JP2013206551A - Nonaqueous electrolyte solution and lithium-ion secondary battery - Google Patents

Nonaqueous electrolyte solution and lithium-ion secondary battery Download PDF

Info

Publication number
JP2013206551A
JP2013206551A JP2012070936A JP2012070936A JP2013206551A JP 2013206551 A JP2013206551 A JP 2013206551A JP 2012070936 A JP2012070936 A JP 2012070936A JP 2012070936 A JP2012070936 A JP 2012070936A JP 2013206551 A JP2013206551 A JP 2013206551A
Authority
JP
Japan
Prior art keywords
electrolyte solution
carbonate
general formula
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012070936A
Other languages
Japanese (ja)
Other versions
JP5573875B2 (en
Inventor
Kenta Kotani
研太 小谷
Yu Nishimura
悠 西村
Atsushi Sano
篤史 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012070936A priority Critical patent/JP5573875B2/en
Publication of JP2013206551A publication Critical patent/JP2013206551A/en
Application granted granted Critical
Publication of JP5573875B2 publication Critical patent/JP5573875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a well-balanced nonaqueous electrolyte solution which suppresses decomposition of a propylene carbonate and exhibits little deterioration in a high-temperature storage test, and to provide a lithium-ion secondary battery using the same.SOLUTION: The nonaqueous electrolyte solution according to the present invention contains a chain carbonate and a cyclic carbonate. The cyclic carbonate contains at least a propylene carbonate. The nonaqueous electrolyte solution also contains a predetermined glycol sulfate derivative and a fluoroethylene carbonate.

Description

本発明は、非水電解質溶液、及びそれを用いたリチウムイオン二次電池に関する。   The present invention relates to a non-aqueous electrolyte solution and a lithium ion secondary battery using the same.

リチウムイオン二次電池はニッケルカドミウム電池、ニッケル水素電池と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。またハイブリッド自動車や、電気自動車用に搭載される電源として有力な候補ともなっている。しかしながら、近年の携帯電子機器の小型化、高機能化に伴い、これらの電源となるリチウムイオン二次電池への更なる高容量化が期待されている。リチウムイオン二次電池は、主として、正極(カソード)、負極(アノード)、セパレータ、非水電解質溶液から構成されており、各電池特性の更なる向上のための様々な検討がなされている。   Lithium ion secondary batteries are lighter and have higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus are widely applied as power sources for portable electronic devices. It is also a promising candidate as a power source for hybrid vehicles and electric vehicles. However, with the recent miniaturization and higher functionality of portable electronic devices, further increase in capacity is expected for lithium ion secondary batteries serving as these power sources. A lithium ion secondary battery is mainly composed of a positive electrode (cathode), a negative electrode (anode), a separator, and a non-aqueous electrolyte solution, and various studies for further improvement of battery characteristics have been made.

例えば、非水電解質溶液の非水溶媒としては、融点が比較的低く、導電率が比較的高く、電位窓(電気化学窓)が比較的広く、かつ、電解質を溶解したときに低温においても高いイオン伝導性を得ることが可能なものが好ましく、この観点からプロピレンカーボネートが好ましく使用されている。しかし、高結晶化した黒鉛などの炭素材料を構成材料として使用した負極(アノード)を備える場合には、特に充電時において陰極(放電時において負極として機能する電極をいう。)でのプロピレンカーボネートの分解が進行する問題があった。   For example, the nonaqueous solvent of the nonaqueous electrolyte solution has a relatively low melting point, a relatively high conductivity, a relatively wide potential window (electrochemical window), and a high temperature even when the electrolyte is dissolved. Those capable of obtaining ionic conductivity are preferred, and propylene carbonate is preferably used from this viewpoint. However, when a negative electrode (anode) using a carbon material such as highly crystallized graphite as a constituent material is provided, propylene carbonate at the cathode (referred to as an electrode functioning as a negative electrode at the time of discharge) particularly during charging. There was a problem that decomposition progressed.

プロピレンカーボネートの分解が進行するとガスが発生し、これに伴って負極の炭素材料の剥がれや分解等が起こり、使用中に容量や充放電サイクル特性等の電池特性が徐々に低下する問題が起こる。また、プロピレンカーボネートの分解が進行すると分解生成物が負極に堆積し、この堆積物の影響により上述の電池特性の低下がさらに進行すると考えられる。   As the decomposition of propylene carbonate proceeds, gas is generated, and as a result, the carbon material of the negative electrode is peeled off and decomposed, and the battery characteristics such as capacity and charge / discharge cycle characteristics gradually deteriorate during use. Further, as the decomposition of propylene carbonate proceeds, decomposition products are deposited on the negative electrode, and it is considered that the above-described deterioration in battery characteristics further proceeds due to the influence of this deposit.

そこで、非水溶媒としてプロピレンカーボネートを含有する非水電解質溶液へ1,3−プロパンスルトン、又は、1,4−ブタンスルトンを添加することにより、上記のプロピレンカーボネートの分解反応の進行を抑制することを意図した電池が提案されている(例えば、特許文献1及び特許文献2参照)。   Therefore, by adding 1,3-propane sultone or 1,4-butane sultone to a non-aqueous electrolyte solution containing propylene carbonate as a non-aqueous solvent, it is possible to suppress the progress of the above decomposition reaction of propylene carbonate. Intended batteries have been proposed (see, for example, Patent Document 1 and Patent Document 2).

特開2000−3724号公報JP 2000-3724 A 特開2000−3725号公報JP 2000-3725 A

しかしながら、上述した特許文献1及び2に記載された従来のリチウムイオン二次電池においては、プロピレンカーボネートの分解を抑制することができる一方で、60℃における保存試験においては、1ヶ月経過後の容量劣化が大きく、二次電池として必要な様々な諸特性を同時に満たすことはできなかった。 However, in the conventional lithium ion secondary batteries described in Patent Documents 1 and 2 described above, decomposition of propylene carbonate can be suppressed, while in a storage test at 60 ° C., the capacity after one month has elapsed. The deterioration was so great that the various characteristics required for the secondary battery could not be satisfied at the same time.

本発明は、上記課題に鑑みてなされたものであり、高温保存試験において劣化が少なく、バランスの良い電池特性を有するリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium ion secondary battery that has little deterioration in a high-temperature storage test and has well-balanced battery characteristics.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、非水電解質溶液の非水溶媒として特定の鎖状カーボネートを含有させると共に、この溶液に特定の環状カーボネート及びグリコールサルフェート誘導体、フルオロエチレンカーボネートを含有させることが上記目的を達成するために極めて有効であることを見出し、本発明に到達した。   As a result of intensive studies to achieve the above object, the inventors of the present invention include a specific linear carbonate as a nonaqueous solvent for the nonaqueous electrolyte solution, and a specific cyclic carbonate and a glycol sulfate derivative in the solution. It has been found that inclusion of fluoroethylene carbonate is extremely effective for achieving the above object, and the present invention has been achieved.

