 3.4 V, and then with a charge end voltage of 3.4 V, constant voltage charge was performed until the current value reached 0.01 C. It was. After resting for 15 minutes, a constant current discharge was performed at 25 ° C. with a current value of 5 C and a final voltage of 2 V, and the discharge capacity was measured (discharge capacity at 5 C). And the output characteristic was computed from the following formula | equation.
Output characteristics (%) = (discharge capacity at 5 C / discharge capacity at 0.5 C) × 100
(保存特性)
前記の出力特性を測定したリチウムイオン電池を用いて、25℃において電流値0.2C、充電終止電圧3.4Vで定電流充電し、次いで、充電終止電圧3.4Vで電流値が0.01Cになるまで定電圧充電を行った。その後、前記リチウムイオン電池を50℃の恒温槽に20日間保持した。20日間保存後に、前記リチウムイオン電池を25℃の環境で1時間保持した。その後、25℃において電流値0.2C、終止電圧2Vの定電流放電を行った。15分間休止を行った後に、25℃において電流値0.2C、充電終止電圧3.4Vで定電流充電し、次いで、充電終止電圧3.4Vで電流値が0.01Cになるまで定電圧充電を行った。15分間休止後、25℃で電流値0.2C、終止電圧2Vの定電流放電を行い、放電容量を測定した(20日間保存後の放電容量)。そして、以下の式から保存特性を算出した。
保存特性(%)=(20日保存後の放電容量/初期放電容量)×100
(Storage characteristics)
Using the lithium ion battery whose output characteristics were measured, a constant current charge was performed at 25 ° C. with a current value of 0.2 C and a charge end voltage of 3.4 V, and then a current value of 0.01 C at a charge end voltage of 3.4 V. Constant voltage charging was performed until Thereafter, the lithium ion battery was kept in a thermostat at 50 ° C. for 20 days. After storage for 20 days, the lithium ion battery was held at 25 ° C. for 1 hour. Thereafter, constant current discharge at a current value of 0.2 C and a final voltage of 2 V was performed at 25 ° C. After a 15-minute pause, charge at constant current at 25 ° C with a current value of 0.2C and a charge end voltage of 3.4V, and then charge at a constant voltage until the current value reaches 0.01C at a charge end voltage of 3.4V. Went. After resting for 15 minutes, a constant current discharge with a current value of 0.2 C and a final voltage of 2 V was performed at 25 ° C., and the discharge capacity was measured (discharge capacity after storage for 20 days). And the preservation | save characteristic was computed from the following formula | equation.
Storage characteristics (%) = (discharge capacity after 20 days storage / initial discharge capacity) × 100
[実施例2]
表1の実施例2に示す、BET比表面積が0.1m2/g、平均粒径(D50)が28.8μmであるリチウムマンガンニッケル複合酸化物(LiNi0.5Mn1.5O4)を86質量部に、導電材としてアセチレンブラック(電気化学工業株式会社製)を8質量部、結着材としてポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体(日立化成株式会社製、商品名:LSR7)を6質量部混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の正極合剤スラリーを得た。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の両面に実質的に均等かつ均質に140g/m2だけ塗布した。その後、乾燥処理を施し、密度2.3g/cm3までプレスにより圧密化し、シート状の正極を作製した。これを幅30mm、長さ45mmに切断して正極板とし、図2に示すようにこの正極板に正極集電タブを取り付けた。その後、実施例1に示すものと同様の方法で、負極及びリチウムイオン二次電池を作製し、初期放電容量、入力特性、出力特性、及び保存特性を測定した。
[Example 2]
A lithium manganese nickel composite oxide (LiNi 0.5 Mn 1.5 O 4 ) having a BET specific surface area of 0.1 m 2 / g and an average particle size (D50) of 28.8 μm shown in Example 2 of Table 1 86 parts by mass, 8 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, and a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton as a binder (Hitachi Chemical Co., Ltd.) Manufactured, trade name: LSR7) was mixed, and an appropriate amount of N-methyl-2-pyrrolidone was added and kneaded to obtain a paste-like positive electrode mixture slurry. This slurry was applied to both surfaces of a 20 μm-thick aluminum foil as a positive electrode current collector in an amount of 140 g / m 2 substantially uniformly and uniformly. Thereafter, drying treatment was performed, and consolidation was performed by pressing to a density of 2.3 g / cm 3 to produce a sheet-like positive electrode. This was cut into a width of 30 mm and a length of 45 mm to form a positive electrode plate, and a positive electrode current collecting tab was attached to the positive electrode plate as shown in FIG. Then, the negative electrode and the lithium ion secondary battery were produced by the same method as shown in Example 1, and the initial discharge capacity, input characteristics, output characteristics, and storage characteristics were measured.
