WO2017022731A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2017022731A1
WO2017022731A1 PCT/JP2016/072566 JP2016072566W WO2017022731A1 WO 2017022731 A1 WO2017022731 A1 WO 2017022731A1 JP 2016072566 W JP2016072566 W JP 2016072566W WO 2017022731 A1 WO2017022731 A1 WO 2017022731A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrolyte
secondary battery
positive electrode
lithium
Prior art date
Application number
PCT/JP2016/072566
Other languages
French (fr)
Japanese (ja)
Inventor
美枝 阿部
賢匠 星
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201680023863.8A priority Critical patent/CN107534186A/en
Priority to JP2017533070A priority patent/JPWO2017022731A1/en
Publication of WO2017022731A1 publication Critical patent/WO2017022731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • lithium salts such as lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) have been widely used.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • the present invention aims to further improve the characteristics of a lithium ion secondary battery, and an object thereof is to provide a lithium ion secondary battery excellent in cycle characteristics, storage characteristics and input characteristics.
  • ⁇ 1> a positive electrode, a negative electrode, a separator, and an electrolyte solution containing an electrolyte
  • the negative electrode includes graphitizable carbon as a negative electrode active material
  • the electrolyte further includes lithium hexafluorophosphate.
  • the graphitizable carbon has a C-axis direction plane d002 value obtained by an X-ray wide-angle diffraction method of 0.34 nm or more and less than 0.36 nm, and any one of ⁇ 1> to ⁇ 3>
  • a lithium ion secondary battery having excellent cycle characteristics, storage characteristics, and input characteristics is provided.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the lithium ion secondary battery of the present embodiment includes a positive electrode, a negative electrode, a separator, and an electrolyte solution containing an electrolyte.
  • the negative electrode includes graphitizable carbon as a negative electrode active material, and the electrolyte is lithium.
  • Bis (fluorosulfonyl) imide hereinafter also referred to as LiFSI is included, and the content thereof is 70% by mass or less based on the total amount of the electrolyte.
  • a lithium ion secondary battery using an electrolyte solution containing LiFSI as an electrolyte in a predetermined ratio is easily graphitized carbon as a negative electrode active material, compared with a case where graphite is used as a negative electrode active material. It has been found that the cycle characteristics, storage characteristics and input characteristics are remarkably improved when using.
  • the positive electrode, the negative electrode, the electrolytic solution, the separator, and other components that are components of the lithium ion secondary battery of the present embodiment will be described.
  • the positive electrode (positive electrode plate) is composed of a current collector and a positive electrode mixture layer formed on at least one surface thereof.
  • the positive electrode mixture layer is a layer containing a positive electrode active material, a binder, a conductive material used as necessary, a thickener, and the like.
  • the positive electrode active material preferably contains a layered lithium / nickel / manganese / cobalt composite oxide (hereinafter sometimes referred to as NMC).
  • NMC layered lithium / nickel / manganese / cobalt composite oxide
  • NMC has a high capacity and excellent safety. From the viewpoint of further improving safety, NMC and spinel type lithium manganese oxide (hereinafter sometimes referred to as sp-Mn) may be used in combination.
  • the content of the positive electrode active material is preferably 65% by mass or more, more preferably 70% by mass or more, based on the total amount of the positive electrode mixture layer, from the viewpoint of increasing the capacity of the lithium ion secondary battery. 80% by mass or more is more preferable.
  • compositional formula (Formula 1) Li (1 + ⁇ ) Mn x Ni y Co (1-xyz) M z O 2 (Formula 1)
  • (1 + ⁇ ) is a composition ratio of Li (lithium)
  • x is a composition ratio of Mn (manganese)
  • y is a composition ratio of Ni (nickel)
  • (1-xyz) Indicates the composition ratio of Co (cobalt).
  • z represents the composition ratio of the element M.
  • the composition ratio of O (oxygen) is 2.
  • the elements M are Ti (titanium), Zr (zirconium), Nb (niobium), Mo (molybdenum), W (tungsten), Al (aluminum), Si (silicon), Ga (gallium), Ge (germanium), and Sn. It is at least one element selected from the group consisting of (tin).
  • (tin) ⁇ 0.15 ⁇ ⁇ 0.15, 0.1 ⁇ x ⁇ 0.5, 0.6 ⁇ x + y + z ⁇ 1.0, and 0 ⁇ z ⁇ 0.1.
  • composition formula (Formula 2) Li (1 + ⁇ ) Mn (2- ⁇ ) M ′ ⁇ O 4 (Chemical formula 2)
  • (1 + ⁇ ) represents the composition ratio of Li
  • (2- ⁇ ) represents the composition ratio of Mn
  • represents the composition ratio of the element M ′.
  • the composition ratio of O (oxygen) is 4.
  • Element M ′ includes Mg (magnesium), Ca (calcium), Sr (strontium), It is preferably at least one element selected from the group consisting of Al, Ga, Zn (zinc) and Cu (copper).
  • Mg or Al is preferably used as the element M ′ in the composition formula (Chemical Formula 2).
  • the battery tends to have a longer life.
  • the safety of the battery tends to be improved.
  • the elution of Mn can be reduced by adding the element M ′, the storage characteristics and the charge / discharge cycle characteristics tend to be improved.
  • the positive electrode active material materials other than NMC and sp-Mn may be used.
  • Cathode active materials other than NMC and sp-Mn are not particularly limited, and those commonly used in this field can be used. Lithium-containing composite metal oxides other than NMC and sp-Mn, olivine type lithium salts, chalcogen compounds, dioxide dioxide Manganese etc. are mentioned.
  • the method for forming the positive electrode mixture layer is not particularly limited. For example, it is formed by a dry method or a wet method.
  • a positive electrode active material, a binder, and other materials such as a conductive material and a thickener used as needed are mixed without using a dispersion solvent to form a sheet, which is used as a current collector.
  • Crimp In the wet method, a positive electrode active material, a binder, and other materials such as a conductive material and a thickener used as necessary are dissolved or dispersed in a dispersion solvent to form a slurry, which is applied to a current collector. ,dry.
  • the positive electrode active material is generally in the form of particles, and examples of the shape of the particles include lumps, polyhedrons, spheres, ellipsoids, plates, needles, and columns.
  • the median diameter D50 of the positive electrode active material particles (when the primary particles are aggregated to form secondary particles, the median diameter D50 of the secondary particles) can be adjusted within the following range. From the viewpoint of obtaining a desired tap density without the tap density (fillability) of the positive electrode active material being too low, D50 of the positive electrode active material is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more. More preferably.
  • the positive electrode is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the median diameter D50 is a value when the integration from the small diameter side becomes 50% in the volume-based particle size distribution obtained by the laser diffraction / scattering method.
  • the BET specific surface area of the positive electrode active material particles is preferably 0.2 m 2 / g or more, more preferably 0.3 m 2 / g or more, from the viewpoint of suppressing a decrease in battery performance. More preferably, it is 4 m 2 / g or more. Further, from the viewpoint of suppressing a decrease in miscibility with other materials such as a binder and a conductive material, it is preferably 4.0 m 2 / g or less, and is 2.5 m 2 / g or less. More preferably, it is still more preferably 1.5 m 2 / g or less.
  • the BET specific surface area is a specific surface area (area per unit g) determined by the BET method.
  • the conductive material is not particularly limited, and is a metal material such as copper or nickel; graphite such as natural graphite or artificial graphite; graphite black such as acetylene black; needle coke or the like Examples thereof include carbonaceous materials such as amorphous carbon. These conductive materials may be used alone or in combination of two or more.
  • the binder used for the positive electrode mixture layer is not particularly limited.
  • the binder include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene) Rubber), fluoropolymer, isoprene rubber, butadiene rubber, ethylene-propylene rubber, and other rubbery polymers; styrene / butadiene / styrene block copolymers or hydrogenated products thereof, EPDM (ethylene / propylene / diene terpolymers) ), Thermoplastic elastomeric polymers such as styrene / ethylene / butadiene / ethylene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products
  • a binder may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of the stability of the positive electrode, it is preferable to use a fluorine-based polymer such as polyvinylidene fluoride (PVdF) or a polytetrafluoroethylene / vinylidene fluoride copolymer.
  • PVdF polyvinylidene fluoride
  • PVdF polytetrafluoroethylene / vinylidene fluoride copolymer
  • the dispersion solvent used for preparing the slurry is not particularly limited, and either an aqueous solvent or an organic solvent may be used.
  • the aqueous solvent include water, a mixed solvent of alcohol and water
  • the organic solvent include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, and acrylic.
  • THF tetrahydrofuran
  • toluene acetone
  • diethyl ether dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide
  • a thickener it is preferable to use a thickener.
  • the said dispersion solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the thickener is not particularly limited. Examples thereof include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These thickeners may be used alone or in combination of two or more.
  • the positive electrode mixture layer formed on the current collector is preferably consolidated by a hand press, a roller press or the like in order to improve the packing density of the positive electrode active material.
  • the density of compacted the positive-electrode mixture layer as described above, from the viewpoint of output characteristics and further improvement of safety, is preferably 2.4g / cm 3 ⁇ 2.8g / cm 3, 2.45g / More preferably, it is cm 3 to 2.7 g / cm 3 .
  • the material of the current collector for the positive electrode is not particularly limited. Examples thereof include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum, and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials are preferable, and aluminum is more preferable.
  • the shape of the current collector is not particularly limited, and materials processed into various shapes can be used.
  • Examples of the shape in the case of using a metal material include a metal foil, a metal cylinder, a metal coil, a metal plate, an expanded metal, a punch metal, and a foam metal.
  • Examples of the shape when using a carbonaceous material include a carbon plate, a carbon thin film, and a carbon cylinder. Among these, it is preferable to use a metal foil or a carbon thin film.
  • the metal foil or carbon thin film may be formed in a mesh shape as necessary.
  • Negative electrode The negative electrode (negative electrode plate) of the present embodiment is composed of a current collector and a negative electrode mixture layer formed on at least one surface thereof.
  • the negative electrode mixture layer is a layer containing a negative electrode active material, a binder, a thickener used as necessary, and the like.
  • the negative electrode active material includes graphitizable carbon.
  • Graphitizable carbon (sometimes called soft carbon) is classified as amorphous carbon together with non-graphitizable carbon (sometimes called hard carbon).
  • Amorphous carbon means non-graphite carbon with a disordered crystal structure.
  • graphitizable carbon is amorphous carbon that tends to become graphite under temperature conditions of 2000 ° C. to 3000 ° C.
  • non-graphitizable carbon is amorphous that is difficult to become graphite under temperature conditions of 2000 ° C. to 3000 ° C. Carbon.
  • graphitizable carbon is defined as amorphous carbon having a C-axis direction interplanar spacing d002 value of less than 0.36 nm obtained by an X-ray wide angle diffraction method.
  • Non-graphitizable carbon is defined as amorphous carbon having a surface spacing d002 value in the C-axis direction of 0.36 nm or more obtained by an X-ray wide angle diffraction method.
  • the value of the interplanar spacing d002 obtained by the X-ray wide angle diffraction method of graphitizable carbon is preferably 0.34 nm or more and less than 0.36 nm, and 0.341 nm or more and 0. More preferably, the thickness is 355 nm or less, and further preferably 0.342 nm or more and 0.35 nm or less.
  • the average particle size is preferably 2 ⁇ m to 50 ⁇ m.
  • the specific surface area can be in an appropriate range, the initial charge / discharge efficiency of the lithium ion secondary battery tends to be excellent, and the contact between the particles is good and the input / output characteristics are good. Tend to be better.
  • the average particle size is 50 ⁇ m or less, unevenness on the electrode surface is unlikely to occur and the short circuit of the battery tends to be suppressed, and the diffusion distance of Li from the particle surface to the inside becomes relatively short, so that lithium ions
  • the input / output characteristics of the secondary battery tend to improve.
  • the average particle diameter of graphitizable carbon is more preferably 5 ⁇ m to 30 ⁇ m, and still more preferably 10 ⁇ m to 20 ⁇ m.
  • the average particle diameter of graphitizable carbon is determined by dispersing a sample in purified water containing a surfactant, and measuring a laser diffraction particle size distribution analyzer (for example, “SALD-3000J” manufactured by Shimadzu Corporation).
  • a laser diffraction particle size distribution analyzer for example, “SALD-3000J” manufactured by Shimadzu Corporation.
  • D50 median diameter
  • the method for producing graphitizable carbon is not particularly limited.
