JP6344470B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP6344470B2
JP6344470B2 JP2016527820A JP2016527820A JP6344470B2 JP 6344470 B2 JP6344470 B2 JP 6344470B2 JP 2016527820 A JP2016527820 A JP 2016527820A JP 2016527820 A JP2016527820 A JP 2016527820A JP 6344470 B2 JP6344470 B2 JP 6344470B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
capacity
lithium
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016527820A
Other languages
Japanese (ja)
Other versions
JPWO2015190480A1 (en
Inventor
貴紀 梶本
貴紀 梶本
学 落田
学 落田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2015190480A1 publication Critical patent/JPWO2015190480A1/en
Application granted granted Critical
Publication of JP6344470B2 publication Critical patent/JP6344470B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウムイオン二次電池に関するものである。   The present invention relates to a lithium ion secondary battery.

リチウムイオン二次電池は、高エネルギー密度の二次電池であり、その特性を活かして、ノートパソコンや携帯電話等のポータブル機器の電源に使用されている。リチウムイオン二次電池の形状には種々のものがあるが、円筒形リチウムイオン二次電池は、正極、負極およびセパレータの捲回式構造を採用している。例えば、2枚の帯状の金属箔に正極材料および負極材料をそれぞれ塗着し、その間にセパレータを挟み込み、これらの積層体を渦巻状に捲回することで捲回群を形成する。この捲回群を、電池容器となる円筒形の電池缶内に収納し、電解液を注液後、封口することで、円筒形リチウムイオン二次電池が形成される。
円筒形リチウムイオン二次電池としては、18650型リチウムイオン電池が、民生用リチウムイオン電池として広く普及している。18650型リチウムイオン電池の外径寸法は、直径18mmで、高さ65mm程度の小型である。18650型リチウムイオン二次電池の正極活物質には、高容量、長寿命を特徴とするコバルト酸リチウムが主として用いられており、電池容量は、おおむね1.0Ah〜2.0Ah(3.7Wh〜7.4Wh)程度である。
A lithium ion secondary battery is a high energy density secondary battery, and is used as a power source for portable devices such as notebook computers and mobile phones by taking advantage of its characteristics. There are various types of lithium ion secondary batteries. Cylindrical lithium ion secondary batteries employ a wound structure of a positive electrode, a negative electrode, and a separator. For example, a positive electrode material and a negative electrode material are respectively applied to two strip-shaped metal foils, a separator is sandwiched therebetween, and these laminated bodies are wound in a spiral shape to form a wound group. The wound group is housed in a cylindrical battery can serving as a battery container, and after injecting an electrolytic solution, the cylindrical lithium ion secondary battery is formed.
As the cylindrical lithium ion secondary battery, a 18650 type lithium ion battery is widely used as a consumer lithium ion battery. The outer diameter of the 18650 type lithium ion battery is 18 mm in diameter and is small with a height of about 65 mm. As the positive electrode active material of the 18650 type lithium ion secondary battery, lithium cobaltate characterized by high capacity and long life is mainly used, and the battery capacity is approximately 1.0 Ah to 2.0 Ah (3.7 Wh to 7.4 Wh).

近年、リチウムイオン二次電池は、ポータブル機器用等の民生用途にとどまらず、太陽光や風力発電といった自然エネルギー向け大規模蓄電システム用途への展開が期待されている。大規模蓄電システムにおいては、システムあたりの電力量が数MWhのオーダーで必要となる。
例えば、下記特許文献1には、円筒形電池容器に正極、負極およびセパレータを捲回した電極捲回群を有する円筒形リチウムイオン二次電池が開示されている。この電池は、放電容量30Ah以上であり、正極には、リチウムマンガン複合酸化物を含む正極活物質合剤が用いられ、負極には、非晶質炭素を含む負極活物質合剤が用いられている。
In recent years, lithium ion secondary batteries are expected to be used not only for consumer applications such as portable devices but also for large-scale power storage systems for natural energy such as solar power and wind power generation. In a large-scale power storage system, the amount of power per system is required on the order of several MWh.
For example, Patent Literature 1 below discloses a cylindrical lithium ion secondary battery having an electrode winding group in which a positive electrode, a negative electrode, and a separator are wound around a cylindrical battery container. This battery has a discharge capacity of 30 Ah or more, a positive electrode active material mixture containing lithium manganese composite oxide is used for the positive electrode, and a negative electrode active material mixture containing amorphous carbon is used for the negative electrode. Yes.

国際公開第2013/128677号International Publication No. 2013/128677

リチウムイオン二次電池は、近年、電気自動車、ハイブリッド型電気自動車等に用いられる高入出力用電源としても注目されている。このような自動車分野への適用において、高出力化、高容量及び長寿命化に加え、回生によるエネルギーの利用効率向上のために優れた入力特性および寿命特性が要求されている。
しかしながら、特許文献1に記載されているリチウムイオン二次電池では、入力特性が十分でないことが、本発明者らの検討結果から明らかとなった。
本発明は、上記課題に鑑みてなされたものであり、入力特性及び寿命特性に優れるリチウムイオン二次電池を提供することにある。
In recent years, lithium ion secondary batteries have attracted attention as high input / output power sources used in electric vehicles, hybrid electric vehicles, and the like. In such an application to the automobile field, in addition to high output, high capacity, and long life, excellent input characteristics and life characteristics are required to improve energy utilization efficiency by regeneration.
However, the lithium ion secondary battery described in Patent Document 1 reveals that the input characteristics are not sufficient from the examination results of the present inventors.
This invention is made | formed in view of the said subject, and is providing the lithium ion secondary battery excellent in an input characteristic and a lifetime characteristic.

前記課題を解決するための具体的手段は以下の通りである。
負極の全容量に対して、10時間率充電における定電流領域の充電容量の割合をX%としたとき、下記の式(1)を満たす負極と、リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)を含む正極を備え、前記正極と前記負極との容量比(負極容量/正極容量)Yが下記の式(2)を満たすリチウムイオン二次電池。
70≦X≦95・・・(1)
1≦Y≦1+(1−X/100)・・・(2)
上記において、式(1)のXが、下記式(3)の範囲であると好ましい。
80≦X≦90・・・(3)
また、上記において、負極に易黒鉛化炭素を含み、易黒鉛化炭素を負極活物質の総量に対して、20質量%以上含有すると好ましい。
さらに、上記において、負極に易黒鉛化炭素と難黒鉛化炭素を含み、易黒鉛化炭素と難黒鉛化炭素の混合割合が、易黒鉛化炭素/難黒鉛化炭素(質量比)=100/0〜10/90であると好ましい。
Specific means for solving the above problems are as follows.
When the ratio of the charge capacity in the constant current region in 10 hour rate charge is X% with respect to the total capacity of the negative electrode, a negative electrode satisfying the following formula (1), a lithium / nickel / manganese / cobalt composite oxide ( A lithium ion secondary battery including a positive electrode including NMC and having a capacity ratio (negative electrode capacity / positive electrode capacity) Y between the positive electrode and the negative electrode satisfying the following formula (2).
70 ≦ X ≦ 95 (1)
1 ≦ Y ≦ 1 + (1−X / 100) (2)
In the above, X in the formula (1) is preferably in the range of the following formula (3).
80 ≦ X ≦ 90 (3)
In the above, it is preferable that the negative electrode contains graphitizable carbon and the graphitizable carbon is contained in an amount of 20% by mass or more based on the total amount of the negative electrode active material.
Further, in the above, the negative electrode contains graphitizable carbon and non-graphitizable carbon, and the mixing ratio of graphitizable carbon and non-graphitizable carbon is graphitizable carbon / non-graphitizable carbon (mass ratio) = 100/0. 10/90 is preferable.

本発明によれば入力特性及び寿命特性に優れるリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery excellent in an input characteristic and a lifetime characteristic can be provided.

本発明が適用可能な実施形態のリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery of embodiment which can apply this invention. 容量比(負極容量/正極容量)と負極の定電流領域充電容量/負極全容量の関係をまとめたグラフである。It is the graph which put together the relationship of capacity | capacitance ratio (negative electrode capacity / positive electrode capacity) and the constant current area | region charge capacity / negative electrode total capacity | capacitance of a negative electrode.

以下の実施の形態においてA〜Bとして範囲を示す場合には、特に明示した場合を除き、A以上、B以下を示すものとする。
(実施の形態)
まず、リチウムイオン二次電池の概要について簡単に説明する。リチウムイオン二次電池は、電池容器内に、正極、負極、セパレータ及び電解液を有している。正極と負極との間にはセパレータが配置されている。
リチウムイオン二次電池を充電する際には、正極と負極との間に充電器を接続する。充電時においては、正極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、負極に到達する。この負極に到達したリチウムイオンは、負極を構成する負極活物質内に挿入される。
In the following embodiments, when ranges are shown as A to B, A or more and B or less are shown unless otherwise specified.
(Embodiment)
First, the outline of the lithium ion secondary battery will be briefly described. The lithium ion secondary battery has a positive electrode, a negative electrode, a separator, and an electrolytic solution in a battery container. A separator is disposed between the positive electrode and the negative electrode.
When charging the lithium ion secondary battery, a charger is connected between the positive electrode and the negative electrode. At the time of charging, lithium ions inserted into the positive electrode active material are desorbed and released into the electrolytic solution. The lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the negative electrode. The lithium ions that have reached the negative electrode are inserted into the negative electrode active material constituting the negative electrode.

放電する際には、正極と負極の間に外部負荷を接続する。放電時においては、負極活物質内に挿入されていたリチウムイオンが脱離して電解液中に放出される。このとき、負極から電子が放出される。そして、電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、正極に到達する。この正極に到達したリチウムイオンは、正極を構成する正極活物質内に挿入される。このとき、正極活物質にリチウムイオンが挿入することにより、正極に電子が流れ込む。このようにして、負極から正極に電子が移動することにより放電が行われる。   When discharging, an external load is connected between the positive electrode and the negative electrode. At the time of discharging, the lithium ions inserted into the negative electrode active material are desorbed and released into the electrolytic solution. At this time, electrons are emitted from the negative electrode. Then, the lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the positive electrode. The lithium ions reaching the positive electrode are inserted into the positive electrode active material constituting the positive electrode. At this time, when lithium ions are inserted into the positive electrode active material, electrons flow into the positive electrode. In this way, discharge is performed by the movement of electrons from the negative electrode to the positive electrode.

このように、リチウムイオンを正極活物質と負極活物質との間で挿入・脱離することにより、充放電することができる。なお、実際のリチウムイオン二次電池の構成例については、後述する(例えば、図1参照)。
次いで、本実施の形態のリチウムイオン二次電池の構成要素である正極、負極、電解液、セパレータおよびその他の構成部材に関し順次説明する。
In this manner, charging / discharging can be performed by inserting and desorbing lithium ions between the positive electrode active material and the negative electrode active material. A configuration example of an actual lithium ion secondary battery will be described later (see, for example, FIG. 1).
Next, a positive electrode, a negative electrode, an electrolytic solution, a separator, and other constituent members that are constituent elements of the lithium ion secondary battery of the present embodiment will be sequentially described.

1.正極

本実施の形態においては、高容量で高入出力のリチウムイオン二次電池に適用可能な以下に示す正極を有する。本実施の形態の正極(正極板)は、集電体及びその上部に形成された正極合材(正極合剤)よりなる。正極合材は、集電体の上部に設けられた少なくとも正極活物質を含む層である。
前記正極活物質としては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(以下、NMCという場合もある)を含む。NMCは、高容量であり、且つ安全性にも優れる。
安全性の更なる向上の観点からは、NMCとスピネル型リチウムマンガン複合酸化物(以下、sp−Mnという場合もある)との混合活物質を用いることが好ましい。
NMCの含有量は、電池の高容量化の観点から、正極合材全量に対して65質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。
1. Positive electrode

In this embodiment mode, the positive electrode shown below is applicable to a high-capacity, high-input / output lithium ion secondary battery. The positive electrode (positive electrode plate) of the present embodiment is composed of a current collector and a positive electrode mixture (positive electrode mixture) formed thereon. The positive electrode mixture is a layer including at least a positive electrode active material provided on the current collector.
The positive electrode active material includes a layered lithium / nickel / manganese / cobalt composite oxide (hereinafter also referred to as NMC). NMC has a high capacity and excellent safety.
From the viewpoint of further improving safety, it is preferable to use a mixed active material of NMC and spinel type lithium manganese composite oxide (hereinafter sometimes referred to as sp-Mn).
The content of NMC is preferably 65% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more based on the total amount of the positive electrode mixture from the viewpoint of increasing the capacity of the battery. Is more preferable.