本発明にかかる非水電解質溶液は、鎖状カーボネート及び環状カーボネートを有し、前記環状カーボネートは、少なくともプロピレンカーボネートを含み、更に下記一般式(I)で表されるグリコールサルフェート誘導体と、フルオロエチレンカーボネートと、を含有することを特徴とする非水電解質溶液である。これにより、優れた初期充放電特性及び放電容量とともに、高温保存試験に耐え得るリチウムイオン二次電池を得ることができる。

Figure 2013206551

〔式(I)中、R及びRは、それぞれ独立に水素原子及び炭素数1〜5の炭化水素基からなる群より選ばれる少なくとも一種を表す。〕 The non-aqueous electrolyte solution according to the present invention includes a chain carbonate and a cyclic carbonate, and the cyclic carbonate includes at least propylene carbonate, and further includes a glycol sulfate derivative represented by the following general formula (I), and fluoroethylene carbonate: And a non-aqueous electrolyte solution characterized by comprising: Thereby, the lithium ion secondary battery which can endure a high temperature storage test with the outstanding initial stage charge / discharge characteristic and discharge capacity can be obtained.
Figure 2013206551

[In Formula (I), R 1 and R 2 each independently represent at least one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 5 carbon atoms. ]

本発明にかかる非水電解質溶液は、前記グリコールサルフェート誘導体を、0.1重量%以上10重量%以下含み、前記フルオロエチレンカーボネートを、0.1重量%以上10重量%以下含むことが望ましい。これにより、優れた初期充放電特性及び放電容量とともに、高温における保存試験に十分耐え得る傾向にある。   The nonaqueous electrolyte solution according to the present invention preferably contains 0.1 to 10% by weight of the glycol sulfate derivative and 0.1 to 10% by weight of the fluoroethylene carbonate. Thereby, it exists in the tendency which can fully endure the storage test in high temperature with the outstanding initial stage charge / discharge characteristic and discharge capacity.

また、一般式(II)で表されるエチレンサルファイト誘導体を更に含有することが望ましい。

Figure 2013206551

〔上記一般式(II)中、R及びRは、それぞれ独立に水素原子及び炭素数1〜3の炭化水素基からなる群より選ばれる少なくとも一種を表す。〕 Moreover, it is desirable to further contain an ethylene sulfite derivative represented by the general formula (II).
Figure 2013206551

[In the general formula (II), R 3 and R 4 each independently represent at least one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 3 carbon atoms. ]

また、本発明にかかる非水電解質溶液は、前記エチレンサルファイト誘導体が、0.1重量%以上10重量%以下含むことが望ましい。   In the non-aqueous electrolyte solution according to the present invention, the ethylene sulfite derivative is preferably contained in an amount of 0.1 wt% to 10 wt%.

さらに本発明にかかる非水電解質溶液は、前記グリコールサルフェート誘導体が、1,3,2−ジオキサチオラン−2,2−ジオキシド、4−メチル−1,3,2−ジオキサチオラン−2,2−ジオキシド、4−エチル−1,3,2−ジオキサチオラン−2,2−ジオキシド、の群から選ばれるいずれか1種を含み、前記エチレンサルファイト誘導体が、エチレンサルファイトであることを特徴とすることが望ましい。   Further, in the non-aqueous electrolyte solution according to the present invention, the glycol sulfate derivative is 1,3,2-dioxathiolane-2,2-dioxide, 4-methyl-1,3,2-dioxathiolane-2,2-dioxide, 4 It is desirable to include any one selected from the group of -ethyl-1,3,2-dioxathiolane-2,2-dioxide, wherein the ethylene sulfite derivative is ethylene sulfite.

本発明にかかるリチウムイオン二次電池は、正極と負極とセパレータと非水電解質溶液とを備え、前記非水電解質溶液は、鎖状カーボネート及び環状カーボネートを有し、前記環状カーボネートは、少なくともプロピレンカーボネートを含み、更に下記一般式(I)で表されるグリコールサルフェート誘導体とフルオロエチレンカーボネートとを含有することを特徴とするリチウムイオン二次電池であることを特徴とする。

Figure 2013206551

〔上記一般式(I)中、R及びRは、それぞれ独立に水素原子及び炭素数1〜5の炭化水素基からなる群より選ばれる少なくとも一種を表す。〕 A lithium ion secondary battery according to the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution. The non-aqueous electrolyte solution includes a chain carbonate and a cyclic carbonate, and the cyclic carbonate includes at least propylene carbonate. And a lithium sulfate secondary battery characterized by further containing a glycol sulfate derivative represented by the following general formula (I) and fluoroethylene carbonate.
Figure 2013206551

[In the general formula (I), R 1 and R 2 each independently represent at least one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 5 carbon atoms. ]

さらに、該非水電解質溶液は前記一般式(II)で表されるエチレンサルファイト誘導体を含有することが望ましい。これにより、優れた初期充放電特性及び放電容量とともに、十分な高温保存耐性を備えたリチウムイオン二次電池を得ることができる。   Furthermore, it is desirable that the non-aqueous electrolyte solution contains an ethylene sulfite derivative represented by the general formula (II). Thereby, the lithium ion secondary battery provided with sufficient high temperature storage tolerance with the outstanding initial stage charge / discharge characteristic and discharge capacity can be obtained.

本発明にかかるリチウムイオン二次電池は、前記グリコールサルフェート誘導体を、0.1重量%以上10重量%以下含み、前記フルオロエチレンカーボネートを、0.1重量%以上10重量%以下含むことが望ましい。   The lithium ion secondary battery according to the present invention preferably contains 0.1 to 10% by weight of the glycol sulfate derivative and 0.1 to 10% by weight of the fluoroethylene carbonate.

本発明にかかるリチウムイオン二次電池は、下記一般式(II)で表されるエチレンサルファイト誘導体を更に含有することが望ましい。

Figure 2013206551

〔上記一般式(II)中、R及びRは、それぞれ独立に水素原子及び炭素数1〜3の炭化水素基からなる群より選ばれる少なくとも一種を表す。〕 The lithium ion secondary battery according to the present invention preferably further contains an ethylene sulfite derivative represented by the following general formula (II).
Figure 2013206551

[In the general formula (II), R 3 and R 4 each independently represent at least one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 3 carbon atoms. ]

また、本発明にかかるリチウムイオン二次電池は、前記エチレンサルファイト誘導体を、0.1重量%以上10重量%以下含むことが望ましい。   Moreover, the lithium ion secondary battery according to the present invention preferably contains the ethylene sulfite derivative in an amount of 0.1 wt% to 10 wt%.