  • it can be produced by heat-treating a substance that can be carbonized by heating, such as petroleum pitch, polyacene, polyparaphenylene, polyfurfuryl alcohol, and the like.
  • a substance that can be carbonized by heating such as petroleum pitch, polyacene, polyparaphenylene, polyfurfuryl alcohol, and the like.
  • it can be made graphitizable carbon or non-graphitizable carbon.
  • heat treatment at about 500 ° C. to 800 ° C. is suitable for producing non-graphitizable carbon
  • heat treatment at about 800 ° C. to 1000 ° C. is suitable for producing graphitizable carbon.
  • the negative electrode active material may contain only graphitizable carbon as a carbon material, or at least one selected from the group consisting of non-graphitizable carbon and graphite may be used in combination with graphitizable carbon.
  • the content of graphitizable carbon is 50% by mass or more based on the total amount of the negative electrode active material. It is preferably 70% by mass or more, more preferably 90% by mass or more.
  • the negative electrode active material may include a material other than the carbon material.
  • the material other than the carbon material is not particularly limited.
  • an oxide such as tin oxide and silicon oxide, a metal composite oxide, a lithium simple substance, a lithium alloy such as a lithium aluminum alloy, and a material capable of forming an alloy with lithium (Sn , Si, etc.). These materials may be used alone or in combination of two or more.
  • the material of the current collector for the negative electrode is not particularly limited, and examples thereof include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is preferable from the viewpoint of ease of processing and cost.
  • the shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples include metal foil, metal cylinder, metal coil, metal plate, expanded metal, punch metal, and foam metal. Especially, metal foil is preferable and copper foil is more preferable.
  • the range of the density of a negative mix layer is as follows.
  • the lower limit of the density of the negative electrode mixture layer is preferably 0.7 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, still more preferably 0.9 g / cm 3 or more, and the upper limit is preferably 2 g. / Cm 3 or less, more preferably 1.9 g / cm 3 or less, still more preferably 1.8 g / cm 3 or less, and particularly preferably 1.7 g / cm 3 or less.
  • the method for forming the negative electrode mixture layer is not particularly limited. For example, it can be formed by a dry method or a wet method similarly to the positive electrode mixture layer.
  • the binder contained in the negative electrode mixture layer is not particularly limited. For example, it can select from what was illustrated as a binder used for a positive mix layer.
  • the dispersion solvent used for preparing the slurry is not particularly limited. For example, it can select from what was illustrated as a dispersion
  • the thickener is not particularly limited. For example, it can select from what was illustrated as a thickener used for a positive mix layer.
  • Electrolytic Solution contains LiFSI as an electrolyte, and the content thereof is 70% by mass or less based on the total amount of the electrolyte.
  • the electrolytic solution includes an electrolyte and a non-aqueous solvent that dissolves the electrolyte, and may include an additive or the like as necessary.
  • LiFSI is a lithium salt represented by LiN (FSO 2 ) 2 .
  • the content of LiFSI is preferably 60% by mass or less, more preferably 50% by mass or less, and more preferably 40% by mass from the viewpoint of cycle characteristics, storage characteristics, and input characteristics, based on the total amount of the electrolyte. More preferably, it is as follows.
  • the lower limit of the content of LiFSI is not particularly limited, but from the viewpoint of cycle characteristics, storage characteristics, and input characteristics, it is preferably 1% by mass or more, preferably 5% by mass or more based on the total amount of the electrolyte. More preferably, it is more preferably 10% by mass or more, and particularly preferably 20% by mass or more.
  • the electrolytic solution contains an electrolyte other than LiFSI, and the content thereof is 30% by mass or more based on the total amount of the electrolyte.
  • the electrolyte other than LiFSI is not particularly limited as long as it can be used as an electrolyte of an electrolytic solution for a lithium ion secondary battery.
  • the following inorganic lithium salt, fluorine-containing organic lithium salt, and oxalatoborate salt can be mentioned.
  • inorganic lithium salt LiPF 6, LiBF 4, LiAsF 6, LiSbF 6 inorganic fluoride salts, such as, LiClO 4, Libro 4, perhalogenate of LiIO 4, etc., and the like inorganic chloride salts such as LiAlCl 4 It is done.
  • fluorine-containing organic lithium salt examples include perfluoroalkane sulfonates such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C Perfluoroalkanesulfonylimide salts such as 4 F 9 SO 2 ); perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 2 ], Li [
  • the electrolytic solution preferably includes an inorganic lithium salt as an electrolyte other than LiFSI, more preferably includes an inorganic fluoride salt, and further preferably includes LiPF 6 .
  • the concentration of the electrolyte in the electrolytic solution there is no particular limitation on the concentration of the electrolyte in the electrolytic solution.
  • the concentration of the electrolyte (total of a plurality of types of electrolytes) in the electrolytic solution is preferably 0.5 mol / L or more, and is 0.6 mol / L or more. More preferably, it is 0.7 mol / L or more.
  • the concentration of the electrolyte in the electrolytic solution is preferably 2 mol / L or less, and is 1.8 mol / L or less. More preferred is 1.7 mol / L or less.
  • the non-aqueous solvent is not particularly limited. Examples include cyclic carbonates, chain carbonates, chain esters, cyclic ethers, chain ethers, and cyclic sulfones, and these may be used alone or in combination of two or more.
  • an alkylene group constituting the cyclic carbonate preferably has 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms.
  • Examples thereof include ethylene carbonate, propylene carbonate, and butylene carbonate. Of these, ethylene carbonate and propylene carbonate are preferable.
  • the chain carbonate is preferably a dialkyl carbonate, more preferably a dialkyl carbonate in which the two alkyl groups each have 1 to 5 carbon atoms, and even more preferably a dialkyl carbonate in which the two alkyl groups each have 1 to 4 carbon atoms. .
  • Dialkyl carbonates include symmetric chain carbonates such as dimethyl carbonate, diethyl carbonate and di-n-propyl carbonate in which two alkyl groups have the same carbon number, and ethyl methyl carbonate and methyl having two different alkyl groups in carbon number.
  • Examples include asymmetric chain carbonates such as -n-propyl carbonate and ethyl-n-propyl carbonate. Of these, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable.
  • chain esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
  • methyl acetate from the viewpoint of improving the low temperature characteristics.
  • the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like.
  • chain ethers include dimethoxyethane and dimethoxymethane.
  • the cyclic sulfone include sulfolane and 3-methylsulfolane.
  • the nonaqueous solvent more preferably contains at least one selected from the group consisting of cyclic carbonates and chain carbonates.
  • the nonaqueous solvent contains at least one selected from the group consisting of cyclic carbonates and chain carbonates
  • the content is 85% by mass or more based on the total amount of the nonaqueous solvent from the viewpoint of battery characteristics. Is more preferable, 90 mass% or more is more preferable, and 95 mass% or more is further preferable.
  • the mixing ratio of the cyclic carbonates and the chain carbonates is determined by the cyclic carbonate / chain carbonate (volume ratio) from the viewpoint of battery characteristics. ) Is preferably 1/9 to 6/4, and more preferably 2/8 to 5/5.
  • the non-aqueous solvent may contain an additive from the viewpoint of improving battery characteristics.
  • the additive is not particularly limited, and examples thereof include cyclic sulfonic acid esters, cyclic carboxylic acid esters, fluorine-containing cyclic carbonates, and compounds having an unsaturated bond in the molecule. From the viewpoint of extending the life of the battery, it is preferable to include at least one selected from the group consisting of cyclic sulfonate esters, fluorine-containing cyclic carbonates, and compounds having an unsaturated bond in the molecule.
  • cyclic sulfonate esters examples include 1,3-propane sultone, 1-methyl-1,3-propane sultone, 3-methyl-1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, 1 , 4-butene sultone and the like.
  • 1,3-propane sultone and 1,4-butane sultone are preferable from the viewpoint of reducing the DC resistance.
  • fluorine-containing cyclic carbonate examples include fluoroethylene carbonate, difluoroethylene carbonate, trifluoroethylene carbonate, tetrafluoroethylene carbonate, and trifluoropropylene carbonate.
  • the compound having an unsaturated bond in the molecule examples include vinylene carbonate.
  • the non-aqueous solvent may contain other additives such as an overcharge preventing material, a negative electrode film forming material, a positive electrode protective material, and a high input / output material as required.
  • Separator A separator is particularly suitable if it has ion permeability while electronically insulating between the positive electrode and the negative electrode, and has oxidizability on the positive electrode side and resistance to reducibility on the negative electrode side. Not limited. Examples of the material (material) of the separator that satisfies such characteristics include resins, inorganic substances, and glass fibers.
  • the resin examples include olefin polymer, fluoropolymer, cellulose polymer, polyimide, nylon and the like. From the viewpoint of being stable with respect to the non-aqueous electrolyte and having excellent liquid retention properties, olefin polymers are preferable, and polyolefins such as polyethylene and polypropylene are more preferable.
  • inorganic substances include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate.
  • shape of the separator include a porous sheet and a nonwoven fabric.
  • the lithium ion secondary battery may have other components other than a positive electrode, a negative electrode, electrolyte solution, and a separator as needed.
  • a cleavage valve may be provided to suppress an increase in pressure inside the battery. By opening the cleavage valve, it is possible to suppress an increase in pressure inside the battery and to improve safety. Moreover, you may provide the structure part which discharge
  • the capacity ratio of the negative electrode to the positive electrode is preferably 1 or more and less than 1.3 from the viewpoint of safety and energy density, and is 1.05 to 1.25. More preferably, it is more preferably 1.1 to 1.2.
  • the capacity ratio between the negative electrode and the positive electrode is less than 1.3, the positive electrode potential is less likely to be higher than 4.2 V when charged, and the safety tends to be further increased.
  • the positive electrode potential at this time means a potential against Li.
  • the negative electrode capacity means [negative electrode discharge capacity]
  • the positive electrode capacity means [positive charge capacity of positive electrode minus negative electrode or positive electrode, whichever is greater].
  • discharge capacity of negative electrode is defined as a value calculated by a charge / discharge device when lithium ions inserted into the negative electrode active material are desorbed.
  • the “initial charge capacity of the positive electrode” is defined as that calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
  • the capacity ratio between the negative electrode and the positive electrode can be calculated from, for example, “discharge capacity of lithium ion secondary battery / discharge capacity of negative electrode”.
  • the discharge capacity of the lithium ion secondary battery is, for example, 4.2 V, 0.1 C to 0.5 C, 0.1 C to 0.5 C after performing constant current constant voltage (CCCV) charging with a termination time of 2 to 10 hours. It can be measured under conditions when a constant current (CC) is discharged to 2.7 V at 0.5 C.
  • CCCV constant current constant voltage
  • the negative electrode whose discharge capacity was measured for the lithium ion secondary battery was cut into a predetermined area, lithium metal was used as the counter electrode, and a single electrode cell was prepared via a separator impregnated with an electrolyte.
  • C means [current value (A) / battery discharge capacity (Ah)].
  • the shape of the lithium ion secondary battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a sheet shape, and the like.
  • a cylindrical lithium ion secondary battery an 18650 type lithium ion secondary battery is widely used as a consumer lithium ion secondary battery.
  • the outer diameter of the 18650 type lithium ion secondary battery is about 18 mm in diameter and about 65 mm in height.
  • FIG. 1 shows a configuration example of a cylindrical lithium ion secondary battery.
  • the lithium ion secondary battery 1 of this configuration example has a structure in which an electrode body 5 in which a strip-like positive electrode 2 and a negative electrode 3 are wound with a separator 4 interposed therebetween is housed in a cylindrical battery container 6.
  • An electrolyte solution (not shown).
  • the positive electrode was produced as follows.
  • As the positive electrode active material a layered lithium / nickel / manganese / cobalt composite oxide (BET specific surface area of 0.4 m 2 / g, average particle diameter (D50) of 6.5 ⁇ m) was used.
  • acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: HS-100, average particle size 48 nm (catalog value)
  • NMP N-methyl-2 of polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode was produced as follows.
  • graphitizable carbon (d002 is 0.35 nm, average particle diameter (D50) is 17 ⁇ m) was used.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • This slurry was applied to both sides of a rolled copper foil having a thickness of 10 ⁇ m, which is a negative electrode current collector, so that the thickness was substantially uniform and uniform. Then, the drying process was performed and it consolidated by the press to the predetermined density.