前記NMCとしては、以下の組成式(化1)で表されるものを用いることが好ましい。
Li(1+δ)MnNiCo(1−x−y−z)…(化1)
上記組成式(化1)において、(1+δ)はLi(リチウム)の組成比、xはMn(マンガン)の組成比、yはNi(ニッケル)の組成比、(1−x−y−z)はCo(コバルト)の組成比を示す。zは、元素Mの組成比を示す。O(酸素)の組成比は2である。
元素Mは、Ti(チタン)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、W(タングステン)、Al(アルミニウム)、Si(シリコン)、Ga(ガリウム)、Ge(ゲルマニウム)及びSn(錫)よりなる群から選択される少なくとも1種の元素である。
−0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である。
As said NMC, it is preferable to use what is represented by the following compositional formula (Formula 1).
Li (1 + δ) Mn x Ni y Co (1-xyz) M z O 2 (Formula 1)
In the above composition formula (Formula 1), (1 + δ) is a composition ratio of Li (lithium), x is a composition ratio of Mn (manganese), y is a composition ratio of Ni (nickel), (1-xyz) Indicates the composition ratio of Co (cobalt). z represents the composition ratio of the element M. The composition ratio of O (oxygen) is 2.
The elements M are Ti (titanium), Zr (zirconium), Nb (niobium), Mo (molybdenum), W (tungsten), Al (aluminum), Si (silicon), Ga (gallium), Ge (germanium), and Sn. It is at least one element selected from the group consisting of (tin).
-0.15 <δ <0.15, 0.1 <x ≦ 0.5, 0.6 <x + y + z ≦ 1.0, 0 ≦ z ≦ 0.1.

また、前記sp−Mnとしては、以下の組成式(化2)で表されるものを用いることが好ましい。
Li(1+η)Mn(2−λ)M’λ…(化2)
上記組成式(化2)において、(1+η)はLiの組成比、(2−λ)はMnの組成比、λは元素M’の組成比を示す。O(酸素)の組成比は4である。
元素M’は、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Al、Ga、Zn(亜鉛)、及びCu(銅)よりなる群から選択される少なくとも1種の元素であることが好ましい。
0≦η≦0.2、0≦λ≦0.1である。
上記組成式(化2)における元素M’としては、Mg又はAlを用いることが好ましい。Mg又はAlを用いることにより、電池の長寿命化を図ることができる。また、電池の安全性の向上を図ることができる。さらに、元素M’を加えることで、Mnの溶出を低減できるため、貯蔵特性や充放電サイクル特性を向上させることができる。
As the sp-Mn, it is preferable to use one represented by the following composition formula (Formula 2).
Li (1 + η) Mn (2-λ) M ′ λ O 4 (Chemical formula 2)
In the above composition formula (Formula 2), (1 + η) represents the composition ratio of Li, (2-λ) represents the composition ratio of Mn, and λ represents the composition ratio of the element M ′. The composition ratio of O (oxygen) is 4.
The element M ′ is at least one element selected from the group consisting of Mg (magnesium), Ca (calcium), Sr (strontium), Al, Ga, Zn (zinc), and Cu (copper). preferable.
0 ≦ η ≦ 0.2 and 0 ≦ λ ≦ 0.1.
Mg or Al is preferably used as the element M ′ in the composition formula (Chemical Formula 2). By using Mg or Al, the battery life can be extended. In addition, the safety of the battery can be improved. Furthermore, since the elution of Mn can be reduced by adding the element M ′, storage characteristics and charge / discharge cycle characteristics can be improved.

また、正極活物質としては、上記NMC及びsp−Mn以外のものを用いてもよい。
前記NMC及びsp−Mn以外の正極活物質としては、この分野で常用されるものを使用でき、NMC及びsp−Mn以外のリチウム含有複合金属酸化物、オリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等が挙げられる。リチウム含有複合金属酸化物は、リチウムと遷移金属とを含む金属酸化物又は該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V、B等が挙げられ、Mn、Al、Co、Ni、Mgが好ましい。異種元素は1種又は2種以上を用いることができる。前記NMC及びsp−Mn以外のリチウム含有複合金属酸化物としては、LixCoO、LixNiO、LixMnO、LixCoyNi−yO、LixCoyM−yOz、LixNi−yMyOz(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、VおよびBよりなる群から選ばれる少なくとも1種の元素を示す。x=0〜1.2、y=0〜0.9、z=2.0〜2.3である。)等があげられる。ここで、リチウムのモル比を示すx値は、充放電により増減する。また、前記オリビン型リチウム塩としては、LiFePO4等が挙げられる。カルコゲン化合物としては、二硫化チタン、二硫化モリブデン等が挙げられる。正極活物質は1種を単独で使用でき又は2種以上を併用できる。
Further, as the positive electrode active material, materials other than the above NMC and sp-Mn may be used.
As the positive electrode active material other than NMC and sp-Mn, those commonly used in this field can be used. Lithium-containing composite metal oxides other than NMC and sp-Mn, olivine type lithium salts, chalcogen compounds, manganese dioxide, etc. Is mentioned. The lithium-containing composite metal oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element. Here, examples of the different elements include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B. Mn, Al, Co, Ni and Mg are preferable. One kind or two or more kinds of different elements can be used. Examples of the lithium-containing composite metal oxide other than NMC and sp-Mn include LixCoO 2 , LixNiO 2 , LixMnO 2 , LixCoyNi 1 -yO 2 , LixCoyM 1 -yOz, LixNi 1 -yMyOz (wherein M is Na , Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B. x = 0 to 1. 2, y = 0 to 0.9, z = 2.0 to 2.3). Here, x value which shows the molar ratio of lithium increases / decreases by charging / discharging. Examples of the olivine type lithium salt include LiFePO 4 . Examples of the chalcogen compound include titanium disulfide and molybdenum disulfide. A positive electrode active material can be used individually by 1 type, or can use 2 or more types together.

次に、正極合材および集電体について詳細に説明する。正極合材は、正極活物質、結着材等を含有し、集電体上に形成される。その形成方法に制限はないが、例えば、次のように形成される。正極活物質、結着材、および必要に応じて用いられる導電材や増粘材などの他の材料を乾式で混合してシート状にし、これを集電体に圧着する(乾式法)。また、正極活物質、結着材、および必要に応じて用いられる導電材や増粘材などの他の材料を分散溶媒に溶解または分散させてスラリーとし、これを集電体に塗布し、乾燥する(湿式法)。
正極活物質としては、前述したように、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)が用いられる。これらは粉状(粒状)で用いられ、混合される。
NMC、sp−Mn等の正極活物質の粒子としては、塊状、多面体状、球状、楕円球状、板状、針状、柱状等の形状ものを用いることができる。
NMC、sp−Mn等の正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径d50)は、次の範囲で調整可能である。範囲の下限は、1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、上限は、30μm以下、好ましくは25μm以下、より好ましくは15μm以下である。
上記下限未満では、タップ密度(充填性)が低下し、所望のタップ密度が得られなくなる可能性があり、上記上限を超えると粒子内のリチウムイオンの拡散に時間がかかるため、電池性能の低下を招く可能性がある。また、上記上限を超えると、電極の形成時において、結着材や導電材等の他の材料との混合性が低下する可能性がある。よって、この混合物をスラリー化し塗布する際に、均一に塗布できず、スジを引く等の問題を生ずる場合がある。なお、メジアン径d50は、レーザー回折・散乱法により求めた粒度分布から求めることができる。
Next, the positive electrode mixture and the current collector will be described in detail. The positive electrode mixture contains a positive electrode active material, a binder, and the like, and is formed on the current collector. Although there is no restriction | limiting in the formation method, For example, it forms as follows. A positive electrode active material, a binder, and other materials such as a conductive material and a thickener used as needed are mixed in a dry form to form a sheet, which is pressure-bonded to a current collector (dry method). In addition, a positive electrode active material, a binder, and other materials such as a conductive material and a thickener used as necessary are dissolved or dispersed in a dispersion solvent to form a slurry, which is applied to a current collector and dried. (Wet method).
As described above, the layered lithium / nickel / manganese / cobalt composite oxide (NMC) is used as the positive electrode active material. These are used in powder form (granular) and mixed.
As the particles of the positive electrode active material such as NMC or sp-Mn, particles having a lump shape, a polyhedron shape, a spherical shape, an elliptical spherical shape, a plate shape, a needle shape, a columnar shape, or the like can be used.
The median diameter d50 of the positive electrode active material particles such as NMC and sp-Mn (when the primary particles aggregate to form secondary particles, the median diameter d50 of the secondary particles) can be adjusted within the following range. It is. The lower limit of the range is 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and the upper limit is 30 μm or less, preferably 25 μm or less, more preferably 15 μm or less.
If it is less than the above lower limit, the tap density (fillability) may be lowered, and a desired tap density may not be obtained. If the upper limit is exceeded, it takes time to diffuse lithium ions in the particles, so that the battery performance is lowered. May be incurred. Moreover, when the said upper limit is exceeded, the mixing property with other materials, such as a binder and a conductive material, may fall at the time of formation of an electrode. Therefore, when this mixture is slurried and applied, it may not be applied uniformly, which may cause problems such as streaking. The median diameter d50 can be obtained from the particle size distribution obtained by the laser diffraction / scattering method.

一次粒子が凝集して二次粒子を形成している場合における一次粒子の平均粒径について、その範囲は次のとおりである。範囲の下限は、0.01μm以上、好ましくは0.05μm以上、さらに好ましくは0.08μm以上、特に好ましくは0.1μm以上であり、上限は、3μm以下、好ましくは2μm以下、さらに好ましくは1μm以下、特に好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子が形成し難くなり、タップ密度(充填性)の低下や、比表面積の低下により、出力特性等の電池性能が低下する可能性がある。また、上記下限未満では、結晶性の低下により、充放電の可逆性が劣化する等の問題を生ずる可能性がある。   The range of the average particle size of the primary particles in the case where the primary particles are aggregated to form secondary particles is as follows. The lower limit of the range is 0.01 μm or more, preferably 0.05 μm or more, more preferably 0.08 μm or more, particularly preferably 0.1 μm or more, and the upper limit is 3 μm or less, preferably 2 μm or less, more preferably 1 μm. Hereinafter, it is particularly preferably 0.6 μm or less. When the above upper limit is exceeded, it is difficult to form spherical secondary particles, and battery performance such as output characteristics may be reduced due to a decrease in tap density (fillability) and a decrease in specific surface area. Moreover, if it is less than the said lower limit, problems, such as deterioration of the reversibility of charging / discharging, may arise by crystallinity fall.

NMC、sp−Mn等の正極活物質の粒子のBET比表面積について、その範囲は次のとおりである。範囲の下限は、0.2m/g以上、好ましくは0.3m/g以上、さらに好ましくは0.4m/g以上であり、上限は、4.0m/g以下、好ましくは2.5m/g以下、さらに好ましくは1.5m/g以下である。上記下限未満では、電池性能が低下する可能性がある。上記上限を超えるとタップ密度が上がりにくくなり、結着材や導電材等の他の材料との混合性が低下する可能性がある。よって、この混合物をスラリー化し塗布する際の塗布性が劣化する可能性がある。BET比表面積は、BET法により求められた比表面積(単位gあたりの面積)である。The ranges of the BET specific surface area of the positive electrode active material particles such as NMC and sp-Mn are as follows. The lower limit of the range is 0.2 m 2 / g or more, preferably 0.3 m 2 / g or more, more preferably 0.4 m 2 / g or more, and the upper limit is 4.0 m 2 / g or less, preferably 2 .5m 2 / g, more preferably not more than 1.5 m 2 / g. If it is less than the said minimum, battery performance may fall. When the above upper limit is exceeded, it is difficult to increase the tap density, and there is a possibility that the miscibility with other materials such as a binder and a conductive material is lowered. Therefore, there is a possibility that the applicability when the mixture is slurried and applied is deteriorated. The BET specific surface area is a specific surface area (area per unit g) determined by the BET method.