[実施例3]
表1の実施例2に示す、BET比表面積が0.1m2/g、平均粒径(D50)が28.8μmであるリチウムマンガンニッケル複合酸化物(LiNi0.5Mn1.5O4)を90質量部に、導電材としてアセチレンブラック(電気化学工業株式会社製)を4質量部、結着材としてポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体(日立化成株式会社製、商品名:LSR7)を6質量部混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の正極合剤スラリーを得た。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の両面に実質的に均等かつ均質に140g/m2だけ塗布した。その後、乾燥処理を施し、密度2.3g/cm3までプレスにより圧密化し、シート状の正極を作製した。これを幅30mm、長さ45mmに切断して正極板とし、図2に示すようにこの正極板に正極集電タブを取り付けた。その後、実施例1に示すものと同様の方法で、負極及びリチウムイオン二次電池を作製し、初期放電容量、入力特性、出力特性、及び保存特性を測定した。
[Example 3]
A lithium manganese nickel composite oxide (LiNi 0.5 Mn 1.5 O 4 ) having a BET specific surface area of 0.1 m 2 / g and an average particle size (D50) of 28.8 μm shown in Example 2 of Table 1 90 parts by mass, 4 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, and a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton as a binder (Hitachi Chemical Co., Ltd.) Manufactured, trade name: LSR7) was mixed, and an appropriate amount of N-methyl-2-pyrrolidone was added and kneaded to obtain a paste-like positive electrode mixture slurry. This slurry was applied to both surfaces of a 20 μm-thick aluminum foil as a positive electrode current collector in an amount of 140 g / m 2 substantially uniformly and uniformly. Thereafter, drying treatment was performed, and consolidation was performed by pressing to a density of 2.3 g / cm 3 to produce a sheet-like positive electrode. This was cut into a width of 30 mm and a length of 45 mm to form a positive electrode plate, and a positive electrode current collecting tab was attached to the positive electrode plate as shown in FIG. Then, the negative electrode and the lithium ion secondary battery were produced by the same method as shown in Example 1, and the initial discharge capacity, input characteristics, output characteristics, and storage characteristics were measured.
[実施例4〜5]
表1の実施例4〜5に示すBET比表面積が0.22m2/g、平均粒径(D50)が17.9μmのリチウムマンガンニッケル複合酸化物と、BET比表面積が0.25g/m2、平均粒径が13.5μmのリチウムマンガンニッケル複合酸化物に変更した以外は、実施例1と同様の手法でリチウムイオン二次電池を作製し、初期放電容量、入力特性、出力特性、及び保存特性を測定した。
[Examples 4 to 5]
A lithium manganese nickel composite oxide having a BET specific surface area of 0.22 m 2 / g and an average particle diameter (D50) of 17.9 μm shown in Examples 4 to 5 in Table 1, and a BET specific surface area of 0.25 g / m 2 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the lithium manganese nickel composite oxide having an average particle size of 13.5 μm was changed to an initial discharge capacity, input characteristics, output characteristics, and storage. Characteristics were measured.
[比較例1〜3]
表1の比較例1〜3に示すBET比表面積が0.4m2/g以上のリチウムマンガンニッケル複合酸化物に変更した以外は、実施例1と同様の手法でリチウムイオン二次電池を作製し、初期放電容量、入力特性、出力特性、及び保存特性を測定した。
[Comparative Examples 1-3]
A lithium ion secondary battery was fabricated in the same manner as in Example 1, except that the lithium manganese nickel composite oxide having a BET specific surface area of 0.4 m 2 / g or more shown in Comparative Examples 1 to 3 in Table 1 was changed. The initial discharge capacity, input characteristics, output characteristics, and storage characteristics were measured.
表1に正極活物質のBET比表面積、正極活物質の平均粒径、正極導電剤量、初期放電容量、入力特性、出力特性、及び保存特性の測定結果を示す。 Table 1 shows the measurement results of the BET specific surface area of the positive electrode active material, the average particle size of the positive electrode active material, the positive electrode conductive agent amount, the initial discharge capacity, the input characteristics, the output characteristics, and the storage characteristics.
実施例では、比較例と比べて高温での保存特性に優れていることが確認できる。 In the examples, it can be confirmed that the storage characteristics at high temperatures are excellent as compared with the comparative examples.
本発明によれば、高温での保存特性に優れるリチウムイオン電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the lithium ion battery excellent in the storage characteristic at high temperature can be provided.