  • the density of the negative electrode mixture layer was 1.15 g / cm 3 .
  • non-graphitizable carbon (d002: 0.375 nm, average particle diameter (D50): 10 ⁇ m) was used as the negative electrode active material.
  • NMP N-methyl-2-pyrrolidone
  • This slurry was applied to both sides of a rolled copper foil having a thickness of 10 ⁇ m, which is a negative electrode current collector, so that the thickness was substantially uniform and uniform.
  • the drying process was performed and it consolidated by the press to the predetermined density.
  • the density of the negative electrode mixture layer was 1.0 g / cm 3 .
  • Ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio (EC: DMC: EMC) of 2: 3: 2 to prepare a mixed solution.
  • EC: DMC: EMC volume ratio
  • EMC ethyl methyl carbonate
  • the lithium salt shown in Table 1 as an electrolyte was dissolved therein so as to have a concentration shown in Table 1.
  • 0.8% by mass of vinylene carbonate (VC) was added as an additive to prepare an electrolytic solution.
  • Cycle characteristics (%) [discharge capacity at 1000th cycle / discharge capacity at 1st cycle] ⁇ 100
  • Storage characteristics (%) [discharge capacity after storage at a current value of 0.5 C / discharge capacity before storage at a current value of 0.5 C] ⁇ 100
  • the direct current resistance (DCR) was measured for the lithium ion secondary battery in the initial state and the lithium ion secondary battery after 1000 cycles of charge and discharge under the conditions described in the evaluation of the cycle characteristics.
  • the DCR increase rate was determined. DCR indicates the resistance value of the lithium ion secondary battery. The lower the DCR increase rate before and after the cycle test, the higher the input characteristics.
  • DCR was measured as follows. First, after discharging the lithium ion secondary battery to 2.7 V, the battery is charged with a constant current of 0.5 C until the SOC (State of Charge, state of charge) becomes 50%, and the SOC becomes 50%. The battery was charged at a constant voltage from the time of arrival until the current value reached 0.01 C at that voltage. Then, it is charged for 11 seconds at a current value of 0.2C, discharged to a voltage at which the SOC is 50% at a current value of 0.5C, charged for 11 seconds at a current value of 1.0C, and a current value of 0.5C.
  • SOC State of Charge, state of charge
  • the battery was discharged to a voltage at which the SOC was 50%, charged for 11 seconds at a current value of 1.3C, and discharged to a voltage at which the SOC was 50% at a current value of 0.5C.
  • the slope of the straight line when the charging current value at this time was plotted with the horizontal axis representing the voltage change amount for 10 seconds and the vertical axis representing the amount of change was defined as DCR (DCR) at 50% SOC.
  • DCR DCR
  • the ratio of the DCR at the 1000th cycle (DCR increase rate) to the DCR in the initial state was calculated as the input characteristic (%) by the following formula. The results are shown in Table 1.
  • Input characteristics (%) [DCR at 1000th cycle / initial state DCR] ⁇ 100
  • the lithium ion secondary battery of the present invention was superior to the comparative examples in all evaluations of cycle characteristics, storage characteristics, and input characteristics. Therefore, it was found that the lithium ion secondary battery of the present invention was excellent in cycle characteristics, storage characteristics, and input characteristics.
  • SYMBOLS 1 Lithium ion secondary battery, 2 ... Positive electrode, 3 ... Negative electrode, 4 ... Separator, 5 ... Electrode body, 6 ... Battery container

Abstract

A lithium ion secondary battery which comprises a positive electrode, a negative electrode, a separator and an electrolyte solution containing an electrolyte, and wherein: the negative electrode contains an easily graphitizable carbon as a negative electrode active material; the electrolyte contains lithium bis(fluorosulfonyl)imide; and the content of lithium bis(fluorosulfonyl)imide is 70% by mass or less based on the total mass of the electrolyte.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
 リチウムイオン二次電池の電解液に含まれる電解質としては、ヘキサフルオロリン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)等のリチウム塩が従来より広く用いられている。 As the electrolyte contained in the electrolyte solution of the lithium ion secondary battery, lithium salts such as lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) have been widely used.
 近年、リチウムイオン二次電池のサイクル特性、低温での放電負荷特性、高温保存後の容量維持率等を向上させるリチウム塩として、リチウムビス(フルオロスルホニル)イミド(LiFSI)が注目されており、LiFSIと公知のリチウム塩とを併用してリチウムイオン二次電池の特性を向上させる試みがなされている(例えば、特許文献1参照)。 In recent years, lithium bis (fluorosulfonyl) imide (LiFSI) has attracted attention as a lithium salt that improves the cycle characteristics, discharge load characteristics at low temperatures, capacity retention rate after storage at high temperatures, and the like of lithium ion secondary batteries. Attempts have been made to improve the characteristics of lithium ion secondary batteries by using a lithium salt together with a known lithium salt (see, for example, Patent Document 1).
特開2015-62154号公報Japanese Patent Laying-Open No. 2015-62154
 本発明は、リチウムイオン二次電池においてさらなる特性の向上を図ることを目的とし、サイクル特性、保存特性及び入力特性に優れるリチウムイオン二次電池を提供することを課題とする。 The present invention aims to further improve the characteristics of a lithium ion secondary battery, and an object thereof is to provide a lithium ion secondary battery excellent in cycle characteristics, storage characteristics and input characteristics.
 上記課題を解決するための具体的手段には、以下の実施態様が含まれる。
<1>正極と、負極と、セパレータと、電解質を含有する電解液と、を含み、
 前記負極は易黒鉛化炭素を負極活物質として含み、
 前記電解質はリチウムビス(フルオロスルホニル)イミドを含み、その含有率が前記電解質の全量を基準にして70質量%以下である、リチウムイオン二次電池。
<2>前記電解質は六フッ化リン酸リチウムを更に含む、<1>に記載のリチウム二次電池。
<3>前記電解液における前記電解質の濃度は0.5mol/L~2mol/Lである、<1>又は<2>に記載のリチウム二次電池。
<4>前記易黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002値が0.34nm以上0.36nm未満である、<1>~<3>のいずれか1項に記載のリチウム二次電池。
Specific means for solving the above problems include the following embodiments.
<1> a positive electrode, a negative electrode, a separator, and an electrolyte solution containing an electrolyte,
The negative electrode includes graphitizable carbon as a negative electrode active material,
The lithium ion secondary battery, wherein the electrolyte contains lithium bis (fluorosulfonyl) imide, and the content thereof is 70% by mass or less based on the total amount of the electrolyte.
<2> The lithium secondary battery according to <1>, wherein the electrolyte further includes lithium hexafluorophosphate.
<3> The lithium secondary battery according to <1> or <2>, wherein the concentration of the electrolyte in the electrolytic solution is 0.5 mol / L to 2 mol / L.
<4> The graphitizable carbon has a C-axis direction plane d002 value obtained by an X-ray wide-angle diffraction method of 0.34 nm or more and less than 0.36 nm, and any one of <1> to <3> The lithium secondary battery as described in.
 本発明によれば、サイクル特性、保存特性及び入力特性に優れるリチウムイオン二次電池が提供される。 According to the present invention, a lithium ion secondary battery having excellent cycle characteristics, storage characteristics, and input characteristics is provided.
本発明が適用可能な実施形態のリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery of embodiment which can apply this invention.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合以外は必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
In this specification, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
In the present specification, numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the present specification, the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
In the present specification, the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
In this specification, the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
 本実施の形態のリチウムイオン二次電池は、正極と、負極と、セパレータと、電解質を含有する電解液と、を含み、前記負極は易黒鉛化炭素を負極活物質として含み、前記電解質はリチウムビス(フルオロスルホニル)イミド(以下、LiFSIともいう)を含み、その含有率が前記電解質の全量を基準にして70質量%以下である。 The lithium ion secondary battery of the present embodiment includes a positive electrode, a negative electrode, a separator, and an electrolyte solution containing an electrolyte. The negative electrode includes graphitizable carbon as a negative electrode active material, and the electrolyte is lithium. Bis (fluorosulfonyl) imide (hereinafter also referred to as LiFSI) is included, and the content thereof is 70% by mass or less based on the total amount of the electrolyte.
 本発明者らは検討の結果、電解質としてLiFSIを所定の割合で含む電解液を用いたリチウムイオン二次電池は、負極活物質として黒鉛を用いた場合に比べ、負極活物質として易黒鉛化炭素を用いた場合にサイクル特性、保存特性及び入力特性が著しく向上することを見出した。 As a result of studies, the present inventors have found that a lithium ion secondary battery using an electrolyte solution containing LiFSI as an electrolyte in a predetermined ratio is easily graphitized carbon as a negative electrode active material, compared with a case where graphite is used as a negative electrode active material. It has been found that the cycle characteristics, storage characteristics and input characteristics are remarkably improved when using.
 以下、本実施の形態のリチウムイオン二次電池の構成要素である正極、負極、電解液、セパレータ及びその他の構成部材について説明する。 Hereinafter, the positive electrode, the negative electrode, the electrolytic solution, the separator, and other components that are components of the lithium ion secondary battery of the present embodiment will be described.
1.正極
 正極(正極板)は、集電体及びその少なくとも一方の面上に形成された正極合材層よりなる。正極合材層は、正極活物質、結着材、及び必要に応じて用いられる導電材、増粘材等を含有する層である。
 正極活物質としては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(以下、NMCという場合もある)を含むことが好ましい。NMCは、高容量であり、且つ安全性にも優れる。
 安全性の更なる向上の観点からは、NMCとスピネル型リチウム・マンガン酸化物(以下、sp-Mnという場合もある)とを併用してもよい。
 正極活物質の含有率は、リチウムイオン二次電池の高容量化の観点から、正極合材層の全量に対して65質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。
1. Positive electrode The positive electrode (positive electrode plate) is composed of a current collector and a positive electrode mixture layer formed on at least one surface thereof. The positive electrode mixture layer is a layer containing a positive electrode active material, a binder, a conductive material used as necessary, a thickener, and the like.
The positive electrode active material preferably contains a layered lithium / nickel / manganese / cobalt composite oxide (hereinafter sometimes referred to as NMC). NMC has a high capacity and excellent safety.
From the viewpoint of further improving safety, NMC and spinel type lithium manganese oxide (hereinafter sometimes referred to as sp-Mn) may be used in combination.
The content of the positive electrode active material is preferably 65% by mass or more, more preferably 70% by mass or more, based on the total amount of the positive electrode mixture layer, from the viewpoint of increasing the capacity of the lithium ion secondary battery. 80% by mass or more is more preferable.
 前記NMCとしては、以下の組成式(化1)で表されるものを用いることが好ましい。
  Li(1+δ)MnNiCo(1-x-y-z)…(化1)
 上記組成式(化1)において、(1+δ)は、Li(リチウム)の組成比、xはMn(マンガン)の組成比、yはNi(ニッケル)の組成比、(1-x-y-z)はCo(コバルト)の組成比を示す。zは、元素Mの組成比を示す。O(酸素)の組成比は2である。
 元素Mは、Ti(チタン)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、W(タングステン)、Al(アルミニウム)、Si(シリコン)、Ga(ガリウム)、Ge(ゲルマニウム)及びSn(錫)よりなる群から選択される少なくとも1種の元素である。
 上記組成式(化1)において、-0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である。
As said NMC, it is preferable to use what is represented by the following compositional formula (Formula 1).
Li (1 + δ) Mn x Ni y Co (1-xyz) M z O 2 (Formula 1)
In the above composition formula (Formula 1), (1 + δ) is a composition ratio of Li (lithium), x is a composition ratio of Mn (manganese), y is a composition ratio of Ni (nickel), and (1-xyz) ) Indicates the composition ratio of Co (cobalt). z represents the composition ratio of the element M. The composition ratio of O (oxygen) is 2.
The elements M are Ti (titanium), Zr (zirconium), Nb (niobium), Mo (molybdenum), W (tungsten), Al (aluminum), Si (silicon), Ga (gallium), Ge (germanium), and Sn. It is at least one element selected from the group consisting of (tin).
In the above composition formula (Formula 1), −0.15 <δ <0.15, 0.1 <x ≦ 0.5, 0.6 <x + y + z ≦ 1.0, and 0 ≦ z ≦ 0.1.