正極用の導電材としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料などが挙げられる。なお、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。
導電材の含有量(添加量、割合、量)について、正極合材の質量に対する導電材の含有量の範囲は次のとおりである。範囲の下限は、0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、上限は、50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下である。上記下限未満では、導電性が不充分となる可能性がある。また、上記上限を超えると、電池容量が低下する可能性がある。
Examples of the conductive material for the positive electrode include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbonaceous materials such as amorphous carbon such as needle coke. It is done. Of these, one type may be used alone, or two or more types may be used in combination.
About the content (addition amount, ratio, amount) of the conductive material, the range of the content of the conductive material with respect to the mass of the positive electrode mixture is as follows. The lower limit of the range is 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more, and the upper limit is 50% by mass or less, preferably 30% by mass or less, more preferably 15%. It is below mass%. If it is less than the said minimum, electroconductivity may become inadequate. Moreover, when the said upper limit is exceeded, battery capacity may fall.

正極活物質の結着材としては、特に限定されず、塗布法により正極合材を形成する場合には、分散溶媒に対する溶解性や分散性が良好な材料が選択される。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体またはその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体またはその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。正極の安定性の観点から、ポリフッ化ビニリデン(PVdF)やポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子を用いることが好ましい。
結着材の含有量(添加量、割合、量)について、正極合材の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、0.1質量%以上、好ましくは1質量%以上、さらに好ましくは3質量%以上であり、上限は、80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、特に好ましくは10質量%以下である。結着材の含有量が低すぎると、正極活物質を充分に結着できず、正極の機械的強度が不足し、サイクル特性等の電池性能を劣化させてしまう可能性がある。逆に、高すぎると、電池容量や導電性が低下する可能性がある。
The binder for the positive electrode active material is not particularly limited, and when the positive electrode mixture is formed by a coating method, a material having good solubility and dispersibility in the dispersion solvent is selected. Specifically, resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine Rubbery polymers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / ethylene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate , Ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer and other soft resinous polymers; polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer Examples thereof include fluorine polymers such as polymers and polytetrafluoroethylene / vinylidene fluoride copolymers; polymer compositions having ion conductivity of alkali metal ions (particularly lithium ions), and the like. Of these, one type may be used alone, or two or more types may be used in combination. From the viewpoint of the stability of the positive electrode, it is preferable to use a fluorine-based polymer such as polyvinylidene fluoride (PVdF) or a polytetrafluoroethylene / vinylidene fluoride copolymer.
Regarding the content (addition amount, ratio, amount) of the binder, the range of the content of the binder with respect to the mass of the positive electrode mixture is as follows. The lower limit of the range is 0.1% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, and the upper limit is 80% by mass or less, preferably 60% by mass or less, more preferably 40% by mass. Hereinafter, it is particularly preferably 10% by mass or less. If the content of the binder is too low, the positive electrode active material cannot be sufficiently bound, the positive electrode has insufficient mechanical strength, and battery performance such as cycle characteristics may be deteriorated. Conversely, if it is too high, the battery capacity and conductivity may be reduced.

上記湿式法や乾式法を用いて集電体上に形成された層は、正極活物質の充填密度を向上させるため、ハンドプレスやローラープレス等により圧密化することが好ましい。正極合材密度は、2.5〜2.8g/cmであることが好ましい。正極合材密度が2.5g/cm未満では正極の抵抗が高くなり、入出力特性が低下する可能性がある。一方、正極合材密度が2.8g/cmを超えると安全性の低下が懸念され、他の安全対策の強化が必要となる可能性がある。このような観点から、正極合材密度は、2.55g/cm以上、2.75g/cm以下がより好ましい。また、正極合材の正極集電体への片面塗布量は、110〜170g/mであることが好ましい。
正極合材塗布量が110g/m未満では充放電に寄与する活物質の量が低下し、電池のエネルギー密度が低下する可能性がある。一方、正極合材塗布量が170g/mを超えると正極合材の抵抗が高くなり、入出力特性が低下する可能性がある。上記のような観点から、正極合材の正極集電体への片面塗布量は、120g/m以上、160g/m以下であることがより好ましく、130g/m以上、150g/m以下であることが更に好ましい。
上記したような正極合材の正極集電体への片面塗布量及び正極合材密度を考慮すると、正極合材の正極集電体への片面塗布膜厚み([正極の厚み−正極集電体の厚み]/2)は、39〜68μmであることが好ましく、43〜64μmがより好ましく、46〜60μmが更に好ましい。
In order to improve the packing density of the positive electrode active material, the layer formed on the current collector using the wet method or the dry method is preferably consolidated by a hand press, a roller press, or the like. The density of the positive electrode mixture is preferably 2.5 to 2.8 g / cm 3 . If the positive electrode mixture density is less than 2.5 g / cm 3 , the resistance of the positive electrode is increased, and input / output characteristics may be deteriorated. On the other hand, when the density of the positive electrode mixture exceeds 2.8 g / cm 3 , there is a concern that the safety may be lowered, and it may be necessary to strengthen other safety measures. From this point of view, positive electrode density, 2.55 g / cm 3 or more, 2.75 g / cm 3 or less is more preferable. Moreover, it is preferable that the single-sided coating amount to the positive electrode electrical power collector of positive electrode compound material is 110-170 g / m < 2 >.
When the coating amount of the positive electrode mixture is less than 110 g / m 2 , the amount of the active material that contributes to charging / discharging decreases, and the energy density of the battery may decrease. On the other hand, when the coating amount of the positive electrode mixture exceeds 170 g / m 2 , the resistance of the positive electrode mixture increases, and the input / output characteristics may deteriorate. From the above viewpoint, the single-sided coating amount of the positive electrode mixture to the positive electrode current collector is more preferably 120 g / m 2 or more and 160 g / m 2 or less, and 130 g / m 2 or more and 150 g / m 2. More preferably, it is as follows.
Considering the amount of single-sided application of the positive electrode mixture to the positive electrode current collector and the density of the positive electrode mixture, the thickness of the single-sided coating film of the positive electrode mixture on the positive electrode current collector ([positive electrode thickness−positive electrode current collector] The thickness] / 2) is preferably 39 to 68 μm, more preferably 43 to 64 μm, and still more preferably 46 to 60 μm.

正極用の集電体の材質としては、特に制限はなく、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。金属材料については、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料については、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜を用いることが好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、その範囲は次のとおりである。範囲の下限は、1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、上限は、1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。上記下限未満では、集電体として必要な強度が不足する場合がある。また、上記上限を超えると可撓性が低下し、加工性が劣化する可能性がある。
The material of the current collector for the positive electrode is not particularly limited, and examples thereof include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.
There is no restriction | limiting in particular as a shape of an electrical power collector, The material processed into various shapes can be used. Examples of the metal material include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal. Examples of the carbonaceous material include carbon plate, carbon thin film, and carbon cylinder. It is done. Among these, it is preferable to use a metal thin film. In addition, you may form a thin film suitably in mesh shape. The thickness of the thin film is arbitrary, but the range is as follows. The lower limit of the range is 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and the upper limit is 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If it is less than the said minimum, intensity | strength required as a collector may be insufficient. Moreover, when the said upper limit is exceeded, flexibility will fall and workability may deteriorate.

2.負極

本実施の形態の負極は、負極の全容量に対して、10時間率充電における定電流領域の充電容量の割合をX%としたとき、下記の式(1)を満たすものであれば特に制限されない。
70≦X≦95・・・(1)
前記負極は、集電体およびその両面(若しくは片面)に形成された負極合材(負極合剤)よりなる。負極合材は、電気化学的にリチウムイオンを吸蔵・放出可能な負極活物質を含有する。
本発明に用いられる負極活物質としては、前記式(1)の範囲内とするために、易黒鉛化炭素(以下、ソフトカーボンという場合もある)を含むことが好ましい。尚、前記式(1)の範囲内であれば、易黒鉛化炭素以外の炭素材料を含んでいてもよい。
炭素材料は、結晶構造がそろった黒鉛系のものと、結晶構造が乱れた非黒鉛系のものに大別され、前者には、天然黒鉛、人造黒鉛があり、後者には結晶構造が乱れてはいるものの、2000〜3000℃の加熱によって黒鉛になりやすい易黒鉛化炭素と、黒鉛になりにくい難黒鉛化炭素(以下、ハードカーボンという場合もある)がある。具体的には、例えば、黒鉛、コークス類(石油系コークス、ピッチコークス、ニードルコークスなど)、樹脂膜焼成炭素、繊維焼成炭素、気相成長炭素等が挙げられる。前記非黒鉛系の炭素材料は、石油ピッチ、ポリアセン、ポリパラフェニレン、ポリフルフリルアルコール、ポリシロキサン等を熱処理することにより製造することが可能であり、焼成温度を変えることによって、ハードカーボンとしたり、ソフトカーボンとしたりすることが可能である。例えば、500℃〜800℃程度の焼成温度はハードカーボンの製造に適しており、800℃〜1000℃程度の焼成温度はソフトカーボンの製造に適している。前記難黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002値が、0.36nm以上、0.40nm以下であると定義する。
前記易黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002値が、0.34nm以上、0.36nm未満であることが好ましく、0.341nm以上、0.355nm以下であることがより好ましく、0.342nm以上、0.35nm以下であることが更に好ましい。
2. Negative electrode

The negative electrode of the present embodiment is particularly limited as long as it satisfies the following formula (1) when the ratio of the charge capacity in the constant current region in 10 hour rate charge is X% with respect to the total capacity of the negative electrode. Not.
70 ≦ X ≦ 95 (1)
The negative electrode comprises a current collector and a negative electrode mixture (negative electrode mixture) formed on both surfaces (or one surface) of the current collector. The negative electrode mixture contains a negative electrode active material that can electrochemically occlude and release lithium ions.
The negative electrode active material used in the present invention preferably contains graphitizable carbon (hereinafter sometimes referred to as soft carbon) so as to be within the range of the formula (1). In addition, as long as it exists in the range of said Formula (1), carbon materials other than graphitizable carbon may be included.
Carbon materials are broadly divided into graphite materials with a uniform crystal structure and non-graphite materials with a disordered crystal structure. The former includes natural graphite and artificial graphite, and the latter has a disordered crystal structure. However, there are easily graphitized carbon that is likely to become graphite by heating at 2000 to 3000 ° C. and non-graphitizable carbon that is difficult to become graphite (hereinafter sometimes referred to as hard carbon). Specific examples include graphite, cokes (petroleum coke, pitch coke, needle coke, etc.), resin film fired carbon, fiber fired carbon, vapor grown carbon, and the like. The non-graphite-based carbon material can be produced by heat-treating petroleum pitch, polyacene, polyparaphenylene, polyfurfuryl alcohol, polysiloxane, etc., and by changing the firing temperature, hard carbon can be obtained, It is possible to use soft carbon. For example, a firing temperature of about 500 ° C. to 800 ° C. is suitable for producing hard carbon, and a firing temperature of about 800 ° C. to 1000 ° C. is suitable for producing soft carbon. The non-graphitizable carbon is defined as having a surface spacing d002 value in the C-axis direction obtained by an X-ray wide angle diffraction method of 0.36 nm or more and 0.40 nm or less.
The graphitizable carbon preferably has a surface spacing d002 value in the C-axis direction obtained by an X-ray wide-angle diffraction method of 0.34 nm or more and less than 0.36 nm, and is 0.341 nm or more and 0.355 nm or less. More preferably, it is 0.342 nm or more and 0.35 nm or less.