本発明にかかるリチウムイオン二次電池は、前記グリコールサルフェート誘導体が、1,3,2−ジオキサチオラン−2,2−ジオキシド、4−メチル−1,3,2−ジオキサチオラン−2,2−ジオキシド、4−エチル−1,3,2−ジオキサチオラン−2,2−ジオキシド、の群から選ばれるいずれか1種を含み、前記エチレンサルファイト誘導体が、エチレンサルファイトであることが望ましい。   In the lithium ion secondary battery according to the present invention, the glycol sulfate derivative has 1,3,2-dioxathiolane-2,2-dioxide, 4-methyl-1,3,2-dioxathiolane-2,2-dioxide, 4 It is desirable that the ethylene sulfite derivative is ethylene sulfite, including any one selected from the group of -ethyl-1,3,2-dioxathiolane-2,2-dioxide.

本発明の非水電解質溶液およびそれを用いたリチウムイオン二次電池は、特定の環状カーボネート及びグリコールサルフェート誘導体、フルオロエチレンカーボネートを含有することによって、プロピレンカーボネートの分解を抑制し、高温保存試験において劣化が少ないバランスの取れた特性が得られる。   The nonaqueous electrolyte solution of the present invention and a lithium ion secondary battery using the same suppress the decomposition of propylene carbonate by containing a specific cyclic carbonate, glycol sulfate derivative, and fluoroethylene carbonate, and deteriorate in a high-temperature storage test. A well-balanced characteristic can be obtained.

本実施形態のリチウムイオン二次電池を示す断面模式図である。It is a cross-sectional schematic diagram which shows the lithium ion secondary battery of this embodiment.

以下に添付図面を参照して、本発明の好適な実施形態について説明する。ただし、本発明にかかる非水電解質溶液及びそれを用いたリチウムイオン二次電池は、以下の実施形態に限定されるものではない。なお、図面の寸法比率は図示の比率に限られるものではない。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. However, the non-aqueous electrolyte solution and the lithium ion secondary battery using the same according to the present invention are not limited to the following embodiments. In addition, the dimensional ratio of drawing is not restricted to the ratio of illustration.

(リチウムイオン二次電池)
図1に、本実施形態のリチウムイオン二次電池10を模式的に示す。図1のリチウムイオン二次電池10は、リチウムイオンを吸蔵・放出する材料(正極活物質,負極活物質)を含む正極20及び負極30と、正極と負極との間にあって本発明に係る電解液が保持されたセパレータ40から構成されている。その正極20は、正極集電体22の両面に正極活物質層21を備えて構成されており、負極30は、負極集電体32の両面に負極活物質層31を備えて構成されている。また、その正極20は、第一の正極活物質と、第二の正極活物質とを含んで構成されている。
(Lithium ion secondary battery)
FIG. 1 schematically shows a lithium ion secondary battery 10 of the present embodiment. The lithium ion secondary battery 10 in FIG. 1 includes an electrolyte solution according to the present invention between a positive electrode 20 and a negative electrode 30 containing materials (positive electrode active material, negative electrode active material) that absorb and release lithium ions, and between the positive electrode and the negative electrode. The separator 40 is held. The positive electrode 20 includes a positive electrode active material layer 21 on both surfaces of a positive electrode current collector 22, and the negative electrode 30 includes a negative electrode current collector 32 on both surfaces of a negative electrode active material layer 31. . The positive electrode 20 includes a first positive electrode active material and a second positive electrode active material.

(負極)
負極30は、負極集電体32の両面に負極活物質層31を備えて構成されている。さらに負極活物質層31は、負極活物質材料と、導電助剤と、結着剤とを含む塗料を負極集電体に塗布することによって形成されている。
(Negative electrode)
The negative electrode 30 includes a negative electrode active material layer 31 on both sides of a negative electrode current collector 32. Further, the negative electrode active material layer 31 is formed by applying a paint containing a negative electrode active material, a conductive additive, and a binder to the negative electrode current collector.

負極活物質材料は、天然黒鉛、人造黒鉛(難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等)等の炭素材料の中から選れる少なくとも1種を含んでいる。炭素材料の層間距離d002が0.335〜0.338nmであり、かつ、炭素材料の結晶子の大きさLc002が30〜120nmであるものがより好ましい。このような条件を満たす炭素材料としては、人造黒鉛、MCF(メソカーボンファイバ)等が挙げられる。なお、前記層間距離d002及び結晶子の大きさLc002は、X線回折法により求めることができる。その他、例えば、Al、Si、Sn等のリチウムと化合物を形成することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)など公知の負極活物質を用いても良く、上述した材料同士を互いに混合させて使用してもよい。 The negative electrode active material includes at least one selected from carbon materials such as natural graphite and artificial graphite (non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, etc.). More preferably, the interlayer distance d002 of the carbon material is 0.335 to 0.338 nm, and the crystallite size Lc002 of the carbon material is 30 to 120 nm. Examples of the carbon material satisfying such conditions include artificial graphite and MCF (mesocarbon fiber). The interlayer distance d002 and the crystallite size Lc002 can be obtained by an X-ray diffraction method. In addition, for example, a metal capable of forming a compound with lithium such as Al, Si and Sn, an amorphous compound mainly composed of an oxide such as SiO 2 and SnO 2 , lithium titanate (Li 4 Ti 5 O 12 ) or other known negative electrode active materials may be used, and the above-described materials may be mixed with each other.

導電助剤は特に限定されず、公知の導電助剤を使用できる。例えば、カーボンブラック類、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITOのような導電性酸化物が挙げられる。   The conductive auxiliary agent is not particularly limited, and a known conductive auxiliary agent can be used. Examples thereof include carbon blacks, carbon materials, metal fine powders such as copper, nickel, stainless steel and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.

結着剤は、上記の負極活物質の粒子と導電助剤の粒子とを結着可能なものであれば特に限定されない。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。また、この結着剤は、上記の負極活物質材料の粒子と導電助剤の粒子との結着のみならず、負極集電体への結着に対しても寄与している。   The binder is not particularly limited as long as it can bind the negative electrode active material particles and the conductive auxiliary particles. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoro Examples thereof include fluorine resins such as ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), and polyvinyl fluoride (PVF). Further, this binder contributes not only to the binding of the particles of the negative electrode active material and the particles of the conductive additive, but also to the binding to the negative electrode current collector.