 また、前記sp-Mnとしては、以下の組成式(化2)で表されるものを用いることが好ましい。
  Li(1+η)Mn(2-λ)M’λ…(化2)
 上記組成式(化2)において、(1+η)はLiの組成比、(2-λ)はMnの組成比、λは元素M’の組成比を示す。O(酸素)の組成比は4である。
 元素M’は、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、
Al、Ga、Zn(亜鉛)及びCu(銅)よりなる群から選択される少なくとも1種の元素であることが好ましい。
 上記組成式(化2)において、0≦η≦0.2、0≦λ≦0.1である。
 上記組成式(化2)における元素M’としては、Mg又はAlを用いることが好ましい。Mg又はAlを用いることにより、電池が長寿命化する傾向にある。また、電池の安全性が向上する傾向にある。さらに、元素M’を加えることで、Mnの溶出を低減できるため、貯蔵特性及び充放電サイクル特性が向上する傾向にある。
Further, as the sp-Mn, it is preferable to use one represented by the following composition formula (Formula 2).
Li (1 + η) Mn (2-λ) M ′ λ O 4 (Chemical formula 2)
In the above composition formula (Formula 2), (1 + η) represents the composition ratio of Li, (2-λ) represents the composition ratio of Mn, and λ represents the composition ratio of the element M ′. The composition ratio of O (oxygen) is 4.
Element M ′ includes Mg (magnesium), Ca (calcium), Sr (strontium),
It is preferably at least one element selected from the group consisting of Al, Ga, Zn (zinc) and Cu (copper).
In the above composition formula (Formula 2), 0 ≦ η ≦ 0.2 and 0 ≦ λ ≦ 0.1.
Mg or Al is preferably used as the element M ′ in the composition formula (Chemical Formula 2). By using Mg or Al, the battery tends to have a longer life. In addition, the safety of the battery tends to be improved. Furthermore, since the elution of Mn can be reduced by adding the element M ′, the storage characteristics and the charge / discharge cycle characteristics tend to be improved.
 正極活物質としては、NMC及びsp-Mn以外のものを用いてもよい。
 NMC及びsp-Mn以外の正極活物質は特に制限されず、この分野で常用されるものを使用でき、NMC及びsp-Mn以外のリチウム含有複合金属酸化物、オリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等が挙げられる。
As the positive electrode active material, materials other than NMC and sp-Mn may be used.
Cathode active materials other than NMC and sp-Mn are not particularly limited, and those commonly used in this field can be used. Lithium-containing composite metal oxides other than NMC and sp-Mn, olivine type lithium salts, chalcogen compounds, dioxide dioxide Manganese etc. are mentioned.
 正極合材層の形成方法は特に制限されない。例えば、乾式法又は湿式法によって形成される。乾式法では、正極活物質、結着材、及び必要に応じて用いられる導電材、増粘材等の他の材料を分散溶媒を用いずに混合してシート状にし、これを集電体に圧着する。湿式法では、正極活物質、結着材、及び必要に応じて用いられる導電材、増粘材等の他の材料を分散溶媒に溶解又は分散させてスラリーとし、これを集電体に塗布し、乾燥する。
 正極活物質は一般に粒子状であり、粒子の形状としては、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。
The method for forming the positive electrode mixture layer is not particularly limited. For example, it is formed by a dry method or a wet method. In the dry method, a positive electrode active material, a binder, and other materials such as a conductive material and a thickener used as needed are mixed without using a dispersion solvent to form a sheet, which is used as a current collector. Crimp. In the wet method, a positive electrode active material, a binder, and other materials such as a conductive material and a thickener used as necessary are dissolved or dispersed in a dispersion solvent to form a slurry, which is applied to a current collector. ,dry.
The positive electrode active material is generally in the form of particles, and examples of the shape of the particles include lumps, polyhedrons, spheres, ellipsoids, plates, needles, and columns.
 正極活物質の粒子のメジアン径D50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径D50)は、次の範囲で調整可能である。正極活物質のタップ密度(充填性)が低すぎず、所望のタップ密度を得る観点からは、正極活物質のD50は1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることが更に好ましい。また、粒子内のリチウムイオンの拡散に要する時間が長くなって電池性能が低下するのを抑制し、かつ、正極合材層を形成するためのスラリーの塗布性を良好にする観点からは、正極活物質のD50は30μm以下であることが好ましく、25μm以下であることがより好ましく、15μm以下であることが更に好ましい。なお、メジアン径D50は、レーザー回折・散乱法により求めた体積基準の粒度分布において小径側からの積算が50%となるときの値である。 The median diameter D50 of the positive electrode active material particles (when the primary particles are aggregated to form secondary particles, the median diameter D50 of the secondary particles) can be adjusted within the following range. From the viewpoint of obtaining a desired tap density without the tap density (fillability) of the positive electrode active material being too low, D50 of the positive electrode active material is preferably 1 μm or more, more preferably 3 μm or more, and more preferably 5 μm or more. More preferably. In addition, from the viewpoint of suppressing the deterioration of battery performance due to the long time required for diffusion of lithium ions in the particles, and improving the coating property of the slurry for forming the positive electrode mixture layer, the positive electrode The D50 of the active material is preferably 30 μm or less, more preferably 25 μm or less, and even more preferably 15 μm or less. The median diameter D50 is a value when the integration from the small diameter side becomes 50% in the volume-based particle size distribution obtained by the laser diffraction / scattering method.
 正極活物質の粒子のBET比表面積は、電池性能の低下を抑制する観点からは0.2m/g以上であることが好ましく、0.3m/g以上であることがより好ましく、0.4m/g以上であることが更に好ましい。また、結着材、導電材等の他の材料との混合性の低下を抑制する観点からは、4.0m/g以下であることが好ましく、2.5m/g以下であることがより好ましく、1.5m/g以下であることが更に好ましい。BET比表面積は、BET法により求められた比表面積(単位gあたりの面積)である。 The BET specific surface area of the positive electrode active material particles is preferably 0.2 m 2 / g or more, more preferably 0.3 m 2 / g or more, from the viewpoint of suppressing a decrease in battery performance. More preferably, it is 4 m 2 / g or more. Further, from the viewpoint of suppressing a decrease in miscibility with other materials such as a binder and a conductive material, it is preferably 4.0 m 2 / g or less, and is 2.5 m 2 / g or less. More preferably, it is still more preferably 1.5 m 2 / g or less. The BET specific surface area is a specific surface area (area per unit g) determined by the BET method.
 正極合材層が導電材を含む場合、導電材は特に制限されず、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料などが挙げられる。これらの導電材は1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。 When the positive electrode mixture layer includes a conductive material, the conductive material is not particularly limited, and is a metal material such as copper or nickel; graphite such as natural graphite or artificial graphite; graphite black such as acetylene black; needle coke or the like Examples thereof include carbonaceous materials such as amorphous carbon. These conductive materials may be used alone or in combination of two or more.
 正極合材層に用いられる結着材は、特に限定されない。結着材として具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。結着材は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。正極の安定性の観点から、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子を用いることが好ましい。 The binder used for the positive electrode mixture layer is not particularly limited. Specific examples of the binder include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene) Rubber), fluoropolymer, isoprene rubber, butadiene rubber, ethylene-propylene rubber, and other rubbery polymers; styrene / butadiene / styrene block copolymers or hydrogenated products thereof, EPDM (ethylene / propylene / diene terpolymers) ), Thermoplastic elastomeric polymers such as styrene / ethylene / butadiene / ethylene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, poly Soft resin polymers such as vinyl acid, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer; polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene Fluorine polymers such as ethylene copolymers and polytetrafluoroethylene / vinylidene fluoride copolymers; polymer compositions having ion conductivity of alkali metal ions (particularly lithium ions), and the like. A binder may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of the stability of the positive electrode, it is preferable to use a fluorine-based polymer such as polyvinylidene fluoride (PVdF) or a polytetrafluoroethylene / vinylidene fluoride copolymer.
 湿式法により正極合材層を形成する場合、スラリーを調製するために用いる分散溶媒は特に制限されず、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒としては、水、アルコールと水との混合溶媒等が挙げられ、有機系溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、増粘材を用いることが好ましい。上記分散溶媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 When the positive electrode mixture layer is formed by a wet method, the dispersion solvent used for preparing the slurry is not particularly limited, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water, a mixed solvent of alcohol and water, and examples of the organic solvent include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, and acrylic. Methyl acid, diethyltriamine, N, N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methyl Naphthalene, hexane, etc. are mentioned. In particular, when an aqueous solvent is used, it is preferable to use a thickener. The said dispersion solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
 増粘材は特に制限されない。例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩が挙げられる。これらの増粘材は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The thickener is not particularly limited. Examples thereof include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These thickeners may be used alone or in combination of two or more.
 集電体上に形成された正極合材層は、正極活物質の充填密度を向上させるため、ハンドプレス、ローラープレス等により圧密化することが好ましい。
 前記のように圧密化した正極合材層の密度は、入出力特性及び安全性の更なる向上の観点からは、2.4g/cm~2.8g/cmが好ましく、2.45g/cm~2.7g/cmがより好ましい。
The positive electrode mixture layer formed on the current collector is preferably consolidated by a hand press, a roller press or the like in order to improve the packing density of the positive electrode active material.
The density of compacted the positive-electrode mixture layer as described above, from the viewpoint of output characteristics and further improvement of safety, is preferably 2.4g / cm 3 ~ 2.8g / cm 3, 2.45g / More preferably, it is cm 3 to 2.7 g / cm 3 .
 正極用の集電体の材質は特に制限されない。例えば、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料、及びカーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料が好ましく、アルミニウムがより好ましい。 The material of the current collector for the positive electrode is not particularly limited. Examples thereof include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum, and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials are preferable, and aluminum is more preferable.
 集電体の形状は特に制限されず、種々の形状に加工された材料を用いることができる。金属材料を用いる場合の形状としては、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。炭素質材料を用いる場合の形状としては、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属箔又は炭素薄膜を用いることが好ましい。金属箔又は炭素薄膜は、必要に応じてメッシュ状に形成してもよい。 The shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Examples of the shape in the case of using a metal material include a metal foil, a metal cylinder, a metal coil, a metal plate, an expanded metal, a punch metal, and a foam metal. Examples of the shape when using a carbonaceous material include a carbon plate, a carbon thin film, and a carbon cylinder. Among these, it is preferable to use a metal foil or a carbon thin film. The metal foil or carbon thin film may be formed in a mesh shape as necessary.
2.負極
 本実施の形態の負極(負極板)は、集電体及びその少なくとも一方の面上に形成された負極合材層よりなる。負極合材層は、負極活物質、結着材、及び必要に応じて用いられる増粘材等を含有する層である。
2. Negative electrode The negative electrode (negative electrode plate) of the present embodiment is composed of a current collector and a negative electrode mixture layer formed on at least one surface thereof. The negative electrode mixture layer is a layer containing a negative electrode active material, a binder, a thickener used as necessary, and the like.
 本実施の形態においては、負極活物質は易黒鉛化炭素を含む。易黒鉛化炭素(ソフトカーボンという場合もある)は、難黒鉛化炭素(ハードカーボンという場合もある)とともに非晶質炭素に分類される。非晶質炭素とは、結晶構造が乱れた非黒鉛系の炭素を意味する。一般に、易黒鉛化炭素は2000℃~3000℃の温度条件下で黒鉛になりやすい非晶質炭素であり、難黒鉛化炭素は2000℃~3000℃の温度条件下で黒鉛になりにくい非晶質炭素である。 In the present embodiment, the negative electrode active material includes graphitizable carbon. Graphitizable carbon (sometimes called soft carbon) is classified as amorphous carbon together with non-graphitizable carbon (sometimes called hard carbon). Amorphous carbon means non-graphite carbon with a disordered crystal structure. Generally, graphitizable carbon is amorphous carbon that tends to become graphite under temperature conditions of 2000 ° C. to 3000 ° C., and non-graphitizable carbon is amorphous that is difficult to become graphite under temperature conditions of 2000 ° C. to 3000 ° C. Carbon.
 本明細書においては、易黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002の値が0.36nm未満である非晶質炭素と定義される。難黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002の値が0.36nm以上である非晶質炭素と定義される。 In the present specification, graphitizable carbon is defined as amorphous carbon having a C-axis direction interplanar spacing d002 value of less than 0.36 nm obtained by an X-ray wide angle diffraction method. Non-graphitizable carbon is defined as amorphous carbon having a surface spacing d002 value in the C-axis direction of 0.36 nm or more obtained by an X-ray wide angle diffraction method.