負極の全容量に対して、10時間率充電における定電流領域の充電容量の割合をX%としたとき、70≦X≦95を満たす負極活物質としては、易黒鉛化炭素(ソフトカーボン)を含むことが好ましい。易黒鉛化炭素(ソフトカーボン)の含有割合は、負極活物質の総量に対して、20質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上が更に好ましい。また、易黒鉛化炭素(ソフトカーボン)と難黒鉛化炭素(ハードカーボン)を併用して用いてもよい。易黒鉛化炭素(ソフトカーボン)と難黒鉛化炭素(ハードカーボン)の混合割合(質量比)は、易黒鉛化炭素(ソフトカーボン)/難黒鉛化炭素(ハードカーボン)=100/0〜10/90が好ましく、100/0〜20/80がより好ましく、100/0〜50/50が更に好ましく、100/0〜70/30が特に好ましい。
また、前記易黒鉛化炭素(ソフトカーボン)の平均粒子径(d50)は、2〜50μmであることが好ましい。平均粒子径が2μm以上の場合、比表面積を適正な範囲とすることができ、リチウムイオン二次電池の初回充放電効率が優れると共に、粒子同士の接触が良く入出力特性に優れる傾向がある。一方、平均粒子径が50μm以下の場合、電極面に凸凹が発生しにくく電池の短絡を抑制できると共に、粒子表面から内部へのLiの拡散距離が比較的短くなるためリチウムイオン二次電池の入出力特性が向上する傾向がある。この観点から平均粒子径は、5〜30μmであることがより好ましく、10〜20μmであることがさらに好ましい。なお、例えば、粒度分布は界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD−3000J)で測定することができ、平均粒子径はメジアン径(d50)として算出される。
As the negative electrode active material satisfying 70 ≦ X ≦ 95 when the ratio of the charge capacity in the constant current region in 10 hour rate charge to the total capacity of the negative electrode is X%, graphitizable carbon (soft carbon) is used. It is preferable to include. The content of graphitizable carbon (soft carbon) is preferably 20% by mass or more, more preferably 50% by mass or more, and still more preferably 70% by mass or more based on the total amount of the negative electrode active material. Further, graphitizable carbon (soft carbon) and non-graphitizable carbon (hard carbon) may be used in combination. The mixing ratio (mass ratio) of graphitizable carbon (soft carbon) and non-graphitizable carbon (hard carbon) is graphitizable carbon (soft carbon) / non-graphitizable carbon (hard carbon) = 100 / 0-10 / 90 is preferable, 100/0 to 20/80 is more preferable, 100/0 to 50/50 is further preferable, and 100/0 to 70/30 is particularly preferable.
The average particle diameter (d50) of the graphitizable carbon (soft carbon) is preferably 2 to 50 μm. When the average particle diameter is 2 μm or more, the specific surface area can be in an appropriate range, the initial charge / discharge efficiency of the lithium ion secondary battery is excellent, and the contact between particles tends to be excellent and the input / output characteristics tend to be excellent. On the other hand, when the average particle diameter is 50 μm or less, unevenness on the electrode surface hardly occurs, and the short circuit of the battery can be suppressed, and the diffusion distance of Li from the particle surface to the inside becomes relatively short, so that the insertion of the lithium ion secondary battery The output characteristics tend to improve. From this viewpoint, the average particle diameter is more preferably 5 to 30 μm, and further preferably 10 to 20 μm. For example, the particle size distribution can be measured with a laser diffraction particle size distribution measuring device (for example, SALD-3000J manufactured by Shimadzu Corporation) by dispersing a sample in purified water containing a surfactant, and the average particle size Is calculated as the median diameter (d50).

また、負極活物質としては、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な材料等を併用してもよい。これらは、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。
前記金属複合酸化物としては、リチウムを吸蔵、放出可能なものであれば特に制限はないが、Ti(チタン)、Li(リチウム)またはTi及びLiの双方を含有するものが、高電流密度充放電特性の観点で好ましい。
In addition, as the negative electrode active material, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, a lithium alloy such as lithium alone or a lithium aluminum alloy, or a material capable of forming an alloy with lithium such as Sn or Si is used in combination. May be. These may be used alone or in combination of two or more.
The metal composite oxide is not particularly limited as long as it can occlude and release lithium, but Ti (titanium), Li (lithium), or a material containing both Ti and Li has a high current density. This is preferable from the viewpoint of discharge characteristics.

負極用の集電体の材質としては特に制限はなく、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工のし易さとコストの観点から銅が好ましい。
集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。具体例としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、金属薄膜が好ましく、銅箔がより好ましい。銅箔には、圧延法により形成された圧延銅箔と、電解法により形成された電解銅箔とがあり、どちらも集電体として用いて好適である。
集電体の厚さに制限はないが、厚さが25μm未満の場合、純銅よりも強銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることでその強度を向上させることができる。
There is no restriction | limiting in particular as a material of the collector for negative electrodes, Metal materials, such as copper, nickel, stainless steel, nickel plating steel, are mentioned. Among these, copper is preferable from the viewpoint of ease of processing and cost.
There is no restriction | limiting in particular as a shape of an electrical power collector, The material processed into various shapes can be used. Specific examples include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal. Among these, a metal thin film is preferable, and a copper foil is more preferable. The copper foil includes a rolled copper foil formed by a rolling method and an electrolytic copper foil formed by an electrolytic method, both of which are suitable for use as a current collector.
The thickness of the current collector is not limited, but when the thickness is less than 25 μm, its strength can be increased by using a strong copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) rather than pure copper. Can be improved.

負極合材の集電体への片面塗布量は、エネルギー密度及び入出力特性の観点から、50g/m以上、120g/m以下であることが好ましく、60g/m以上、100g/m以下であることがより好ましい。
負極活物質を用いて形成した負極合材の構成に特に制限はないが、負極合材密度の範囲は次のとおりである。負極合材密度の下限は、好ましくは0.7g/cm以上、より好ましくは0.8g/cm、さらに好ましくは0.9g/cm以上であり、上限は、2g/cm以下、好ましくは1.9g/cm以下、より好ましくは1.8g/cm以下、さらに好ましくは1.7g/cm以下である。
上記上限を超えると、負極活物質の粒子が破壊されやすくなり、初期の不可逆容量の増加や、集電体と負極活物質との界面付近への非水系電解液の浸透性の低下による高電流密度充放電特性の劣化を招く可能性がある。また、上記下限未満では、負極活物質間の導電性が低下するため電池抵抗が増大し、単位容積あたりの容量が低下する可能性がある。
The single-sided coating amount of the negative electrode mixture on the current collector is preferably 50 g / m 2 or more and 120 g / m 2 or less, and preferably 60 g / m 2 or more and 100 g / m from the viewpoint of energy density and input / output characteristics. More preferably, it is 2 or less.
Although there is no restriction | limiting in particular in the structure of the negative electrode compound material formed using the negative electrode active material, The range of the negative electrode compound material density is as follows. The lower limit of the negative electrode composite density is preferably 0.7 g / cm 3 or more, more preferably 0.8 g / cm 3 , still more preferably 0.9 g / cm 3 or more, and the upper limit is 2 g / cm 3 or less. Preferably it is 1.9 g / cm 3 or less, more preferably 1.8 g / cm 3 or less, and even more preferably 1.7 g / cm 3 or less.
When the above upper limit is exceeded, particles of the negative electrode active material are likely to be destroyed, and a high current is generated due to an increase in the initial irreversible capacity and a decrease in the permeability of the non-aqueous electrolyte solution near the interface between the current collector and the negative electrode active material. There is a possibility of deteriorating the density charge / discharge characteristics. In addition, if it is less than the above lower limit, the conductivity between the negative electrode active materials decreases, so the battery resistance increases, and the capacity per unit volume may decrease.

負極活物質の結着材としては、非水系電解液や電極の形成時に用いる分散溶媒に対して安定な材料であれば、特に制限はない。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル−ブタジエンゴム)、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体またはその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体またはその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。   The binder for the negative electrode active material is not particularly limited as long as it is a material that is stable to the non-aqueous electrolyte and the dispersion solvent used when forming the electrode. Resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluorine rubber, NBR (acrylonitrile-butadiene rubber) Rubber polymers such as ethylene-propylene rubber; Styrene / butadiene / styrene block copolymers or hydrogenated products thereof; EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / styrene copolymer Polymers, thermoplastic elastomeric polymers such as styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate Polymers, soft resinous polymers such as propylene / α-olefin copolymers; fluorinated polymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, and polytetrafluoroethylene / ethylene copolymers; Examples thereof include a polymer composition having ion conductivity of alkali metal ions (particularly lithium ions). These may be used alone or in combination of two or more.

スラリーを形成するための分散溶媒としては、負極活物質、結着材、および必要に応じて用いられる導電材や増粘材などを溶解または分散することが可能な溶媒であれば、その種類に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒の例としては、水、アルコールと水との混合溶媒が挙げられ、有機系溶媒の例としては、N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサンが挙げられる。特に水系溶媒を用いる場合、増粘材を用いることが好ましい。この増粘材に併せて分散材等を加え、SBR等のラテックスを用いてスラリー化する。なお、上記分散溶媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
結着材の含有量(添加量、割合、量)について、負極合材の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは0.6質量%以上である。上限は、20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは8質量%以下である。
上記上限を超えると、電池容量に寄与しない結着材の割合が増加し、電池容量の低下を招く可能性がある。また、上記下限未満では、負極合材の強度の低下を招く可能性がある。
特に、結着材として、SBRに代表されるゴム状高分子を主要成分として用いる場合の負極合材の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限は、5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下である。
また、結着材として、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として用いる場合の負極合材の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、上限は、15質量%以下、好ましくは10質量%以下、より好ましくは8質量%以下である。
As the dispersion solvent for forming the slurry, any type of solvent can be used as long as it can dissolve or disperse the negative electrode active material, the binder, and the conductive material and the thickener used as necessary. There is no restriction, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water, a mixed solvent of alcohol and water, and examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, and acrylic. Methyl acid, diethyltriamine, N, N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methyl Naphthalene and hexane are mentioned. In particular, when an aqueous solvent is used, it is preferable to use a thickener. A dispersing agent or the like is added to the thickener, and a slurry such as SBR is made into a slurry. In addition, the said dispersion solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
Regarding the content (addition amount, ratio, amount) of the binder, the range of the content of the binder with respect to the mass of the negative electrode mixture is as follows. The lower limit of the range is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 0.6% by mass or more. The upper limit is 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less, and still more preferably 8% by mass or less.
When the upper limit is exceeded, the proportion of the binder that does not contribute to the battery capacity increases, which may lead to a decrease in battery capacity. Moreover, if it is less than the said minimum, the fall of the intensity | strength of a negative electrode compound material may be caused.
In particular, the range of the content of the binder with respect to the mass of the negative electrode mixture when a rubbery polymer typified by SBR is used as the main component as the binder is as follows. The lower limit of the range is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and the upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably. Is 2% by mass or less.
The range of the binder content with respect to the mass of the negative electrode mixture when a fluorine-based polymer typified by polyvinylidene fluoride is used as the main component as the binder is as follows. The lower limit of the range is 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit is 15% by mass or less, preferably 10% by mass or less, more preferably 8% by mass or less. is there.