1…正極板、2…正極集電タブ、3…負極板、4…負極集電タブ、5…セパレータ、6…ラミネートフィルム、10…リチウムイオン二次電池、20…電極群。
DESCRIPTION OF
Claims (3)
前記正極は、集電体と前記集電体の少なくとも片面に塗布された正極合材とを有し、前記正極合材は、正極活物質としてBET比表面積が0.3m2/g未満であるリチウムマンガンニッケル複合酸化物及び正極導電材を含み、
前記負極は、負極活物質としてリチウムチタン複合酸化物及び負極導電材を含む、リチウムイオン電池。 A lithium ion battery comprising a positive electrode, a negative electrode, and an electrolyte solution,
The positive electrode includes a current collector and a positive electrode mixture applied to at least one surface of the current collector, and the positive electrode mixture is a lithium having a BET specific surface area of less than 0.3 m 2 / g as a positive electrode active material. Containing manganese nickel composite oxide and positive electrode conductive material,
The negative electrode is a lithium ion battery including a lithium titanium composite oxide and a negative electrode conductive material as a negative electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014079354A JP2015201335A (en) | 2014-04-08 | 2014-04-08 | lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014079354A JP2015201335A (en) | 2014-04-08 | 2014-04-08 | lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015201335A true JP2015201335A (en) | 2015-11-12 |
Family
ID=54552417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014079354A Pending JP2015201335A (en) | 2014-04-08 | 2014-04-08 | lithium ion battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015201335A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017078108A1 (en) * | 2015-11-06 | 2017-05-11 | 日立化成株式会社 | Lithium-ion secondary cell |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09147835A (en) * | 1995-11-29 | 1997-06-06 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery and its manufacture |
JPH1154147A (en) * | 1997-08-01 | 1999-02-26 | Fuji Film Selltec Kk | Sealed type nonaqueous electrolyte secondary battery |
JP2001243982A (en) * | 2000-03-01 | 2001-09-07 | Hitachi Ltd | Lithium secondary battery |
JP2004103280A (en) * | 2002-09-05 | 2004-04-02 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte battery |
WO2011162169A1 (en) * | 2010-06-25 | 2011-12-29 | Necエナジーデバイス株式会社 | Lithium ion secondary battery |
JP2012033279A (en) * | 2010-07-28 | 2012-02-16 | Nec Energy Devices Ltd | Lithium ion secondary battery |
JP2015513182A (en) * | 2012-04-16 | 2015-04-30 | エルジー・ケム・リミテッド | Method for manufacturing electrode for lithium secondary battery and electrode manufactured using the same |
-
2014
- 2014-04-08 JP JP2014079354A patent/JP2015201335A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09147835A (en) * | 1995-11-29 | 1997-06-06 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery and its manufacture |
JPH1154147A (en) * | 1997-08-01 | 1999-02-26 | Fuji Film Selltec Kk | Sealed type nonaqueous electrolyte secondary battery |
JP2001243982A (en) * | 2000-03-01 | 2001-09-07 | Hitachi Ltd | Lithium secondary battery |
JP2004103280A (en) * | 2002-09-05 | 2004-04-02 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte battery |
WO2011162169A1 (en) * | 2010-06-25 | 2011-12-29 | Necエナジーデバイス株式会社 | Lithium ion secondary battery |
JP2012033279A (en) * | 2010-07-28 | 2012-02-16 | Nec Energy Devices Ltd | Lithium ion secondary battery |
JP2015513182A (en) * | 2012-04-16 | 2015-04-30 | エルジー・ケム・リミテッド | Method for manufacturing electrode for lithium secondary battery and electrode manufactured using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017078108A1 (en) * | 2015-11-06 | 2017-05-11 | 日立化成株式会社 | Lithium-ion secondary cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101811935B1 (en) | Non-aqueous electrolyte secondary battery | |
US10637097B2 (en) | Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly | |
JP6213675B2 (en) | Lithium ion secondary battery | |
JP6350673B2 (en) | Lithium ion battery | |
US20180198120A1 (en) | Lithium secondary battery | |
JP6210166B2 (en) | Lithium ion battery | |
TWI635640B (en) | Lithium secondary cell and electrolyte for lithium secondary cell | |
EP3451437B1 (en) | Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device | |
CN108352561B (en) | Lithium ion secondary battery | |
JP2017010716A (en) | Lithium ion battery and lithium ion battery system | |
JP2012156087A (en) | Nonaqueous electrolyte secondary battery | |
JP6406267B2 (en) | Lithium ion battery system | |
WO2020202661A1 (en) | Lithium ion secondary battery | |
JP2018063916A (en) | Lithium ion secondary battery | |
JP6766863B2 (en) | Lithium ion secondary battery | |
JP6992362B2 (en) | Lithium ion secondary battery | |
JP6668848B2 (en) | Lithium ion secondary battery | |
WO2016171276A1 (en) | Lithium ion cell | |
JP2015201335A (en) | lithium ion battery | |
JP6344470B2 (en) | Lithium ion secondary battery | |
JP6167775B2 (en) | Secondary battery control device and control method | |
JP2013206551A (en) | Nonaqueous electrolyte solution and lithium-ion secondary battery | |
JP2012079598A (en) | Nonaqueous electrolyte secondary battery and negative electrode active substance material for nonaqueous electrolyte secondary battery | |
JP2015053230A (en) | Active material for lithium ion secondary battery and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180208 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181101 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190509 |