 電池特性の観点からは、易黒鉛化炭素のX線広角回折法により得られるC軸方向の面間隔d002の値は、0.34nm以上0.36nm未満であることが好ましく、0.341nm以上0.355nm以下であることがより好ましく、0.342nm以上0.35nm以下であることが更に好ましい。 From the viewpoint of battery characteristics, the value of the interplanar spacing d002 obtained by the X-ray wide angle diffraction method of graphitizable carbon is preferably 0.34 nm or more and less than 0.36 nm, and 0.341 nm or more and 0. More preferably, the thickness is 355 nm or less, and further preferably 0.342 nm or more and 0.35 nm or less.
 易黒鉛化炭素は粒子状であり、その平均粒子径は2μm~50μmであることが好ましい。平均粒子径が2μm以上であると、比表面積を適正な範囲とすることができ、リチウムイオン二次電池の初回充放電効率が優れる傾向にあり、且つ、粒子同士の接触が良好となり入出力特性に優れる傾向がある。一方、平均粒子径が50μm以下であると、電極面に凸凹が発生しにくく電池の短絡を抑制できる傾向にあり、且つ、粒子表面から内部へのLiの拡散距離が比較的短くなるためリチウムイオン二次電池の入出力特性が向上する傾向にある。易黒鉛化炭素の平均粒子径は、5μm~30μmであることがより好ましく、10μm~20μmであることが更に好ましい。 Easily graphitized carbon is in the form of particles, and the average particle size is preferably 2 μm to 50 μm. When the average particle size is 2 μm or more, the specific surface area can be in an appropriate range, the initial charge / discharge efficiency of the lithium ion secondary battery tends to be excellent, and the contact between the particles is good and the input / output characteristics are good. Tend to be better. On the other hand, if the average particle size is 50 μm or less, unevenness on the electrode surface is unlikely to occur and the short circuit of the battery tends to be suppressed, and the diffusion distance of Li from the particle surface to the inside becomes relatively short, so that lithium ions The input / output characteristics of the secondary battery tend to improve. The average particle diameter of graphitizable carbon is more preferably 5 μm to 30 μm, and still more preferably 10 μm to 20 μm.
 本明細書において易黒鉛化炭素の平均粒子径は、界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製の「SALD-3000J」)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))とする。 In this specification, the average particle diameter of graphitizable carbon is determined by dispersing a sample in purified water containing a surfactant, and measuring a laser diffraction particle size distribution analyzer (for example, “SALD-3000J” manufactured by Shimadzu Corporation). In the volume-based particle size distribution measured in (1), the value (median diameter (D50)) when the integration from the small diameter side is 50% is used.
 易黒鉛化炭素の製造方法は、特に制限されない。例えば、石油ピッチ、ポリアセン、ポリパラフェニレン、ポリフルフリルアルコール等の加熱により炭素化しうる物質を熱処理することにより製造することができる。この際、熱処理の温度を変えることによって、易黒鉛化炭素としたり、難黒鉛化炭素としたりすることができる。例えば、500℃~800℃程度の熱処理は難黒鉛化炭素の製造に適しており、800℃~1000℃程度の熱処理は易黒鉛化炭素の製造に適している。 The method for producing graphitizable carbon is not particularly limited. For example, it can be produced by heat-treating a substance that can be carbonized by heating, such as petroleum pitch, polyacene, polyparaphenylene, polyfurfuryl alcohol, and the like. At this time, by changing the temperature of the heat treatment, it can be made graphitizable carbon or non-graphitizable carbon. For example, heat treatment at about 500 ° C. to 800 ° C. is suitable for producing non-graphitizable carbon, and heat treatment at about 800 ° C. to 1000 ° C. is suitable for producing graphitizable carbon.
 負極活物質は、炭素材料として易黒鉛化炭素のみを含んでも、難黒鉛化炭素及び黒鉛からなる群より選択される少なくとも一方と易黒鉛化炭素とを併用してもよい。難黒鉛化炭素及び黒鉛からなる群より選択される少なくとも一方と易黒鉛化炭素とを併用する場合、易黒鉛化炭素の含有率は、負極活物質の全量に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。 The negative electrode active material may contain only graphitizable carbon as a carbon material, or at least one selected from the group consisting of non-graphitizable carbon and graphite may be used in combination with graphitizable carbon. When at least one selected from the group consisting of non-graphitizable carbon and graphite and graphitizable carbon are used in combination, the content of graphitizable carbon is 50% by mass or more based on the total amount of the negative electrode active material. It is preferably 70% by mass or more, more preferably 90% by mass or more.
 負極活物質は、炭素材料以外の材料を含んでもよい。炭素材料以外の材料は特に制限されず、例えば、酸化錫、酸化ケイ素等の酸化物、金属複合酸化物、リチウム単体、リチウムアルミニウム合金等のリチウム合金、及びリチウムと合金を形成可能な材料(Sn、Si等)が挙げられる。これらの材料は、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。 The negative electrode active material may include a material other than the carbon material. The material other than the carbon material is not particularly limited. For example, an oxide such as tin oxide and silicon oxide, a metal composite oxide, a lithium simple substance, a lithium alloy such as a lithium aluminum alloy, and a material capable of forming an alloy with lithium (Sn , Si, etc.). These materials may be used alone or in combination of two or more.
 負極用の集電体の材質は特に制限されず、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工のし易さとコストの観点から銅が好ましい。
 集電体の形状は特に制限されず、種々の形状に加工された材料を用いることができる。具体的には、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、金属箔が好ましく、銅箔がより好ましい。
The material of the current collector for the negative electrode is not particularly limited, and examples thereof include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is preferable from the viewpoint of ease of processing and cost.
The shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples include metal foil, metal cylinder, metal coil, metal plate, expanded metal, punch metal, and foam metal. Especially, metal foil is preferable and copper foil is more preferable.
 負極活物質を用いて形成した負極合材層の構成に特に制限はないが、負極合材層の密度の範囲は次のとおりである。負極合材層の密度の下限は、好ましくは0.7g/cm以上、より好ましくは0.8g/cm以上、さらに好ましくは0.9g/cm以上であり、上限は、好ましくは2g/cm以下、より好ましくは1.9g/cm以下、さらに好ましくは1.8g/cm以下、特に好ましくは1.7g/cm以下である。 Although there is no restriction | limiting in particular in the structure of the negative mix layer formed using the negative electrode active material, The range of the density of a negative mix layer is as follows. The lower limit of the density of the negative electrode mixture layer is preferably 0.7 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, still more preferably 0.9 g / cm 3 or more, and the upper limit is preferably 2 g. / Cm 3 or less, more preferably 1.9 g / cm 3 or less, still more preferably 1.8 g / cm 3 or less, and particularly preferably 1.7 g / cm 3 or less.
 負極合材層の形成方法は特に制限されない。例えば、正極合材層と同様に乾式法又は湿式法により形成することができる。
 負極合材層に含まれる結着材は特に制限されない。例えば、正極合材層に用いられる結着材として例示したものから選択することができる。
 負極合材層を湿式法により形成する場合、スラリーの調製に用いられる分散溶媒は特に制限されない。例えば、正極合材層に用いられる分散溶媒として例示したものから選択することができる。
 負極合材層が増粘剤を含む場合、増粘剤は特に制限されない。例えば、正極合材層に用いられる増粘剤として例示したものから選択することができる。
The method for forming the negative electrode mixture layer is not particularly limited. For example, it can be formed by a dry method or a wet method similarly to the positive electrode mixture layer.
The binder contained in the negative electrode mixture layer is not particularly limited. For example, it can select from what was illustrated as a binder used for a positive mix layer.
When the negative electrode mixture layer is formed by a wet method, the dispersion solvent used for preparing the slurry is not particularly limited. For example, it can select from what was illustrated as a dispersion | distribution solvent used for a positive electrode compound material layer.
When the negative electrode mixture layer includes a thickener, the thickener is not particularly limited. For example, it can select from what was illustrated as a thickener used for a positive mix layer.
3.電解液
 本実施の形態の電解液は、電解質としてLiFSIを含み、その含有率が電解質の全量を基準にして70質量%以下である。電解液は、電解質と、これを溶解する非水系溶媒とを含み、必要に応じて添加材等を含んでもよい。
3. Electrolytic Solution The electrolytic solution of the present embodiment contains LiFSI as an electrolyte, and the content thereof is 70% by mass or less based on the total amount of the electrolyte. The electrolytic solution includes an electrolyte and a non-aqueous solvent that dissolves the electrolyte, and may include an additive or the like as necessary.
 LiFSIは、LiN(FSO)で表されるリチウム塩である。LiFSIの含有率は、サイクル特性、保存特性及び入力特性の観点からは、電解質の全量を基準にして60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。LiFSIの含有率の下限は特に制限されないが、サイクル特性、保存特性及び入力特性の観点からは、電解質の全量を基準にして1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、20質量%以上であることが特に好ましい。 LiFSI is a lithium salt represented by LiN (FSO 2 ) 2 . The content of LiFSI is preferably 60% by mass or less, more preferably 50% by mass or less, and more preferably 40% by mass from the viewpoint of cycle characteristics, storage characteristics, and input characteristics, based on the total amount of the electrolyte. More preferably, it is as follows. The lower limit of the content of LiFSI is not particularly limited, but from the viewpoint of cycle characteristics, storage characteristics, and input characteristics, it is preferably 1% by mass or more, preferably 5% by mass or more based on the total amount of the electrolyte. More preferably, it is more preferably 10% by mass or more, and particularly preferably 20% by mass or more.
 電解液は、LiFSI以外の電解質を含み、その含有率が電解質の全量を基準にして30質量%以上である。
 LiFSI以外の電解質は、リチウムイオン二次電池用の電解液の電解質として使用可能なものであれば特に制限されない。例えば、以下に示す無機リチウム塩、含フッ素有機リチウム塩、及びオキサラトボレート塩が挙げられる。
 無機リチウム塩としては、LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩、LiClO、LiBrO、LiIO等の過ハロゲン酸塩、LiAlCl等の無機塩化物塩などが挙げられる。
 含フッ素有機リチウム塩としては、LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩などが挙げられる。
 オキサラトボレート塩としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が挙げられる。
 これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
The electrolytic solution contains an electrolyte other than LiFSI, and the content thereof is 30% by mass or more based on the total amount of the electrolyte.
The electrolyte other than LiFSI is not particularly limited as long as it can be used as an electrolyte of an electrolytic solution for a lithium ion secondary battery. For example, the following inorganic lithium salt, fluorine-containing organic lithium salt, and oxalatoborate salt can be mentioned.
Examples of the inorganic lithium salt, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6 inorganic fluoride salts, such as, LiClO 4, Libro 4, perhalogenate of LiIO 4, etc., and the like inorganic chloride salts such as LiAlCl 4 It is done.
Examples of the fluorine-containing organic lithium salt include perfluoroalkane sulfonates such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C Perfluoroalkanesulfonylimide salts such as 4 F 9 SO 2 ); perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 2 CF 3 ) 3 ] and other fluoroalkyl fluorophosphates.
Examples of the oxalatoborate salt include lithium bis (oxalato) borate and lithium difluorooxalatoborate.
These lithium salts may be used alone or in combination of two or more.
 電池特性の観点からは、電解液はLiFSI以外の電解質として無機リチウム塩を含むことが好ましく、無機フッ化物塩を含むことがより好ましく、LiPFを含むことが更に好ましい。 From the viewpoint of battery characteristics, the electrolytic solution preferably includes an inorganic lithium salt as an electrolyte other than LiFSI, more preferably includes an inorganic fluoride salt, and further preferably includes LiPF 6 .
 電解液中の電解質の濃度に特に制限はない。例えば、電解液の電気伝導率を確保する観点からは、電解液中の電解質(複数種の電解質の合計)の濃度は0.5mol/L以上であることが好ましく、0.6mol/L以上であることがより好ましく、0.7mol/L以上であることが更に好ましい。また、電解液の粘度の上昇を抑制して電気伝導度の低下を抑制する観点からは、電解液中の電解質の濃度は2mol/L以下であることが好ましく、1.8mol/L以下であることがより好ましく、1.7mol/L以下であることが更に好ましい。 There is no particular limitation on the concentration of the electrolyte in the electrolytic solution. For example, from the viewpoint of ensuring the electrical conductivity of the electrolytic solution, the concentration of the electrolyte (total of a plurality of types of electrolytes) in the electrolytic solution is preferably 0.5 mol / L or more, and is 0.6 mol / L or more. More preferably, it is 0.7 mol / L or more. Further, from the viewpoint of suppressing the increase in the viscosity of the electrolytic solution and suppressing the decrease in electrical conductivity, the concentration of the electrolyte in the electrolytic solution is preferably 2 mol / L or less, and is 1.8 mol / L or less. More preferred is 1.7 mol / L or less.