増粘材は、スラリーの粘度を調製するために使用される。増粘材としては、特に制限はないが、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼインおよびこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
増粘材を用いる場合の負極合材の質量に対する増粘材の含有量の範囲は次のとおりである。範囲の下限は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限は、5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下である。
上記下限未満では、スラリーの塗布性が低下する可能性がある。また、上記上限を超えると、負極合材に占める負極活物質の割合が低下し、電池容量の低下や負極活物質間の抵抗の上昇の可能性がある。
The thickener is used to adjust the viscosity of the slurry. The thickener is not particularly limited, and examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used alone or in combination of two or more.
The range of the content of the thickener relative to the mass of the negative electrode mixture when the thickener is used is as follows. The lower limit of the range is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and the upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably. Is 2% by mass or less.
If it is less than the said minimum, the applicability | paintability of a slurry may fall. Moreover, when the said upper limit is exceeded, the ratio of the negative electrode active material to a negative electrode compound material will fall, and there exists a possibility of the fall of battery capacity and the raise between resistances of a negative electrode active material.

3.電解液

本実施の形態の電解液は、リチウム塩(電解質)と、これを溶解する非水系溶媒から構成される。必要に応じて、添加材を加えてもよい。
リチウム塩としては、リチウムイオン電池用の非水系電解液の電解質として使用可能なリチウム塩であれば特に制限はないが、以下に示す無機リチウム塩、含フッ素有機リチウム塩やオキサラトボレート塩等が挙げられる。
無機リチウム塩としては、LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩や、LiClO、LiBrO、LiIO等の過ハロゲン酸塩や、LiAlCl等の無機塩化物塩などが挙げられる。
含フッ素有機リチウム塩としては、LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩などが挙げられる。
オキサラトボレート塩としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が挙げられる。
これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。中でも、溶媒に対する溶解性、二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF)が好ましい。
非水系電解液中の電解質の濃度に特に制限はないが、電解質の濃度範囲は次のとおりである。濃度の下限は、0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、濃度の上限は、2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。濃度が低すぎると、電解液の電気伝導率が不充分となる可能性がある。また、濃度が高すぎると、粘度が上昇するため電気伝導度が低下する可能性がある。このような電気伝導度の低下により、リチウムイオン二次電池の性能が低下する可能性がある。
3. Electrolyte

The electrolytic solution of the present embodiment includes a lithium salt (electrolyte) and a non-aqueous solvent that dissolves the lithium salt. You may add an additive as needed.
The lithium salt is not particularly limited as long as it is a lithium salt that can be used as an electrolyte of a non-aqueous electrolyte solution for a lithium ion battery, but the following inorganic lithium salt, fluorine-containing organic lithium salt, oxalate borate salt, and the like can be used. Can be mentioned.
Examples of the inorganic lithium salt, LiPF 6, and LiBF 4, inorganic fluoride salts LiAsF 6, LiSbF 6, etc., LiClO 4, Libro 4, and perhalogenate of LiIO 4 or the like, and inorganic chloride salts such as LiAlCl 4 Is mentioned.
Examples of the fluorine-containing organic lithium salt include perfluoroalkane sulfonates such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C Perfluoroalkanesulfonylimide salt such as 4 F 9 SO 9 ); perfluoroalkanesulfonylmethide salt such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 2 CF 3 ) 3 ] and other fluoroalkyl fluorophosphates.
Examples of the oxalatoborate salt include lithium bis (oxalato) borate and lithium difluorooxalatoborate.
These lithium salts may be used alone or in combination of two or more. Among them, lithium hexafluorophosphate (LiPF 6 ) is preferable when comprehensively judging the solubility in a solvent, charge / discharge characteristics in the case of a secondary battery, output characteristics, cycle characteristics, and the like.
Although there is no restriction | limiting in particular in the density | concentration of the electrolyte in a non-aqueous electrolyte solution, The density | concentration range of an electrolyte is as follows. The lower limit of the concentration is 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more. Further, the upper limit of the concentration is 2 mol / L or less, preferably 1.8 mol / L or less, more preferably 1.7 mol / L or less. If the concentration is too low, the electrical conductivity of the electrolyte may be insufficient. On the other hand, if the concentration is too high, the viscosity increases and the electrical conductivity may decrease. Such a decrease in electrical conductivity may reduce the performance of the lithium ion secondary battery.

非水系溶媒としては、リチウムイオン二次電池用の電解質の溶媒として使用可能な非水系溶媒であれば特に制限はなく、環状カーボネート、鎖状カーボネート、鎖状エステル、環状エーテルおよび鎖状エーテル等が挙げられる。
環状カーボネートとしては、環状カーボネートを構成するアルキレン基の炭素数が2〜6のものが好ましく、2〜4のものがより好ましい。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられる。中でも、エチレンカーボネート、プロピレンカーボネートが好ましい。
鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、2つのアルキル基の炭素数が、それぞれ1〜5のものが好ましく、1〜4のものがより好ましい。具体的には、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネートの対称鎖状カーボネート類;エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等の非対称鎖状カーボネート類が挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。
鎖状エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。中でも、低温特性改善の観点から酢酸メチルを用いることが好ましい。
環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。中でも、入出力特性改善の観点からテトラヒドロフランを用いることが好ましい。
鎖状エーテルとしては、ジメトキシエタン、ジメトキシメタン等が挙げられる。
これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用した混合溶媒を用いることが好ましい。例えば、環状カーボネート類の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類の低粘度溶媒とを併用するのが好ましい。好ましい組み合わせの一つは、環状カーボネート類と鎖状カーボネート類とを主体とする組み合わせである。中でも、非水系溶媒に占める環状カーボネート類と鎖状カーボネート類との合計が、80容量%以上、好ましくは85容量%以上、より好ましくは90容量%以上であり、かつ環状カーボネート類と鎖状カーボネート類との合計に対する環状カーボネート類の容量が次の範囲であるものが好ましい。環状カーボネート類の容量の下限は、5容量%以上、好ましくは10容量%以上、より好ましくは15容量%以上であり、上限は、50容量%以下、好ましくは35容量%以下、より好ましくは30容量%以下である。このような非水系溶媒の組み合わせを用いることで、電池のサイクル特性や高温保存特性(特に、高温保存後の残存容量および高負荷放電容量)が向上する。
The non-aqueous solvent is not particularly limited as long as it is a non-aqueous solvent that can be used as an electrolyte solvent for a lithium ion secondary battery, and examples thereof include cyclic carbonates, chain carbonates, chain esters, cyclic ethers, and chain ethers. Can be mentioned.
As the cyclic carbonate, those having 2 to 6 carbon atoms of the alkylene group constituting the cyclic carbonate are preferable, and those having 2 to 4 are more preferable. Specific examples include ethylene carbonate, propylene carbonate, and butylene carbonate. Of these, ethylene carbonate and propylene carbonate are preferable.
As the chain carbonate, dialkyl carbonate is preferable, and the number of carbon atoms of the two alkyl groups is preferably 1 to 5, and more preferably 1 to 4. Specific examples include symmetric chain carbonates such as dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate; and asymmetric chain carbonates such as ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate. It is done. Of these, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable.
Examples of chain esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate. Among them, it is preferable to use methyl acetate from the viewpoint of improving the low temperature characteristics.
Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like. Of these, tetrahydrofuran is preferably used from the viewpoint of improving input / output characteristics.
Examples of chain ethers include dimethoxyethane and dimethoxymethane.
These may be used alone or in combination of two or more, but it is preferable to use a mixed solvent in which two or more compounds are used in combination. For example, it is preferable to use a high dielectric constant solvent of cyclic carbonates in combination with a low viscosity solvent of chain carbonates or chain esters. One of the preferable combinations is a combination mainly composed of cyclic carbonates and chain carbonates. Among them, the total of the cyclic carbonates and the chain carbonates in the non-aqueous solvent is 80% by volume or more, preferably 85% by volume or more, more preferably 90% by volume or more, and the cyclic carbonates and the chain carbonates. It is preferable that the cyclic carbonates have a capacity in the following range with respect to the total of the above. The lower limit of the capacity of the cyclic carbonates is 5% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, and the upper limit is 50% by volume or less, preferably 35% by volume or less, more preferably 30%. The capacity is less than%. By using such a combination of non-aqueous solvents, battery cycle characteristics and high-temperature storage characteristics (particularly, remaining capacity and high-load discharge capacity after high-temperature storage) are improved.

添加材としては、リチウムイオン二次電池の非水系電解液用の添加材であれば特に制限はないが、例えば、窒素、硫黄または窒素および硫黄を含有する複素環化合物、環状カルボン酸エステル、フッ素含有環状カーボネート、その他の分子内に不飽和結合を有する化合物が挙げられる。電池の長寿命化の観点からは、フッ素含有環状カーボネート、その他の分子内に不飽和結合を有する化合物が好ましい。   The additive is not particularly limited as long as it is an additive for a non-aqueous electrolyte solution of a lithium ion secondary battery. For example, nitrogen, sulfur or a heterocyclic compound containing nitrogen and sulfur, a cyclic carboxylic acid ester, fluorine Examples thereof include cyclic carbonates and other compounds having an unsaturated bond in the molecule. From the viewpoint of extending the life of the battery, fluorine-containing cyclic carbonates and other compounds having an unsaturated bond in the molecule are preferred.

前記フッ素含有環状カーボネートとしては、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等が挙げられる。
前記その他の分子内に不飽和結合を有する化合物としては、ビニレンカーボネート等が挙げられる。
上記添加材以外に、求められる機能に応じて過充電防止材、負極皮膜形成材、正極保護材、高入出力材等の他の添加材を用いてもよい。
上記他の添加剤により、過充電による異常時の急激な電極反応の抑制、高温保存後の容量維持特性やサイクル特性の向上、入出力特性の向上等を図ることができる。
Examples of the fluorine-containing cyclic carbonate include fluoroethylene carbonate, difluoroethylene carbonate, trifluoroethylene carbonate, tetrafluoroethylene carbonate, and trifluoropropylene carbonate.
Examples of the compound having an unsaturated bond in the other molecule include vinylene carbonate.
In addition to the above additives, other additives such as an overcharge preventing material, a negative electrode film forming material, a positive electrode protective material, and a high input / output material may be used depending on the required function.
By using the other additives, it is possible to suppress a rapid electrode reaction at the time of abnormality due to overcharge, improve capacity maintenance characteristics and cycle characteristics after high temperature storage, and improve input / output characteristics.

4.セパレータ

セパレータは、正極および負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性および負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物、ガラス繊維等が用いられる。
樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。非水系電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布等を用いることが好ましい。
無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミニウムや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類などが用いられる。例えば、繊維形状または粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。薄膜形状の基材としては、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。また、繊維形状または粒子形状の上記無機物を、樹脂等の結着材を用いて複合多孔層としたものをセパレータとして用いることができる。さらに、この複合多孔層を、正極または負極の表面に形成し、セパレータとしてもよい。例えば、90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として結着させた複合多孔層を、正極の表面に形成してもよい。
4). Separator

The separator is not particularly limited as long as it has electronic permeability while electrically insulating the positive electrode and the negative electrode, and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side. As a material (material) of the separator satisfying such characteristics, a resin, an inorganic material, glass fiber, or the like is used.
As the resin, an olefin polymer, a fluorine polymer, a cellulose polymer, polyimide, nylon, or the like is used. It is preferable to select from materials that are stable with respect to the non-aqueous electrolyte and have excellent liquid retention properties, and it is preferable to use a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene.
As the inorganic material, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, sulfates such as barium sulfate and calcium sulfate, and the like are used. For example, what made the said inorganic substance of fiber shape or particle shape adhere to thin film-shaped base materials, such as a nonwoven fabric, a woven fabric, and a microporous film, can be used as a separator. As a thin film-shaped substrate, a substrate having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm is preferably used. Moreover, what made the said inorganic substance of fiber shape or particle shape the composite porous layer using binders, such as resin, can be used as a separator. Furthermore, this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator. For example, a composite porous layer in which alumina particles having a 90% particle size of less than 1 μm are bound using a fluororesin as a binder may be formed on the surface of the positive electrode.