また、負極活物質層には、電子伝導性の多孔体を含有させることが好ましく、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、カーボンブラックのような熱分解炭素、コークス類、ガラス状炭素類、有機高分子化合物焼成材料、炭素繊維あるいは活性炭などの炭素材料が挙げられる。   In addition, the negative electrode active material layer preferably contains an electron conductive porous body, and includes pyrolytic carbon such as non-graphitizable carbon, graphitizable carbon, graphite, and carbon black, cokes, and glass. Examples thereof include carbon materials, organic polymer compound fired materials, carbon materials such as carbon fibers and activated carbon.

カーボンブラックとしては、特に、アセチレンブラック、ケッチェンブラック等が好ましく、ケッチェンブラックが特に好ましい。電子伝導性の多孔体を含有させることにより負極活物質材料の粒子と結着剤の界面に空孔を形成でき、その空孔により負極活物質含有層への電解液の染み込みを容易にすることができるので好ましい。   As carbon black, acetylene black, ketjen black and the like are particularly preferable, and ketjen black is particularly preferable. By including an electron conductive porous body, pores can be formed at the interface between the particles of the negative electrode active material and the binder, and the penetration of the electrolyte into the negative electrode active material-containing layer can be facilitated by the pores. Is preferable.

負極集電体は、リチウムイオン二次電池用の集電体に使用されている各種公知の金属箔を用いることができる。具体的には、負極集電体32としては銅箔が好ましく用いることができる。   As the negative electrode current collector, various known metal foils used for current collectors for lithium ion secondary batteries can be used. Specifically, a copper foil can be preferably used as the negative electrode current collector 32.

(正極)
正極20は、正極集電体22の両面に正極活物質層21を備えて構成されている。さらに正極活物質層32は、正極活物質材料と、導電助剤と、結着剤とを含む塗料を正極集電体に塗布することによって形成されている。
(Positive electrode)
The positive electrode 20 includes a positive electrode active material layer 21 on both surfaces of a positive electrode current collector 22. Furthermore, the positive electrode active material layer 32 is formed by applying a paint containing a positive electrode active material, a conductive additive, and a binder to the positive electrode current collector.

正極活物質材料は、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンと該リチウムイオンのカウンターアニオン(例えば、ClO4−)とのドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z=1)で表される複合金属酸化物、リチウムバナジウム化合物(LiV5、LiVPO、LiV(PO、LiVOPO)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、FeまたはVを示す)、チタン酸リチウム(LiTi12)等の複合金属酸化物が挙げられる。 The positive electrode active material is composed of lithium ion occlusion and release, lithium ion desorption and insertion (intercalation), or doping and dedoping of a lithium ion and a counter anion of the lithium ion (for example, ClO 4− ). The electrode is not particularly limited as long as it can be reversibly advanced, and a known electrode active material can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and a general formula: LiNi x Co y Mn z O 2 (x + y + z = 1) Composite metal oxides, lithium vanadium compounds (LiV 2 O 5, LiVPO 4 , LiV 2 (PO 4 ) 3 , LiVOPO 4 ), olivine-type LiMPO 4 (where M represents Co, Ni, Mn, Fe or V) ) And composite metal oxides such as lithium titanate (Li 4 Ti 5 O 12 ).

更に、正極活物質材料以外の各構成要素(導電助剤、結着剤)は、負極で使用されるものと同様の物質を使用することができる。したがって、正極に含まれる結着剤も、上記の正極活物質材料の粒子と導電助剤の粒子との結着のみならず、正極集電体への結着に対しても寄与している。
正極集電体は、リチウムイオン二次電池用の集電体に使用されている各種公知の金属箔を用いることができる。具体的には、正極集電体22としてはアルミニウム箔が好ましく用いることができる。
Furthermore, as each constituent element (conductive auxiliary agent and binder) other than the positive electrode active material, the same substances as those used in the negative electrode can be used. Therefore, the binder contained in the positive electrode contributes not only to the binding of the particles of the positive electrode active material and the particles of the conductive additive, but also to the binding to the positive electrode current collector.
As the positive electrode current collector, various known metal foils used in current collectors for lithium ion secondary batteries can be used. Specifically, an aluminum foil can be preferably used as the positive electrode current collector 22.

(セパレータ)
セパレータは絶縁性の多孔体から形成されていれば、材料、製法等は特に限定されず、公知のリチウムイオン二次電池に用いられているセパレータを使用することができる。例えば、絶縁性の多孔体としては、公知のポリオレフィン樹脂、具体的にはポリエチレン、ポリプロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した結晶性の単独重合体または共重合体が挙げられる。これらの単独重合体または共重合体は、1種を単独で使用することができるが、2種以上のものを混合して用いてもよい。また、単層であっても複層であってもよい。
(Separator)
As long as the separator is formed of an insulating porous material, the material, the manufacturing method, and the like are not particularly limited, and a separator used in a known lithium ion secondary battery can be used. For example, as the insulating porous material, a known polyolefin resin, specifically, a crystalline homopolymer or copolymer obtained by polymerizing polyethylene, polypropylene, 1-butene, 4-methyl-1-pentene, 1-hexene, or the like. A polymer is mentioned. These homopolymers or copolymers can be used alone or in combination of two or more. Further, it may be a single layer or a multilayer.

(非水電解質溶液)
非水電解質溶液は、非水溶媒と溶質からなり、非水溶媒は、環状カーボネート及び鎖状カーボネートを含んでいる。環状カーボネートとしては、少なくともプロピレンカーボネートを含み、エチレンカーボネート、ブチレンカーボネートなどと混合して使用しても良い。
(Nonaqueous electrolyte solution)
The nonaqueous electrolyte solution is composed of a nonaqueous solvent and a solute, and the nonaqueous solvent contains a cyclic carbonate and a chain carbonate. The cyclic carbonate contains at least propylene carbonate and may be used by mixing with ethylene carbonate, butylene carbonate or the like.

また、鎖状カーボネートとしては、ジメチルカーボネート、エチルメチルカーボネート、ジメチルカーボネートを用いることができ、2種以上を混合して使用しても良い。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどを混合して使用してもよい。   Moreover, as a chain carbonate, a dimethyl carbonate, an ethylmethyl carbonate, and a dimethyl carbonate can be used, and 2 or more types may be mixed and used. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like may be mixed and used.

非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして3:7〜1:1にすることが好ましい。   The ratio of the cyclic carbonate and the chain carbonate in the non-aqueous solvent is preferably 3: 7 to 1: 1 in terms of volume.

非水溶媒には電解質となる溶質として、種々の溶質を用いることができる。LiClO、LiBF、LiAsF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiPFなどが挙げられ、これらの溶質を混合して用いてもよい。 Various solutes can be used for the nonaqueous solvent as the solute serving as an electrolyte. LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiPF 6 and the like may be mentioned, and these solutes may be used in combination.

これらの中でも導電性の観点から、特にLiPFを含むことが好ましい。LiPFを非水溶媒に溶解する際は、非水電解質溶液中の溶質の濃度を、0.5〜2.0M(mol/L)に調整することが好ましい。溶質の濃度が0.5M未満の場合、電解液の導電性を充分に確保することが困難になる傾向があり、充放電時に十分な容量が得られない可能性がある。一方で溶質の濃度が2.0Mを超える場合は、電解液の粘度が上昇し、リチウムイオンの移動度が低下する傾向にあるため、前述と同様に充放電時に十分な容量が得られない可能性がある。 Among these, from the viewpoint of conductivity, it is particularly preferable that LiPF 6 is included. When LiPF 6 is dissolved in a non-aqueous solvent, the concentration of the solute in the non-aqueous electrolyte solution is preferably adjusted to 0.5 to 2.0 M (mol / L). When the concentration of the solute is less than 0.5M, it tends to be difficult to ensure sufficient conductivity of the electrolytic solution, and a sufficient capacity may not be obtained during charge / discharge. On the other hand, when the concentration of the solute exceeds 2.0 M, the viscosity of the electrolyte solution tends to increase and the mobility of lithium ions tends to decrease, so that sufficient capacity cannot be obtained during charge / discharge as described above. There is sex.

本実施形態の非水電解質溶液は、更に下記一般式(I)で表されるグリコールサルフェート誘導体とフルオロエチレンカーボネートとが添加されている。

Figure 2013206551

〔上記一般式(I)中、R及びRは、それぞれ独立に水素原子及び炭素数1〜5の炭化水素基からなる群より選ばれる少なくとも一種を表す。〕 The non-aqueous electrolyte solution of this embodiment is further added with a glycol sulfate derivative represented by the following general formula (I) and fluoroethylene carbonate.
Figure 2013206551

[In the general formula (I), R 1 and R 2 each independently represent at least one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 5 carbon atoms. ]

前記一般式(I)で表されるグリコールサルフェート誘導体の具体例としては、1,3,2−ジオキサチオラン−2,2−ジオキシド、4−メチル−1,3,2−ジオキサチオラン−2,2−ジオキシド、4−エチル−1,3,2−ジオキサチオラン−2,2−ジオキシドが挙げられる。この非水電解質溶液中での含有量は、非水電解質溶液全体を100質量%として0.1〜10重量%含まれている。好ましくは、1〜8重量%であり、特に2〜6重要%含むことがさらに好ましい。   Specific examples of the glycol sulfate derivative represented by the general formula (I) include 1,3,2-dioxathiolane-2,2-dioxide, 4-methyl-1,3,2-dioxathiolane-2,2-dioxide. 4-ethyl-1,3,2-dioxathiolane-2,2-dioxide. The content in the non-aqueous electrolyte solution is 0.1 to 10% by weight with 100% by mass of the entire non-aqueous electrolyte solution. The content is preferably 1 to 8% by weight, more preferably 2 to 6% by weight.

また、フルオロエチレンカーボネートは、同じく非水電解質溶液全体を100質量%として0.1〜10重量%含まれている。好ましくは、0.5〜5重量%であり、特に1〜4重量%含むことがさらに好ましい。   Similarly, the fluoroethylene carbonate is contained in an amount of 0.1 to 10% by weight based on 100% by mass of the entire nonaqueous electrolyte solution. The content is preferably 0.5 to 5% by weight, and more preferably 1 to 4% by weight.

グリコールサルフェート誘導体とフルオロエチレンカーボネートを加えた非水電解質溶液に、一般式(II)で表されるエチレンサルファイト誘導体を更に加えてもよい。

Figure 2013206551

〔上記一般式(II)中、R及びRは、それぞれ独立に水素原子及び炭素数1〜12の炭化水素基からなる群より選ばれる少なくとも一種を表す。〕 You may further add the ethylene sulfite derivative represented by general formula (II) to the non-aqueous electrolyte solution which added the glycol sulfate derivative and fluoroethylene carbonate.
Figure 2013206551

[In the general formula (II), R 3 and R 4 each independently represent at least one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 12 carbon atoms. ]

前記一般式(II)で表されるエチレンサルファイト誘導体の具体例としては、エチレンサルファイトが挙げられ、この材料が最も好ましい。この非水電解質溶液中での含有量は、非水電解質溶液全体を100質量%として0.1〜10重量%とすることが好ましく。さらに好ましくは0.5〜2重量%含有するのがよい。   Specific examples of the ethylene sulfite derivative represented by the general formula (II) include ethylene sulfite, and this material is most preferable. The content in the non-aqueous electrolyte solution is preferably 0.1 to 10% by weight with 100% by mass of the entire non-aqueous electrolyte solution. More preferably, it is 0.5 to 2% by weight.

グリコールサルフェート誘導体やフルオロエチレンカーボネート、エチレンサルファイト誘導体の含有量の合計が0.1重量%未満の場合はプロピレンカーボネートの分解が進み易い傾向にあり、充放電サイクルを繰り返すと容量が劣化しやすい傾向にある。一方、10重量%を越える場合はインピーダンスが高くなる傾向にあるため、十分な電池容量が得られにくい場合がある。   When the total content of glycol sulfate derivatives, fluoroethylene carbonate, and ethylene sulfite derivatives is less than 0.1% by weight, propylene carbonate tends to be decomposed easily, and the capacity tends to deteriorate when charging and discharging cycles are repeated. It is in. On the other hand, if it exceeds 10% by weight, the impedance tends to be high, so that it may be difficult to obtain a sufficient battery capacity.

また、グリコールサルフェート誘導体とフルオロエチレンカーボネートの混合比は4:1〜4:3が好ましい。このような混合比にすることによって様々な電池特性をバランスよく向上することができる。   The mixing ratio of the glycol sulfate derivative and fluoroethylene carbonate is preferably 4: 1 to 4: 3. By setting such a mixing ratio, various battery characteristics can be improved in a balanced manner.

以下、実施例及び比較例を挙げて本発明について更に詳しく説明するが、本発明はこれらの実施例に何ら限定されない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to these Examples at all.

(実施例1)
以下に示す手順により実施例1〜15、比較例1〜7のリチウムイオン二次電池を作製した。
Example 1
Lithium ion secondary batteries of Examples 1 to 15 and Comparative Examples 1 to 7 were produced by the following procedure.

先ず、負極を作製した。負極の作製においては、先ず、負極活物質として人造黒鉛(90質量部)、導電助剤としてカーボンブラック(2質量部)、結着剤としてポリフッ化ビニリデン(PVDF)(8質量部)を混合し、溶剤のN−メチル−2−ピロリドン(NMP)中に分散させ、スラリーを得た。得られたスラリーをドクターブレード法により集電体である電解銅箔に塗布し、110℃で乾燥させた。乾燥後に圧延を行い、負極を得た。   First, a negative electrode was produced. In the production of the negative electrode, first, artificial graphite (90 parts by mass) as a negative electrode active material, carbon black (2 parts by mass) as a conductive auxiliary agent, and polyvinylidene fluoride (PVDF) (8 parts by mass) as a binder are mixed. In a solvent, N-methyl-2-pyrrolidone (NMP) was dispersed to obtain a slurry. The obtained slurry was applied to an electrolytic copper foil as a current collector by a doctor blade method and dried at 110 ° C. After drying, rolling was performed to obtain a negative electrode.

次に、正極を作製した。正極の作製においても、先ず、正極活物質としてLiNi1/3Co1/3Mn1/3(90質量部)、導電助剤としてカーボンブラック(6質量部)、結着剤としてPVDF(4質量部)を混合し、NMP中に分散させ、スラリーを得た。得られたスラリーを集電体であるアルミニウム箔に塗布して乾燥させ、圧延を行い、正極を得た。 Next, a positive electrode was produced. Also in the production of the positive electrode, first, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (90 parts by mass) as the positive electrode active material, carbon black (6 parts by mass) as the conductive assistant, and PVDF (6 parts by mass) as the binder. 4 parts by mass) were mixed and dispersed in NMP to obtain a slurry. The obtained slurry was applied to an aluminum foil as a current collector, dried, rolled, and a positive electrode was obtained.

次に、非水電解質溶液を調製した。プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネートを体積比1:2:7で混合した溶液中に、LiPFを1.0mol/Lの割合で添加し作製した。更に、この溶液に対して、第1の化合物として1,3,2−ジオキサチオラン−2,2−ジオキサイド(以下、場合によりDTDという。)を1質量%、第2の化合物としてフルオロエチレンカーボネート(以下、場合によりFECという。)を1質量%、第3の化合物としてエチレンサルファイト(以下、場合によりESという。)を0.5質量%添加して非水電解質溶液を得た。 Next, a non-aqueous electrolyte solution was prepared. LiPF 6 was added at a ratio of 1.0 mol / L to a solution in which propylene carbonate, ethylene carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 2: 7. Furthermore, 1% by mass of 1,3,2-dioxathiolane-2,2-dioxide (hereinafter sometimes referred to as DTD) as the first compound and fluoroethylene carbonate (as the second compound) Hereinafter, the nonaqueous electrolyte solution was obtained by adding 1% by mass of FEC) in some cases and 0.5% by mass of ethylene sulfite (hereinafter, sometimes referred to as ES) as the third compound.

得られた負極及び正極の間にポリエチレンからなるセパレータを挟んで積層し積層体(素体)を得た。得られた積層体をアルミラミネートパックに入れ、このアルミラミネートパックに非水電解質溶液を注入した後に真空シールし、リチウムイオン二次電池(縦:60mm、横:85mm、厚さ:3mm)を作製した。なお、アルミラミネートパックのフィルムには、非水電解質溶液に接触する合成樹脂製の最内部の層(変性ポリプロピレンからなる層)、アルミニウム箔からなる金属層、ポリアミドからなる層がこの順で順次積層された積層体を使用した。そして、この複合包装フィルムを2枚重ね合せてその縁部を熱圧着して作製した。   A laminated body (element body) was obtained by laminating a separator made of polyethylene between the obtained negative electrode and positive electrode. The obtained laminate is placed in an aluminum laminate pack, and a nonaqueous electrolyte solution is injected into the aluminum laminate pack, followed by vacuum sealing to produce a lithium ion secondary battery (length: 60 mm, width: 85 mm, thickness: 3 mm). did. The film of the aluminum laminate pack has a synthetic resin innermost layer (layer made of modified polypropylene) in contact with the non-aqueous electrolyte solution, a metal layer made of aluminum foil, and a layer made of polyamide in this order. The laminated body used was used. And two sheets of this composite packaging film were piled up, and the edge part was produced by thermocompression bonding.

(実施例2〜15及び比較例1〜7)
非水電解質溶液に添加する第1の化合物の種類及び添加量、第2の化合物の添加量を表1に示すように変えた以外は、実施例1と同様にして実施例2〜14及び比較例1〜11のリチウムイオン二次電池を作製した。なお、表1中のPC量(単位:質量%)は溶媒となる第1の化合物と第2の化合物と第3の化合物との総量中のPC量の割合(質量%)を示した。また、表1中、MDTDは4−メチル−1,3,2−ジオキサチオラン−2,2−ジオキサイドを、EDTDは4−エチル−1,3,2−ジオキサチオラン−2,2−ジオキサイド示す。
(Examples 2 to 15 and Comparative Examples 1 to 7)
Examples 2 to 14 and the comparison were made in the same manner as in Example 1 except that the kind and amount of the first compound added to the nonaqueous electrolyte solution and the amount of the second compound added were changed as shown in Table 1. The lithium ion secondary battery of Examples 1-11 was produced. The amount of PC in Table 1 (unit:% by mass) represents the ratio (% by mass) of the amount of PC in the total amount of the first compound, the second compound, and the third compound as the solvent. In Table 1, MDTD indicates 4-methyl-1,3,2-dioxathiolane-2,2-dioxide, and EDTD indicates 4-ethyl-1,3,2-dioxathiolane-2,2-dioxide.

得られた実施例1〜15及び比較例1〜2のリチウムイオン二次電池を用いて、各電池特性を評価した。   Each battery characteristic was evaluated using the obtained lithium ion secondary battery of Examples 1-15 and Comparative Examples 1-2.

リチウムイオン二次電池作製後、恒温槽にて25℃に設定された環境下で初回の充電を行い、その直後に放電を行った。その際の充電容量と放電容量との比率により初期充放電特性を評価した。なお、充電は30mAで4.2Vまで定電流定電圧充電を行い、放電は30mAで2.5Vまで定電流放電を行った。その結果、実施例に示すサンプルは、全て初期充放電特性が86%以上であり実用的に十分なものであることが確認できた。   After the production of the lithium ion secondary battery, the first charge was performed in an environment set at 25 ° C. in a thermostatic bath, and the battery was discharged immediately after that. The initial charge / discharge characteristics were evaluated by the ratio between the charge capacity and the discharge capacity at that time. The charging was performed at a constant current and constant voltage up to 4.2 V at 30 mA, and the discharging was performed at a constant current of 2.5 mA at 30 mA. As a result, it was confirmed that all the samples shown in the examples had an initial charge / discharge characteristic of 86% or more and were practically sufficient.

(放電容量評価試験)
上記初回放電における放電容量(mAh)の測定値を評価した。得られた結果は表1中、放電容量として示すが、表から明らかな通り、実施例はいずれも放電容量が実用的に十分なものであることが確認できた。
(Discharge capacity evaluation test)
The measured value of the discharge capacity (mAh) in the first discharge was evaluated. The obtained results are shown as the discharge capacity in Table 1. As is clear from the table, it was confirmed that all of the examples had practically sufficient discharge capacity.

(高温保存試験)
電池作製後、該電池を4.2Vまで定電流定電圧充電を行い、満充電状態にした。そして、該電池のリード部を絶縁テープで覆い、60℃に設定した恒温槽へ投入した。その状態で放置し、1ヵ月後恒温槽から取り出し、容量測定を行った。その結果を表1中、60℃保存後容量として示す。その結果、実施例に示すサンプルは、全て60℃保存後容量が110以上であり、優れた電池特性であることが確認できた。
(High temperature storage test)
After the battery was produced, the battery was charged at a constant current and a constant voltage up to 4.2 V to reach a fully charged state. And the lead part of this battery was covered with the insulating tape, and it injected | threw-in to the thermostat set to 60 degreeC. The sample was left in that state, and after one month, it was taken out from the thermostatic chamber, and the capacity was measured. The results are shown in Table 1 as the capacity after storage at 60 ° C. As a result, all the samples shown in the examples had a capacity of 110 or more after storage at 60 ° C., and it was confirmed that they had excellent battery characteristics.

Figure 2013206551
Figure 2013206551

以上、説明したように、本発明は、プロピレンカーボネートの分解を抑制し、高温保存試験において劣化が少ないバランスの取れた非水電解質溶液およびそれを用いたリチウムイオン二次電池を提供することができる。   As described above, the present invention can provide a well-balanced non-aqueous electrolyte solution that suppresses the decomposition of propylene carbonate and has little deterioration in a high-temperature storage test, and a lithium ion secondary battery using the non-aqueous electrolyte solution. .

10 リチウムイオン二次電池
20 正極
21 正極活物質層
22 正極集電体
30 負極
31 負極集電体
32 負極活物質層
40 セパレータ
DESCRIPTION OF SYMBOLS 10 Lithium ion secondary battery 20 Positive electrode 21 Positive electrode active material layer 22 Positive electrode collector 30 Negative electrode 31 Negative electrode collector 32 Negative electrode active material layer 40 Separator

Claims (10)

鎖状カーボネート及び環状カーボネートを有し、
前記環状カーボネートは、少なくともプロピレンカーボネートを含み、
更に下記一般式(I)で表されるグリコールサルフェート誘導体と、フルオロエチレンカーボネートと、を含有することを特徴とする非水電解質溶液。
Figure 2013206551

〔上記一般式(I)中、R及びRは、それぞれ独立に水素原子及び炭素数1〜5の炭化水素基からなる群より選ばれる少なくとも一種を表す。〕
Having a chain carbonate and a cyclic carbonate,
The cyclic carbonate contains at least propylene carbonate,
Furthermore, the non-aqueous electrolyte solution characterized by containing the glycol sulfate derivative represented with the following general formula (I), and fluoroethylene carbonate.
Figure 2013206551

[In the general formula (I), R 1 and R 2 each independently represent at least one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 5 carbon atoms. ]
前記グリコールサルフェート誘導体を、0.1重量%以上10重量%以下含み、前記フルオロエチレンカーボネートを、0.1重量%以上10重量%以下含むことを特徴とする請求項1に記載の非水電解質溶液。   2. The nonaqueous electrolyte solution according to claim 1, wherein the glycol sulfate derivative is contained in an amount of 0.1 wt% to 10 wt%, and the fluoroethylene carbonate is contained in an amount of 0.1 wt% to 10 wt%. . 下記一般式(II)で表されるエチレンサルファイト誘導体を更に含有することを特徴とする請求項1または2のいずれか一項に記載の非水電解質溶液。
Figure 2013206551

〔上記一般式(II)中、R及びRは、それぞれ独立に水素原子及び炭素数1〜12の炭化水素基からなる群より選ばれる少なくとも一種を表す。〕
The nonaqueous electrolyte solution according to any one of claims 1 and 2, further comprising an ethylene sulfite derivative represented by the following general formula (II).
Figure 2013206551

[In the general formula (II), R 3 and R 4 each independently represent at least one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 12 carbon atoms. ]
前記エチレンサルファイト誘導体を、0.1重量%以上10重量%以下含むことを特徴とする請求項1乃至3のいずれか一項に記載の非水電解質溶液。   4. The non-aqueous electrolyte solution according to claim 1, wherein the ethylene sulfite derivative is contained in an amount of 0.1 wt% to 10 wt%. 前記グリコールサルフェート誘導体は、1,3,2−ジオキサチオラン−2,2−ジオキシド、4−メチル−1,3,2−ジオキサチオラン−2,2−ジオキシド、4−エチル−1,3,2−ジオキサチオラン−2,2−ジオキシド、の群から選ばれるいずれか1種を含み、前記エチレンサルファイト誘導体は、エチレンサルファイトであることを特徴とする請求項3または4のいずれか一項に記載の非水電解質溶液。   The glycol sulfate derivatives include 1,3,2-dioxathiolane-2,2-dioxide, 4-methyl-1,3,2-dioxathiolane-2,2-dioxide, 4-ethyl-1,3,2-dioxathiolane- 5. The non-aqueous solution according to claim 3, comprising any one selected from the group of 2,2-dioxide, wherein the ethylene sulfite derivative is ethylene sulfite. Electrolyte solution. 正極と、負極と、セパレータと、非水電解質溶液と、備え、
前記非水電解質溶液は、鎖状カーボネート及び環状カーボネートを有し、
前記環状カーボネートは、少なくともプロピレンカーボネートを含み、
更に下記一般式(I)で表されるグリコールサルフェート誘導体と、フルオロエチレンカーボネートと、を含有することを特徴とするリチウムイオン二次電池。
Figure 2013206551

〔上記一般式(I)中、R及びRは、それぞれ独立に水素原子及び炭素数1〜5の炭化水素基からなる群より選ばれる少なくとも一種を表す。〕
A positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution;
The non-aqueous electrolyte solution has a chain carbonate and a cyclic carbonate,
The cyclic carbonate contains at least propylene carbonate,
Furthermore, the lithium ion secondary battery characterized by containing the glycol sulfate derivative represented with the following general formula (I), and fluoroethylene carbonate.
Figure 2013206551

[In the general formula (I), R 1 and R 2 each independently represent at least one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 5 carbon atoms. ]
前記グリコールサルフェート誘導体を、0.1重量%以上10重量%以下含み、前記フルオロエチレンカーボネートを、0.1重量%以上10重量%以下含むことを特徴とする請求項6記載の非水電解質溶液。   The non-aqueous electrolyte solution according to claim 6, wherein the glycol sulfate derivative is contained in an amount of 0.1 wt% to 10 wt%, and the fluoroethylene carbonate is contained in an amount of 0.1 wt% to 10 wt%. 下記一般式(II)で表されるエチレンサルファイト誘導体を更に含有することを特徴とする請求項6または7のいずれか一項に記載のリチウムイオン二次電池。
Figure 2013206551

〔上記一般式(II)中、R及びRは、それぞれ独立に水素原子及び炭素数1〜3の炭化水素基からなる群より選ばれる少なくとも一種を表す。〕
The lithium ion secondary battery according to any one of claims 6 and 7, further comprising an ethylene sulfite derivative represented by the following general formula (II).
Figure 2013206551

[In the general formula (II), R 3 and R 4 each independently represent at least one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 3 carbon atoms. ]
前記エチレンサルファイト誘導体を、0.1重量%以上10重量%以下含むことを特徴とする請求項8に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 8, wherein the ethylene sulfite derivative is contained in an amount of 0.1 wt% to 10 wt%. 前記グリコールサルフェート誘導体は、1,3,2−ジオキサチオラン−2,2−ジオキシド、4−メチル−1,3,2−ジオキサチオラン−2,2−ジオキシド、4−エチル−1,3,2−ジオキサチオラン−2,2−ジオキシド、の群から選ばれるいずれか1種を含み、前記エチレンサルファイト誘導体はエチレンサルファイトであることを特徴とする請求項8または9のいずれか一項に記載のリチウムイオン二次電池。   The glycol sulfate derivatives include 1,3,2-dioxathiolane-2,2-dioxide, 4-methyl-1,3,2-dioxathiolane-2,2-dioxide, 4-ethyl-1,3,2-dioxathiolane- 10. The lithium ion 2 according to claim 8, comprising any one selected from the group of 2,2-dioxide, wherein the ethylene sulfite derivative is ethylene sulfite. 11. Next battery.
JP2012070936A 2012-03-27 2012-03-27 Nonaqueous electrolyte solution and lithium ion secondary battery Active JP5573875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070936A JP5573875B2 (en) 2012-03-27 2012-03-27 Nonaqueous electrolyte solution and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070936A JP5573875B2 (en) 2012-03-27 2012-03-27 Nonaqueous electrolyte solution and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2013206551A true JP2013206551A (en) 2013-10-07
JP5573875B2 JP5573875B2 (en) 2014-08-20

Family

ID=49525463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070936A Active JP5573875B2 (en) 2012-03-27 2012-03-27 Nonaqueous electrolyte solution and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5573875B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715459A (en) * 2013-12-24 2014-04-09 宁德新能源科技有限公司 Lithium ion secondary battery and electrolyte thereof
WO2022168584A1 (en) * 2021-02-02 2022-08-11 三井化学株式会社 Nonaqueous electrolyte solution for lithium secondary batteries, lithium secondary battery precursor, lithium secondary battery, and method for manufacturing lithium secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157900A (en) * 2001-11-19 2003-05-30 Sony Corp Battery
JP2003197253A (en) * 2001-12-26 2003-07-11 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2006070546A1 (en) * 2004-12-27 2006-07-06 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2010118356A (en) * 2005-01-20 2010-05-27 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
WO2010137571A1 (en) * 2009-05-27 2010-12-02 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for producing a non-aqueous electrolyte secondary battery
JP2011171282A (en) * 2009-11-20 2011-09-01 Ube Industries Ltd Nonaqueous electrolyte and electrochemical element using the same
WO2012053644A1 (en) * 2010-10-22 2012-04-26 三井化学株式会社 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157900A (en) * 2001-11-19 2003-05-30 Sony Corp Battery
JP2003197253A (en) * 2001-12-26 2003-07-11 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2006070546A1 (en) * 2004-12-27 2006-07-06 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2010118356A (en) * 2005-01-20 2010-05-27 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
WO2010137571A1 (en) * 2009-05-27 2010-12-02 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for producing a non-aqueous electrolyte secondary battery
JP2011171282A (en) * 2009-11-20 2011-09-01 Ube Industries Ltd Nonaqueous electrolyte and electrochemical element using the same
WO2012053644A1 (en) * 2010-10-22 2012-04-26 三井化学株式会社 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ATSUSHI SANO,SATOSHI MURAYAMA: "Decreasing the initial irreversible capacity loss by addition of cyclic sulfate as electrolyte addit", JOURNAL OF POWER SOURCES, vol. 192, no. 2, JPN6014022014, 15 July 2009 (2009-07-15), pages 714 - 718, XP026140160, ISSN: 0002822286, DOI: 10.1016/j.jpowsour.2009.02.075 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715459A (en) * 2013-12-24 2014-04-09 宁德新能源科技有限公司 Lithium ion secondary battery and electrolyte thereof
WO2022168584A1 (en) * 2021-02-02 2022-08-11 三井化学株式会社 Nonaqueous electrolyte solution for lithium secondary batteries, lithium secondary battery precursor, lithium secondary battery, and method for manufacturing lithium secondary battery

Also Published As

Publication number Publication date
JP5573875B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5664685B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
KR20180087162A (en) Method for preparing lithium secondary battery having high-temperature storage properties
JP2008097879A (en) Lithium ion secondary battery
JP2014049294A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR102206590B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
JP6484995B2 (en) Lithium ion secondary battery
US20170317383A1 (en) Lithium-ion secondary battery
JP2016085836A (en) Nonaqueous liquid electrolyte for lithium ion secondary batteries, and lithium ion secondary battery
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP5708597B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5614433B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5708598B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP2016085837A (en) Lithium ion secondary battery
JP5846031B2 (en) Lithium ion secondary battery and non-aqueous electrolyte
JP2019169346A (en) Lithium ion secondary battery
JP5655828B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP6031965B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP7017108B2 (en) Active materials, electrodes and lithium-ion secondary batteries
JP2020077575A (en) Lithium ion secondary battery
JP2015125949A (en) Lithium ion secondary battery
JP2020077576A (en) Lithium ion secondary battery
WO2020213268A1 (en) Nonaqueous electrolytic solution, nonvolatile electrolyte, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250