 非水溶媒は特に制限されない。例えば、環状カーボネート、鎖状カーボネート、鎖状エステル、環状エーテル、鎖状エーテル及び環状スルホンが挙げられ、1種を単独で用いても2種以上を併用してもよい。 The non-aqueous solvent is not particularly limited. Examples include cyclic carbonates, chain carbonates, chain esters, cyclic ethers, chain ethers, and cyclic sulfones, and these may be used alone or in combination of two or more.
 環状カーボネートとしては、環状カーボネートを構成するアルキレン基の炭素数が2~6のものが好ましく、2~4のものがより好ましい。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートが挙げられる。中でも、エチレンカーボネート及びプロピレンカーボネートが好ましい。
 鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、2つのアルキル基の炭素数がそれぞれ1~5であるジアルキルカーボネートがより好ましく、2つのアルキル基の炭素数がそれぞれ1~4であるジアルキルカーボネートが更に好ましい。ジアルキルカーボネートとしては、2つのアルキル基の炭素数が同じであるジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート等の対称鎖状カーボネート、及び2つのアルキル基の炭素数が異なるエチルメチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート等の非対称鎖状カーボネートが挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート及びエチルメチルカーボネートが好ましい。
 鎖状エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。中でも、低温特性改善の観点から酢酸メチルを用いることが好ましい。
 環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
 鎖状エーテルとしては、ジメトキシエタン、ジメトキシメタン等が挙げられる。
 環状スルホンとしては、スルホラン、3-メチルスルホラン等が挙げられる。
As the cyclic carbonate, an alkylene group constituting the cyclic carbonate preferably has 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms. Examples thereof include ethylene carbonate, propylene carbonate, and butylene carbonate. Of these, ethylene carbonate and propylene carbonate are preferable.
The chain carbonate is preferably a dialkyl carbonate, more preferably a dialkyl carbonate in which the two alkyl groups each have 1 to 5 carbon atoms, and even more preferably a dialkyl carbonate in which the two alkyl groups each have 1 to 4 carbon atoms. . Dialkyl carbonates include symmetric chain carbonates such as dimethyl carbonate, diethyl carbonate and di-n-propyl carbonate in which two alkyl groups have the same carbon number, and ethyl methyl carbonate and methyl having two different alkyl groups in carbon number. Examples include asymmetric chain carbonates such as -n-propyl carbonate and ethyl-n-propyl carbonate. Of these, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable.
Examples of chain esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate. Among them, it is preferable to use methyl acetate from the viewpoint of improving the low temperature characteristics.
Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like.
Examples of chain ethers include dimethoxyethane and dimethoxymethane.
Examples of the cyclic sulfone include sulfolane and 3-methylsulfolane.
 電池特性の観点からは、非水溶媒は、環状カーボネート及び鎖状カーボネートからなる群より選択される少なくとも1種を含むことがより好ましい。 From the viewpoint of battery characteristics, the nonaqueous solvent more preferably contains at least one selected from the group consisting of cyclic carbonates and chain carbonates.
 非水溶媒が環状カーボネート及び鎖状カーボネートからなる群より選択される少なくとも1種を含む場合、その含有率は、電池特性の観点から、非水溶媒全量を基準として、85質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。 When the nonaqueous solvent contains at least one selected from the group consisting of cyclic carbonates and chain carbonates, the content is 85% by mass or more based on the total amount of the nonaqueous solvent from the viewpoint of battery characteristics. Is more preferable, 90 mass% or more is more preferable, and 95 mass% or more is further preferable.
 非水溶媒が環状カーボネート及び鎖状カーボネートからなる群より選択される少なくとも1種を含む場合、環状カーボネートと鎖状カーボネートの混合割合は、電池特性の観点から、環状カーボネート/鎖状カーボネート(体積比)が1/9~6/4であることが好ましく、2/8~5/5であることがより好ましい。 When the non-aqueous solvent contains at least one selected from the group consisting of cyclic carbonates and chain carbonates, the mixing ratio of the cyclic carbonates and the chain carbonates is determined by the cyclic carbonate / chain carbonate (volume ratio) from the viewpoint of battery characteristics. ) Is preferably 1/9 to 6/4, and more preferably 2/8 to 5/5.
 非水溶媒は、電池特性を向上させる観点から、添加剤を含んでいてもよい。
 添加剤は特に制限されず、例えば、環状スルホン酸エステル、環状カルボン酸エステル、フッ素含有環状カーボネート、分子内に不飽和結合を有する化合物が挙げられる。電池の長寿命化の観点からは、環状スルホン酸エステル、フッ素含有環状カーボネート、及び分子内に不飽和結合を有する化合物からなる群より選択される少なくとも1種を含むことが好ましい。
The non-aqueous solvent may contain an additive from the viewpoint of improving battery characteristics.
The additive is not particularly limited, and examples thereof include cyclic sulfonic acid esters, cyclic carboxylic acid esters, fluorine-containing cyclic carbonates, and compounds having an unsaturated bond in the molecule. From the viewpoint of extending the life of the battery, it is preferable to include at least one selected from the group consisting of cyclic sulfonate esters, fluorine-containing cyclic carbonates, and compounds having an unsaturated bond in the molecule.
 環状スルホン酸エステルとしては、1,3-プロパンスルトン、1-メチル-1,3-プロパンスルトン、3-メチル-1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、1,4-ブテンスルトン等が挙げられる。中でも、1,3-プロパンスルトン、1,4-ブタンスルトンがより直流抵抗を低減できる観点から好ましい。 Examples of cyclic sulfonate esters include 1,3-propane sultone, 1-methyl-1,3-propane sultone, 3-methyl-1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, 1 , 4-butene sultone and the like. Among these, 1,3-propane sultone and 1,4-butane sultone are preferable from the viewpoint of reducing the DC resistance.
 フッ素含有環状カーボネートとしては、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等が挙げられる。
 分子内に不飽和結合を有する化合物としては、ビニレンカーボネート等が挙げられる。
Examples of the fluorine-containing cyclic carbonate include fluoroethylene carbonate, difluoroethylene carbonate, trifluoroethylene carbonate, tetrafluoroethylene carbonate, and trifluoropropylene carbonate.
Examples of the compound having an unsaturated bond in the molecule include vinylene carbonate.
 非水溶媒は、必要に応じて過充電防止材、負極皮膜形成材、正極保護材、高入出力材等の他の添加剤を含んでもよい。 The non-aqueous solvent may contain other additives such as an overcharge preventing material, a negative electrode film forming material, a positive electrode protective material, and a high input / output material as required.
4.セパレータ
 セパレータは、正極と負極との間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性と、負極側における還元性に対する耐性とを備えるものであれば特に制限されない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物、ガラス繊維等が挙げられる。
4). Separator A separator is particularly suitable if it has ion permeability while electronically insulating between the positive electrode and the negative electrode, and has oxidizability on the positive electrode side and resistance to reducibility on the negative electrode side. Not limited. Examples of the material (material) of the separator that satisfies such characteristics include resins, inorganic substances, and glass fibers.
 樹脂としては、オレフィンポリマー、フッ素ポリマー、セルロースポリマー、ポリイミド、ナイロン等が挙げられる。非水電解液に対して安定で、保液性に優れるという観点からは、オレフィンポリマーが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンがより好ましい。 Examples of the resin include olefin polymer, fluoropolymer, cellulose polymer, polyimide, nylon and the like. From the viewpoint of being stable with respect to the non-aqueous electrolyte and having excellent liquid retention properties, olefin polymers are preferable, and polyolefins such as polyethylene and polypropylene are more preferable.
 無機物としては、アルミナ、二酸化珪素等の酸化物、窒化アルミニウム、窒化珪素等の窒化物、硫酸バリウム、硫酸カルシウム等の硫酸塩などが挙げられる。
 セパレータの形状としては、多孔性シート、不織布等が挙げられる。
Examples of inorganic substances include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate.
Examples of the shape of the separator include a porous sheet and a nonwoven fabric.
5.その他の構成部材
 リチウムイオン二次電池は、必要に応じて正極、負極、電解液及びセパレータ以外のその他の構成部材を有していてもよい。例えば、電池内部の圧力の上昇を抑制するために開裂弁を設けてもよい。開裂弁が開放することで、電池内部の圧力上昇を抑制でき、安全性を向上させることができる。
 また、温度上昇に伴い不活性ガス(二酸化炭素等)を放出する構成部を設けてもよい。このような構成部を設けることで、電池内部の温度が上昇した場合に、不活性ガスの発生により速やかに開裂弁を開けることができ、安全性を向上させることができる。
5). Other components The lithium ion secondary battery may have other components other than a positive electrode, a negative electrode, electrolyte solution, and a separator as needed. For example, a cleavage valve may be provided to suppress an increase in pressure inside the battery. By opening the cleavage valve, it is possible to suppress an increase in pressure inside the battery and to improve safety.
Moreover, you may provide the structure part which discharge | releases inert gas (carbon dioxide etc.) with a temperature rise. By providing such a component, when the temperature inside the battery rises, the cleavage valve can be opened quickly due to the generation of inert gas, and safety can be improved.
6.リチウムイオン二次電池の構成
(リチウムイオン二次電池の負極と正極の容量比)
 本発明において、負極と正極との容量比(負極容量/正極容量)は、安全性とエネルギー密度の観点からは、1以上1.3未満であることが好ましく、1.05~1.25であることがより好ましく、1.1~1.2であることが更に好ましい。負極と正極との容量比が1.3未満であると、充電した際に正極電位が4.2Vよりも高くなりにくく、安全性がより高まる傾向にある。なお、このときの正極電位は対Li電位を意味する。
6). Configuration of lithium ion secondary battery (capacity ratio of negative electrode to positive electrode of lithium ion secondary battery)
In the present invention, the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) is preferably 1 or more and less than 1.3 from the viewpoint of safety and energy density, and is 1.05 to 1.25. More preferably, it is more preferably 1.1 to 1.2. When the capacity ratio between the negative electrode and the positive electrode is less than 1.3, the positive electrode potential is less likely to be higher than 4.2 V when charged, and the safety tends to be further increased. In addition, the positive electrode potential at this time means a potential against Li.
 ここで、負極容量とは、[負極の放電容量]を示し、正極容量とは、[正極の初回充電容量-負極又は正極のどちらか大きい方の不可逆容量]を示す。[負極の放電容量]とは、負極活物質に挿入されているリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。[正極の初回充電容量]とは、正極活物質からリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。 Here, the negative electrode capacity means [negative electrode discharge capacity], and the positive electrode capacity means [positive charge capacity of positive electrode minus negative electrode or positive electrode, whichever is greater]. [Discharge capacity of negative electrode] is defined as a value calculated by a charge / discharge device when lithium ions inserted into the negative electrode active material are desorbed. The “initial charge capacity of the positive electrode” is defined as that calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
 負極と正極の容量比は、例えば、「リチウムイオン二次電池の放電容量/負極の放電容量」からも算出することができる。リチウムイオン二次電池の放電容量は、例えば、4.2V、0.1C~0.5C、終止時間を2~10時間とする定電流定電圧(CCCV)充電を行った後、0.1C~0.5Cで2.7Vまで定電流(CC)放電したときの条件で測定できる。負極の放電容量は、前記リチウムイオン二次電池の放電容量を測定した負極を所定の面積に切断し、対極としてリチウム金属を用い、電解液を含浸させたセパレータを介して単極セルを作製し、0V、0.1C、終止電流0.01Cで定電流定電圧(CCCV)充電を行った後、0.1Cで1.5Vまで定電流(CC)放電したときの条件で所定面積当たりの放電容量を測定し、これを前記リチウムイオン電池の負極として用いた総面積に換算することで算出できる。この単極セルにおいて、負極活物質にリチウムイオンが挿入される方向を充電、負極活物質に挿入されているリチウムイオンが脱離する方向を放電、と定義する。上記の定義において、Cは[電流値(A)/電池の放電容量(Ah)]を意味する。 The capacity ratio between the negative electrode and the positive electrode can be calculated from, for example, “discharge capacity of lithium ion secondary battery / discharge capacity of negative electrode”. The discharge capacity of the lithium ion secondary battery is, for example, 4.2 V, 0.1 C to 0.5 C, 0.1 C to 0.5 C after performing constant current constant voltage (CCCV) charging with a termination time of 2 to 10 hours. It can be measured under conditions when a constant current (CC) is discharged to 2.7 V at 0.5 C. For the discharge capacity of the negative electrode, the negative electrode whose discharge capacity was measured for the lithium ion secondary battery was cut into a predetermined area, lithium metal was used as the counter electrode, and a single electrode cell was prepared via a separator impregnated with an electrolyte. , 0V, 0.1C, constant current constant voltage (CCCV) charge at a final current of 0.01C, then discharge per predetermined area under the condition of constant current (CC) discharge to 1.5V at 0.1C It can be calculated by measuring the capacity and converting this to the total area used as the negative electrode of the lithium ion battery. In this single electrode cell, the direction in which lithium ions are inserted into the negative electrode active material is defined as charging, and the direction in which lithium ions inserted into the negative electrode active material are desorbed is defined as discharging. In the above definition, C means [current value (A) / battery discharge capacity (Ah)].
(リチウムイオン二次電池の構成例)
 リチウムイオン二次電池の形状は特に制限されず、円筒形、角形、シート型等のいずれであってもよい。例えば、円筒形リチウムイオン二次電池としては、18650型リチウムイオン二次電池が、民生用リチウムイオン二次電池として広く普及している。18650型リチウムイオン二次電池の外径寸法は、直径が18mmで、高さが65mm程度である。
(Configuration example of lithium ion secondary battery)
The shape of the lithium ion secondary battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a sheet shape, and the like. For example, as a cylindrical lithium ion secondary battery, an 18650 type lithium ion secondary battery is widely used as a consumer lithium ion secondary battery. The outer diameter of the 18650 type lithium ion secondary battery is about 18 mm in diameter and about 65 mm in height.
 図1に円筒形のリチウムイオン二次電池の構成例を示す。本構成例のリチウムイオン二次電池1は、帯状の正極2及び負極3がセパレータ4を間に挟んで捲回されてなる電極体5が、円筒形の電池容器6の内部に収容された構造を有する。電池容器6の内部は、図示しない電解液で満たされている。 FIG. 1 shows a configuration example of a cylindrical lithium ion secondary battery. The lithium ion secondary battery 1 of this configuration example has a structure in which an electrode body 5 in which a strip-like positive electrode 2 and a negative electrode 3 are wound with a separator 4 interposed therebetween is housed in a cylindrical battery container 6. Have The inside of the battery container 6 is filled with an electrolyte solution (not shown).
 以下、実施例に基づき本実施の形態をさらに詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。 Hereinafter, the present embodiment will be described in more detail based on examples. The present invention is not limited to the following examples.
[正極の作製]
 正極の作製を以下のようにして行った。正極活物質として、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(BET比表面積が0.4m/g、平均粒子径(D50)が6.5μm)を用いた。この正極活物質に、導電材としてアセチレンブラック(電気化学工業株式会社製、商品名:HS-100、平均粒子径48nm(カタログ値))と、結着材としてポリフッ化ビニリデンのN-メチル-2-ピロリドン(NMP)溶液と、を順次添加し、混合することにより正極材料の混合物を得た。質量比(固形分換算)は、正極活物質:導電材:結着材=90:5:5とした。
 さらに、上記混合物に対し、分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリーを調製した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の両面に、厚みが実質的に均等かつ均質になるように塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。正極合材層の密度は2.5g/cmとした。
[Production of positive electrode]
The positive electrode was produced as follows. As the positive electrode active material, a layered lithium / nickel / manganese / cobalt composite oxide (BET specific surface area of 0.4 m 2 / g, average particle diameter (D50) of 6.5 μm) was used. In this positive electrode active material, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: HS-100, average particle size 48 nm (catalog value)) as a conductive material, and N-methyl-2 of polyvinylidene fluoride as a binder -A pyrrolidone (NMP) solution was sequentially added and mixed to obtain a mixture of positive electrode materials. The mass ratio (in terms of solid content) was positive electrode active material: conductive material: binder = 90: 5: 5.
Further, N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was added to the mixture and kneaded to prepare a slurry. This slurry was applied to both surfaces of a 20 μm thick aluminum foil as a positive electrode current collector so that the thickness was substantially uniform and uniform. Then, the drying process was performed and it consolidated by the press to the predetermined density. The density of the positive electrode mixture layer was 2.5 g / cm 3 .
[負極の作製]
 負極の作製を以下のようにして行った。負極活物質として、易黒鉛化炭素(d002が0.35nm、平均粒子径(D50)が17μm)を用いた。この負極活物質に結着材としてポリフッ化ビニリデンのN-メチル-2-ピロリドン(NMP)溶液を添加した。これらの質量比(固形分換算)は、負極活物質:結着材=92:8とした。これに分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリーを調製した。このスラリーを負極用の集電体である厚さ10μmの圧延銅箔の両面に、厚みが実質的に均等かつ均質になるように塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。負極合材層の密度は1.15g/cmとした。
[Production of negative electrode]
The negative electrode was produced as follows. As the negative electrode active material, graphitizable carbon (d002 is 0.35 nm, average particle diameter (D50) is 17 μm) was used. To this negative electrode active material, an N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride was added as a binder. The mass ratio (in terms of solid content) of these materials was negative electrode active material: binder = 92: 8. To this was added N-methyl-2-pyrrolidone (NMP) as a dispersion solvent and kneaded to prepare a slurry. This slurry was applied to both sides of a rolled copper foil having a thickness of 10 μm, which is a negative electrode current collector, so that the thickness was substantially uniform and uniform. Then, the drying process was performed and it consolidated by the press to the predetermined density. The density of the negative electrode mixture layer was 1.15 g / cm 3 .
 比較例4には、負極活物質として難黒鉛化炭素(d002が0.375nm、平均粒子径(D50)が10μm)を使用した。結着材としてポリフッ化ビニリデンのNMP溶液を使用し、負極活物質と結着剤の質量比(固形分換算)を活物質:結着材=92:8とした。これに分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリーを調製した。このスラリーを負極用の集電体である厚さ10μmの圧延銅箔の両面に、厚みが実質的に均等かつ均質になるように塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。負極合材層の密度は1.0g/cmとした。 In Comparative Example 4, non-graphitizable carbon (d002: 0.375 nm, average particle diameter (D50): 10 μm) was used as the negative electrode active material. An NMP solution of polyvinylidene fluoride was used as the binder, and the mass ratio (in terms of solid content) of the negative electrode active material and the binder was active material: binder = 92: 8. To this was added N-methyl-2-pyrrolidone (NMP) as a dispersion solvent and kneaded to prepare a slurry. This slurry was applied to both sides of a rolled copper foil having a thickness of 10 μm, which is a negative electrode current collector, so that the thickness was substantially uniform and uniform. Then, the drying process was performed and it consolidated by the press to the predetermined density. The density of the negative electrode mixture layer was 1.0 g / cm 3 .
 比較例5には、負極活物質として人造黒鉛(d002が0.337nm、平均粒子径(D50)が20μm)を使用した。結着材としてポリフッ化ビニリデンのNMP溶液を使用し、負極活物質と結着剤の質量比(固形分換算)を負極活物質:結着材=91:9とした。これに分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリーを調製した。このスラリーを負極用の集電体である厚さ10μmの圧延銅箔の両面に、厚みが実質的に均等かつ均質になるように塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。負極合材層の密度は1.4g/cmとした。 In Comparative Example 5, artificial graphite (d002: 0.337 nm, average particle diameter (D50): 20 μm) was used as the negative electrode active material. An NMP solution of polyvinylidene fluoride was used as the binder, and the mass ratio of the negative electrode active material to the binder (in terms of solid content) was negative electrode active material: binder = 91: 9. To this was added N-methyl-2-pyrrolidone (NMP) as a dispersion solvent and kneaded to prepare a slurry. This slurry was applied to both sides of a rolled copper foil having a thickness of 10 μm, which is a negative electrode current collector, so that the thickness was substantially uniform and uniform. Then, the drying process was performed and it consolidated by the press to the predetermined density. The density of the negative electrode mixture layer was 1.4 g / cm 3 .
[電解液の調製] 
 エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)を、体積比(EC:DMC:EMC)が2:3:2となるように混合して、混合溶液を調製した。次いで、その中に電解質として表1に示したリチウム塩を、表1に示した濃度となるように溶解させた。さらに、添加剤としてビニレンカーボネート(VC)を0.8質量%添加して、電解液を調製した。
[Preparation of electrolyte]
Ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio (EC: DMC: EMC) of 2: 3: 2 to prepare a mixed solution. Subsequently, the lithium salt shown in Table 1 as an electrolyte was dissolved therein so as to have a concentration shown in Table 1. Further, 0.8% by mass of vinylene carbonate (VC) was added as an additive to prepare an electrolytic solution.
[リチウムイオン二次電池の作製]
 上記で作製した正極及び負極をそれぞれ所定の大きさに裁断し、その間に厚さ30μmのポリエチレンの単層セパレータを挟んで端から巻き、ロール状の電極体を形成した。正極、負極及びセパレータの長さは、電極体の直径が17.15mmになるように調整した。この電極体に集電用リードを付設し、18650型電池ケースに挿入し、上記で作製した電解液を注入した。最後に電池ケースを密封して、リチウムイオン二次電池を完成させた。
[Production of lithium ion secondary battery]
Each of the positive electrode and the negative electrode prepared above was cut into a predetermined size, and a roll-shaped electrode body was formed by sandwiching a single-layer separator of polyethylene having a thickness of 30 μm between them and winding from the end. The lengths of the positive electrode, the negative electrode, and the separator were adjusted so that the diameter of the electrode body was 17.15 mm. A current collecting lead was attached to this electrode body, inserted into a 18650 type battery case, and the electrolytic solution prepared above was injected. Finally, the battery case was sealed to complete a lithium ion secondary battery.
[電池特性の評価]
 作製した電池は、25℃の環境下において、0.5Cの電流値で4.2Vまで定電流充電を行い、4.2Vに到達した時からその電圧で電流値が0.01Cになるまで定電圧充電を行った。その後、0.5Cの電流値で2.7Vまで定電流放電を行った。また、充放電間には30分の休止を入れた。これを3サイクル実施した。この状態を初期状態とした。次いで、初期状態のリチウムイオン二次電池を用いて下記に示す方法によりサイクル特性、保存特性及び入力特性を評価した。
[Evaluation of battery characteristics]
The manufactured battery is charged at a constant current of up to 4.2 V at a current value of 0.5 C in an environment of 25 ° C., and is constant until the current value reaches 0.01 C at that voltage after reaching 4.2 V. Voltage charging was performed. Thereafter, constant current discharge was performed up to 2.7 V at a current value of 0.5 C. Further, a pause of 30 minutes was put between charge and discharge. This was carried out for 3 cycles. This state was defined as the initial state. Next, cycle characteristics, storage characteristics, and input characteristics were evaluated by the following methods using the lithium ion secondary battery in the initial state.
(サイクル特性)
 初期状態のリチウムイオン二次電池について、25℃環境下において1Cの電流値で4.2Vまで定電流充電し、4.2Vに到達した時から定電圧で電流値が0.01Cになるまで定電圧充電を行って満充電状態とした。その後、2.7Vまで放電させることを繰り返すサイクル試験を行った。また、充放電間には30分の休止を入れた。1サイクル目の充放電において放電容量を測定し、1000サイクル目の充放電時においても放電容量を測定した。そして、1サイクル目の放電容量に対する1000サイクル目の放電容量の割合をサイクル特性(%)として下記式により算出した。結果を表1に示す。
(Cycle characteristics)
The lithium-ion secondary battery in the initial state is charged at a constant current of up to 4.2 V at a current value of 1 C in a 25 ° C. environment, and is constant until the current value reaches 0.01 C at a constant voltage after reaching 4.2 V. The battery was fully charged by voltage charging. Then, the cycle test which repeats discharging to 2.7V was done. Further, a pause of 30 minutes was put between charge and discharge. The discharge capacity was measured during the first cycle of charge / discharge, and the discharge capacity was also measured during the charge / discharge of the 1000th cycle. And the ratio of the discharge capacity of the 1000th cycle with respect to the discharge capacity of the 1st cycle was computed by the following formula as cycle characteristics (%). The results are shown in Table 1.
 サイクル特性(%)=[1000サイクル目の放電容量/1サイクル目の放電容量]×100 Cycle characteristics (%) = [discharge capacity at 1000th cycle / discharge capacity at 1st cycle] × 100
(保存特性)
 初期状態のリチウムイオン二次電池について、25℃の環境下において0.5Cの電流値で4.2Vまで電池を充電し、その後0.5Cの電流値で終止電圧2.7Vの定電流放電による放電を行った。このときの放電時の容量を電流値0.5Cにおける保存前の放電容量とした。その後、0.5Cの電流値で4.2Vまで電池を充電した後に50℃の環境下で2ヶ月放置した。放置後の電池を25℃の環境下において0.5Cの電流値で4.2Vまで電池を充電し、その後0.5Cの電流値で終止電圧2.7Vの定電流放電による放電を行った。このときの放電時の容量を電流値0.5Cにおける保存後の放電容量とした。次いで、以下の式により保存特性(%)を算出した。結果を表1に示す。
(Storage characteristics)
For the lithium ion secondary battery in the initial state, the battery was charged to 4.2 V at a current value of 0.5 C in an environment of 25 ° C., and then by constant current discharge at a current value of 0.5 C and a final voltage of 2.7 V Discharge was performed. The capacity at the time of discharge was defined as the discharge capacity before storage at a current value of 0.5C. Thereafter, the battery was charged to 4.2 V at a current value of 0.5 C and then left for 2 months in an environment of 50 ° C. The battery after standing was charged to 4.2 V at a current value of 0.5 C in an environment of 25 ° C., and then discharged by constant current discharge at a final voltage of 2.7 V at a current value of 0.5 C. The capacity at the time of discharge was defined as the discharge capacity after storage at a current value of 0.5C. Next, the storage property (%) was calculated by the following formula. The results are shown in Table 1.
 保存特性(%)=[電流値0.5Cにおける保存後の放電容量/電流値0.5Cにおける保存前の放電容量]×100 Storage characteristics (%) = [discharge capacity after storage at a current value of 0.5 C / discharge capacity before storage at a current value of 0.5 C] × 100
(入力特性)
 初期状態のリチウムイオン二次電池、及び上記のサイクル特性の評価に記載の条件で充放電を1000サイクル行った後のリチウムイオン二次電池について、直流抵抗(DCR:Direct Current Resistance)を測定してDCR増加率を求めた。DCRはリチウムイオン二次電池の抵抗値を示し、サイクル試験の実施の前後におけるDCR増加率が低いほど、入力特性が高いといえる。
(Input characteristics)
The direct current resistance (DCR) was measured for the lithium ion secondary battery in the initial state and the lithium ion secondary battery after 1000 cycles of charge and discharge under the conditions described in the evaluation of the cycle characteristics. The DCR increase rate was determined. DCR indicates the resistance value of the lithium ion secondary battery. The lower the DCR increase rate before and after the cycle test, the higher the input characteristics.
 DCRは、以下のようにして測定した。まず、リチウムイオン二次電池を2.7Vまで放電した後に、SOC(State of Charge、充電状態)が50%になる電圧まで0.5Cの定電流で充電し、SOCが50%になる電圧に到達した時点からその電圧で電流値が0.01Cになるまで定電圧で充電した。
 その後、0.2Cの電流値で11秒間充電し、0.5Cの電流値でSOCが50%になる電圧まで放電し、1.0Cの電流値で11秒間充電し、0.5Cの電流値でSOCが50%になる電圧まで放電し、1.3Cの電流値で11秒間充電し、0.5Cの電流値でSOCが50%になる電圧まで放電した。このときの充電電流値を横軸、10秒間での電圧変化量を縦軸としてプロットしたときの直線の傾きを、SOC50%におけるDCR(DCR)とした。そして、初期状態のDCRに対する1000サイクル目のDCRの割合(DCR増加率)を入力特性(%)として下記式により算出した。結果を表1に示す。
DCR was measured as follows. First, after discharging the lithium ion secondary battery to 2.7 V, the battery is charged with a constant current of 0.5 C until the SOC (State of Charge, state of charge) becomes 50%, and the SOC becomes 50%. The battery was charged at a constant voltage from the time of arrival until the current value reached 0.01 C at that voltage.
Then, it is charged for 11 seconds at a current value of 0.2C, discharged to a voltage at which the SOC is 50% at a current value of 0.5C, charged for 11 seconds at a current value of 1.0C, and a current value of 0.5C. The battery was discharged to a voltage at which the SOC was 50%, charged for 11 seconds at a current value of 1.3C, and discharged to a voltage at which the SOC was 50% at a current value of 0.5C. The slope of the straight line when the charging current value at this time was plotted with the horizontal axis representing the voltage change amount for 10 seconds and the vertical axis representing the amount of change was defined as DCR (DCR) at 50% SOC. The ratio of the DCR at the 1000th cycle (DCR increase rate) to the DCR in the initial state was calculated as the input characteristic (%) by the following formula. The results are shown in Table 1.
 入力特性(%)=[1000サイクル目のDCR/初期状態のDCR]×100 Input characteristics (%) = [DCR at 1000th cycle / initial state DCR] × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、電解液がLiFSIを電解質として含み、その含有率が電解質全量を基準にして70質量%以下であり、かつ負極活物質として易黒鉛化炭素を用いた実施例1~5のリチウムイオン二次電池は、サイクル特性、保存特性及び入力特性のいずれの評価も比較例より優れていた。よって、本発明のリチウムイオン二次電池はサイクル特性、保存特性及び入力特性に優れることがわかった。 As shown in Table 1, Examples 1 to 5 in which the electrolyte solution contained LiFSI as an electrolyte, the content thereof was 70% by mass or less based on the total amount of the electrolyte, and graphitized carbon was used as the negative electrode active material. The lithium ion secondary battery of the present invention was superior to the comparative examples in all evaluations of cycle characteristics, storage characteristics, and input characteristics. Therefore, it was found that the lithium ion secondary battery of the present invention was excellent in cycle characteristics, storage characteristics, and input characteristics.
1…リチウムイオン二次電池、2…正極、3…負極、4…セパレータ、5…電極体、6…電池容器 DESCRIPTION OF SYMBOLS 1 ... Lithium ion secondary battery, 2 ... Positive electrode, 3 ... Negative electrode, 4 ... Separator, 5 ... Electrode body, 6 ... Battery container

Claims (4)

  1.  正極と、負極と、セパレータと、電解質を含有する電解液と、を含み、
     前記負極は易黒鉛化炭素を負極活物質として含み、
     前記電解質はリチウムビス(フルオロスルホニル)イミドを含み、その含有率が前記電解質の全量を基準にして70質量%以下である、リチウムイオン二次電池。
    A positive electrode, a negative electrode, a separator, and an electrolyte solution containing an electrolyte,
    The negative electrode includes graphitizable carbon as a negative electrode active material,
    The lithium ion secondary battery, wherein the electrolyte contains lithium bis (fluorosulfonyl) imide, and the content thereof is 70% by mass or less based on the total amount of the electrolyte.
  2.  前記電解質は六フッ化リン酸リチウムを更に含む、請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the electrolyte further contains lithium hexafluorophosphate.
  3.  前記電解液における前記電解質の濃度は0.5mol/L~2mol/Lである、請求項1又は請求項2に記載のリチウム二次電池。 3. The lithium secondary battery according to claim 1, wherein a concentration of the electrolyte in the electrolytic solution is 0.5 mol / L to 2 mol / L.
  4.  前記易黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002値が0.34nm以上0.36nm未満である、請求項1~請求項3のいずれか1項に記載のリチウム二次電池。 The graphitizable carbon has a C-axis direction plane distance d002 value obtained by an X-ray wide-angle diffraction method of 0.34 nm or more and less than 0.36 nm, according to any one of claims 1 to 3. Lithium secondary battery.
PCT/JP2016/072566 2015-07-31 2016-08-01 Lithium ion secondary battery WO2017022731A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680023863.8A CN107534186A (en) 2015-07-31 2016-08-01 Lithium rechargeable battery
JP2017533070A JPWO2017022731A1 (en) 2015-07-31 2016-08-01 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015152041 2015-07-31
JP2015-152041 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017022731A1 true WO2017022731A1 (en) 2017-02-09

Family

ID=57943004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072566 WO2017022731A1 (en) 2015-07-31 2016-08-01 Lithium ion secondary battery

Country Status (3)

Country Link
JP (1) JPWO2017022731A1 (en)
CN (1) CN107534186A (en)
WO (1) WO2017022731A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075320A (en) * 2017-10-18 2019-05-16 日立化成株式会社 Lithium ion secondary battery
WO2019167581A1 (en) * 2018-02-28 2019-09-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169763B2 (en) * 2018-04-09 2022-11-11 日産自動車株式会社 Non-aqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007052A (en) * 2012-06-25 2014-01-16 Nippon Shokubai Co Ltd Nonaqueous electrolyte
JP2014194930A (en) * 2013-02-27 2014-10-09 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution, and nonaqueous electrolytic battery arranged by use thereof
WO2015045387A1 (en) * 2013-09-25 2015-04-02 国立大学法人東京大学 Non-aqueous electrolyte secondary battery
JP2015215977A (en) * 2014-05-08 2015-12-03 エス・イー・アイ株式会社 Lithium secondary battery
JP2015230816A (en) * 2014-06-05 2015-12-21 新神戸電機株式会社 Lithium ion battery
WO2016035882A1 (en) * 2014-09-05 2016-03-10 日立マクセル株式会社 Non-aqueous secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140066645A (en) * 2012-11-23 2014-06-02 주식회사 엘지화학 Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007052A (en) * 2012-06-25 2014-01-16 Nippon Shokubai Co Ltd Nonaqueous electrolyte
JP2014194930A (en) * 2013-02-27 2014-10-09 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution, and nonaqueous electrolytic battery arranged by use thereof
WO2015045387A1 (en) * 2013-09-25 2015-04-02 国立大学法人東京大学 Non-aqueous electrolyte secondary battery
JP2015215977A (en) * 2014-05-08 2015-12-03 エス・イー・アイ株式会社 Lithium secondary battery
JP2015230816A (en) * 2014-06-05 2015-12-21 新神戸電機株式会社 Lithium ion battery
WO2016035882A1 (en) * 2014-09-05 2016-03-10 日立マクセル株式会社 Non-aqueous secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075320A (en) * 2017-10-18 2019-05-16 日立化成株式会社 Lithium ion secondary battery
WO2019167581A1 (en) * 2018-02-28 2019-09-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JPWO2019167581A1 (en) * 2018-02-28 2021-02-12 パナソニック株式会社 Non-aqueous electrolyte secondary battery
EP3761427A4 (en) * 2018-02-28 2021-04-28 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP7161519B2 (en) 2018-02-28 2022-10-26 パナソニックホールディングス株式会社 Non-aqueous electrolyte secondary battery
US11527749B2 (en) 2018-02-28 2022-12-13 Panasonic Holdings Corporation Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPWO2017022731A1 (en) 2018-05-31
CN107534186A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2018179817A1 (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6281638B2 (en) Lithium ion battery
JP6213675B2 (en) Lithium ion secondary battery
JP7223221B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and non-aqueous electrolyte battery
WO2014133165A1 (en) Lithium-ion secondary cell
WO2016163282A1 (en) Lithium ion secondary battery
JP6697377B2 (en) Lithium ion secondary battery
JP2018092778A (en) Lithium ion secondary battery
JP2014007010A (en) Lithium secondary battery
JP2016091927A (en) Lithium ion secondary battery
JP2017103024A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2016139548A (en) Lithium ion battery
WO2017022731A1 (en) Lithium ion secondary battery
JP2016076317A (en) Lithium ion secondary battery
WO2016021614A1 (en) Lithium ion cell and method for determinining bad lithium ion cell
CN110168787B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017139087A (en) Lithium ion secondary battery
JP6631535B2 (en) Lithium ion battery
WO2017068985A1 (en) Lithium-ion cell
US20210210784A1 (en) Lithium battery
JP2017199547A (en) Lithium ion secondary battery
JP2017199488A (en) Lithium ion battery
JP6344470B2 (en) Lithium ion secondary battery
JP2015144104A (en) Nonaqueous electrolyte secondary battery
JP2017152311A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533070

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16833010

Country of ref document: EP

Kind code of ref document: A1