5.その他の構成部材

リチウムイオン二次電池のその他の構成部材として、開裂弁を設けてもよい。開裂弁が開放することで、電池内部の圧力上昇を抑制でき、安全性を向上させることができる。
また、温度上昇に伴い不活性ガス(例えば、二酸化炭素など)を放出する構成部を設けてもよい。このような構成部を設けることで、電池内部の温度が上昇した場合に、不活性ガスの発生により速やかに開裂弁を開けることができ、安全性を向上させることができる。上記構成部に用いられる材料としては、炭酸リチウムやポリアルキレンカーボネート樹脂等が挙げられる。ポリアルキレンカーボネート樹脂としては、ポリエチレンカーボネート、ポリプロピレンカーボネート、ポリ(1,2−ジメチルエチレンカーボネート)、ポリブテンカーボネート、ポリイソブテンカーボネート、ポリペンテンカーボネート、ポリヘキセンカーボネート、ポリシクロペンテンカーボネート、ポリシクロヘキセンカーボネート、ポリシクロヘプテンカーボネート、ポリシクロオクテンカーボネート、ポリリモネンカーボネート等が挙げられる。上記構成部に用いられる材料としては、炭酸リチウム、ポリエチレンカーボネート、ポリプロピレンカーボネートが好ましい。
5. Other components

A cleavage valve may be provided as another component of the lithium ion secondary battery. By opening the cleavage valve, it is possible to suppress an increase in pressure inside the battery and to improve safety.
Moreover, you may provide the structure part which discharge | releases inert gas (for example, carbon dioxide etc.) with a temperature rise. By providing such a component, when the temperature inside the battery rises, the cleavage valve can be opened quickly due to the generation of inert gas, and safety can be improved. Examples of the material used for the above components include lithium carbonate and polyalkylene carbonate resin. Examples of the polyalkylene carbonate resin include polyethylene carbonate, polypropylene carbonate, poly (1,2-dimethylethylene carbonate), polybutene carbonate, polyisobutene carbonate, polypentene carbonate, polyhexene carbonate, polycyclopentene carbonate, polycyclohexene carbonate, and polycycloheptene. Examples include carbonate, polycyclooctene carbonate, and polylimonene carbonate. As a material used for the said structural part, lithium carbonate, polyethylene carbonate, and polypropylene carbonate are preferable.

(リチウムイオン二次電池の放電容量)
本発明のリチウムイオン二次電池は、放電容量が30Ah以上、99Ah未満の大容量のものに適している。安全性を担保しつつ、高入出力で、高エネルギー密度という観点から、35Ah以上、99Ah未満であることが好ましく、45Ah以上、95Ah未満であることがより好ましい。
(Discharge capacity of lithium ion secondary battery)
The lithium ion secondary battery of the present invention is suitable for a large capacity discharge capacity of 30 Ah or more and less than 99 Ah. From the viewpoint of high input / output and high energy density while ensuring safety, it is preferably 35 Ah or more and less than 99 Ah, and more preferably 45 Ah or more and less than 95 Ah.

(リチウムイオン二次電池の負極と正極の容量比)
本発明において、負極の全容量に対して、10時間率充電における定電流領域の充電容量の割合をX%としたとき、下記の式(1)を満たす負極と、正極との容量比(負極容量/正極容量)Yが下記の式(2)を満たすことが必要である。Xの下限は70であるが、入力特性の観点からは75以上が好ましく、入力特性及び寿命特性の観点からは80以上が好ましい。Xの上限は95であるが、実用的な観点からは92以下が好ましく、90以下がより好ましい。
ここで、10時間率充電とは、0.1Cの電流値で定電流充電を行うということを意味する。
Yの下限は1であるが、安全性の観点からは1.05以上が好ましい。また、Yの上限は1+(1−X/100)である。Yが1+(1−X/100)を超えると、充電において負極が定電圧充電領域に到達する前に正極の電位が高くなる傾向がある。このような場合、充電において負極が定電圧充電領域に到達する前に電池の規定電圧(例えば4.2V)に到達し易くなる。すなわち、Yが1+(1−X/100)を超えると、例えば電池の規定電圧を4.2Vに設定した場合、正極の電位(リチウム基準)は4.2Vを超えることになり、正極起因の容量劣化が生じ、電池の寿命が短くなる可能性が生じる。
70≦X≦95・・・(1)
1≦Y<1+(1−X/100)・・・(2)
(Capacity ratio of negative electrode to positive electrode of lithium ion secondary battery)
In the present invention, when the ratio of the charge capacity in the constant current region in 10 hour rate charge is X% with respect to the total capacity of the negative electrode, the capacity ratio between the negative electrode satisfying the following formula (1) and the positive electrode (negative electrode) (Capacity / positive electrode capacity) Y needs to satisfy the following formula (2). The lower limit of X is 70, but 75 or more is preferable from the viewpoint of input characteristics, and 80 or more is preferable from the viewpoint of input characteristics and life characteristics. The upper limit of X is 95, but 92 or less is preferable and 90 or less is more preferable from a practical viewpoint.
Here, 10 hour rate charging means that constant current charging is performed at a current value of 0.1 C.
The lower limit of Y is 1, but is preferably 1.05 or more from the viewpoint of safety. The upper limit of Y is 1+ (1−X / 100). When Y exceeds 1+ (1−X / 100), the potential of the positive electrode tends to increase before the negative electrode reaches the constant voltage charging region during charging. In such a case, it becomes easier for the negative electrode to reach the specified voltage (for example, 4.2 V) of the battery before the negative electrode reaches the constant voltage charging region during charging. That is, when Y exceeds 1+ (1−X / 100), for example, when the specified voltage of the battery is set to 4.2V, the potential of the positive electrode (lithium reference) exceeds 4.2V. Capacity deterioration occurs, and the battery life may be shortened.
70 ≦ X ≦ 95 (1)
1 ≦ Y <1+ (1−X / 100) (2)

前記負極容量とは、[負極の放電容量]を示し、前記正極容量とは、[正極の初回充電容量−負極又は正極のどちらか大きい方の不可逆容量]を示す。ここで、[負極の放電容量]とは、負極活物質に挿入されているリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。また、[正極の初回充電容量]とは、正極活物質からリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。
負極と正極の容量比は、例えば、「負極の放電容量/リチウムイオン二次電池の放電容量」からも算出することができる。前記リチウムイオン二次電池の放電容量は、例えば、4.2V、0.1〜0.5C、終止時間を2〜5時間とする定電流定電圧(CCCV)充電を行った後、0.1〜0.5Cで2.7Vまで定電流(CC)放電したときの条件で測定できる。前記負極の放電容量は、前記リチウムイオン二次電池の放電容量を測定した負極を所定の面積に切断し、対極としてリチウム金属を用い、電解液を含浸させたセパレータを介して単極セルを作製し、0V、0.1C、終止電流0.01Cで定電流定電圧(CCCV)充電を行った後、0.1Cで1.5Vまで定電流(CC)放電したときの条件で所定面積当たりの放電容量を測定し、これを前記リチウムイオン電池の負極として用いた総面積に換算することで算出できる。この単極セルにおいて、負極活物質にリチウムイオンが挿入される方向を充電、負極活物質に挿入されているリチウムイオンが脱離する方向を放電、と定義する。
尚、Cとは“電流値(A)/電池の放電容量(Ah)”を意味する。
The negative electrode capacity refers to [negative electrode discharge capacity], and the positive electrode capacity refers to [positive charge capacity of positive electrode minus negative electrode or positive electrode, whichever is greater]. Here, the “negative electrode discharge capacity” is defined to be calculated by the charge / discharge device when the lithium ions inserted into the negative electrode active material are desorbed. Further, the “initial charge capacity of the positive electrode” is defined as that calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
The capacity ratio between the negative electrode and the positive electrode can be calculated from, for example, “discharge capacity of negative electrode / discharge capacity of lithium ion secondary battery”. The lithium ion secondary battery has a discharge capacity of, for example, 4.2 V, 0.1 to 0.5 C, and a constant current and constant voltage (CCCV) charge with an end time of 2 to 5 hours. It can be measured under conditions when a constant current (CC) is discharged to 2.7 V at ˜0.5 C. The discharge capacity of the negative electrode was prepared by cutting a negative electrode having a measured discharge capacity of the lithium ion secondary battery into a predetermined area, using lithium metal as a counter electrode, and preparing a single electrode cell through a separator impregnated with an electrolyte. After constant current constant voltage (CCCV) charging at 0 V, 0.1 C, and a final current of 0.01 C, a constant current (CC) discharge at a constant current (CC) of up to 1.5 V at 0.1 C It can be calculated by measuring the discharge capacity and converting this to the total area used as the negative electrode of the lithium ion battery. In this single electrode cell, the direction in which lithium ions are inserted into the negative electrode active material is defined as charging, and the direction in which lithium ions inserted into the negative electrode active material are desorbed is defined as discharging.
C means “current value (A) / battery discharge capacity (Ah)”.

以下、実施例に基づき本実施の形態をさらに詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。
[正極板の作製]
正極板の作製を以下のように行った。正極活物質として層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(BET比表面積が0.4m/g、平均粒径(d50)が6.5μm)、導電材としてアセチレンブラック(商品名:HS−100、平均粒径48nm(電気化学工業株式会社カタログ値)、電気化学工業株式会社)、結着材としてポリフッ化ビニリデン(商品名:クレハKFポリマー#1120、株式会社クレハ)とを順次添加し、混合することにより正極材料の混合物を得た。質量比は、活物質:導電材:結着材=90:5:5とした。さらに上記混合物に対し、分散溶媒であるN−メチル−2−ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の両面に実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。正極合材密度は2.7g/cm とし、正極合材の片面塗布量140g/mとした。
Hereinafter, the present embodiment will be described in more detail based on examples. The present invention is not limited to the following examples.
[Production of positive electrode plate]
The positive electrode plate was produced as follows. Layered lithium / nickel / manganese / cobalt composite oxide as positive electrode active material (BET specific surface area is 0.4 m 2 / g, average particle size (d50) is 6.5 μm), and acetylene black as a conductive material (trade name: HS -100, average particle size 48 nm (Denki Kagaku Kogyo Co., Ltd. catalog), Denki Kagaku Kogyo Co., Ltd.), and polyvinylidene fluoride (trade name: Kureha KF Polymer # 1120, Kureha Co., Ltd.) as a binder. , To obtain a mixture of positive electrode materials. The mass ratio was active material: conductive material: binder = 90: 5: 5. Further, N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was added to the above mixture and kneaded to form a slurry. This slurry was applied substantially evenly and uniformly to both surfaces of a 20 μm thick aluminum foil as a positive electrode current collector. Then, the drying process was performed and it consolidated by the press to the predetermined density. The density of the positive electrode mixture was 2.7 g / cm 3, and the coating amount on one side of the positive electrode mixture was 140 g / m 2 .

[負極板の作製]

負極板の作製を以下のように行った。負極活物質として易黒鉛化炭素(d002=0.35nm、平均粒径(d50)=10μm)と、難黒鉛化炭素(d002=0.37〜0.38nm、平均粒径(d50)=9μm)を所定の活物質の質量比(易黒鉛化炭素/難黒鉛化炭素)で混合した。表1には、難黒鉛化炭素の配合比を示した。この負極活物質に結着材としてポリフッ化ビニリデン(商品名:クレハKFポリマー#1120、株式会社クレハ)を添加した。これらの質量比は、負極活物質:結着材=92:8とした。これに分散溶媒であるN−メチル−2−ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に、負極容量/正極容量が表1に示す値になるように塗布した。尚、負極合材密度は1.15g/cmとした。
[Production of negative electrode plate]

The negative electrode plate was produced as follows. Easily graphitized carbon (d002 = 0.35 nm, average particle size (d50) = 10 μm) and non-graphitizable carbon (d002 = 0.37-0.38 nm, average particle size (d50) = 9 μm) as the negative electrode active material Were mixed at a predetermined active material mass ratio (easily graphitized carbon / non-graphitizable carbon). Table 1 shows the compounding ratio of non-graphitizable carbon. To this negative electrode active material, polyvinylidene fluoride (trade name: Kureha KF Polymer # 1120, Kureha Co., Ltd.) was added as a binder. These mass ratios were negative electrode active material: binder = 92: 8. A dispersion solvent N-methyl-2-pyrrolidone (NMP) was added thereto and kneaded to form a slurry. This slurry was applied to both surfaces of a rolled copper foil having a thickness of 10 μm, which is a negative electrode current collector, substantially uniformly and uniformly so that the negative electrode capacity / positive electrode capacity had the values shown in Table 1. The density of the negative electrode mixture was 1.15 g / cm 3 .

[電池の作製]

上記正極板と上記負極板とを、これらが直接接触しないように厚さ30μmのポリエチレン製のセパレータを挟んで捲回する。このとき、正極板のリード片と負極板のリード片とが、それぞれ捲回群の互いに反対側の両端面に位置するようにする。また、正極板、負極板、セパレータの長さを調整し、捲回群径は65±0.1mmとした。
次いで、図1に示すように、正極板から導出されているリード片9を変形させ、その全てを正極側の鍔部7の底部付近に集合し、接触させる。正極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(正極外部端子1)の周囲から張り出すよう一体成形されており、底部と側部とを有する。その後、超音波溶接によりリード片9を鍔部7の底部に接続し固定する。負極板から導出されているリード片9と負極側の鍔部7の底部も同様に接続し固定する。この負極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(負極外部端子1’)周囲から張り出すよう一体成形されており、底部と側部とを有する。
その後、粘着テープを用い、正極外部端子1側の鍔部7の側部および負極外部端子1’の鍔部7の側部を覆い、絶縁被覆8を形成した。同様に、捲回群6の外周にも絶縁被覆8を形成した。例えば、この粘着テープを、正極外部端子1側の鍔部7の側部から捲回群6の外周面に亘って、さらに、捲回群6の外周面から負極外部端子1’側の鍔部7の側部に亘って、何重にも巻くことにより絶縁被覆8を形成する。絶縁被覆(粘着テープ)8としては、基材がポリイミドで、その片面にメタクリレート系粘着材を塗布した粘着テープを用いた。捲回群6の最大径部がステンレス製の電池容器5内径よりも僅かに小さくなるように絶縁被覆8の厚さ(粘着テープの巻き数)を調整し、捲回群6を電池容器5内に挿入した。なお、電池容器5の外径は67mm、内径は66mmのものを用いた。
[Production of battery]

The positive electrode plate and the negative electrode plate are wound with a polyethylene separator having a thickness of 30 μm interposed therebetween so that they are not in direct contact with each other. At this time, the lead piece of the positive electrode plate and the lead piece of the negative electrode plate are respectively positioned on the opposite end surfaces of the winding group. Further, the lengths of the positive electrode plate, the negative electrode plate, and the separator were adjusted, and the wound group diameter was set to 65 ± 0.1 mm.
Next, as shown in FIG. 1, the lead pieces 9 led out from the positive electrode plate are deformed, and all of them are gathered near the bottom of the flange 7 on the positive electrode side and brought into contact with each other. The positive electrode side flange portion 7 is integrally formed so as to protrude from the periphery of the pole column (positive electrode external terminal 1) substantially on the extension line of the axis of the wound group 6, and has a bottom portion and a side portion. Thereafter, the lead piece 9 is connected and fixed to the bottom of the flange 7 by ultrasonic welding. The lead piece 9 led out from the negative electrode plate and the bottom of the flange 7 on the negative electrode side are similarly connected and fixed. The negative electrode side flange portion 7 is integrally formed so as to protrude from the periphery of the pole column (negative electrode external terminal 1 ′) substantially on the extension line of the axis of the wound group 6, and has a bottom portion and a side portion.
Then, the insulating coating 8 was formed using an adhesive tape to cover the side of the flange 7 on the positive electrode external terminal 1 side and the side of the flange 7 of the negative electrode external terminal 1 ′. Similarly, an insulating coating 8 was formed on the outer periphery of the wound group 6. For example, this adhesive tape is stretched from the side of the flange 7 on the positive electrode external terminal 1 side to the outer peripheral surface of the winding group 6 and further from the outer periphery of the winding group 6 to the negative electrode external terminal 1 ′ side. Insulating coating 8 is formed by winding several times over the side of 7. As the insulating coating (adhesive tape) 8, an adhesive tape in which the base material was polyimide and a methacrylate adhesive material was applied on one surface thereof was used. The thickness of the insulating coating 8 (the number of windings of the adhesive tape) is adjusted so that the maximum diameter portion of the wound group 6 is slightly smaller than the inner diameter of the stainless steel battery container 5, and the wound group 6 is placed in the battery container 5. Inserted into. The battery container 5 had an outer diameter of 67 mm and an inner diameter of 66 mm.

次いで、図1に示すように、セラミックワッシャ3’を、先端が正極外部端子1を構成する極柱および先端が負極外部端子1’を構成する極柱にそれぞれ嵌め込む。セラミックワッシャ3’は、アルミナ製であり、電池蓋4の裏面と当接する部分の厚さが2mm、内径16mm、外径25mmである。次いで、セラミックワッシャ3を電池蓋4に載置した状態で、正極外部端子1をセラミックワッシャ3に通し、また、他のセラミックワッシャ3を他の電池蓋4に載置した状態で、負極外部端子1’を他のセラミックワッシャ3に通す。セラミックワッシャ3は、アルミナ製であり、厚さ2mm、内径16mm、外径28mmの平板状である。
その後、電池蓋4の周端面を電池容器5の開口部に嵌合し、双方の接触部の全域をレーザー溶接する。このとき、正極外部端子1および負極外部端子1’は、それぞれ電池蓋4の中心にある穴(孔)を貫通して電池蓋4の外部に突出している。電池蓋4には、電池の内圧上昇に応じて開裂する開裂弁10が設けられている。なお、開裂弁10の開裂圧は、13〜18kgf/cm(1.27〜1.77MPa)とした。
Next, as shown in FIG. 1, the ceramic washer 3 ′ is fitted into a pole column whose tip constitutes the positive electrode external terminal 1 and a pole column whose tip constitutes the negative electrode external terminal 1 ′. The ceramic washer 3 ′ is made of alumina, and the thickness of the portion in contact with the back surface of the battery lid 4 is 2 mm, the inner diameter is 16 mm, and the outer diameter is 25 mm. Next, with the ceramic washer 3 placed on the battery lid 4, the positive external terminal 1 is passed through the ceramic washer 3, and with the other ceramic washer 3 placed on the other battery lid 4, the negative external terminal Pass 1 'through another ceramic washer 3. The ceramic washer 3 is made of alumina and has a flat plate shape with a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 28 mm.
Thereafter, the peripheral end surface of the battery lid 4 is fitted into the opening of the battery container 5 and the entire area of both contact portions is laser welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ pass through a hole (hole) in the center of the battery cover 4 and project outside the battery cover 4. The battery lid 4 is provided with a cleavage valve 10 that cleaves in response to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 was set to 13 to 18 kgf / cm 2 (1.27 to 1.77 MPa).

次いで、図1に示すように、金属ワッシャ11を、正極外部端子1および負極外部端子1’にそれぞれ嵌め込む。これによりセラミックワッシャ3上に金属ワッシャ11が配置される。金属ワッシャ11は、ナット2の底面より平滑な材料よりなる。
次いで、金属製のナット2を正極外部端子1および負極外部端子1’にそれぞれ螺着し、セラミックワッシャ3、金属ワッシャ11、セラミックワッシャ3’を介して電池蓋4を鍔部7とナット2と間で締め付けることにより固定する。このときの締め付けトルク値は70kgf・cm(6.86N・m)とした。なお、締め付け作業が終了するまで金属ワッシャ11は回転しなかった。この状態では、電池蓋4の裏面と鍔部7との間に介在させたゴム(EPDM)製のOリング12の圧縮により電池容器5の内部の発電要素は外気から遮断されている。
その後、電池蓋4に設けられた注液口13から電解液を所定量電池容器5内に注入し、その後、注液口13を封止することにより円筒形リチウムイオン二次電池20を完成させた。
Next, as shown in FIG. 1, the metal washer 11 is fitted into the positive external terminal 1 and the negative external terminal 1 ′, respectively. Thereby, the metal washer 11 is disposed on the ceramic washer 3. The metal washer 11 is made of a material smoother than the bottom surface of the nut 2.
Next, the metal nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, and the battery lid 4 is connected to the flange portion 7 and the nut 2 through the ceramic washer 3, the metal washer 11, and the ceramic washer 3 ′. Secure by tightening between. The tightening torque value at this time was 70 kgf · cm (6.86 N · m). The metal washer 11 did not rotate until the tightening operation was completed. In this state, the power generation element inside the battery container 5 is shielded from the outside air by the compression of the rubber (EPDM) O-ring 12 interposed between the back surface of the battery lid 4 and the flange 7.
Thereafter, a predetermined amount of electrolyte is injected into the battery container 5 from the injection port 13 provided in the battery lid 4, and then the injection port 13 is sealed to complete the cylindrical lithium ion secondary battery 20. It was.

電解液としては、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを、それぞれの体積比2:3:2で混合した混合溶液中へ、6フッ化リン酸リチウム(LiPF)を1.2mol/L溶解し、添加剤としてビニレンカーボネート(VC)を0.8質量%添加したものを用いた。As an electrolytic solution, 1.2 mol / L of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solution in which ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate were mixed at a volume ratio of 2: 3: 2. And what added 0.8 mass% of vinylene carbonate (VC) as an additive was used.

[負極の全容量に対して、10時間率充電における定電流領域の充電容量の割合X%]
負極の全容量に対して、10時間率充電における定電流領域の充電容量(以下、負極のCC容量という場合もある)の割合の測定は、以下のようにして算出した。まず、前記で作製した負極板を直径15mmの大きさに打ち抜き、片面の負極合剤層を取り除いた。
次に、この負極板と、直径16mmの大きさに打ち抜いた対極(金属リチウム)とを、直径19mmの大きさに打ち抜いたセパレータ及び電解液を介してアルゴン雰囲気下でCR2032型コインセルを作製した。対極の金属リチウムは、表面を研磨して酸化皮膜を除去して使用した。電解液は、非水電解質(1MのLiPFを含むエチレンカーボネート/メチルエチルカーボネート/ジメチルカーボネート=2/2/3混合溶液(体積比)に、混合溶液全量に対してビニレンカーボネートを0.8質量%添加したもの(商品名:ソルライト、三菱化学株式会社製、「ソルライト」は登録商標。)を0.2mL使用した。セパレータにはポリエチレン製多孔質シートのセパレータ(商品名:ハイポア、旭化成株式会社製、「ハイポア」は登録商標。厚さが30μm。)を使用した。
[Ratio of charge capacity in constant current region in 10 hour rate charge X% of total capacity of negative electrode]
The measurement of the ratio of the charge capacity in the constant current region (hereinafter sometimes referred to as the CC capacity of the negative electrode) in 10 hour rate charging with respect to the total capacity of the negative electrode was calculated as follows. First, the negative electrode plate produced above was punched into a diameter of 15 mm, and the negative electrode mixture layer on one side was removed.
Next, a CR2032-type coin cell was produced in an argon atmosphere through a separator and electrolyte solution obtained by punching the negative electrode plate and a counter electrode (metallic lithium) punched to a diameter of 16 mm into a diameter of 19 mm. The counter lithium metal lithium was used after polishing the surface to remove the oxide film. The electrolyte was a non-aqueous electrolyte (ethylene carbonate / methyl ethyl carbonate / dimethyl carbonate = 2/2/3 mixed solution (volume ratio) containing 1M LiPF 6 ), and 0.8 mass of vinylene carbonate relative to the total amount of the mixed solution. % Of the product (trade name: Sollite, manufactured by Mitsubishi Chemical Co., Ltd., “Sollite” is a registered trademark) was used.The separator was a polyethylene porous sheet separator (trade name: Hypore, Asahi Kasei Corporation). “Hypore” is a registered trademark with a thickness of 30 μm.).

得られたコインセルを用いて試料電極と対極の間に、電流密度0.1Cの定電流で0V(V vs Li/Li+)まで充電し、0Vの定電圧で電流密度が0.01Cになるまで充電した。放電は、電流密度0.1Cの定電流で1.5V(V vs Li/Li+)までおこなった。この充電及び放電する試験を3サイクル行った。   Using the obtained coin cell, the sample electrode and the counter electrode are charged to 0 V (V vs Li / Li +) at a constant current of 0.1 C, and until the current density reaches 0.01 C at a constant voltage of 0 V. Charged. Discharging was performed up to 1.5 V (V vs Li / Li +) at a constant current of a current density of 0.1 C. This charge and discharge test was performed for 3 cycles.

3サイクル目の充電容量を負極の全容量とした。また、3サイクル目の放電容量を「負極の所定面積当たり(1.7671cm)の放電容量」とした。
また、10時間率充電における定電流領域の充電容量は、電流密度0.1Cの定電流で0V(V vs Li/Li+)まで充電したときの容量とした。
The charge capacity at the third cycle was defined as the total capacity of the negative electrode. The discharge capacity at the third cycle was defined as “discharge capacity per predetermined area of negative electrode (1.7671 cm 2 )”.
In addition, the charge capacity in the constant current region in 10 hour rate charge was the capacity when charged to 0 V (V vs Li / Li +) with a constant current of a current density of 0.1 C.

[電池特性(放電容量、入力特性、寿命特性)の評価](放電容量)

25℃の環境下において、充電、放電ともに電流値は0.5Cとした。充電は4.2Vを上限電圧とする定電流定電圧(CCCV)充電で、終止条件を3時間とした。放電は定電流(CC)放電で、2.7Vを終止条件とした。また、充放電間には30分の休止を入れた。これを3サイクル実施し、3サイクル目の充電容量を「電流値0.5Cにおける充電容量」、3サイクル目の放電容量を「電流値0.5Cにおける放電容量」とした。
ここで、負極容量/正極容量は、「負極の放電容量/電流値0.5Cにおける放電容量」から算出した。前記負極の放電容量は、前記「負極の所定面積当たり(1.7671cm)の放電容量」から、前記リチウムイオン二次電池で作製した負極の総面積に換算して算出した。
[Evaluation of battery characteristics (discharge capacity, input characteristics, life characteristics)] (discharge capacity)

Under an environment of 25 ° C., the current value was 0.5 C for both charging and discharging. Charging was constant current constant voltage (CCCV) charging with 4.2 V as the upper limit voltage, and the termination condition was 3 hours. The discharge was a constant current (CC) discharge with 2.7 V as the end condition. Further, a pause of 30 minutes was put between charge and discharge. This was carried out for three cycles, and the charge capacity at the third cycle was defined as “charge capacity at a current value of 0.5 C”, and the discharge capacity at the third cycle was defined as “discharge capacity at a current value of 0.5 C”.
Here, the negative electrode capacity / positive electrode capacity was calculated from “negative electrode discharge capacity / discharge capacity at a current value of 0.5 C”. The discharge capacity of the negative electrode was calculated from the “discharge capacity per predetermined area of the negative electrode (1.7671 cm 2 )” in terms of the total area of the negative electrode produced by the lithium ion secondary battery.

(入力特性)
入力特性は、上記3サイクル目の放電容量を測定後、3Cの電流値で4.2Vを上限電圧とする定電流定電圧(CCCV)で終止条件を3時間とする充電を行い、この時の充電容量を「電流値3Cにおける充電容量」とし、以下の式により入力特性を算出した。この後、0.5Cの電流値で終止電圧2.7Vの定電流放電を行った。
入力特性=電流値3Cにおける充電容量/電流値0.5Cにおける充電容量入力特性が80%以上を「A」とし、75%以上、80%未満を「B」、75%未満を「C」として評価した。
(Input characteristics)
After measuring the discharge capacity at the third cycle, the input characteristics were charged at a constant current and constant voltage (CCCV) with a current value of 3C and 4.2V as the upper limit voltage, and with a termination condition of 3 hours. The charge capacity was “charge capacity at a current value of 3 C”, and the input characteristics were calculated by the following formula. Thereafter, constant current discharge with a final voltage of 2.7 V was performed at a current value of 0.5 C.
Input characteristic = Charge capacity at current value 3C / Charge capacity input characteristic at current value 0.5C is 80% or more as “A”, 75% or more and less than 80% as “B”, and less than 75% as “C” evaluated.

(寿命特性)
寿命特性は、25℃の環境下において、0.5Cの電流値で4.2Vまで電池を充電後、50℃の環境下において3ヵ月放置し、25℃の環境下において放置後の放電容量を計測し、放置前後の放電容量比を評価した。放置前後の放電容量比が80容量%以上を「A」とし、75容量%以上、80容量%未満を「B」、75容量%未満を「C」として評価した。上記の実施例及び比較例の結果を表1に示した。
(Life characteristics)
The life characteristics are as follows: the battery is charged to 4.2 V at a current value of 0.5 C in an environment of 25 ° C., then left for 3 months in an environment of 50 ° C., and the discharge capacity after being left in an environment of 25 ° C. Measured and evaluated the discharge capacity ratio before and after being left. The discharge capacity ratio before and after standing was evaluated as “A” when 80% or more by volume, “B” when 75% or more and less than 80% by volume, and “C” when less than 75% by volume. The results of the above examples and comparative examples are shown in Table 1.

Figure 0006344470
Figure 0006344470

図2、表1に示したように、式(1)、式(2)を満たす実施例1〜8では、入力特性、寿命特性に優れる。特に、Xが、80≦X≦90のときに優れる。
一方、式(1)の70≦X≦95に含まれない比較例1、式(1)には含まれるが、式2の1≦Y≦1+(1−X/100)に含まれない比較例2〜5は、入力特性に劣る傾向にあり、寿命特性で劣る。
As shown in FIG. 2 and Table 1, Examples 1 to 8 satisfying the expressions (1) and (2) are excellent in input characteristics and life characteristics. In particular, it is excellent when X is 80 ≦ X ≦ 90.
On the other hand, Comparative Example 1 not included in 70 ≦ X ≦ 95 of Formula (1) and Comparison included in Formula (1) but not included in 1 ≦ Y ≦ 1 + (1−X / 100) of Formula 2 Examples 2 to 5 tend to be inferior in input characteristics and inferior in life characteristics.

1…正極外部端子、1’…負極外部端子、2…ナット、3…セラミックワッシャ、3’…セラミックワッシャ、4…電池蓋、5…電池容器、6…捲回群、7…鍔部、8…絶縁被覆、9…リード片、10…開裂弁、11…金属ワッシャ、12…Oリング、13…注液口、20…円筒形リチウムイオン二次電池 DESCRIPTION OF SYMBOLS 1 ... Positive electrode external terminal, 1 '... Negative electrode external terminal, 2 ... Nut, 3 ... Ceramic washer, 3' ... Ceramic washer, 4 ... Battery cover, 5 ... Battery container, 6 ... Winding group, 7 ... Ridge part, 8 DESCRIPTION OF SYMBOLS ... Insulation coating, 9 ... Lead piece, 10 ... Cleavage valve, 11 ... Metal washer, 12 ... O-ring, 13 ... Injection hole, 20 ... Cylindrical lithium ion secondary battery

Claims (2)

負極の全容量に対して、10時間率充電における定電流領域の充電容量の割合をX%としたとき、下記の式(1)を満たす負極と、リチウム・ニッケル・マンガン・コバルト複合酸化物を含む正極を備え、前記正極と前記負極との容量比(負極容量/正極容量)Yが下記の式(2)を満たし、
前記負極中の負極活物質として、易黒鉛化炭素、又は、易黒鉛化炭素と難黒鉛化炭素の混合物であって、前記易黒鉛化炭素を少なくとも20質量%以上含む混合物を用いる、リチウムイオン二次電池。
70≦X≦95・・・(1)
1≦Y≦1+(1−X/100)・・・(2)
When the ratio of the charging capacity in the constant current region in 10 hour rate charging is X% with respect to the total capacity of the negative electrode, the negative electrode satisfying the following formula (1) and the lithium / nickel / manganese / cobalt composite oxide: a positive electrode wherein the volume ratio of the positive electrode and the negative electrode (negative electrode capacity / positive electrode capacity) Y is meets the following formula (2), including,
As the negative electrode active material in the negative electrode, lithium ion two-phase is used, which is a graphitizable carbon or a mixture of graphitizable carbon and non-graphitizable carbon and containing at least 20% by mass of the graphitizable carbon. Next battery.
70 ≦ X ≦ 95 (1)
1 ≦ Y ≦ 1 + (1−X / 100) (2)
式(1)のXが、下記式(3)の範囲である請求項1に記載のリチウムイオン二次電池。
80≦X≦90・・・(3)
The lithium ion secondary battery according to claim 1, wherein X in the formula (1) is in the range of the following formula (3).
80 ≦ X ≦ 90 (3)
JP2016527820A 2014-06-10 2015-06-09 Lithium ion secondary battery Expired - Fee Related JP6344470B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014119173 2014-06-10
JP2014119173 2014-06-10
PCT/JP2015/066597 WO2015190480A1 (en) 2014-06-10 2015-06-09 Lithium ion secondary cell

Publications (2)

Publication Number Publication Date
JPWO2015190480A1 JPWO2015190480A1 (en) 2017-04-20
JP6344470B2 true JP6344470B2 (en) 2018-06-20

Family

ID=54833570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016527820A Expired - Fee Related JP6344470B2 (en) 2014-06-10 2015-06-09 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6344470B2 (en)
WO (1) WO2015190480A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068985A1 (en) * 2015-10-22 2017-04-27 日立化成株式会社 Lithium-ion cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243448A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2007317582A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Energy storing device
JP5125050B2 (en) * 2006-10-10 2013-01-23 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP5389652B2 (en) * 2007-08-10 2014-01-15 昭和電工株式会社 Negative electrode for lithium secondary battery, method for producing carbon negative electrode active material, lithium secondary battery and use thereof
JP5171283B2 (en) * 2008-01-22 2013-03-27 日立ビークルエナジー株式会社 Non-aqueous electrolyte secondary battery
JP5049820B2 (en) * 2008-02-29 2012-10-17 日立ビークルエナジー株式会社 Lithium ion secondary battery
JP5433164B2 (en) * 2008-04-28 2014-03-05 日立ビークルエナジー株式会社 Lithium ion secondary battery
WO2014103166A1 (en) * 2012-12-27 2014-07-03 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
WO2015190480A1 (en) 2015-12-17
JPWO2015190480A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6213675B2 (en) Lithium ion secondary battery
WO2018179817A1 (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6281638B2 (en) Lithium ion battery
WO2015005228A1 (en) Lithium ion battery and manufacturing method therefor
JP2018113151A (en) Method for manufacturing PTC layer
WO2016163282A1 (en) Lithium ion secondary battery
JP2017103024A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6697377B2 (en) Lithium ion secondary battery
JP2016091927A (en) Lithium ion secondary battery
JP2016139548A (en) Lithium ion battery
JP2016076317A (en) Lithium ion secondary battery
WO2016021614A1 (en) Lithium ion cell and method for determinining bad lithium ion cell
JP2015046283A (en) Lithium ion battery
WO2017022731A1 (en) Lithium ion secondary battery
JP6728582B2 (en) Lithium ion secondary battery
JP2017139087A (en) Lithium ion secondary battery
JP6631535B2 (en) Lithium ion battery
WO2017068985A1 (en) Lithium-ion cell
JP6344470B2 (en) Lithium ion secondary battery
JP2017199488A (en) Lithium ion battery
JP2022010459A (en) Lithium ion secondary battery
JP2016004683A (en) Lithium ion battery
JP2017027813A (en) Lithium ion secondary battery
JP2018018581A (en) Lithium ion battery
JP2018073579A (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R151 Written notification of patent or utility model registration

Ref document number: 6344470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees