WO2017068985A1 - Lithium-ion cell - Google Patents

Lithium-ion cell Download PDF

Info

Publication number
WO2017068985A1
WO2017068985A1 PCT/JP2016/079737 JP2016079737W WO2017068985A1 WO 2017068985 A1 WO2017068985 A1 WO 2017068985A1 JP 2016079737 W JP2016079737 W JP 2016079737W WO 2017068985 A1 WO2017068985 A1 WO 2017068985A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
capacity
lithium
graphite
Prior art date
Application number
PCT/JP2016/079737
Other languages
French (fr)
Japanese (ja)
Inventor
賢匠 星
美枝 阿部
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2017546495A priority Critical patent/JPWO2017068985A1/en
Publication of WO2017068985A1 publication Critical patent/WO2017068985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion battery.
  • a lithium ion battery (lithium ion secondary battery) is a lightweight, high energy density secondary battery, and is used as a power source for portable devices such as notebook computers and mobile phones, taking advantage of its characteristics.
  • Patent Document 1 proposes a negative electrode active material using a mixture of graphite and graphitizable carbon in order to improve output characteristics at low temperatures. .
  • Patent Document 2 discloses a lithium secondary battery having high output and long life by selecting graphitizable carbon among graphite and amorphous carbon and determining the weight ratio of graphite and graphitizable carbon. .
  • Patent Document 1 has room for further improvement in terms of safety such as overcharge resistance.
  • the density of the negative mix layer containing a negative electrode active material was high, and it turned out that sufficient input characteristics are not acquired.
  • This invention is made
  • a lithium ion battery includes a negative electrode including graphite and amorphous carbon, and a positive electrode including a lithium transition metal composite oxide.
  • the content of graphite contained in the negative electrode is 10 to 70% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode, and the capacity ratio, which is the ratio of the negative electrode capacity to the positive electrode capacity, is 1. 3 to 2.2.
  • a lithium ion battery includes a negative electrode including graphite and amorphous carbon, and a positive electrode including a lithium transition metal composite oxide.
  • the state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential is 42 to 60%, and the capacity ratio, which is the ratio of the negative electrode capacity to the positive electrode capacity, is 1.3 to 2.2. .
  • the lithium transition metal composite oxide may be a layered lithium / nickel / manganese / cobalt composite oxide.
  • the lithium ion battery has a positive electrode, a negative electrode, a separator, and an electrolytic solution in a battery container.
  • a separator is disposed between the positive electrode and the negative electrode.
  • lithium ions inserted into the positive electrode active material are desorbed and released into the electrolytic solution.
  • the lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the negative electrode.
  • the lithium ions that have reached the negative electrode are inserted into the negative electrode active material constituting the negative electrode.
  • charging and discharging can be performed by inserting and desorbing lithium ions between the positive electrode active material and the negative electrode active material.
  • a configuration example of an actual lithium ion battery will be described later (see, for example, FIG. 1).
  • the positive electrode (positive electrode plate) of the present embodiment is composed of a current collector and a positive electrode mixture formed thereon.
  • the positive electrode mixture is a layer including at least a positive electrode active material provided on the current collector.
  • the positive electrode active material includes a layered lithium / nickel / manganese / cobalt composite oxide (hereinafter sometimes referred to as NMC).
  • NMC has a high capacity and excellent safety.
  • a mixed active material with NMC and a spinel-type lithium manganese composite oxide hereinafter sometimes referred to as sp-Mn.
  • the content of NMC is preferably 65% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more with respect to the total amount of the positive electrode mixture, from the viewpoint of increasing the capacity of the battery. Is more preferable.
  • NMC it is preferable to use what is represented by the following compositional formula (Formula 1). Li (1 + ⁇ ) Mn x Ni y Co (1-xyz) M z O 2 (Formula 1)
  • (1 + ⁇ ) is a composition ratio of Li (lithium), x is a composition ratio of Mn (manganese), y is a composition ratio of Ni (nickel), and (1-xyz) Indicates the composition ratio of Co (cobalt). z represents the composition ratio of the element M.
  • the composition ratio of O (oxygen) is 2.
  • the elements M are Ti (titanium), Zr (zirconium), Nb (niobium), Mo (molybdenum), W (tungsten), Al (aluminum), Si (silicon), Ga (gallium), Ge (germanium), and Sn. It is at least one element selected from the group consisting of (tin).
  • (1 + ⁇ ) represents the composition ratio of Li
  • (2- ⁇ ) represents the composition ratio of Mn
  • represents the composition ratio of the element M ′.
  • the composition ratio of O (oxygen) is 4.
  • the element M ′ is at least one element selected from the group consisting of Mg (magnesium), Ca (calcium), Sr (strontium), Al, Ga, Zn (zinc), and Cu (copper). preferable. 0 ⁇ ⁇ ⁇ 0.2 and 0 ⁇ ⁇ ⁇ 0.1.
  • Mg or Al is preferably used as the element M ′ in the composition formula (Chemical Formula 2).
  • the battery life can be extended.
  • the safety of the battery can be improved.
  • the elution of Mn can be reduced by adding the element M ′, storage characteristics and charge / discharge cycle characteristics can be improved.
  • the positive electrode active material materials other than the above NMC and sp-Mn may be used.
  • the positive electrode active material other than NMC and sp-Mn those commonly used in this field can be used, and lithium transition metal composite oxides other than NMC and sp-Mn, olivine type lithium salts, chalcogen compounds, manganese dioxide, etc. Is mentioned.
  • the lithium transition metal composite oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element.
  • examples of the different elements include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B.
  • Mn, Al, Co, Ni and Mg are preferable.
  • lithium transition metal composite oxides other than NMC and sp-Mn include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-1.
  • y Oz Li x Ni 1-y M y O z (wherein M is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V And at least one element selected from the group consisting of B and B.
  • x 0 to 1.2
  • y 0 to 0.9
  • z 2.0 to 2.3).
  • x value which shows the molar ratio of lithium increases / decreases by charging / discharging.
  • the olivine type lithium salt include LiFePO 4 .
  • the chalcogen compound include titanium disulfide and molybdenum disulfide.
  • a positive electrode active material can be used individually by 1 type, or can use 2 or more types together.
  • the positive electrode mixture contains a positive electrode active material, a binder, and the like, and is formed on the current collector.
  • a positive electrode active material, a binder, and other materials such as a conductive agent and a thickener used as needed are mixed in a dry form to form a sheet, which is then pressure-bonded to a current collector (dry method).
  • a positive electrode active material, a binder, and other materials such as a conductive agent and a thickener used as necessary are dissolved or dispersed in a dispersion solvent to form a slurry, which is applied to a current collector and dried. (Wet method).
  • the dispersion solvent for forming the slurry may be any solvent that can dissolve or disperse the positive electrode active material, the binder, and the conductive agent or thickener used as necessary.
  • Preferable examples include N-methylpyrrolidone (NMP) which is an organic solvent.
  • the layered lithium-nickel-manganese-cobalt composite oxide (NMC) is used as the positive electrode active material. These are used in powder form (granular) and mixed.
  • the positive electrode active material particles such as NMC and sp-Mn, particles having a lump shape, polyhedron shape, spherical shape, elliptical spherical shape, plate shape, needle shape, columnar shape, and the like can be used.
  • the average particle size (d50) of the positive electrode active material particles such as NMC and sp-Mn (when the primary particles are aggregated to form secondary particles, the average particle size (d50) of the secondary particles) is: From the viewpoint of tab density (fillability) and miscibility with other materials during electrode formation, it is preferably 1 to 30 ⁇ m, more preferably 3 to 25 ⁇ m, and even more preferably 5 to 15 ⁇ m.
  • the average particle diameter d50 (median diameter) means the particle diameter at an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method.
  • the range of the BET specific surface area of the particles of the positive electrode active material such as NMC or sp-Mn is preferably 0.2 to 4.0 m 2 / g, more preferably 0.3 to 2.5 m 2 / g, 0.4 More preferably, ⁇ 1.5 m 2 / g.
  • the BET specific surface area is a specific surface area (area per unit g) determined by the BET method.
  • Examples of the conductive agent for the positive electrode include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbonaceous materials such as amorphous carbon such as needle coke. It is done. Of these, one type may be used alone, or two or more types may be used in combination.
  • the range of the content of the conductive agent with respect to the mass of the positive electrode mixture is preferably 0.01 to 50% by mass, more preferably 0.1 to 30% by mass, and further preferably 1 to 15% by mass. Sufficient electroconductivity can be acquired as it is 0.1 mass% or more, and the fall of battery capacity can be suppressed if it is 50 mass% or less.
  • the binder for the positive electrode active material is not particularly limited, and when the positive electrode mixture is formed by a coating method, a material having good solubility or dispersibility in the dispersion solvent is selected.
  • resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polyimide, and cellulose
  • rubbery polymers such as SBR (styrene-butadiene rubber) and NBR (acrylonitrile-butadiene rubber)
  • PVdF polyvinylidene fluoride Fluorine polymers such as polytetrafluoroethylene and fluorinated polyvinylidene fluoride
  • polymer compositions having alkali metal ion (especially lithium ion) ion conductivity, and the like Of these, one type may be used alone, or two or more types may be used in combination.
  • a fluorine-based polymer such as polyvinylidene fluoride (PVdF) or a polytetrafluoroethylene / vinylidene fluoride copolymer.
  • the range of the content of the binder with respect to the mass of the positive electrode mixture is preferably 0.1 to 60% by mass, more preferably 1 to 40% by mass, and further preferably 3 to 10% by mass.
  • the positive electrode active material When the content of the binder is 0.1% by mass or more, the positive electrode active material can be sufficiently bound, sufficient mechanical strength of the positive electrode active material is obtained, and battery performance such as excellent cycle characteristics is obtained. It is done. Sufficient battery capacity and electroconductivity are acquired as it is 60 mass% or less.
  • the layer formed on the current collector using the above wet method or dry method is preferably consolidated by a hand press or a roller press in order to improve the packing density of the positive electrode active material.
  • the density of the positive electrode mixture consolidated as described above is preferably in the range of 2.5 to 2.8 g / cm 3 from the viewpoint of further improving input / output characteristics and safety, and is preferably 2.55 to 2.75 g. / Cm 3 is more preferable, and 2.6 to 2.7 g / cm 3 is still more preferable.
  • the amount of the single-sided coating of the positive electrode mixture to the positive electrode current collector is preferably 110 to 170 g / m 2 and more preferably 120 to 160 g / m 2 from the viewpoint of energy density and input / output characteristics. Preferably, it is 130 to 150 g / m 2 .
  • the thickness of the single-sided coating film of the positive electrode mixture on the positive electrode current collector ([positive electrode thickness ⁇ positive electrode current collector] The thickness] / 2) is preferably 39 to 68 ⁇ m, more preferably 43 to 64 ⁇ m, and still more preferably 46 to 60 ⁇ m.
  • the material of the current collector for the positive electrode is not particularly limited, but a metal material, particularly aluminum, is particularly preferable.
  • a metal material particularly aluminum
  • the material processed into various shapes can be used.
  • the metal material include a metal foil, a metal plate, a metal thin film, and an expanded metal. Among these, it is preferable to use a metal thin film. In addition, you may form a thin film suitably in mesh shape.
  • the thickness of the thin film is arbitrary, but from the viewpoint of obtaining strength required for the current collector and good flexibility, it is preferably 1 ⁇ m to 1 mm, more preferably 3 to 100 ⁇ m, and even more preferably 5 to 100 ⁇ m. 2.
  • the negative electrode in the present embodiment includes graphite and amorphous carbon as the negative electrode active material.
  • the state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential (State of charge) is 42 to 60%.
  • the state of charge may be referred to as SOC. Note that the higher the SOC at a potential of 0.1 V with respect to the lithium potential, the less affected by the IR drop (voltage drop) at the positive electrode, and the charging load characteristics are improved.
  • the graphite contained in the negative electrode has, for example, a carbon network surface interlayer (d002) in an X-ray wide angle diffraction method of less than 0.34 nm.
  • the pulverized mass of natural graphite may contain impurities, it is preferable to purify it by a purification treatment.
  • the purity of the natural graphite is preferably 99.8% or more (ash content 0.2% or less), more preferably 99.9% or more (ash content 0.1% or less) on a mass basis. When the purity is 99.8% or more, the safety of the battery is further improved, and the battery performance is further improved.
  • Artificial graphite obtained by firing using a resin raw material such as epoxy or phenol or a pitch-based material obtained from petroleum or coal as a raw material may be used.
  • the method for obtaining the artificial graphite is not particularly limited.
  • a thermoplastic resin, naphthalene, anthracene, phenanthrolen, coal tar, tar pitch, etc. are calcined in an inert atmosphere at 800 ° C. or higher. Then, it can be produced by pulverizing by a known method such as jet mill, vibration mill, pin mill, hammer mill and the like, and adjusting the particle size to 5 to 40 ⁇ m. Further, heat treatment may be performed in advance before the above calcination.
  • the heat treatment is performed in advance by an autoclave or the like, coarsely pulverized by a known method, and then calcined in an inert atmosphere at 800 ° C. or higher and pulverized to adjust the particle size. You can get it.
  • Graphite may be modified with other materials.
  • the ratio of the carbon layer to the graphite having a low crystalline carbon layer on the surface of graphite as a nucleus is preferably 0.005 to 0.1, preferably 0.005 to 0.09. More preferably, it is more preferably 0.005 to 0.08. If the ratio (mass ratio) of the carbon layer to the carbon material is 0.005 or more, the initial efficiency and life characteristics are excellent. Moreover, if it is 0.1 or less, the input / output characteristics are excellent.
  • the graphite contained in the negative electrode preferably has the physical properties shown in the following (1) and (2).
  • the R value (IG / ID) is preferably 3 or more, more preferably 10 or more, and still more preferably 50 or more.
  • the Raman spectrum can be measured using a Raman spectrometer (for example, DXR manufactured by Thermo Fisher Scientific).
  • the average particle diameter (d50) is preferably 2 to 20 ⁇ m, more preferably 2.5 to 15 ⁇ m, and still more preferably 3 to 10 ⁇ m. When it is 20 ⁇ m or less, the discharge capacity and the discharge characteristics are improved. Moreover, it exists in the tendency which initial stage charge / discharge efficiency improves that it is 2 micrometers or more.
  • the average particle diameter (d50) is a value measured as d50 (median diameter) using, for example, a particle size distribution measuring apparatus using a laser light scattering method (for example, SALD-3000, manufactured by Shimadzu Corporation). It is.
  • the method for the purification treatment is not particularly limited, and can be appropriately selected from commonly used purification treatment methods. Examples thereof include flotation, electrochemical treatment, chemical treatment, and the like. Next, the amorphous carbon contained in the negative electrode will be described.
  • the amorphous carbon preferably has a carbon network plane interlayer (d002) in the X-ray wide angle diffraction method of 0.34 to 0.39 nm, more preferably 0.341 to 0.385 nm, and 0 More preferably, the thickness is from 342 to 0.37 nm.
  • the carbon network plane interlayer (d002) in the X-ray wide angle diffraction method is preferably 0.34 to 0.36 nm, and 0.341 More preferably, it is ⁇ 0.355 nm, and further preferably 0.342 to 0.35 nm.
  • the mass at 550 ° C. in the air stream is 70% by mass or more with respect to the mass at 25 ° C.
  • the mass at 650 ° C. is the mass at 25 ° C. It is preferable to use a material that is 20% by mass or less.
  • the thermogravimetry can be measured, for example, with a TG analysis (Thermo Gravimetry Analysis) apparatus (for example, TG / DTA6200, manufactured by SII Nanotechnology Co., Ltd.). For example, a sample of 10 mg can be collected, and measurement can be performed under a flow condition of dry air of 300 mL / min and using alumina as a reference and a heating rate of 1 ° C./min.
  • the mass at 550 ° C. in the air stream is 90% or more of the mass at 25 ° C.
  • the mass at 650 ° C. is 10% or less of the mass at 25 ° C.
  • Some amorphous carbon is more preferred.
  • the average particle diameter (d50) of the amorphous carbon is preferably 5 to 30 ⁇ m, more preferably 10 to 25 ⁇ m, and still more preferably 12 to 23 ⁇ m. If the average particle diameter is 5 ⁇ m or more, the specific surface area can be in an appropriate range, the initial charge / discharge efficiency of the lithium ion battery is excellent, and the contact between the particles is good and the input / output characteristics tend to be excellent.
  • the average particle diameter is 30 ⁇ m or less, unevenness on the electrode surface is unlikely to occur and the short circuit of the battery can be suppressed, and the Li diffusion distance from the particle surface to the inside becomes relatively short, so Properties tend to improve.
  • the particle size distribution can be measured with a laser diffraction particle size distribution analyzer (for example, SALD-3000J, manufactured by Shimadzu Corporation) by dispersing a sample in purified water containing a surfactant.
  • the diameter is calculated as d50 (median diameter).
  • the content ratio of graphite to amorphous carbon ((graphite) / (amorphous carbon) is preferably 10/90 to 70/30, more preferably 15/85 to 65/35, 80 to 50/50 is more preferable. If the compounding ratio of graphite is 10% or more, the output density and overcharge resistance are improved because the electrode density is increased and the battery voltage is increased, and if it is 70% or less, both retention of input characteristics and overcharge resistance are achieved. it can.
  • amorphous carbon carbonaceous materials other than graphite, metal oxides such as tin oxide and silicon oxide, metal composite oxide, lithium simple substance, lithium alloys such as lithium aluminum alloy, Sn, Si, etc.
  • a material capable of forming an alloy with lithium may be used in combination. These may be used alone or in combination of two or more.
  • the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it contains Ti (titanium), Li (lithium) or both Ti and Li in terms of discharge characteristics. Is preferable.
  • the configuration of the negative electrode mixture formed using the negative electrode active material is not particularly limited, but the negative electrode mixture density is preferably in the range of 0.7 to 2 g / cm 3 , and 0.8 to 1.9 g / cm 3. More preferably, it is 0.9 to 1.8 g / cm 3 .
  • the conductivity between the negative electrode active materials is improved, an increase in battery resistance can be suppressed, and the capacity per unit volume can be improved.
  • it is 2 g / cm 3 or less, there is less possibility of incurring deterioration in discharge characteristics due to an increase in initial additional reverse capacity and a decrease in permeability to the electrolyte near the interface between the current collector and the negative electrode active material.
  • natural graphite graphite such as artificial graphite (graphite)
  • carbon black such as acetylene black
  • amorphous carbon such as needle coke
  • the range of the content of the conductive agent relative to the weight of the negative electrode mixture is preferably in the range of 1 to 45% by weight, preferably 2 to 42% by weight, from the viewpoint of improving the conductivity and reducing the initial irreversible capacity. More preferred is 3 to 40% by weight.
  • the material of the current collector for the negative electrode is not particularly limited, and specific examples include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is preferable from the viewpoint of ease of processing and cost.
  • the shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples include metal foil, metal plate, metal thin film, expanded metal, and the like. Especially, metal foil is preferable and copper foil is more preferable.
  • the copper foil includes a rolled copper foil formed by a rolling method and an electrolytic copper foil formed by an electrolytic method, both of which are suitable for use as a current collector.
  • the thickness of the current collector is not limited, but if the thickness is less than 25 ⁇ m, its strength can be increased by using a strong copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) rather than pure copper. Can be improved.
  • a strong copper alloy phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.
  • the binder for the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the dispersion solvent used when forming the electrolytic solution and the electrode.
  • resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, cellulose, and nitrocellulose; rubbery polymers such as SBR (styrene-butadiene rubber) and NBR (acrylonitrile-butadiene rubber); polyvinylidene fluoride (PVdF) ), Fluorine-based polymers such as polytetrafluoroethylene and fluorinated polyvinylidene fluoride; polymer compositions having ion conductivity of alkali metal ions (particularly lithium ions), and the like. Of these, one type may be used alone, or two or more types may be used in combination.
  • the range of the binder content relative to the mass of the negative electrode mixture is 1 to 15% by mass. It is preferably 2 to 10% by mass, more preferably 3 to 8% by mass.
  • Thickener is used to adjust the viscosity of the slurry.
  • the thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used alone or in combination of two or more.
  • the range of the content of the binder with respect to the mass of the negative electrode mixture is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and still more preferably 0.6 to 10% by mass.
  • the negative electrode active material When the content of the binder is 0.1% by mass or more, the negative electrode active material can be sufficiently bound, and sufficient mechanical strength of the negative electrode active material can be obtained. Sufficient battery capacity and electroconductivity are obtained as it is 20 mass% or less.
  • any kind of solvent can be used as long as it can dissolve or disperse the negative electrode active material, the binder, and the conductive agent or thickener used as necessary.
  • an aqueous solvent or an organic solvent may be used.
  • the aqueous solvent include water, alcohol, and a mixed solvent with water.
  • organic solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, Examples include methyl acrylate, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, dimethyl sulfoxide, benzene, xylene, and hexane.
  • NMP N-methylpyrrolidone
  • THF tetrahydrofuran
  • toluene acetone
  • diethyl ether dimethylacetamide
  • dimethyl sulfoxide benzene, xylene, and hexane.
  • a thickener A dispersion solvent or the like is added to the thickener and slurried using a latex such as SBR.
  • the said dispersion solvent may be used individually by 1 type, or may be used in combination of
  • Electrolyte is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass, and still more preferably 0.6 to 2% by mass.
  • the electrolytic solution of the present embodiment is composed of a lithium salt (electrolyte) and a non-aqueous solvent that dissolves the lithium salt. You may add an additive as needed.
  • the lithium salt is not particularly limited as long as it is a lithium salt that can be used as an electrolyte for a lithium ion battery, and examples thereof include the following inorganic lithium salts, fluorine-containing organic lithium salts, and oxalatoborate salts.
  • inorganic lithium salt LiPF 6, LiBF 4, LiAsF 6, inorganic fluoride salts LiSbF 6 or the like, perhalogenate such as LiClO 4, Libro 4, such as an inorganic chloride salts such as LiAlCl 4 and the like.
  • Fluorine-containing organic lithium salt, fluoroalkyl fluorophosphate, etc. may be used.
  • examples of the oxalatoborate salt include lithium bis (oxalato) borate and lithium difluorooxalatoborate.
  • lithium salts may be used alone or in combination of two or more.
  • lithium hexafluorophosphate LiPF 6
  • LiPF 6 lithium hexafluorophosphate
  • the concentration of the electrolyte in the electrolytic solution is not particularly limited, but the electrolyte concentration range is preferably 0.5 mol / L to 2 mol / L, more preferably 0.6 mol / L to 1.8 mol / L. Preferably, it is 0.7 mol / L to 1.8 mol / L.
  • concentration is 0.5 mol / L or more, sufficient electric conductivity of the electrolytic solution can be obtained. Moreover, since a viscosity does not become high too much that a density
  • concentration is 2 mol / L or less, the fall of electrical conductivity can be suppressed.
  • non-aqueous solvent that can be used as an electrolyte solvent for lithium ion batteries
  • examples thereof include cyclic carbonates, chain carbonates, chain esters, cyclic ethers, and chain ethers.
  • Examples include ethylene carbonate, propylene carbonate, butylene carbonate, dialkyl carbonate, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and the like.
  • a nonaqueous solvent in which two or more compounds are used in combination.
  • a high dielectric constant solvent of cyclic carbonates in combination with a low viscosity solvent of chain carbonates or chain esters.
  • the additive is not particularly limited as long as it is an additive for an electrolyte solution of a lithium ion battery.
  • nitrogen, sulfur or a heterocyclic compound containing nitrogen and sulfur, a cyclic carboxylic acid ester, a fluorine-containing cyclic carbonate, Other compounds having an unsaturated bond in the molecule are exemplified. From the viewpoint of extending the life of the battery, fluorine-containing cyclic carbonates and other compounds having an unsaturated bond in the molecule are preferred.
  • fluorine-containing cyclic carbonate examples include fluoroethylene carbonate, difluoroethylene carbonate, trifluoroethylene carbonate, and tetrafluoroethylene carbonate.
  • Examples of the other compound having an unsaturated bond in the molecule include vinylene carbonate.
  • additives such as an overcharge inhibitor, a negative electrode film forming agent, a positive electrode protective agent, and a high input / output agent may be used depending on the required function.
  • the separator is not particularly limited as long as it has ion permeability while electronically insulating the positive electrode and the negative electrode and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side.
  • a material (material) of the separator satisfying such characteristics a resin, an inorganic material, glass fiber, or the like is used.
  • olefin polymer fluorine polymer, cellulose polymer, polyimide, nylon or the like is used. It is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene.
  • oxides such as alumina and silicon dioxide, and nitrides such as aluminum nitride and silicon nitride are used.
  • thin film-shaped base materials such as a nonwoven fabric, a woven fabric, and a microporous film
  • the thin film-shaped substrate those having a pore diameter of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m are preferably used.
  • the composite porous layer using binders, such as resin can be used as a separator.
  • this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator. 5).
  • Other components such as alumina and silicon dioxide, and nitrides such as aluminum nitride and silicon nitride are used.
  • a cleavage valve may be provided as another component of the lithium ion battery. By opening the cleavage valve, it is possible to suppress an increase in pressure inside the battery and to improve safety.
  • releases inert gas for example, carbon dioxide etc.
  • the cleavage valve can be opened quickly due to the generation of inert gas, and safety can be improved.
  • inert gas for example, carbon dioxide etc.
  • the lithium ion battery of the present invention is suitable for a large capacity discharge capacity of 30 Ah or more and less than 100 Ah. From the viewpoint of high input / output and high energy density while ensuring safety, it is preferably 35 Ah or more and less than 100 Ah, more preferably 40 Ah or more and less than 95 Ah. (Capacity ratio of the negative electrode to the positive electrode of the lithium ion battery)
  • the capacity ratio of the negative electrode to the positive electrode is preferably 1.3 to 2.2 from the viewpoint of safety and energy density, and preferably 1.3 to 2.0. Is more preferable.
  • the capacity ratio when the capacity ratio is 1.2 or more, the positive electrode potential may be higher than 4.2 V during charging, which may reduce safety (the positive electrode potential at this time is According to the present invention, it is possible to provide a lithium ion battery excellent in overcharge resistance and cycle characteristics at the time of abnormality without sacrificing safety even when the capacity ratio is 2.0 or more.
  • the capacity ratio is preferably set to 2.2 or less.
  • the capacity ratio (negative electrode capacity / positive electrode capacity) is 1.3 or more, Li deposition on the negative electrode can be suppressed during overcharge, and thus safety is improved.
  • the capacity ratio is preferably 1.3 to 2.2, and more preferably 1.3 to 2.0.
  • the negative electrode capacity refers to [negative electrode discharge capacity]
  • the positive electrode capacity refers to [positive charge initial charge capacity—negative electrode or positive electrode, whichever is greater].
  • the “negative electrode discharge capacity” is defined to be calculated by the charge / discharge device when the lithium ions inserted into the negative electrode active material are desorbed.
  • the “initial charge capacity of the positive electrode” is defined as that calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
  • the capacity ratio between the negative electrode and the positive electrode can also be calculated from, for example, “negative electrode discharge capacity / lithium ion battery discharge capacity”.
  • the discharge capacity of the lithium ion battery is, for example, 4.2 V, 0.1 to 0.5 C, 0.1 to 0.00 after performing constant current and constant voltage (CCCV) charging with a termination time of 2 to 5 hours. It can be measured under conditions when a constant current (CC) discharge is performed up to 2.7 V at 5C.
  • the discharge capacity of the negative electrode is obtained by cutting a negative electrode obtained by measuring the discharge capacity of the lithium ion battery into a predetermined area, using lithium metal as a counter electrode, and producing a single electrode cell through a separator impregnated with an electrolyte, Discharge per predetermined area under the conditions of constant current (CCCV) charging at 0V, 0.1C, and final current 0.01C, followed by constant current (CC) discharging to 1.5V at 0.1C It can be calculated by measuring the capacity and converting this to the total area used as the negative electrode of the lithium ion battery.
  • CCCV constant current
  • CC constant current
  • the direction in which lithium ions are inserted into the negative electrode active material is defined as charging, and the direction in which lithium ions inserted into the negative electrode active material are desorbed is defined as discharging.
  • C means “current value (A) / battery discharge capacity (Ah)”.
  • NMP N-methyl-2-pyrrolidone
  • a positive electrode active material represented by the composition formula LiMn 1/3 Ni 1/3 Co 1/3 O 2 was used.
  • NMC and sp-Mn are used as the positive electrode active material, for example, when the composition formula (Formula 1) and the composition formula (Formula 2) are satisfied, similar results are obtained.
  • NMP N-methyl-2-pyrrolidone
  • the lead pieces 9 led out from the positive electrode plate are deformed, and all of them are gathered near the bottom of the flange 7 on the positive electrode side and brought into contact with each other.
  • the flange portion 7 on the positive electrode side is formed so as to protrude from the periphery of the pole column (positive electrode external terminal 1) substantially on the extension line of the axis of the electrode group 6, and has a bottom portion and a side portion.
  • the lead piece 9 is connected and fixed to the bottom of the flange 7 by ultrasonic welding.
  • the lead piece 9 led out from the negative electrode plate and the bottom of the flange 7 on the negative electrode side are similarly connected and fixed.
  • the negative electrode side flange portion 7 is formed so as to protrude from the periphery of the pole column (negative electrode external terminal 1 ′) substantially on the extension line of the axis of the electrode group 6, and has a bottom portion and a side portion.
  • an insulating coating 8 was formed by covering the side of the flange 7 on the positive electrode external terminal 1 side and the side of the flange 7 of the negative electrode external terminal 1 ′. Similarly, an insulating coating 8 was formed on the outer periphery of the electrode group 6. For example, this adhesive tape is stretched from the side of the flange 7 on the positive electrode external terminal 1 side to the outer peripheral surface of the electrode group 6, and further from the outer periphery of the electrode group 6 to the flange 7 on the negative electrode external terminal 1 ′ side. The insulating coating 8 is formed by winding several times over the side.
  • the insulating coating (adhesive tape) 8 an adhesive tape in which the base material was polyimide and a methacrylate adhesive material was applied on one surface thereof was used.
  • the thickness of the insulating coating 8 (the number of windings of the adhesive tape) is adjusted so that the maximum diameter portion of the electrode group 6 is slightly smaller than the inner diameter of the stainless steel battery container 5, and the electrode group 6 is inserted into the battery container 5. did.
  • the battery container 5 had an outer diameter of 67 mm and an inner diameter of 66 mm.
  • the ceramic washer 3 ′ is fitted into the pole column whose tip constitutes the positive electrode external terminal 1 and the pole column whose tip constitutes the negative electrode external terminal 1 ′.
  • the ceramic washer 3 ′ is made of alumina, and the thickness of the portion in contact with the back surface of the battery lid 4 is 2 mm, the inner diameter is 16 mm, and the outer diameter is 25 mm.
  • the positive external terminal 1 is passed through the ceramic washer 3, and with the other ceramic washer 3 placed on the other battery lid 4, the negative external terminal Pass 1 'through another ceramic washer 3.
  • the ceramic washer 3 is made of alumina and has a flat plate shape with a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 28 mm.
  • the peripheral end surface of the battery lid 4 is fitted into the opening of the battery container 5 and the entire area of both contact portions is laser welded.
  • the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ pass through a hole (hole) in the center of the battery lid 4 and project outside the battery lid 4.
  • the battery lid 4 is provided with a cleavage valve 10 that cleaves in response to an increase in the internal pressure of the battery.
  • the cleavage pressure of the cleavage valve 10 was 13 to 18 kgf / cm 2 (1.27 to 1.77 MPa).
  • the metal washer 11 is fitted into the positive external terminal 1 and the negative external terminal 1 '. Thereby, the metal washer 11 is disposed on the ceramic washer 3.
  • the metal washer 11 is made of a material smoother than the bottom surface of the nut 2.
  • the metal nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, and the battery lid 4 is connected to the flange portion 7 and the nut 2 via the ceramic washer 3, the metal washer 11, and the ceramic washer 3 ′. Secure by tightening between.
  • the tightening torque value at this time was 70 kgf ⁇ cm (6.86 N ⁇ m).
  • the metal washer 11 did not rotate until the tightening operation was completed.
  • the power generation element inside the battery container 5 is shielded from the outside air by the compression of the rubber (EPDM) O-ring 12 interposed between the back surface of the battery lid 4 and the flange 7.
  • EPDM rubber
  • LiPF 6 lithium hexafluorophosphate
  • VC vinylene carbonate
  • the measurement of SOC at a potential of 0.1 V with respect to the lithium potential was performed by punching the prepared sample negative electrode into a size of ⁇ 15 mm, punching out a counter electrode (metallic lithium) punched into a size of ⁇ 16 mm, and punching into a size of ⁇ 19 mm
  • the separator and the electrolytic solution were incorporated into a CR2032-type coin cell under an argon atmosphere and performed in an environment of 25 ° C.
  • metallic lithium whose surface was polished to remove the oxide film was used.
  • a polyethylene porous sheet separator (trade name: Hypore, manufactured by Asahi Kasei Co., Ltd., thickness: 30 ⁇ m) was used.
  • the sample electrode is charged to 0 V (V vs Li / Li + ) with a constant current of 0.1 C between the sample electrode and the counter electrode, and the current density becomes 0.01 C with a constant voltage of 0 V. Charged up to. The discharge was performed at a constant current of a current density of 0.1 C up to 1.5 V (V vs Li / Li + ). This charge and discharge test was performed for 3 cycles. “V vs Li / Li + ” is the potential of the sample negative electrode with respect to the potential of the counter electrode (metal lithium).
  • the charge capacity in the third cycle was set at 100% SOC.
  • the SOC at 0.1 V that is, the SOC at a potential of 0.1 V with respect to the lithium potential, was calculated from the charge capacity up to 0.1 V in the same third cycle.
  • a test battery including a test negative electrode formed by cutting a part of a negative electrode of a lithium ion battery and a counter electrode made of metallic lithium was produced, and a constant current with a current density of 0.1 C was passed.
  • the test battery is charged until the potential of the test negative electrode with respect to the potential of the counter electrode becomes 0 V, the test is performed until the current density becomes 0.01 C with the potential of the negative electrode for test with respect to the potential of the counter electrode being 0 V.
  • the charging operation for charging the battery for charging and the discharging operation for discharging the test battery after the charging operation are alternately repeated.
  • the charge state at a potential of 0.1 V with respect to the lithium potential is such that the potential of the negative electrode for testing with respect to the potential of the counter electrode is 0.3 in the third charge operation for the charge capacity after the third charge operation is completed. It is the ratio of the charge capacity when it becomes 1V.
  • the SOC at a potential of 0.1 V with respect to the lithium potential as described above is also referred to as a CC / CCCV total capacity.
  • the current value was 0.5 C for both charging and discharging.
  • Charging was constant current constant voltage (CCCV) charging with 4.2 V as the upper limit voltage, and the termination condition was 3 hours.
  • the discharge was a constant current (CC) discharge with 2.7 V as the end condition. Further, a pause of 30 minutes was put between charge and discharge. This was carried out for three cycles, and the charge capacity at the third cycle was defined as “charge capacity at a current value of 0.5 C”, and the discharge capacity at the third cycle was defined as “discharge capacity at a current value of 0.5 C”.
  • the negative electrode capacity / positive electrode capacity was calculated from “discharge capacity at a current value of 0.5 C / negative electrode discharge capacity”.
  • the discharge capacity of the negative electrode was calculated from the “discharge capacity per predetermined area of the negative electrode (1.7671 cm 2 )” in terms of the total area of the negative electrode produced by the lithium ion battery. (Input characteristics)
  • the input characteristics were charged at a constant current and constant voltage (CCCV) with a current value of 3C and 4.2V as the upper limit voltage, and with a termination condition of 3 hours.
  • the charge capacity was “charge capacity at a current value of 3 C”, and the input characteristics were calculated by the following formula. Thereafter, constant current discharge with a final voltage of 2.7 V was performed at a current value of 0.5 C.
  • Input characteristics Charge capacity at a current value of 3C / Charge capacity at a current value of 0.5C
  • Lifetime characteristics are as follows: In a 50 ° C environment, the battery is charged at a constant current and a constant voltage up to 4.2V at a current value of 0.5C, then rested for 30 minutes and discharged at a constant current of 0.5C at a current value of 2.7V. And rested for 30 minutes. This was repeatedly evaluated 200 times.
  • the ratio of the discharge capacity after 200 cycles based on the discharge capacity at the first cycle is 80% or more as “A”, 70% or more and less than 80% as “B”, and less than 70% as “B”. Evaluated as “C”. (Overcharge resistance)
  • the current value was 0.5 C for both charging and discharging.
  • Charging was constant current constant voltage (CCCV) charging with 4.2 V as the upper limit voltage, and the termination condition was 3 hours.
  • the discharge was a constant current (CC) discharge with 2.7 V as the end condition. Further, a pause of 30 minutes was put between charge and discharge. After performing this two cycles, only the discharge of the third cycle was discharged to 2.7 V at a current value of 0.2C.
  • Example 7 The production of the negative electrode plate was performed in the same manner as in Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was 1.5. (Example 7)
  • Example 8 The production of the negative electrode plate was performed in the same manner as in Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was 1.8. (Example 8)
  • Example 9 Production of the negative electrode plate was performed in the same manner as in Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was set to 2.0.
  • the production of the negative electrode plate was performed in the same manner as in Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was set to 2.2. (Example 10)
  • the production of the negative electrode plate was performed in the same manner as in Example 1 except that the negative electrode active material was changed from graphitizable carbon to non-graphitizable carbon. (Example 11)
  • Example 12
  • a predetermined natural graphite as a negative electrode active material and carboxymethyl cellulose and styrene butadiene as a binder are mixed and applied onto a copper foil, and then dried and pressed on a graphite-coated copper foil as a negative electrode active material.
  • the production of the negative electrode plate was performed in the same manner as in Example 1, except that the negative electrode active material was only natural graphite.
  • Comparative Example 2 The production of the negative electrode plate was performed in the same manner as in Example 1, except that the negative electrode active material was only natural graphite.
  • the production of the negative electrode plate was performed in the same manner as in Comparative Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was set to 2.2. (Comparative Example 3)
  • the production of the negative electrode plate was performed in the same manner as in Example 1 except that only the graphitizable carbon was used as the negative electrode active material. (Comparative Example 4)
  • the production of the negative electrode plate was performed in the same manner as in Comparative Example 3 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was set to 2.2. (Comparative Example 5)
  • the content of graphite contained in the negative electrode was 10 to 70% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode.
  • the capacity ratio (negative electrode capacity / positive electrode capacity), which is the ratio of the capacity of the negative electrode to the capacity, is 1.3 to 2.2.
  • the evaluation result is “A” or “B” in any of the input characteristics, overcharge resistance, and life characteristics.
  • the content of graphite contained in the negative electrode is 10 to 50% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode, and the capacity ratio (negative electrode capacity / positive electrode capacity) is 1.3.
  • the evaluation result is “A” in any of the input characteristics, overcharge resistance, and life characteristics.
  • the content of graphite contained in the negative electrode is 70% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode, and the capacity ratio (negative electrode capacity / positive electrode capacity) is 2.0-2.
  • the evaluation result is “A” in any of the input characteristics, overcharge resistance, and life characteristics.
  • the state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential is 42 to 60%.
  • the state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential depends on the graphite content. This is because the charge curves of graphitizable carbon, non-graphitizable carbon, and graphite are different from each other, and the “CCCV charge capacity up to 0 V in the third cycle” is different from that of graphitizable carbon, non-graphitizable carbon, and graphite. This is because they are different. Therefore, the mixing ratio of graphite to the total amount of graphite and amorphous carbon can be determined by determining the state of charge (CC / CCCV total capacity) of the negative electrode at a potential of 0.1 V with respect to the lithium potential.
  • the capacity ratio (negative electrode capacity / positive electrode capacity) is 1.3 to 2.2, but the graphite content contained in the negative electrode is different from that contained in the negative electrode. It exceeds 70 mass% with respect to the total amount of crystalline carbon.
  • the capacity ratio (negative electrode capacity / positive electrode capacity) is 1.3 to 2.2, but the graphite content in the negative electrode is graphite and amorphous in the negative electrode. It is less than 10 mass% with respect to the total amount of carbon.
  • Comparative Example 6 the content of graphite contained in the negative electrode was 10 to 70% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode, but the capacity ratio (negative electrode capacity / positive electrode capacity) Is less than 1.3.
  • the evaluation result is “C” in any one of the input characteristics, overcharge resistance, and life characteristics.
  • the state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential is 41% or less, and in Comparative Examples 3 and 4, the negative electrode has a lithium potential with respect to the lithium potential. The charge state at a potential of 0.1 V exceeds 60%.
  • the content ratio of graphite to amorphous carbon ((graphite) / (amorphous carbon) is preferably 10/90 to 70/30, more preferably 15/85 to 65/35, More preferred is 20/80 to 50/50. This is because the output characteristics and the overcharge resistance are improved when the blending ratio of graphite is 10% or more, and the maintenance of the input characteristics and the overcharge resistance can be achieved at 70% or less.
  • the content of graphite contained in the negative electrode is 10 to 70% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode, and the capacity ratio (negative electrode When the capacity / positive electrode capacity is 1.3 to 2.2, it is possible to provide a lithium ion battery excellent in input characteristics, life characteristics and overcharge resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a lithium-ion cell having excellent input characteristics, lifetime characteristics, and overcharging resistance. In order to achieve these objectives, the lithium-ion cell has a negative electrode that includes graphite and amorphous carbon, and a positive electrode that includes a lithium transition metal composite oxide. The content of graphite included in the negative electrode is 10-70 mass% in relation to the total amount of graphite and amorphous carbon included in the negative electrode, and the capacitance ratio, which is the ratio of the capacitance of the negative electrode to the capacitance of the positive electrode, is 1.3-2.2.

Description

リチウムイオン電池Lithium ion battery
 本発明は、リチウムイオン電池に関するものである。 The present invention relates to a lithium ion battery.
 リチウムイオン電池(リチウムイオン二次電池)は、軽量で高エネルギー密度の二次電池であり、その特性を活かして、ノートパソコン、携帯電話等のポータブル機器の電源に使用されている。 A lithium ion battery (lithium ion secondary battery) is a lightweight, high energy density secondary battery, and is used as a power source for portable devices such as notebook computers and mobile phones, taking advantage of its characteristics.
 近年では、ポータブル機器等の民生用途にとどまらず、車載搭載用途又は太陽光、風力発電等の自然エネルギー向け大規模蓄電システム用途としても展開されている。車載搭載用途及び大規模蓄電システム用途のリチウムイオン電池では、更なる高入出力化が求められており、負極活物質及び正極活物質の改良が図られている。負極活物質においては炭素材料が広く用いられており、例えば特許文献1には、低温での出力特性向上のために黒鉛と易黒鉛化炭素との混合物を用いた負極活物質が提案されている。 In recent years, it has been developed not only for consumer use such as portable devices, but also for on-vehicle use or large-scale power storage systems for natural energy such as solar and wind power generation. Lithium ion batteries for use in vehicles and for large-scale power storage systems are required to have higher input / output, and the negative electrode active material and the positive electrode active material are improved. For negative electrode active materials, carbon materials are widely used. For example, Patent Document 1 proposes a negative electrode active material using a mixture of graphite and graphitizable carbon in order to improve output characteristics at low temperatures. .
 特許文献2は、黒鉛と非晶質炭素の中でも易黒鉛化炭素を選択し、黒鉛と易黒鉛化炭素の重量比を定めることで高出力かつ長寿命であるリチウム二次電池を開示している。 Patent Document 2 discloses a lithium secondary battery having high output and long life by selecting graphitizable carbon among graphite and amorphous carbon and determining the weight ratio of graphite and graphitizable carbon. .
特開2007-335360号公報JP 2007-335360 A 特開2009-70598号公報JP 2009-70598 A
 しかしながら、特許文献1に記載のリチウム二次電池では、過充電耐性等の安全性の点で更なる改良の余地があることがわかった。また、特許文献2に開示されているリチウム二次電池では、負極活物質を含む負極合剤層の密度が高く、十分な入力特性が得られないことがわかった。本発明は、上記課題に鑑みてなされたものであり、入力特性、寿命特性及び過充電耐性に優れるリチウムイオン電池を提供することにある。 However, it has been found that the lithium secondary battery described in Patent Document 1 has room for further improvement in terms of safety such as overcharge resistance. Moreover, in the lithium secondary battery currently disclosed by patent document 2, the density of the negative mix layer containing a negative electrode active material was high, and it turned out that sufficient input characteristics are not acquired. This invention is made | formed in view of the said subject, and is providing the lithium ion battery excellent in an input characteristic, a lifetime characteristic, and an overcharge tolerance.
 代表的な実施の形態によるリチウムイオン電池は、黒鉛及び非晶質炭素を含む負極と、リチウム遷移金属複合酸化物を含む正極と、を備える。負極に含まれる黒鉛の含有量は、負極に含まれる黒鉛及び非晶質炭素の総量に対して10~70質量%であり、正極の容量に対する負極の容量の比率である容量比が、1.3~2.2である。 A lithium ion battery according to a typical embodiment includes a negative electrode including graphite and amorphous carbon, and a positive electrode including a lithium transition metal composite oxide. The content of graphite contained in the negative electrode is 10 to 70% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode, and the capacity ratio, which is the ratio of the negative electrode capacity to the positive electrode capacity, is 1. 3 to 2.2.
 また、代表的な実施の形態によるリチウムイオン電池は、黒鉛及び非晶質炭素を含む負極と、リチウム遷移金属複合酸化物を含む正極と、を備える。負極の、リチウム電位に対して0.1Vとなる電位における充電状態が、42~60%であり、正極の容量に対する負極の容量の比率である容量比が、1.3~2.2である。 Also, a lithium ion battery according to a typical embodiment includes a negative electrode including graphite and amorphous carbon, and a positive electrode including a lithium transition metal composite oxide. The state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential is 42 to 60%, and the capacity ratio, which is the ratio of the negative electrode capacity to the positive electrode capacity, is 1.3 to 2.2. .
 また、上記リチウムイオン電池において、リチウム遷移金属複合酸化物は、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物であってもよい。 In the lithium ion battery, the lithium transition metal composite oxide may be a layered lithium / nickel / manganese / cobalt composite oxide.
 本発明によれば入力特性、寿命特性及び過充電耐性に優れるリチウムイオン電池を提供することができる。 According to the present invention, it is possible to provide a lithium ion battery excellent in input characteristics, life characteristics and overcharge resistance.
本発明が適用可能な実施形態のリチウムイオン電池の断面図である。It is sectional drawing of the lithium ion battery of embodiment which can apply this invention.
 以下、本発明の実施形態について、図面等を参照して説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible.
 以下の実施の形態においてA~Bとして範囲を示す場合には、特に明示した場合を除き、A以上、B以下を示すものとする。
 (実施の形態)
In the following embodiments, when ranges are shown as A to B, A or more and B or less are shown unless otherwise specified.
(Embodiment)
 まず、リチウムイオン電池の概要について簡単に説明する。リチウムイオン電池は、電池容器内に、正極、負極、セパレータ及び電解液を有している。正極と負極との間にはセパレータが配置されている。 First, the outline of the lithium ion battery will be briefly described. The lithium ion battery has a positive electrode, a negative electrode, a separator, and an electrolytic solution in a battery container. A separator is disposed between the positive electrode and the negative electrode.
 リチウムイオン電池を充電する際には、正極と負極との間に充電器を接続する。充電時においては、正極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、負極に到達する。この負極に到達したリチウムイオンは、負極を構成する負極活物質内に挿入される。 When charging the lithium ion battery, connect a charger between the positive electrode and the negative electrode. At the time of charging, lithium ions inserted into the positive electrode active material are desorbed and released into the electrolytic solution. The lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the negative electrode. The lithium ions that have reached the negative electrode are inserted into the negative electrode active material constituting the negative electrode.
 放電する際には、正極と負極の間に外部負荷を接続する。放電時においては、負極活物質内に挿入されていたリチウムイオンが脱離して電解液中に放出される。このとき、負極から電子が放出される。そして、電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、正極に到達する。この正極に到達したリチウムイオンは、正極を構成する正極活物質内に挿入される。このとき、正極活物質にリチウムイオンが挿入することにより、正極に電子が流れ込む。このようにして、負極から正極に電子が移動することにより放電が行われる。 When discharging, connect an external load between the positive and negative electrodes. At the time of discharging, the lithium ions inserted into the negative electrode active material are desorbed and released into the electrolytic solution. At this time, electrons are emitted from the negative electrode. Then, the lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the positive electrode. The lithium ions reaching the positive electrode are inserted into the positive electrode active material constituting the positive electrode. At this time, when lithium ions are inserted into the positive electrode active material, electrons flow into the positive electrode. In this way, discharge is performed by the movement of electrons from the negative electrode to the positive electrode.
 このように、リチウムイオンを正極活物質と負極活物質との間で挿入・脱離することにより、充放電することができる。なお、実際のリチウムイオン電池の構成例については、後述する(例えば、図1参照)。 Thus, charging and discharging can be performed by inserting and desorbing lithium ions between the positive electrode active material and the negative electrode active material. A configuration example of an actual lithium ion battery will be described later (see, for example, FIG. 1).
 次いで、本実施の形態のリチウムイオン電池の構成要素である正極、負極、電解液、セパレータ及びその他の構成部材に関し順次説明する。
 1.正極
Next, a positive electrode, a negative electrode, an electrolytic solution, a separator, and other components that are components of the lithium ion battery according to the present embodiment will be sequentially described.
1. Positive electrode
 本実施の形態においては、高容量で高入出力のリチウムイオン電池に適用可能な以下に示す正極を有する。本実施の形態の正極(正極板)は、集電体及びその上部に形成された正極合剤よりなる。正極合剤は、集電体の上部に設けられた少なくとも正極活物質を含む層である。 In this embodiment, the following positive electrode is applicable to a high-capacity, high-input / output lithium-ion battery. The positive electrode (positive electrode plate) of the present embodiment is composed of a current collector and a positive electrode mixture formed thereon. The positive electrode mixture is a layer including at least a positive electrode active material provided on the current collector.
 前記正極活物質としては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(以下、NMCという場合もある)を含む。NMCは、高容量であり、且つ安全性にも優れる。 The positive electrode active material includes a layered lithium / nickel / manganese / cobalt composite oxide (hereinafter sometimes referred to as NMC). NMC has a high capacity and excellent safety.
 安全性の更なる向上の観点からは、NMC及びスピネル型リチウムマンガン複合酸化物(以下、sp-Mnという場合もある)との混合活物質を用いることが好ましい。 From the viewpoint of further improving safety, it is preferable to use a mixed active material with NMC and a spinel-type lithium manganese composite oxide (hereinafter sometimes referred to as sp-Mn).
 NMCの含有量は、電池の高容量化の観点から、正極合剤全量に対して65質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。
 前記NMCとしては、以下の組成式(化1)で表されるものを用いることが好ましい。
  Li(1+δ)MnNiCo(1-x-y-z)…(化1)
The content of NMC is preferably 65% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more with respect to the total amount of the positive electrode mixture, from the viewpoint of increasing the capacity of the battery. Is more preferable.
As said NMC, it is preferable to use what is represented by the following compositional formula (Formula 1).
Li (1 + δ) Mn x Ni y Co (1-xyz) M z O 2 (Formula 1)
 上記組成式(化1)において、(1+δ)はLi(リチウム)の組成比、xはMn(マンガン)の組成比、yはNi(ニッケル)の組成比、(1-x-y-z)はCo(コバルト)の組成比を示す。zは、元素Mの組成比を示す。O(酸素)の組成比は2である。 In the above composition formula (Formula 1), (1 + δ) is a composition ratio of Li (lithium), x is a composition ratio of Mn (manganese), y is a composition ratio of Ni (nickel), and (1-xyz) Indicates the composition ratio of Co (cobalt). z represents the composition ratio of the element M. The composition ratio of O (oxygen) is 2.
 元素Mは、Ti(チタン)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、W(タングステン)、Al(アルミニウム)、Si(シリコン)、Ga(ガリウム)、Ge(ゲルマニウム)及びSn(錫)よりなる群から選択される少なくとも1種の元素である。 The elements M are Ti (titanium), Zr (zirconium), Nb (niobium), Mo (molybdenum), W (tungsten), Al (aluminum), Si (silicon), Ga (gallium), Ge (germanium), and Sn. It is at least one element selected from the group consisting of (tin).
 -0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である。 -0.15 <δ <0.15, 0.1 <x ≦ 0.5, 0.6 <x + y + z ≦ 1.0, 0 ≦ z ≦ 0.1.
 また、前記sp-Mnとしては、以下の組成式(化2)で表されるものを用いることが好ましい。
 Li(1+η)Mn(2-λ)M’λ…(化2)
Further, as the sp-Mn, it is preferable to use one represented by the following composition formula (Formula 2).
Li (1 + η) Mn (2-λ) M ′ λ O 4 (Chemical formula 2)
 上記組成式(化2)において、(1+η)はLiの組成比、(2-λ)はMnの組成比、λは元素M’の組成比を示す。O(酸素)の組成比は4である。 In the above composition formula (Formula 2), (1 + η) represents the composition ratio of Li, (2-λ) represents the composition ratio of Mn, and λ represents the composition ratio of the element M ′. The composition ratio of O (oxygen) is 4.
 元素M’は、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Al、Ga、Zn(亜鉛)、及びCu(銅)よりなる群から選択される少なくとも1種の元素であることが好ましい。
 0≦η≦0.2、0≦λ≦0.1である。
The element M ′ is at least one element selected from the group consisting of Mg (magnesium), Ca (calcium), Sr (strontium), Al, Ga, Zn (zinc), and Cu (copper). preferable.
0 ≦ η ≦ 0.2 and 0 ≦ λ ≦ 0.1.
 上記組成式(化2)における元素M’としては、Mg又はAlを用いることが好ましい。Mg又はAlを用いることにより、電池の長寿命化を図ることができる。また、電池の安全性の向上を図ることができる。さらに、元素M’を加えることで、Mnの溶出を低減できるため、貯蔵特性、充放電サイクル特性を向上させることができる。
 また、正極活物質としては、上記NMC及びsp-Mn以外のものを用いてもよい。
Mg or Al is preferably used as the element M ′ in the composition formula (Chemical Formula 2). By using Mg or Al, the battery life can be extended. In addition, the safety of the battery can be improved. Furthermore, since the elution of Mn can be reduced by adding the element M ′, storage characteristics and charge / discharge cycle characteristics can be improved.
Further, as the positive electrode active material, materials other than the above NMC and sp-Mn may be used.
 前記NMC及びsp-Mn以外の正極活物質としては、この分野で常用されるものを使用でき、NMC及びsp-Mn以外のリチウム遷移金属複合酸化物、オリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等が挙げられる。リチウム遷移金属複合酸化物は、リチウムと遷移金属とを含む金属酸化物又は該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V、B等が挙げられ、Mn、Al、Co、Ni、Mgが好ましい。異種元素は1種又は2種以上を用いることができる。前記NMC及びsp-Mn以外のリチウム遷移金属複合酸化物としては、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-yOz、LiNi1-y(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBよりなる群から選ばれる少なくとも1種の元素を示す。x=0~1.2、y=0~0.9、z=2.0~2.3である。)等があげられる。ここで、リチウムのモル比を示すx値は、充放電により増減する。また、前記オリビン型リチウム塩としては、LiFePO4等が挙げられる。カルコゲン化合物としては、二硫化チタン、二硫化モリブデン等が挙げられる。正極活物質は1種を単独で使用、又は2種以上を併用できる。 As the positive electrode active material other than NMC and sp-Mn, those commonly used in this field can be used, and lithium transition metal composite oxides other than NMC and sp-Mn, olivine type lithium salts, chalcogen compounds, manganese dioxide, etc. Is mentioned. The lithium transition metal composite oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element. Here, examples of the different elements include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B. Mn, Al, Co, Ni and Mg are preferable. One kind or two or more kinds of different elements can be used. Examples of lithium transition metal composite oxides other than NMC and sp-Mn include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-1. y Oz, Li x Ni 1-y M y O z (wherein M is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V And at least one element selected from the group consisting of B and B. x = 0 to 1.2, y = 0 to 0.9, z = 2.0 to 2.3). Here, x value which shows the molar ratio of lithium increases / decreases by charging / discharging. Examples of the olivine type lithium salt include LiFePO 4 . Examples of the chalcogen compound include titanium disulfide and molybdenum disulfide. A positive electrode active material can be used individually by 1 type, or can use 2 or more types together.
 次に、正極合剤及び集電体について詳細に説明する。正極合剤は、正極活物質、結着剤等を含有し、集電体上に形成される。その形成方法に制限はないが、例えば、次のように形成される。正極活物質、結着剤、及び必要に応じて用いられる導電剤、増粘剤等の他の材料を乾式で混合してシート状にし、これを集電体に圧着する(乾式法)。また、正極活物質、結着剤、及び必要に応じて用いられる導電剤、増粘剤等の他の材料を分散溶媒に溶解又は分散させてスラリーとし、これを集電体に塗布し、乾燥する(湿式法)。 Next, the positive electrode mixture and the current collector will be described in detail. The positive electrode mixture contains a positive electrode active material, a binder, and the like, and is formed on the current collector. Although there is no restriction | limiting in the formation method, For example, it forms as follows. A positive electrode active material, a binder, and other materials such as a conductive agent and a thickener used as needed are mixed in a dry form to form a sheet, which is then pressure-bonded to a current collector (dry method). In addition, a positive electrode active material, a binder, and other materials such as a conductive agent and a thickener used as necessary are dissolved or dispersed in a dispersion solvent to form a slurry, which is applied to a current collector and dried. (Wet method).
 スラリーを形成するための分散溶媒としては、正極活物質、結着剤、及び必要に応じて用いられる導電剤又は増粘剤等を溶解又は分散することが可能な溶媒であればよい。好適なものとしては、有機系溶媒であるN-メチルピロリドン(NMP)等が挙げられる。 The dispersion solvent for forming the slurry may be any solvent that can dissolve or disperse the positive electrode active material, the binder, and the conductive agent or thickener used as necessary. Preferable examples include N-methylpyrrolidone (NMP) which is an organic solvent.
 正極活物質としては、前述したように、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)が用いられる。これらは粉状(粒状)で用いられ、混合される。 As described above, the layered lithium-nickel-manganese-cobalt composite oxide (NMC) is used as the positive electrode active material. These are used in powder form (granular) and mixed.
 NMC、sp-Mn等の正極活物質の粒子としては、塊状、多面体状、球状、楕円球状、板状、針状、柱状等の形状を有するものを用いることができる。 As the positive electrode active material particles such as NMC and sp-Mn, particles having a lump shape, polyhedron shape, spherical shape, elliptical spherical shape, plate shape, needle shape, columnar shape, and the like can be used.
 NMC、sp-Mn等の正極活物質の粒子の平均粒子径(d50)(一次粒子が凝集して二次粒子を形成している場合には二次粒子の平均粒子径(d50))は、タッブ密度(充填性)、電極の形成時における他の材料との混合性の観点から、1~30μmが好ましく、3~25μmがより好ましく、5~15μmが更に好ましい。なお、平均粒子径はd50(メジアン径)は、レーザー回折・散乱法により求めた粒度分布における積算値50%での粒径を意味する。 The average particle size (d50) of the positive electrode active material particles such as NMC and sp-Mn (when the primary particles are aggregated to form secondary particles, the average particle size (d50) of the secondary particles) is: From the viewpoint of tab density (fillability) and miscibility with other materials during electrode formation, it is preferably 1 to 30 μm, more preferably 3 to 25 μm, and even more preferably 5 to 15 μm. The average particle diameter d50 (median diameter) means the particle diameter at an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method.
 NMC、sp-Mn等の正極活物質の粒子のBET比表面積の範囲は、0.2~4.0m/gが好ましく、0.3~2.5m/gがより好ましく、0.4~1.5m/gが更に好ましい。 The range of the BET specific surface area of the particles of the positive electrode active material such as NMC or sp-Mn is preferably 0.2 to 4.0 m 2 / g, more preferably 0.3 to 2.5 m 2 / g, 0.4 More preferably, ˜1.5 m 2 / g.
 0.2m/g以上であれば、優れた電池性能が得られる。また、4.0m/g以下であると、タップ密度が上がりやすく、結着剤及び導電剤などのほかの材料との混合性が良好である。BET比表面積は、BET法により求められた比表面積(単位gあたりの面積)である。 If it is 0.2 m 2 / g or more, excellent battery performance can be obtained. Further, when it is 4.0 m 2 / g or less, the tap density is easily increased, and the mixing property with other materials such as a binder and a conductive agent is good. The BET specific surface area is a specific surface area (area per unit g) determined by the BET method.
 正極用の導電剤としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料などが挙げられる。なお、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。 Examples of the conductive agent for the positive electrode include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbonaceous materials such as amorphous carbon such as needle coke. It is done. Of these, one type may be used alone, or two or more types may be used in combination.
 正極合剤の質量に対する導電剤の含有量の範囲は、0.01~50質量%が好ましく、0.1~30質量%がより好ましく、1~15質量%が更に好ましい。0.1質量%以上であると充分な導電性を得ることができ、50質量%以下であれば電池容量の低下を抑制することができる。 The range of the content of the conductive agent with respect to the mass of the positive electrode mixture is preferably 0.01 to 50% by mass, more preferably 0.1 to 30% by mass, and further preferably 1 to 15% by mass. Sufficient electroconductivity can be acquired as it is 0.1 mass% or more, and the fall of battery capacity can be suppressed if it is 50 mass% or less.
 正極活物質の結着剤としては、特に限定されず、塗布法により正極合剤を形成する場合には、分散溶媒に対する溶解性又は分散性が良好な材料が選択される。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリイミド、セルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)等のゴム状高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。 The binder for the positive electrode active material is not particularly limited, and when the positive electrode mixture is formed by a coating method, a material having good solubility or dispersibility in the dispersion solvent is selected. Specifically, resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polyimide, and cellulose; rubbery polymers such as SBR (styrene-butadiene rubber) and NBR (acrylonitrile-butadiene rubber); polyvinylidene fluoride (PVdF) Fluorine polymers such as polytetrafluoroethylene and fluorinated polyvinylidene fluoride; polymer compositions having alkali metal ion (especially lithium ion) ion conductivity, and the like. Of these, one type may be used alone, or two or more types may be used in combination.
 正極の安定性の観点から、ポリフッ化ビニリデン(PVdF)又はポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子を用いることが好ましい。 From the viewpoint of the stability of the positive electrode, it is preferable to use a fluorine-based polymer such as polyvinylidene fluoride (PVdF) or a polytetrafluoroethylene / vinylidene fluoride copolymer.
 正極合剤の質量に対する結着剤の含有量の範囲は、0.1~60質量%が好ましく、1~40質量%がより好ましく、3~10質量%が更に好ましい。 The range of the content of the binder with respect to the mass of the positive electrode mixture is preferably 0.1 to 60% by mass, more preferably 1 to 40% by mass, and further preferably 3 to 10% by mass.
 結着剤の含有量が0.1質量%以上であると、正極活物質を充分に結着でき、充分な正極活物質の機械的強度が得られ、優れたサイクル特性等の電池性能が得られる。60質量%以下であると、充分な電池容量及び導電性が得られる。 When the content of the binder is 0.1% by mass or more, the positive electrode active material can be sufficiently bound, sufficient mechanical strength of the positive electrode active material is obtained, and battery performance such as excellent cycle characteristics is obtained. It is done. Sufficient battery capacity and electroconductivity are acquired as it is 60 mass% or less.
 上記湿式法又は乾式法を用いて集電体上に形成された層は、正極活物質の充填密度を向上させるため、ハンドプレス又はローラープレス等により圧密化することが好ましい。 The layer formed on the current collector using the above wet method or dry method is preferably consolidated by a hand press or a roller press in order to improve the packing density of the positive electrode active material.
 前記のように圧密化した正極合剤の密度は、入出力特性及び安全性の更なる向上の観点から、2.5~2.8g/cmの範囲が好ましく、2.55~2.75g/cmがより好ましく、2.6~2.7g/cmが更に好ましい。 The density of the positive electrode mixture consolidated as described above is preferably in the range of 2.5 to 2.8 g / cm 3 from the viewpoint of further improving input / output characteristics and safety, and is preferably 2.55 to 2.75 g. / Cm 3 is more preferable, and 2.6 to 2.7 g / cm 3 is still more preferable.
 また、正極合剤の正極集電体への片面塗布量は、エネルギー密度及び入出力特性の観点から、110~170g/mであることが好ましく、120~160g/mであることがより好ましく、130~150g/mであることが更に好ましい。 The amount of the single-sided coating of the positive electrode mixture to the positive electrode current collector is preferably 110 to 170 g / m 2 and more preferably 120 to 160 g / m 2 from the viewpoint of energy density and input / output characteristics. Preferably, it is 130 to 150 g / m 2 .
 上記のような正極合剤の正極集電体への片面塗布量及び正極合剤密度を考慮すると、正極合剤の正極集電体への片面塗布膜厚み([正極の厚み-正極集電体の厚み]/2)は、39~68μmであることが好ましく、43~64μmがより好ましく、46~60μmが更に好ましい。 Considering the amount of single-sided application of the positive electrode mixture to the positive electrode current collector and the positive electrode mixture density, the thickness of the single-sided coating film of the positive electrode mixture on the positive electrode current collector ([positive electrode thickness−positive electrode current collector] The thickness] / 2) is preferably 39 to 68 μm, more preferably 43 to 64 μm, and still more preferably 46 to 60 μm.
 正極用の集電体の材質としては特に制限はないが、中でも金属材料、特にアルミニウムが好ましい。集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。金属材料については、金属箔、金属板、金属薄膜、エキスパンドメタル等が挙げられるが、中でも、金属薄膜を用いることが好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。 The material of the current collector for the positive electrode is not particularly limited, but a metal material, particularly aluminum, is particularly preferable. There is no restriction | limiting in particular as a shape of an electrical power collector, The material processed into various shapes can be used. Examples of the metal material include a metal foil, a metal plate, a metal thin film, and an expanded metal. Among these, it is preferable to use a metal thin film. In addition, you may form a thin film suitably in mesh shape.
 薄膜の厚さは任意であるが、集電体として必要な強度及び良好な可とう性が得られる観点から、1μm~1mmが好ましく、3~100μmがより好ましく、5~100μmが更に好ましい。
 2.負極
The thickness of the thin film is arbitrary, but from the viewpoint of obtaining strength required for the current collector and good flexibility, it is preferably 1 μm to 1 mm, more preferably 3 to 100 μm, and even more preferably 5 to 100 μm.
2. Negative electrode
 本実施の形態における負極は、負極活物質として、黒鉛と、非晶質炭素と、を含む。負極の、リチウム電位に対して0.1Vとなる電位における充電状態(State of charge)が、42~60%である。ここで、充電状態(State of charge)は、SOCという場合もある。なお、リチウム電位に対して0.1Vとなる電位におけるSOCが高いほど、正極でのIRドロップ(電圧降下)の影響を受けにくく、充電負荷特性が向上する。 The negative electrode in the present embodiment includes graphite and amorphous carbon as the negative electrode active material. The state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential (State of charge) is 42 to 60%. Here, the state of charge may be referred to as SOC. Note that the higher the SOC at a potential of 0.1 V with respect to the lithium potential, the less affected by the IR drop (voltage drop) at the positive electrode, and the charging load characteristics are improved.
 まず、負極に含まれる黒鉛について説明する。本発明における黒鉛とは、例えば、X線広角回折法における炭素網面層間(d002)が0.34nm未満である。 First, the graphite contained in the negative electrode will be described. The graphite in the present invention has, for example, a carbon network surface interlayer (d002) in an X-ray wide angle diffraction method of less than 0.34 nm.
 塊状の天然黒鉛を粉砕したものには不純物が含まれていることがあるため、精製処理によって高純度化することが好ましい。前記天然黒鉛の純度は、質量基準で、99.8%以上(灰分0.2%以下)であることが好ましく、99.9%以上(灰分0.1%以下)であることがより好ましい。純度が99.8%以上であることで電池の安全性がより向上し、電池性能がより向上する。 Since the pulverized mass of natural graphite may contain impurities, it is preferable to purify it by a purification treatment. The purity of the natural graphite is preferably 99.8% or more (ash content 0.2% or less), more preferably 99.9% or more (ash content 0.1% or less) on a mass basis. When the purity is 99.8% or more, the safety of the battery is further improved, and the battery performance is further improved.
 エポキシ若しくはフェノール等の樹脂原料又は石油若しくは石炭から得られるピッチ系材料を原料として焼成して得られる人造黒鉛を用いてもよい。 Artificial graphite obtained by firing using a resin raw material such as epoxy or phenol or a pitch-based material obtained from petroleum or coal as a raw material may be used.
 前記人造黒鉛を得るための方法としては、特に制限はないが、例えば、熱可塑性樹脂、ナフタレン、アントラセン、フェナントロレン、コールタール、タールピッチ等を800℃以上の不活性雰囲気中でカ焼し、ついで、これをジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法により粉砕し、5~40μmに粒度を調整することで作製することができる。また、上記のカ焼する前に予め熱処理を施してもよい。熱処理を施す場合は、例えば、オートクレーブ等の機器により予め熱処理を施し、既知の方法により粗粉砕した後、上記と同様に800℃以上の不活性雰囲気中でカ焼し、粉砕して粒度を調整することで得ることができる。 The method for obtaining the artificial graphite is not particularly limited. For example, a thermoplastic resin, naphthalene, anthracene, phenanthrolen, coal tar, tar pitch, etc. are calcined in an inert atmosphere at 800 ° C. or higher. Then, it can be produced by pulverizing by a known method such as jet mill, vibration mill, pin mill, hammer mill and the like, and adjusting the particle size to 5 to 40 μm. Further, heat treatment may be performed in advance before the above calcination. When heat treatment is performed, for example, the heat treatment is performed in advance by an autoclave or the like, coarsely pulverized by a known method, and then calcined in an inert atmosphere at 800 ° C. or higher and pulverized to adjust the particle size. You can get it.
 黒鉛は他の材料によって改質されていてもよい。例えば、核となる黒鉛の表面に低結晶炭素層を有し前記黒鉛に対する前記炭素層の比率(質量比)は0.005~0.1であることが好ましく、0.005~0.09であることがより好ましく、0.005~0.08であることが更に好ましい。前記炭素材料に対する前記炭素層の比率(質量比)は0.005以上であれば、初期効率及び寿命特性に優れる。また、0.1以下であれば、入出力特性に優れる。 Graphite may be modified with other materials. For example, the ratio of the carbon layer to the graphite having a low crystalline carbon layer on the surface of graphite as a nucleus (mass ratio) is preferably 0.005 to 0.1, preferably 0.005 to 0.09. More preferably, it is more preferably 0.005 to 0.08. If the ratio (mass ratio) of the carbon layer to the carbon material is 0.005 or more, the initial efficiency and life characteristics are excellent. Moreover, if it is 0.1 or less, the input / output characteristics are excellent.
 負極に含まれる前記黒鉛としては、以下の(1)及び(2)に示す物性を有することが好ましい。 The graphite contained in the negative electrode preferably has the physical properties shown in the following (1) and (2).
 (1)ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)とラマン分光スペクトルで測定される1580~1620cm-1の範囲にあるピーク強度(IG)との強度比であるR値(IG/ID)が、3以上であることが好ましく、10以上であることがより好ましく、50以上であることが更に好ましい。 (1) Intensity ratio between the peak intensity (ID) in the range of 1300 to 1400 cm −1 measured with the Raman spectrum and the peak intensity (IG) in the range of 1580 to 1620 cm −1 measured with the Raman spectrum. The R value (IG / ID) is preferably 3 or more, more preferably 10 or more, and still more preferably 50 or more.
 なお、ラマン分光スペクトルは、ラマン分光装置(例えば、サーモフィッシャーサイエンティフィック製、DXR)を用いて測定することができる。 The Raman spectrum can be measured using a Raman spectrometer (for example, DXR manufactured by Thermo Fisher Scientific).
 (2)平均粒子径(d50)は、2~20μmであることが好ましく、2.5~15μmであることがより好ましく3~10μmであることが更に好ましい。20μm以下であると放電容量及び放電特性が向上する。また2μm以上であると初期充放電効率が向上する傾向にある。 (2) The average particle diameter (d50) is preferably 2 to 20 μm, more preferably 2.5 to 15 μm, and still more preferably 3 to 10 μm. When it is 20 μm or less, the discharge capacity and the discharge characteristics are improved. Moreover, it exists in the tendency which initial stage charge / discharge efficiency improves that it is 2 micrometers or more.
 なお、平均粒子径(d50)は、例えば、レーザー光散乱法を利用した粒子径分布測定装置(例えば、株式会社島津製作所製、SALD-3000)を用い、d50(メジアン径)として測定される値である。 The average particle diameter (d50) is a value measured as d50 (median diameter) using, for example, a particle size distribution measuring apparatus using a laser light scattering method (for example, SALD-3000, manufactured by Shimadzu Corporation). It is.
 精製処理の方法は特に制限されず、通常用いられる精製処理方法から適宜選択することができる。例えば、浮遊選鉱、電気化学処理、薬品処理等を挙げることができる。
 次に、負極に含まれる非晶質炭素について説明する。
The method for the purification treatment is not particularly limited, and can be appropriately selected from commonly used purification treatment methods. Examples thereof include flotation, electrochemical treatment, chemical treatment, and the like.
Next, the amorphous carbon contained in the negative electrode will be described.
 前記非晶質炭素は、X線広角回折法における炭素網面層間(d002)が、0.34~0.39nmであることが好ましく、0.341~0.385nmであることがより好ましく、0.342~0.37nmであることが更に好ましい。なお、前記非晶質炭素が、易黒鉛化炭素である場合には、X線広角回折法における炭素網面層間(d002)が、0.34~0.36nmであることが好ましく、0.341~0.355nmであることがより好ましく、0.342~0.35nmであることが更に好ましい。 The amorphous carbon preferably has a carbon network plane interlayer (d002) in the X-ray wide angle diffraction method of 0.34 to 0.39 nm, more preferably 0.341 to 0.385 nm, and 0 More preferably, the thickness is from 342 to 0.37 nm. When the amorphous carbon is graphitizable carbon, the carbon network plane interlayer (d002) in the X-ray wide angle diffraction method is preferably 0.34 to 0.36 nm, and 0.341 More preferably, it is ˜0.355 nm, and further preferably 0.342 to 0.35 nm.
 また、前記非晶質炭素として、熱重量測定で、空気気流中550℃での質量が25℃での質量に対して70質量%以上であり、650℃での質量が25℃での質量に対して20質量%以下である材料を用いることが好ましい。熱重量測定は、例えば、TG分析(Thermo Gravimetry Analysis)装置(例えば、エスアイアイ・ナノテクノロジー株式会社製、TG/DTA6200)で測定することができる。例えば、10mgの試料を採取し、乾燥空気300mL/分の流通下で、アルミナをリファレンスとして、昇温速度を1℃/分とした測定条件で、測定を行うことができる。 In addition, as the amorphous carbon, the mass at 550 ° C. in the air stream is 70% by mass or more with respect to the mass at 25 ° C., and the mass at 650 ° C. is the mass at 25 ° C. It is preferable to use a material that is 20% by mass or less. The thermogravimetry can be measured, for example, with a TG analysis (Thermo Gravimetry Analysis) apparatus (for example, TG / DTA6200, manufactured by SII Nanotechnology Co., Ltd.). For example, a sample of 10 mg can be collected, and measurement can be performed under a flow condition of dry air of 300 mL / min and using alumina as a reference and a heating rate of 1 ° C./min.
 なお、入出力特性をより向上できる観点からは、空気気流中550℃での質量が25℃での質量の90%以上であり、650℃での質量が25℃での質量の10%以下である非晶質炭素がより好ましい。 From the viewpoint of further improving the input / output characteristics, the mass at 550 ° C. in the air stream is 90% or more of the mass at 25 ° C., and the mass at 650 ° C. is 10% or less of the mass at 25 ° C. Some amorphous carbon is more preferred.
 また、前記非晶質炭素の平均粒子径(d50)は、5~30μmであることが好ましく、10~25μmであることがより好ましく、12~23μmであることが更に好ましい。平均粒子径が5μm以上であれば、比表面積を適正な範囲とすることができ、リチウムイオン電池の初回充放電効率が優れると共に、粒子同士の接触が良く入出力特性に優れる傾向がある。 The average particle diameter (d50) of the amorphous carbon is preferably 5 to 30 μm, more preferably 10 to 25 μm, and still more preferably 12 to 23 μm. If the average particle diameter is 5 μm or more, the specific surface area can be in an appropriate range, the initial charge / discharge efficiency of the lithium ion battery is excellent, and the contact between the particles is good and the input / output characteristics tend to be excellent.
 一方、平均粒子径が30μm以下であれば、電極面に凸凹が発生しにくく電池の短絡を抑制できると共に、粒子表面から内部へのLiの拡散距離が比較的短くなるためリチウムイオン電池の入出力特性が向上する傾向がある。 On the other hand, if the average particle diameter is 30 μm or less, unevenness on the electrode surface is unlikely to occur and the short circuit of the battery can be suppressed, and the Li diffusion distance from the particle surface to the inside becomes relatively short, so Properties tend to improve.
 なお、例えば、粒度分布は界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製、SALD-3000J)で測定することができ、平均粒子径はd50(メジアン径)として算出される。 For example, the particle size distribution can be measured with a laser diffraction particle size distribution analyzer (for example, SALD-3000J, manufactured by Shimadzu Corporation) by dispersing a sample in purified water containing a surfactant. The diameter is calculated as d50 (median diameter).
 前記黒鉛と前記非晶質炭素とを混合することで、入力特性を保持しつつ、出力特性、及びエネルギー密度をより向上することができる。黒鉛と非晶質炭素との含有比((黒鉛)/(非晶質炭素))は、10/90~70/30が好ましく、15/85~65/35であることがより好ましく、20/80~50/50が更に好ましい。黒鉛の配合比が10%以上であれば電極の高密度化と電池電圧が高くなることから出力特性及び過充電耐性が向上し、70%以下であれば入力特性の保持と過充電耐性を両立できる。 By mixing the graphite and the amorphous carbon, output characteristics and energy density can be further improved while maintaining input characteristics. The content ratio of graphite to amorphous carbon ((graphite) / (amorphous carbon)) is preferably 10/90 to 70/30, more preferably 15/85 to 65/35, 80 to 50/50 is more preferable. If the compounding ratio of graphite is 10% or more, the output density and overcharge resistance are improved because the electrode density is increased and the battery voltage is increased, and if it is 70% or less, both retention of input characteristics and overcharge resistance are achieved. it can.
 また、負極活物質として、非晶質炭素、黒鉛以外の炭素質材料、酸化錫、酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体、リチウムアルミニウム合金等のリチウム合金、Sn、Si等のリチウムと合金形成可能な材料等を併用してもよい。これらは、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。前記金属複合酸化物としては、リチウムを吸蔵、放出可能なものであれば特に制限はないが、Ti(チタン)、Li(リチウム)又はTi及びLiの双方を含有するものが、放電特性の観点で好ましい。 In addition, as the negative electrode active material, amorphous carbon, carbonaceous materials other than graphite, metal oxides such as tin oxide and silicon oxide, metal composite oxide, lithium simple substance, lithium alloys such as lithium aluminum alloy, Sn, Si, etc. A material capable of forming an alloy with lithium may be used in combination. These may be used alone or in combination of two or more. The metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it contains Ti (titanium), Li (lithium) or both Ti and Li in terms of discharge characteristics. Is preferable.
 負極活物質を用いて形成した負極合剤の構成に特に制限はないが、負極合剤密度の範囲は0.7~2g/cmあることが好ましく、0.8~1.9g/cmであることがより好ましく、0.9~1.8g/cmであることが更に好ましい。 The configuration of the negative electrode mixture formed using the negative electrode active material is not particularly limited, but the negative electrode mixture density is preferably in the range of 0.7 to 2 g / cm 3 , and 0.8 to 1.9 g / cm 3. More preferably, it is 0.9 to 1.8 g / cm 3 .
 0.7g/cm以上であると、負極活物質間の導電性が向上し電池抵抗の増加を抑制することができ、単位容積あたりの容量を向上できる。2g/cm以下であると、初期の付加逆容量の増加、集電体と負極活物質との界面付近への電解液への浸透性の低下による放電特性の劣化を招く恐れが少なくなる。 When it is 0.7 g / cm 3 or more, the conductivity between the negative electrode active materials is improved, an increase in battery resistance can be suppressed, and the capacity per unit volume can be improved. When it is 2 g / cm 3 or less, there is less possibility of incurring deterioration in discharge characteristics due to an increase in initial additional reverse capacity and a decrease in permeability to the electrolyte near the interface between the current collector and the negative electrode active material.
 導電剤としては、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素などを用いることができる。これらは、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。このように、導電剤を添加することにより、電極の抵抗を低減する等の効果を奏する。 As the conductive agent, natural graphite, graphite such as artificial graphite (graphite), carbon black such as acetylene black, and amorphous carbon such as needle coke can be used. These may be used alone or in combination of two or more. Thus, there exists an effect of reducing the resistance of an electrode by adding a conductive agent.
 負極合剤の重量に対する導電剤の含有量の範囲は、導電性の向上、初期不可逆容量低減の観点から、1~45重量%の範囲であることが好ましく、2~42重量%であることがより好ましく、3~40重量%であることが更に好ましい。 The range of the content of the conductive agent relative to the weight of the negative electrode mixture is preferably in the range of 1 to 45% by weight, preferably 2 to 42% by weight, from the viewpoint of improving the conductivity and reducing the initial irreversible capacity. More preferred is 3 to 40% by weight.
 負極用の集電体の材質としては特に制限はなく、具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工のし易さとコストの観点から銅が好ましい。 The material of the current collector for the negative electrode is not particularly limited, and specific examples include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is preferable from the viewpoint of ease of processing and cost.
 集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。具体例としては、金属箔、金属板、金属薄膜、エキスパンドメタル等が挙げられる。中でも、金属箔が好ましく、銅箔がより好ましい。銅箔には、圧延法により形成された圧延銅箔と、電解法により形成された電解銅箔とがあり、どちらも集電体として用いて好適である。 The shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples include metal foil, metal plate, metal thin film, expanded metal, and the like. Especially, metal foil is preferable and copper foil is more preferable. The copper foil includes a rolled copper foil formed by a rolling method and an electrolytic copper foil formed by an electrolytic method, both of which are suitable for use as a current collector.
 集電体の厚さに制限はないが、厚さが25μm未満の場合、純銅よりも強銅合金(リン青銅、チタン銅、コルソン合金、Cu-Cr-Zr合金等)を用いることでその強度を向上させることができる。 The thickness of the current collector is not limited, but if the thickness is less than 25 μm, its strength can be increased by using a strong copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) rather than pure copper. Can be improved.
 負極活物質の結着剤としては、電解液及び電極の形成時に用いる分散溶媒に対して安定な材料であれば、特に制限はない。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)等のゴム状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。なお、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。 The binder for the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the dispersion solvent used when forming the electrolytic solution and the electrode. Specifically, resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, cellulose, and nitrocellulose; rubbery polymers such as SBR (styrene-butadiene rubber) and NBR (acrylonitrile-butadiene rubber); polyvinylidene fluoride (PVdF) ), Fluorine-based polymers such as polytetrafluoroethylene and fluorinated polyvinylidene fluoride; polymer compositions having ion conductivity of alkali metal ions (particularly lithium ions), and the like. Of these, one type may be used alone, or two or more types may be used in combination.
 また、結着剤として、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として用いる場合の負極合剤の質量に対する結着剤の含有量の範囲は、1~15質量%であることが好ましく、2~10質量%であることがより好ましく、3~8質量%であることが更に好ましい。 In addition, when the fluorine-based polymer typified by polyvinylidene fluoride is used as the main component as the binder, the range of the binder content relative to the mass of the negative electrode mixture is 1 to 15% by mass. It is preferably 2 to 10% by mass, more preferably 3 to 8% by mass.
 増粘剤は、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 Thickener is used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used alone or in combination of two or more.
 負極合剤の質量に対する結着剤の含有量の範囲は、0.1~20質量%が好ましく、0.5~15質量%がより好ましく、0.6~10質量%が更に好ましい。 The range of the content of the binder with respect to the mass of the negative electrode mixture is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and still more preferably 0.6 to 10% by mass.
  結着剤の含有量が0.1質量%以上であると、負極活物質を充分に結着でき、充分な負極活物質の機械的強度が得られる。20質量%以下であると、充分な電池容量及び導電性が得られる。 When the content of the binder is 0.1% by mass or more, the negative electrode active material can be sufficiently bound, and sufficient mechanical strength of the negative electrode active material can be obtained. Sufficient battery capacity and electroconductivity are obtained as it is 20 mass% or less.
 スラリーを形成するための分散溶媒としては、負極活物質、結着剤、及び必要に応じて用いられる導電剤又は増粘剤等を溶解又は分散することが可能な溶媒であれば、その種類に制限はなく、水系溶媒又は有機系溶媒のどちらを用いてもよい。水系溶媒の例としては、水、アルコール及び水との混合溶媒等が挙げられ、有機系溶媒の例としては、N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ジメチルスルフォキシド、ベンゼン、キシレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、増粘剤を用いることが好ましい。この増粘剤に併せて分散溶媒等を加え、SBR等のラテックスを用いてスラリー化する。なお、上記分散溶媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 増粘剤を用いる場合の負極合剤の質量に対する増粘剤の含有量の範囲はレート特性及び
As the dispersion solvent for forming the slurry, any kind of solvent can be used as long as it can dissolve or disperse the negative electrode active material, the binder, and the conductive agent or thickener used as necessary. There is no restriction, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water, alcohol, and a mixed solvent with water. Examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, Examples include methyl acrylate, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, dimethyl sulfoxide, benzene, xylene, and hexane. In particular, when an aqueous solvent is used, it is preferable to use a thickener. A dispersion solvent or the like is added to the thickener and slurried using a latex such as SBR. In addition, the said dispersion solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
The range of the content of the thickener relative to the mass of the negative electrode mixture when using the thickener is the rate characteristics and
電池容量の観点から、0.1~5質量%であることが好ましく、0.5~3質量%であることがより好ましく、0.6~2質量%であることが更に好ましい。
 3.電解液
From the viewpoint of battery capacity, it is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass, and still more preferably 0.6 to 2% by mass.
3. Electrolyte
 本実施の形態の電解液は、リチウム塩(電解質)と、これを溶解する非水溶媒から構成される。必要に応じて、添加剤を加えてもよい。 The electrolytic solution of the present embodiment is composed of a lithium salt (electrolyte) and a non-aqueous solvent that dissolves the lithium salt. You may add an additive as needed.
 リチウム塩としては、リチウムイオン電池用の電解質として使用可能なリチウム塩であれば特に制限はないが、以下に示す無機リチウム塩、含フッ素有機リチウム塩、オキサラトボレート塩等が挙げられる。 The lithium salt is not particularly limited as long as it is a lithium salt that can be used as an electrolyte for a lithium ion battery, and examples thereof include the following inorganic lithium salts, fluorine-containing organic lithium salts, and oxalatoborate salts.
 無機リチウム塩としては、LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩、LiClO、LiBrO等の過ハロゲン酸塩、LiAlCl等の無機塩化物塩などが挙げられる。 Examples of the inorganic lithium salt, LiPF 6, LiBF 4, LiAsF 6, inorganic fluoride salts LiSbF 6 or the like, perhalogenate such as LiClO 4, Libro 4, such as an inorganic chloride salts such as LiAlCl 4 and the like.
 含フッ素有機リチウム塩、フルオロアルキルフッ化リン酸塩等を用いてもよい。オキサラトボレート塩としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が挙げられる。 Fluorine-containing organic lithium salt, fluoroalkyl fluorophosphate, etc. may be used. Examples of the oxalatoborate salt include lithium bis (oxalato) borate and lithium difluorooxalatoborate.
 これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。中でも、非水溶媒に対する溶解性、二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF)が好ましい。 These lithium salts may be used alone or in combination of two or more. Among these, lithium hexafluorophosphate (LiPF 6 ) is preferable when comprehensively judging the solubility in a non-aqueous solvent, charge / discharge characteristics in the case of a secondary battery, output characteristics, cycle characteristics, and the like.
 電解液中の電解質の濃度に特に制限はないが、電解質の濃度範囲は0.5mol/L~2mol/Lであることが好ましく、0.6mol/L~1.8mol/Lであることがより好ましく、0.7mol/L~1.8mol/Lであることが更に好ましい。 The concentration of the electrolyte in the electrolytic solution is not particularly limited, but the electrolyte concentration range is preferably 0.5 mol / L to 2 mol / L, more preferably 0.6 mol / L to 1.8 mol / L. Preferably, it is 0.7 mol / L to 1.8 mol / L.
 濃度が0.5mol/L以上であると、充分な電解液の電気伝導率が得られる。また、濃度が2mol/L以下であると、粘度が高くなりすぎないため、電気伝導度の低下を抑制できる。 When the concentration is 0.5 mol / L or more, sufficient electric conductivity of the electrolytic solution can be obtained. Moreover, since a viscosity does not become high too much that a density | concentration is 2 mol / L or less, the fall of electrical conductivity can be suppressed.
 リチウムイオン電池用の電解質の溶媒として使用可能な非水溶媒であれば特に制限はなく、環状カーボネート、鎖状カーボネート、鎖状エステル、環状エーテル及び鎖状エーテル等が挙げられる。 There is no particular limitation as long as it is a non-aqueous solvent that can be used as an electrolyte solvent for lithium ion batteries, and examples thereof include cyclic carbonates, chain carbonates, chain esters, cyclic ethers, and chain ethers.
 例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジアルキルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート等が挙げられる。 Examples include ethylene carbonate, propylene carbonate, butylene carbonate, dialkyl carbonate, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and the like.
 これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用した非水溶媒を用いることが好ましい。例えば、環状カーボネート類の高誘電率溶媒と、鎖状カーボネート類、鎖状エステル類の低粘度溶媒とを併用するのが好ましい。 These may be used alone or in combination of two or more, but it is preferable to use a nonaqueous solvent in which two or more compounds are used in combination. For example, it is preferable to use a high dielectric constant solvent of cyclic carbonates in combination with a low viscosity solvent of chain carbonates or chain esters.
 添加剤としては、リチウムイオン電池の電解液用の添加剤であれば特に制限はないが、例えば、窒素、硫黄又は窒素及び硫黄を含有する複素環化合物、環状カルボン酸エステル、フッ素含有環状カーボネート、その他の分子内に不飽和結合を有する化合物が挙げられる。電池の長寿命化の観点からは、フッ素含有環状カーボネート、その他の分子内に不飽和結合を有する化合物が好ましい。 The additive is not particularly limited as long as it is an additive for an electrolyte solution of a lithium ion battery. For example, nitrogen, sulfur or a heterocyclic compound containing nitrogen and sulfur, a cyclic carboxylic acid ester, a fluorine-containing cyclic carbonate, Other compounds having an unsaturated bond in the molecule are exemplified. From the viewpoint of extending the life of the battery, fluorine-containing cyclic carbonates and other compounds having an unsaturated bond in the molecule are preferred.
 前記フッ素含有環状カーボネートとしては、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート等が挙げられる。 Examples of the fluorine-containing cyclic carbonate include fluoroethylene carbonate, difluoroethylene carbonate, trifluoroethylene carbonate, and tetrafluoroethylene carbonate.
 前記その他の分子内に不飽和結合を有する化合物としては、ビニレンカーボネート等が挙げられる。 Examples of the other compound having an unsaturated bond in the molecule include vinylene carbonate.
 上記添加剤以外に、求められる機能に応じて過充電防止剤、負極皮膜形成剤、正極保護剤、高入出力剤等の他の添加剤を用いてもよい。 In addition to the above additives, other additives such as an overcharge inhibitor, a negative electrode film forming agent, a positive electrode protective agent, and a high input / output agent may be used depending on the required function.
 上記他の添加剤により、過充電による異常時の急激な電極反応の抑制、高温保存後の容量維持特性、サイクル特性の向上、入出力特性の向上等を図ることができる。
 4.セパレータ
By using the other additives, it is possible to suppress a rapid electrode reaction at the time of abnormality due to overcharge, to improve capacity maintenance characteristics after storage at high temperature, to improve cycle characteristics, and to improve input / output characteristics.
4). Separator
 セパレータは、正極及び負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物、ガラス繊維等が用いられる。 The separator is not particularly limited as long as it has ion permeability while electronically insulating the positive electrode and the negative electrode and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side. As a material (material) of the separator satisfying such characteristics, a resin, an inorganic material, glass fiber, or the like is used.
 樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いることが好ましい。 As the resin, olefin polymer, fluorine polymer, cellulose polymer, polyimide, nylon or the like is used. It is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene.
 無機物としては、アルミナ、二酸化珪素等の酸化物類、窒化アルミニウム、窒化珪素等の窒化物類などが用いられる。例えば、繊維形状又は粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。薄膜形状の基材としては、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。また、繊維形状又は粒子形状の上記無機物を、樹脂等の結着剤を用いて複合多孔層としたものをセパレータとして用いることができる。さらに、この複合多孔層を、正極又は負極の表面に形成し、セパレータとしてもよい。
 5.その他の構成部材
As the inorganic material, oxides such as alumina and silicon dioxide, and nitrides such as aluminum nitride and silicon nitride are used. For example, what made the said inorganic substance of fiber shape or particle shape adhere to thin film-shaped base materials, such as a nonwoven fabric, a woven fabric, and a microporous film, can be used as a separator. As the thin film-shaped substrate, those having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm are preferably used. Moreover, what made the said inorganic substance of fiber shape or particle shape the composite porous layer using binders, such as resin, can be used as a separator. Furthermore, this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator.
5). Other components
 リチウムイオン電池のその他の構成部材として、開裂弁を設けてもよい。開裂弁が開放することで、電池内部の圧力上昇を抑制でき、安全性を向上させることができる。 A cleavage valve may be provided as another component of the lithium ion battery. By opening the cleavage valve, it is possible to suppress an increase in pressure inside the battery and to improve safety.
 また、温度上昇に伴い不活性ガス(例えば、二酸化炭素など)を放出する構成部を設けてもよい。このような構成部を設けることで、電池内部の温度が上昇した場合に、不活性ガスの発生により速やかに開裂弁を開けることができ、安全性を向上させることができる。上記構成部に用いられる材料としては、炭酸リチウム、ポリエチレンカーボネート、ポリプロピレンカーボネートが好ましい。
 (リチウムイオン電池の放電容量)
Moreover, you may provide the structure part which discharge | releases inert gas (for example, carbon dioxide etc.) with a temperature rise. By providing such a component, when the temperature inside the battery rises, the cleavage valve can be opened quickly due to the generation of inert gas, and safety can be improved. As a material used for the said structural part, lithium carbonate, polyethylene carbonate, and polypropylene carbonate are preferable.
(Discharge capacity of lithium-ion battery)
 本発明のリチウムイオン電池は、放電容量が30Ah以上、100Ah未満の大容量のものに適している。安全性を担保しつつ、高入出力で、高エネルギー密度という観点から、35Ah以上、100Ah未満であることが好ましく、40Ah以上、95Ah未満であることがより好ましい。
 (リチウムイオン電池の負極と正極の容量比)
The lithium ion battery of the present invention is suitable for a large capacity discharge capacity of 30 Ah or more and less than 100 Ah. From the viewpoint of high input / output and high energy density while ensuring safety, it is preferably 35 Ah or more and less than 100 Ah, more preferably 40 Ah or more and less than 95 Ah.
(Capacity ratio of the negative electrode to the positive electrode of the lithium ion battery)
 本発明において、負極と正極の容量比(負極容量/正極容量)は、安全性とエネルギー密度の観点から1.3~2.2であることが好ましく、1.3~2.0であることがより好ましい。従来の技術では、容量比が1.2以上だと充電時に正極電位が4.2Vよりも高くなることがあるため、安全性が低下する可能性が生じたが(このときの正極電位は対Li電位をいう)、本発明では、容量比が2.0以上でも安全性が損なわれず異常時の過充電耐性及びサイクル特性に優れるリチウムイオン電池を提供することが可能である。一方で、過剰な容量比はエネルギー密度低下へつながるため、容量比を2.2以下にしておくことが好ましい。 In the present invention, the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) is preferably 1.3 to 2.2 from the viewpoint of safety and energy density, and preferably 1.3 to 2.0. Is more preferable. In the conventional technique, when the capacity ratio is 1.2 or more, the positive electrode potential may be higher than 4.2 V during charging, which may reduce safety (the positive electrode potential at this time is According to the present invention, it is possible to provide a lithium ion battery excellent in overcharge resistance and cycle characteristics at the time of abnormality without sacrificing safety even when the capacity ratio is 2.0 or more. On the other hand, since an excessive capacity ratio leads to a decrease in energy density, the capacity ratio is preferably set to 2.2 or less.
 言い換えれば、容量比(負極容量/正極容量)が1.3以上の場合、過充電時に負極上でのLi析出を抑制できるため、安全性が向上する。一方で、容量比が高くなると、通常動作時に使用しない負極が存在することになり、エネルギー密度が低下する。そのため、容量比は、1.3~2.2であることが好ましく、1.3~2.0であることがより好ましい。 In other words, when the capacity ratio (negative electrode capacity / positive electrode capacity) is 1.3 or more, Li deposition on the negative electrode can be suppressed during overcharge, and thus safety is improved. On the other hand, when the capacity ratio is high, there is a negative electrode that is not used during normal operation, and the energy density decreases. Therefore, the capacity ratio is preferably 1.3 to 2.2, and more preferably 1.3 to 2.0.
 前記負極容量とは、[負極の放電容量]を示し、前記正極容量とは、[正極の初回充電容量-負極又は正極のどちらか大きい方の不可逆容量]を示す。ここで、[負極の放電容量]とは、負極活物質に挿入されているリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。また、[正極の初回充電容量]とは、正極活物質からリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。 The negative electrode capacity refers to [negative electrode discharge capacity], and the positive electrode capacity refers to [positive charge initial charge capacity—negative electrode or positive electrode, whichever is greater]. Here, the “negative electrode discharge capacity” is defined to be calculated by the charge / discharge device when the lithium ions inserted into the negative electrode active material are desorbed. Further, the “initial charge capacity of the positive electrode” is defined as that calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
 負極と正極の容量比は、例えば、「負極の放電容量/リチウムイオン電池の放電容量」からも算出することもできる。リチウムイオン電池の放電容量は、例えば、4.2V、0.1~0.5C、終止時間を2~5時間とする定電流定電圧(CCCV)充電を行った後、0.1~0.5Cで2.7Vまで定電流(CC)放電したときの条件で測定できる。前記負極の放電容量は、前記リチウムイオン電池の放電容量を測定した負極を所定の面積に切断し、対極としてリチウム金属を用い、電解液を含浸させたセパレータを介して単極セルを作製し、0V、0.1C、終止電流0.01Cで定電流定電圧(CCCV)充電を行った後、0.1Cで1.5Vまで定電流(CC)放電したときの条件で、所定面積当たりの放電容量を測定し、これを前記リチウムイオン電池の負極として用いた総面積に換算することで算出できる。この単極セルにおいて、負極活物質にリチウムイオンが挿入される方向を充電、負極活物質に挿入されているリチウムイオンが脱離する方向を放電、と定義する。なお、Cとは“電流値(A)/電池の放電容量(Ah)”を意味する。 The capacity ratio between the negative electrode and the positive electrode can also be calculated from, for example, “negative electrode discharge capacity / lithium ion battery discharge capacity”. The discharge capacity of the lithium ion battery is, for example, 4.2 V, 0.1 to 0.5 C, 0.1 to 0.00 after performing constant current and constant voltage (CCCV) charging with a termination time of 2 to 5 hours. It can be measured under conditions when a constant current (CC) discharge is performed up to 2.7 V at 5C. The discharge capacity of the negative electrode is obtained by cutting a negative electrode obtained by measuring the discharge capacity of the lithium ion battery into a predetermined area, using lithium metal as a counter electrode, and producing a single electrode cell through a separator impregnated with an electrolyte, Discharge per predetermined area under the conditions of constant current (CCCV) charging at 0V, 0.1C, and final current 0.01C, followed by constant current (CC) discharging to 1.5V at 0.1C It can be calculated by measuring the capacity and converting this to the total area used as the negative electrode of the lithium ion battery. In this single electrode cell, the direction in which lithium ions are inserted into the negative electrode active material is defined as charging, and the direction in which lithium ions inserted into the negative electrode active material are desorbed is defined as discharging. C means “current value (A) / battery discharge capacity (Ah)”.
 以下、実施例に基づき本実施の形態をさらに詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。
 (実施例1~5)
 [正極板の作製]
Hereinafter, the present embodiment will be described in more detail based on examples. The present invention is not limited to the following examples.
(Examples 1 to 5)
[Production of positive electrode plate]
 正極板の作製を以下のように行った。正極活物質として層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(BET比表面積が0.4m/g、平均粒径(d50)が6.5μm)、導電剤としてアセチレンブラック(商品名:HS-100、平均粒径48nm(電気化学工業株式会社カタログ値)、電気化学工業株式会社)、結着剤としてポリフッ化ビニリデンとを順次添加し、混合することにより正極材料の混合物を得た。質量比は、活物質:導電剤:結着剤=90:5:5とした。さらに上記混合物に対し、分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の両面に塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。正極合剤密度は2.7g/cmとし、正極合剤の片面塗布量140g/mとした。 The positive electrode plate was produced as follows. Layered lithium / nickel / manganese / cobalt composite oxide (positive BET surface area of 0.4 m 2 / g, average particle size (d50) of 6.5 μm) as positive electrode active material, and acetylene black (trade name: HS) as conductive agent -100, average particle diameter 48 nm (Denki Kagaku Kogyo Co., Ltd.), Denki Kagaku Kogyo Co., Ltd.) and polyvinylidene fluoride as a binder were sequentially added and mixed to obtain a mixture of positive electrode materials. The mass ratio was active material: conductive agent: binder = 90: 5: 5. Further, N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was added to the above mixture and kneaded to form a slurry. This slurry was applied to both surfaces of a 20 μm thick aluminum foil as a positive electrode current collector. Then, the drying process was performed and it consolidated by the press to the predetermined density. The density of the positive electrode mixture was 2.7 g / cm 3, and the coating amount on one side of the positive electrode mixture was 140 g / m 2 .
 なお、実施例中では、正極活物質として、組成式LiMn1/3Ni1/3Co1/3で表されるものを用いた。しかし、例えば組成式(化1)及び組成式(化2)を満たす場合など、正極活物質としてNMC及びsp-Mnを用いた場合には、同様の結果が得られている。
 [負極板の作製]
In the examples, a positive electrode active material represented by the composition formula LiMn 1/3 Ni 1/3 Co 1/3 O 2 was used. However, when NMC and sp-Mn are used as the positive electrode active material, for example, when the composition formula (Formula 1) and the composition formula (Formula 2) are satisfied, similar results are obtained.
[Production of negative electrode plate]
 負極板の作製を以下のように行った。負極活物質として易黒鉛化炭素(d002=0.35nm、平均粒径(d50)=10μm)と、黒鉛(d002=0.337nm、平均粒径(d50)=20μm)を表1に示す混合比(黒鉛/非晶質炭素)で混合した。この負極活物質に結着剤としてポリフッ化ビニリデンを添加した。これらの質量比は、負極活物質:結着剤=92:8とした。これに分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを負極用の集電体である厚さ10μmの圧延銅箔の両面に、負極容量/正極容量が表1に示す値になるように塗布した。なお、負極合剤密度は1.15g/cmとした。
 [電池の作製]
The negative electrode plate was produced as follows. Table 1 shows the mixing ratio of graphitizable carbon (d002 = 0.35 nm, average particle size (d50) = 10 μm) and graphite (d002 = 0.337 nm, average particle size (d50) = 20 μm) as the negative electrode active material. Mixed with (graphite / amorphous carbon). Polyvinylidene fluoride was added as a binder to this negative electrode active material. These mass ratios were negative electrode active material: binder = 92: 8. A dispersion solvent N-methyl-2-pyrrolidone (NMP) was added thereto and kneaded to form a slurry. This slurry was applied to both surfaces of a rolled copper foil having a thickness of 10 μm, which is a current collector for a negative electrode, so that the negative electrode capacity / positive electrode capacity were as shown in Table 1. The negative electrode mixture density was 1.15 g / cm 3 .
[Production of battery]
 上記正極板と上記負極板とが直接接触しないように厚さ30μmのポリエチレン製のセパレータを挟んで捲回する。このとき、正極板のリード片と負極板のリード片とが、それぞれ電極群の反対側の両端面に位置するようにする。また、正極板、負極板、セパレータの長さを調整し、電極群径は65±0.1mmとした。 Wrapping with a separator made of polyethylene having a thickness of 30 μm so that the positive electrode plate and the negative electrode plate are not in direct contact with each other. At this time, the lead piece of the positive electrode plate and the lead piece of the negative electrode plate are respectively positioned on the opposite end surfaces of the electrode group. Further, the lengths of the positive electrode plate, the negative electrode plate, and the separator were adjusted, and the electrode group diameter was set to 65 ± 0.1 mm.
 次いで、図1に示すように、正極板から導出されているリード片9を変形させ、その全てを正極側の鍔部7の底部付近に集合し、接触させる。正極側の鍔部7は、電極群6の軸芯のほぼ延長線上にある極柱(正極外部端子1)の周囲から張り出すよう成形されており、底部と側部とを有する。その後、超音波溶接によりリード片9を鍔部7の底部に接続し固定する。負極板から導出されているリード片9と負極側の鍔部7の底部も同様に接続し固定する。この負極側の鍔部7は、電極群6の軸芯のほぼ延長線上にある極柱(負極外部端子1’)周囲から張り出すよう成形されており、底部と側部とを有する。 Next, as shown in FIG. 1, the lead pieces 9 led out from the positive electrode plate are deformed, and all of them are gathered near the bottom of the flange 7 on the positive electrode side and brought into contact with each other. The flange portion 7 on the positive electrode side is formed so as to protrude from the periphery of the pole column (positive electrode external terminal 1) substantially on the extension line of the axis of the electrode group 6, and has a bottom portion and a side portion. Thereafter, the lead piece 9 is connected and fixed to the bottom of the flange 7 by ultrasonic welding. The lead piece 9 led out from the negative electrode plate and the bottom of the flange 7 on the negative electrode side are similarly connected and fixed. The negative electrode side flange portion 7 is formed so as to protrude from the periphery of the pole column (negative electrode external terminal 1 ′) substantially on the extension line of the axis of the electrode group 6, and has a bottom portion and a side portion.
 その後、粘着テープを用い、正極外部端子1側の鍔部7の側部及び負極外部端子1’の鍔部7の側部を覆い、絶縁被覆8を形成した。同様に、電極群6の外周にも絶縁被覆8を形成した。例えば、この粘着テープを、正極外部端子1側の鍔部7の側部から電極群6の外周面に亘って、さらに、電極群6の外周面から負極外部端子1’側の鍔部7の側部に亘って、何重にも巻くことにより絶縁被覆8を形成する。絶縁被覆(粘着テープ)8としては、基材がポリイミドで、その片面にメタクリレート系粘着材を塗布した粘着テープを用いた。電極群6の最大径部がステンレス製の電池容器5内径よりも僅かに小さくなるように絶縁被覆8の厚さ(粘着テープの巻き数)を調整し、電極群6を電池容器5内に挿入した。なお、電池容器5の外径は67mm、内径は66mmのものを用いた。 Then, using an adhesive tape, an insulating coating 8 was formed by covering the side of the flange 7 on the positive electrode external terminal 1 side and the side of the flange 7 of the negative electrode external terminal 1 ′. Similarly, an insulating coating 8 was formed on the outer periphery of the electrode group 6. For example, this adhesive tape is stretched from the side of the flange 7 on the positive electrode external terminal 1 side to the outer peripheral surface of the electrode group 6, and further from the outer periphery of the electrode group 6 to the flange 7 on the negative electrode external terminal 1 ′ side. The insulating coating 8 is formed by winding several times over the side. As the insulating coating (adhesive tape) 8, an adhesive tape in which the base material was polyimide and a methacrylate adhesive material was applied on one surface thereof was used. The thickness of the insulating coating 8 (the number of windings of the adhesive tape) is adjusted so that the maximum diameter portion of the electrode group 6 is slightly smaller than the inner diameter of the stainless steel battery container 5, and the electrode group 6 is inserted into the battery container 5. did. The battery container 5 had an outer diameter of 67 mm and an inner diameter of 66 mm.
 次いで、図1に示すように、セラミックワッシャ3’を、先端が正極外部端子1を構成する極柱及び先端が負極外部端子1’を構成する極柱にそれぞれ嵌め込む。セラミックワッシャ3’は、アルミナ製であり、電池蓋4の裏面と当接する部分の厚さが2mm、内径16mm、外径25mmである。次いで、セラミックワッシャ3を電池蓋4に載置した状態で、正極外部端子1をセラミックワッシャ3に通し、また、他のセラミックワッシャ3を他の電池蓋4に載置した状態で、負極外部端子1’を他のセラミックワッシャ3に通す。セラミックワッシャ3は、アルミナ製であり、厚さ2mm、内径16mm、外径28mmの平板状である。 Next, as shown in FIG. 1, the ceramic washer 3 ′ is fitted into the pole column whose tip constitutes the positive electrode external terminal 1 and the pole column whose tip constitutes the negative electrode external terminal 1 ′. The ceramic washer 3 ′ is made of alumina, and the thickness of the portion in contact with the back surface of the battery lid 4 is 2 mm, the inner diameter is 16 mm, and the outer diameter is 25 mm. Next, with the ceramic washer 3 placed on the battery lid 4, the positive external terminal 1 is passed through the ceramic washer 3, and with the other ceramic washer 3 placed on the other battery lid 4, the negative external terminal Pass 1 'through another ceramic washer 3. The ceramic washer 3 is made of alumina and has a flat plate shape with a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 28 mm.
 その後、電池蓋4の周端面を電池容器5の開口部に嵌合し、双方の接触部の全域をレーザー溶接する。このとき、正極外部端子1及び負極外部端子1’は、それぞれ電池蓋4の中心にある穴(孔)を貫通して電池蓋4の外部に突出している。電池蓋4には、電池の内圧上昇に応じて開裂する開裂弁10が設けられている。なお、開裂弁10の開裂圧は、13~18kgf/cm(1.27~1.77MPa)とした。 Thereafter, the peripheral end surface of the battery lid 4 is fitted into the opening of the battery container 5 and the entire area of both contact portions is laser welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ pass through a hole (hole) in the center of the battery lid 4 and project outside the battery lid 4. The battery lid 4 is provided with a cleavage valve 10 that cleaves in response to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 was 13 to 18 kgf / cm 2 (1.27 to 1.77 MPa).
 次いで、図1に示すように、金属ワッシャ11を、正極外部端子1及び負極外部端子1’にそれぞれ嵌め込む。これによりセラミックワッシャ3上に金属ワッシャ11が配置される。金属ワッシャ11は、ナット2の底面より平滑な材料よりなる。 Next, as shown in FIG. 1, the metal washer 11 is fitted into the positive external terminal 1 and the negative external terminal 1 '. Thereby, the metal washer 11 is disposed on the ceramic washer 3. The metal washer 11 is made of a material smoother than the bottom surface of the nut 2.
 次いで、金属製のナット2を正極外部端子1及び負極外部端子1’にそれぞれ螺着し、セラミックワッシャ3、金属ワッシャ11、セラミックワッシャ3’を介して電池蓋4を鍔部7とナット2との間で締め付けることにより固定する。このときの締め付けトルク値は70kgf・cm(6.86N・m)とした。なお、締め付け作業が終了するまで金属ワッシャ11は回転しなかった。この状態では、電池蓋4の裏面と鍔部7との間に介在させたゴム(EPDM)製のOリング12の圧縮により電池容器5の内部の発電要素は外気から遮断されている。 Next, the metal nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, and the battery lid 4 is connected to the flange portion 7 and the nut 2 via the ceramic washer 3, the metal washer 11, and the ceramic washer 3 ′. Secure by tightening between. The tightening torque value at this time was 70 kgf · cm (6.86 N · m). The metal washer 11 did not rotate until the tightening operation was completed. In this state, the power generation element inside the battery container 5 is shielded from the outside air by the compression of the rubber (EPDM) O-ring 12 interposed between the back surface of the battery lid 4 and the flange 7.
 その後、電池蓋4に設けられた注液口13から電解液を所定量電池容器5内に注入し、その後、注液口13を封止することにより円筒形リチウムイオン電池20を完成させた。 Thereafter, a predetermined amount of electrolyte was injected into the battery container 5 from the injection port 13 provided in the battery lid 4, and then the injection port 13 was sealed to complete the cylindrical lithium ion battery 20.
 電解液としては、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを、それぞれの体積比2:3:2で混合した混合溶液中へ、6フッ化リン酸リチウム(LiPF)を1.2mol/L溶解し、添加剤としてビニレンカーボネート(VC)を1.0質量%添加したものを用いた。
 [リチウム電位に対して0.1Vとなる電位におけるSOC]
As an electrolytic solution, 1.2 mol / L of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solution in which ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate were mixed at a volume ratio of 2: 3: 2. And what added 1.0 mass% of vinylene carbonate (VC) as an additive was used.
[SOC at a potential of 0.1 V with respect to the lithium potential]
 リチウム電位に対して0.1Vとなる電位におけるSOCの測定は、作製した試料負極電極をφ15mmの大きさに打ち抜き、φ16mmの大きさに打ち抜いた対極(金属リチウム)、φ19mmの大きさに打ち抜いたセパレータ、電解液をアルゴン雰囲気下でCR2032型コインセルに組み入れ、25℃の環境下で行った。対極には表面を研磨して酸化皮膜を除去した金属リチウムを使用した。 The measurement of SOC at a potential of 0.1 V with respect to the lithium potential was performed by punching the prepared sample negative electrode into a size of φ15 mm, punching out a counter electrode (metallic lithium) punched into a size of φ16 mm, and punching into a size of φ19 mm The separator and the electrolytic solution were incorporated into a CR2032-type coin cell under an argon atmosphere and performed in an environment of 25 ° C. For the counter electrode, metallic lithium whose surface was polished to remove the oxide film was used.
 電解液は,電解質(1MのLiPFを含むエチレンカーボネート/メチルエチルカーボネート/ジメチルカーボネート=2/2/3混合溶液(体積比)に、混合溶液全量に対してビニレンカーボネートを0.8質量%添加したもの、商品名:ソルライト、三菱化学株式会社製)を0.2mL使用した。セパレータにはポリエチレン製多孔質シートのセパレータ(商品名:ハイポア、旭化成株式会社製、厚さが30μm)を使用した。 The electrolyte is an electrolyte (0.8% by mass of vinylene carbonate is added to ethylene carbonate / methyl ethyl carbonate / dimethyl carbonate = 2/2/3 mixed solution (volume ratio) containing 1M LiPF 6 with respect to the total amount of the mixed solution). 0.2 mL of a product name, Sollite, manufactured by Mitsubishi Chemical Corporation) was used. As the separator, a polyethylene porous sheet separator (trade name: Hypore, manufactured by Asahi Kasei Co., Ltd., thickness: 30 μm) was used.
 得られたコインセルを用いて試料電極と対極の間に、電流密度0.1Cの定電流で0V(V vs Li/Li)まで充電し、0Vの定電圧で電流密度が0.01Cになるまで充電した。放電は、電流密度0.1Cの定電流で1.5V(V vs Li/Li)までおこなった。この充電及び放電する試験を3サイクル行った。なお、「V vs Li/Li」は、対極(金属リチウム)の電位に対する試料負極電極の電位である。 Using the obtained coin cell, the sample electrode is charged to 0 V (V vs Li / Li + ) with a constant current of 0.1 C between the sample electrode and the counter electrode, and the current density becomes 0.01 C with a constant voltage of 0 V. Charged up to. The discharge was performed at a constant current of a current density of 0.1 C up to 1.5 V (V vs Li / Li + ). This charge and discharge test was performed for 3 cycles. “V vs Li / Li + ” is the potential of the sample negative electrode with respect to the potential of the counter electrode (metal lithium).
 第3サイクル目の充電容量をSOC100%とした。0.1Vの時のSOC、すなわちリチウム電位に対して0.1Vとなる電位におけるSOCは、同じ3サイクル目の0.1Vまでの充電容量から算出した。 The charge capacity in the third cycle was set at 100% SOC. The SOC at 0.1 V, that is, the SOC at a potential of 0.1 V with respect to the lithium potential, was calculated from the charge capacity up to 0.1 V in the same third cycle.
 SOC=第3サイクル目の0.1VまでのCC充電容量/第3サイクル目の0VまでのCCCV充電容量 SOC = CC charge capacity up to 0.1V in the third cycle / CCCV charge capacity up to 0V in the third cycle
 すなわち、リチウムイオン電池の負極の一部が切断されて形成された試験用負極と、金属リチウムからなる対極と、を備えた試験用電池を作製し、電流密度0.1Cの定電流を流した状態で、対極の電位に対する試験用負極の電位が0Vになるまで試験用電池を充電した後、対極の電位に対する試験用負極の電位が0Vの状態で、電流密度が0.01Cになるまで試験用電池を充電する充電動作と、当該充電動作の後、試験用電池を放電する放電動作と、を交互に繰り返す。そして、リチウム電位に対して0.1Vとなる電位における充電状態は、3回目の充電動作が終了した後の充電容量に対する、3回目の充電動作において対極の電位に対する試験用負極の電位が0.1Vとなるときの充電容量の比である。 That is, a test battery including a test negative electrode formed by cutting a part of a negative electrode of a lithium ion battery and a counter electrode made of metallic lithium was produced, and a constant current with a current density of 0.1 C was passed. In this state, after the test battery is charged until the potential of the test negative electrode with respect to the potential of the counter electrode becomes 0 V, the test is performed until the current density becomes 0.01 C with the potential of the negative electrode for test with respect to the potential of the counter electrode being 0 V. The charging operation for charging the battery for charging and the discharging operation for discharging the test battery after the charging operation are alternately repeated. The charge state at a potential of 0.1 V with respect to the lithium potential is such that the potential of the negative electrode for testing with respect to the potential of the counter electrode is 0.3 in the third charge operation for the charge capacity after the third charge operation is completed. It is the ratio of the charge capacity when it becomes 1V.
 なお、上記したような、リチウム電位に対して0.1Vとなる電位におけるSOCを、CC/CCCV全容量とも称する。
 [電池特性(放電容量、入力特性、寿命特性)の評価]
Note that the SOC at a potential of 0.1 V with respect to the lithium potential as described above is also referred to as a CC / CCCV total capacity.
[Evaluation of battery characteristics (discharge capacity, input characteristics, life characteristics)]
 25℃の環境下において、充電、放電ともに電流値は0.5Cとした。充電は4.2Vを上限電圧とする定電流定電圧(CCCV)充電で、終止条件を3時間とした。放電は定電流(CC)放電で、2.7Vを終止条件とした。また、充放電間には30分の休止を入れた。これを3サイクル実施し、3サイクル目の充電容量を「電流値0.5Cにおける充電容量」、3サイクル目の放電容量を「電流値0.5Cにおける放電容量」とした。 In a 25 ° C. environment, the current value was 0.5 C for both charging and discharging. Charging was constant current constant voltage (CCCV) charging with 4.2 V as the upper limit voltage, and the termination condition was 3 hours. The discharge was a constant current (CC) discharge with 2.7 V as the end condition. Further, a pause of 30 minutes was put between charge and discharge. This was carried out for three cycles, and the charge capacity at the third cycle was defined as “charge capacity at a current value of 0.5 C”, and the discharge capacity at the third cycle was defined as “discharge capacity at a current value of 0.5 C”.
 ここで、負極容量/正極容量は、「電流値0.5Cにおける放電容量/負極の放電容量」から算出した。前記負極の放電容量は、前記「負極の所定面積当たり(1.7671cm)の放電容量」から、前記リチウムイオン電池で作製した負極の総面積に換算して算出した。
 (入力特性)
Here, the negative electrode capacity / positive electrode capacity was calculated from “discharge capacity at a current value of 0.5 C / negative electrode discharge capacity”. The discharge capacity of the negative electrode was calculated from the “discharge capacity per predetermined area of the negative electrode (1.7671 cm 2 )” in terms of the total area of the negative electrode produced by the lithium ion battery.
(Input characteristics)
 入力特性は、上記3サイクル目の放電容量を測定後、3Cの電流値で4.2Vを上限電圧とする定電流定電圧(CCCV)で終止条件を3時間とする充電を行い、この時の充電容量を「電流値3Cにおける充電容量」とし、以下の式により入力特性を算出した。この後、0.5Cの電流値で終止電圧2.7Vの定電流放電を行った。
 入力特性=電流値3Cにおける充電容量/電流値0.5Cにおける充電容量
After measuring the discharge capacity at the third cycle, the input characteristics were charged at a constant current and constant voltage (CCCV) with a current value of 3C and 4.2V as the upper limit voltage, and with a termination condition of 3 hours. The charge capacity was “charge capacity at a current value of 3 C”, and the input characteristics were calculated by the following formula. Thereafter, constant current discharge with a final voltage of 2.7 V was performed at a current value of 0.5 C.
Input characteristics = Charge capacity at a current value of 3C / Charge capacity at a current value of 0.5C
 そして、入力特性が80%以上を「A」とし、75%以上、80%未満を「B」とし、75%未満を「C」として評価した。
 (寿命特性)
The input characteristics of 80% or more were evaluated as “A”, 75% or more and less than 80% as “B”, and less than 75% as “C”.
(Life characteristics)
 寿命特性は、50℃の環境下において、0.5Cの電流値で4.2Vまで電池を定電流定電圧充電後、30分間休止させ、0.5Cの電流値で2.7Vまで定電流放電し、30分間休止を入れた。これを200回繰り返し評価した。1サイクル目の放電容量を基準とした200サイクル後の放電容量の比が80容量%以上を「A」とし、70容量%以上、80容量%未満を「B」とし、70容量%未満を「C」として評価した。
 (過充電耐性)
Lifetime characteristics are as follows: In a 50 ° C environment, the battery is charged at a constant current and a constant voltage up to 4.2V at a current value of 0.5C, then rested for 30 minutes and discharged at a constant current of 0.5C at a current value of 2.7V. And rested for 30 minutes. This was repeatedly evaluated 200 times. The ratio of the discharge capacity after 200 cycles based on the discharge capacity at the first cycle is 80% or more as “A”, 70% or more and less than 80% as “B”, and less than 70% as “B”. Evaluated as “C”.
(Overcharge resistance)
 25℃の環境下において、充電、放電ともに電流値は0.5Cとした。充電は4.2Vを上限電圧とする定電流定電圧(CCCV)充電で、終止条件を3時間とした。放電は定電流(CC)放電で、2.7Vを終止条件とした。また、充放電間には30分の休止を入れた。これを2サイクル実施した後、3サイクル目の放電だけ0.2Cの電流値で2.7Vまで放電した。 In a 25 ° C. environment, the current value was 0.5 C for both charging and discharging. Charging was constant current constant voltage (CCCV) charging with 4.2 V as the upper limit voltage, and the termination condition was 3 hours. The discharge was a constant current (CC) discharge with 2.7 V as the end condition. Further, a pause of 30 minutes was put between charge and discharge. After performing this two cycles, only the discharge of the third cycle was discharged to 2.7 V at a current value of 0.2C.
 この電池を、50℃の環境下で、3Cの電流値で設定電圧10Vまで定電流充電した。熱暴走しない場合を「A」とし、熱暴走した場合を「C」とした。
 (実施例6)
This battery was charged at a constant current up to a set voltage of 10 V at a current value of 3 C under an environment of 50 ° C. The case where no thermal runaway occurred was designated as “A”, and the case where thermal runaway occurred was designated as “C”.
(Example 6)
 負極板の作製において、負極と正極の容量比(負極容量/正極容量)を1.5にした以外は、実施例1と同様に行った。
 (実施例7)
The production of the negative electrode plate was performed in the same manner as in Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was 1.5.
(Example 7)
 負極板の作製において、負極と正極の容量比(負極容量/正極容量)を1.8にした以外は、実施例1と同様に行った。
 (実施例8)
The production of the negative electrode plate was performed in the same manner as in Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was 1.8.
(Example 8)
 負極板の作製において、負極と正極の容量比(負極容量/正極容量)を2.0にした以外は、実施例1と同様に行った。
 (実施例9)
Production of the negative electrode plate was performed in the same manner as in Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was set to 2.0.
Example 9
 負極板の作製において、負極と正極の容量比(負極容量/正極容量)を2.2にした以外は、実施例1と同様に行った。
 (実施例10)
The production of the negative electrode plate was performed in the same manner as in Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was set to 2.2.
(Example 10)
 負極板の作製において、負極活物質を易黒鉛化炭素から難黒鉛化炭素にした以外は、実施例1と同様に行った。
 (実施例11)
The production of the negative electrode plate was performed in the same manner as in Example 1 except that the negative electrode active material was changed from graphitizable carbon to non-graphitizable carbon.
(Example 11)
 負極板の作製において、負極活物質を天然黒鉛から人造黒鉛(d002=0.337nm、平均粒径(d50)=18μm)にした以外は、実施例1と同様に行った。
 (実施例12)
The negative electrode plate was produced in the same manner as in Example 1 except that the negative electrode active material was changed from natural graphite to artificial graphite (d002 = 0.337 nm, average particle size (d50) = 18 μm).
Example 12
 負極板の作製において、負極活物質として易黒鉛化炭素(d002=0.35nm、平均粒径(d50)=10μm)と、結着剤としてポリフッ化ビニリデンを混合し銅箔上に塗布後、乾燥、プレスした易黒鉛化炭素塗布銅箔上に、負極活物質として天然黒鉛(d002=0.337nm、平均粒径(d50)=20μm)と結着剤としてカルボキシメチルセルロース(ダイセルファインケム#2200)とスチレンブタジエン(SBR)を混合し塗布後、乾燥、プレスした(二重塗布ともよぶ)。それ以外は、実施例1と同様に行った。
 (実施例13)
In preparation of the negative electrode plate, graphitizable carbon (d002 = 0.35 nm, average particle size (d50) = 10 μm) as a negative electrode active material and polyvinylidene fluoride as a binder are mixed and applied onto a copper foil, and then dried. , Natural graphite (d002 = 0.337 nm, average particle size (d50) = 20 μm) as the negative electrode active material, carboxymethylcellulose (Daicel Finechem # 2200) and styrene as the binder on the pressed graphitizable carbon coated copper foil Butadiene (SBR) was mixed and applied, then dried and pressed (also called double coating). Otherwise, the same procedure as in Example 1 was performed.
(Example 13)
 負極板の作製において、負極活物質として所定の天然黒鉛と結着剤としてカルボキシメチルセルロースとスチレンブタジエンを混合し銅箔上に塗布後、乾燥、プレスした黒鉛塗布銅箔上に、負極活物質として所定の易黒鉛化炭素(d002=0.35nm、平均粒径(d50)=10μm)と、結着剤としてポリフッ化ビニリデンを混合し銅箔上に塗布後、乾燥、プレスした(二重塗布ともよぶ)。それ以外は、実施例1と同様に行った。
 (比較例1)
 負極板の作製において、負極活物質を天然黒鉛のみにした以外は、実施例1と同様に行った。
 (比較例2)
In the production of the negative electrode plate, a predetermined natural graphite as a negative electrode active material and carboxymethyl cellulose and styrene butadiene as a binder are mixed and applied onto a copper foil, and then dried and pressed on a graphite-coated copper foil as a negative electrode active material. Graphitizable carbon (d002 = 0.35 nm, average particle size (d50) = 10 μm) and polyvinylidene fluoride as a binder were mixed, applied onto a copper foil, dried and pressed (also called double coating) ). Otherwise, the same procedure as in Example 1 was performed.
(Comparative Example 1)
The production of the negative electrode plate was performed in the same manner as in Example 1, except that the negative electrode active material was only natural graphite.
(Comparative Example 2)
 負極板の作製において、負極と正極の容量比(負極容量/正極容量)を2.2にした以外は、比較例1と同様に行った。
 (比較例3)
The production of the negative electrode plate was performed in the same manner as in Comparative Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was set to 2.2.
(Comparative Example 3)
 負極板の作製において、負極活物質を易黒鉛化炭素のみにした以外は、実施例1と同様に行った。
 (比較例4)
The production of the negative electrode plate was performed in the same manner as in Example 1 except that only the graphitizable carbon was used as the negative electrode active material.
(Comparative Example 4)
 負極板の作製において、負極と正極の容量比(負極容量/正極容量)を2.2にした以外は、比較例3と同様に行った。
 (比較例5)
The production of the negative electrode plate was performed in the same manner as in Comparative Example 3 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was set to 2.2.
(Comparative Example 5)
 負極板の作製において、黒鉛と非晶質炭素の混合比(黒鉛/非晶質炭素)を80/20にした以外は、実施例3と同様に行った。
 (比較例6)
Production of the negative electrode plate was performed in the same manner as in Example 3 except that the mixing ratio of graphite and amorphous carbon (graphite / amorphous carbon) was 80/20.
(Comparative Example 6)
 負極板の作製において、負極と正極の容量比(負極容量/正極容量)を1.2にした以外は、実施例1と同様に行った。
 上記の実施例及び比較例の結果を以下の表1に示す。
Production of the negative electrode plate was performed in the same manner as in Example 1 except that the capacity ratio of the negative electrode to the positive electrode (negative electrode capacity / positive electrode capacity) was 1.2.
The results of the above examples and comparative examples are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
                   
Figure JPOXMLDOC01-appb-T000001
                   
 表1に示したように、実施例1~13では、負極に含まれる黒鉛の含有量は、負極に含まれる黒鉛及び非晶質炭素の総量に対して10~70質量%であり、正極の容量に対する負極の容量の比率である容量比(負極容量/正極容量)が、1.3~2.2である。このような実施例1~13では、入力特性、過充電耐性及び寿命特性のいずれの特性においても、評価結果が、「A」又は「B」である。このうち、負極に含まれる黒鉛の含有量が、負極に含まれる黒鉛及び非晶質炭素の総量に対して10~50質量%であり、容量比(負極容量/正極容量)が、1.3である実施例2~5では、入力特性、過充電耐性及び寿命特性のいずれの特性においても、評価結果が、「A」である。また、負極に含まれる黒鉛の含有量が、負極に含まれる黒鉛及び非晶質炭素の総量に対して70質量%であり、容量比(負極容量/正極容量)が、2.0~2.2である実施例8及び9では、入力特性、過充電耐性及び寿命特性のいずれの特性においても、評価結果が、「A」である。 As shown in Table 1, in Examples 1 to 13, the content of graphite contained in the negative electrode was 10 to 70% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode. The capacity ratio (negative electrode capacity / positive electrode capacity), which is the ratio of the capacity of the negative electrode to the capacity, is 1.3 to 2.2. In Examples 1 to 13, the evaluation result is “A” or “B” in any of the input characteristics, overcharge resistance, and life characteristics. Among these, the content of graphite contained in the negative electrode is 10 to 50% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode, and the capacity ratio (negative electrode capacity / positive electrode capacity) is 1.3. In Examples 2 to 5, the evaluation result is “A” in any of the input characteristics, overcharge resistance, and life characteristics. Further, the content of graphite contained in the negative electrode is 70% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode, and the capacity ratio (negative electrode capacity / positive electrode capacity) is 2.0-2. In Examples 8 and 9, which are 2, the evaluation result is “A” in any of the input characteristics, overcharge resistance, and life characteristics.
 なお、実施例1~13では、負極の、リチウム電位に対して0.1Vとなる電位における充電状態が、42~60%である。ここで、負極の、リチウム電位に対して0.1Vとなる電位における充電状態は、黒鉛の含有量に依存する。これは、易黒鉛化炭素、難黒鉛化炭素及び黒鉛の各々の充電曲線が互いに異なり、「第3サイクル目の0VまでのCCCV充電容量」が、易黒鉛化炭素、難黒鉛化炭素及び黒鉛の間で、異なるためである。そのため、負極の、リチウム電位に対して0.1Vとなる電位における充電状態(CC/CCCV全容量)を求めることにより、黒鉛及び非晶質炭素の総量に対する黒鉛の混合比を求めることができる。 In Examples 1 to 13, the state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential is 42 to 60%. Here, the state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential depends on the graphite content. This is because the charge curves of graphitizable carbon, non-graphitizable carbon, and graphite are different from each other, and the “CCCV charge capacity up to 0 V in the third cycle” is different from that of graphitizable carbon, non-graphitizable carbon, and graphite. This is because they are different. Therefore, the mixing ratio of graphite to the total amount of graphite and amorphous carbon can be determined by determining the state of charge (CC / CCCV total capacity) of the negative electrode at a potential of 0.1 V with respect to the lithium potential.
 一方、比較例1、2及び5では、容量比(負極容量/正極容量)は、1.3~2.2であるものの、負極に含まれる黒鉛の含有量は、負極に含まれる黒鉛及び非晶質炭素の総量に対して70質量%を超えている。また、比較例3及び4では、容量比(負極容量/正極容量)は、1.3~2.2であるものの、負極に含まれる黒鉛の含有量は、負極に含まれる黒鉛及び非晶質炭素の総量に対して10質量%未満である。また、比較例6では、負極に含まれる黒鉛の含有量は、負極に含まれる黒鉛及び非晶質炭素の総量に対して10~70質量%であるものの、容量比(負極容量/正極容量)が、1.3未満である。このような比較例1~6では、入力特性、過充電耐性及び寿命特性のいずれかの特性において、評価結果が、「C」である。なお、比較例1、2及び5では、負極の、リチウム電位に対して0.1Vとなる電位における充電状態が、41%以下であり、比較例3及び4では、負極の、リチウム電位に対して0.1Vとなる電位における充電状態が、60%を超える。 On the other hand, in Comparative Examples 1, 2 and 5, the capacity ratio (negative electrode capacity / positive electrode capacity) is 1.3 to 2.2, but the graphite content contained in the negative electrode is different from that contained in the negative electrode. It exceeds 70 mass% with respect to the total amount of crystalline carbon. In Comparative Examples 3 and 4, the capacity ratio (negative electrode capacity / positive electrode capacity) is 1.3 to 2.2, but the graphite content in the negative electrode is graphite and amorphous in the negative electrode. It is less than 10 mass% with respect to the total amount of carbon. In Comparative Example 6, the content of graphite contained in the negative electrode was 10 to 70% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode, but the capacity ratio (negative electrode capacity / positive electrode capacity) Is less than 1.3. In Comparative Examples 1 to 6, the evaluation result is “C” in any one of the input characteristics, overcharge resistance, and life characteristics. In Comparative Examples 1, 2, and 5, the state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential is 41% or less, and in Comparative Examples 3 and 4, the negative electrode has a lithium potential with respect to the lithium potential. The charge state at a potential of 0.1 V exceeds 60%.
 このように、前記黒鉛と前記非晶質炭素とを混合することで、入力特性を保持しつつ、出力特性、及びエネルギー密度をより向上することできる。また、黒鉛と非晶質炭素との含有比((黒鉛)/(非晶質炭素))は、10/90~70/30が好ましく、15/85~65/35であることがより好ましく、20/80~50/50が更に好ましい。これは、黒鉛の配合比が10%以上で出力特性及び過充電耐性が向上し、70%以下で入力特性の保持と過充電耐性を両立できるからである。 Thus, by mixing the graphite and the amorphous carbon, it is possible to further improve the output characteristics and energy density while maintaining the input characteristics. The content ratio of graphite to amorphous carbon ((graphite) / (amorphous carbon)) is preferably 10/90 to 70/30, more preferably 15/85 to 65/35, More preferred is 20/80 to 50/50. This is because the output characteristics and the overcharge resistance are improved when the blending ratio of graphite is 10% or more, and the maintenance of the input characteristics and the overcharge resistance can be achieved at 70% or less.
 すなわち、負極に含まれる黒鉛の含有量が、負極に含まれる黒鉛及び非晶質炭素の総量に対して10~70質量%であり、正極の容量に対する負極の容量の比率である容量比(負極容量/正極容量)が、1.3~2.2であるときに、入力特性、寿命特性及び過充電耐性に優れるリチウムイオン電池を提供することができる。 That is, the content of graphite contained in the negative electrode is 10 to 70% by mass with respect to the total amount of graphite and amorphous carbon contained in the negative electrode, and the capacity ratio (negative electrode When the capacity / positive electrode capacity is 1.3 to 2.2, it is possible to provide a lithium ion battery excellent in input characteristics, life characteristics and overcharge resistance.
 1 正極外部端子
 1’ 負極外部端子
 2 ナット
 3 セラミックワッシャ
 3’ セラミックワッシャ
 4 電池蓋
 5 電池容器
 6 電極群
 7 鍔部
 8 絶縁被覆
 9 リード片
10 開裂弁
11 金属ワッシャ
12 Oリング
13 注液口
20 リチウムイオン電池
DESCRIPTION OF SYMBOLS 1 Positive electrode external terminal 1 'Negative electrode external terminal 2 Nut 3 Ceramic washer 3' Ceramic washer 4 Battery cover 5 Battery container 6 Electrode group 7 buttock 8 Insulation coating 9 Lead piece 10 Cleavage valve 11 Metal washer 12 O-ring 13 Injection port 20 Lithium ion battery

Claims (5)

  1.  黒鉛及び非晶質炭素を含む負極と、
     リチウム遷移金属複合酸化物を含む正極と、
     電解液と、
     を備え、
     前記負極に含まれる前記黒鉛の含有量は、前記負極に含まれる前記黒鉛及び前記非晶質炭素の総量に対して10~70質量%であり、
     前記正極の容量に対する前記負極の容量の比率である容量比が、1.3~2.2である、リチウムイオン電池。
    A negative electrode comprising graphite and amorphous carbon;
    A positive electrode comprising a lithium transition metal composite oxide;
    An electrolyte,
    With
    The content of the graphite contained in the negative electrode is 10 to 70% by mass with respect to the total amount of the graphite and the amorphous carbon contained in the negative electrode,
    A lithium ion battery, wherein a capacity ratio, which is a ratio of a capacity of the negative electrode to a capacity of the positive electrode, is 1.3 to 2.2.
  2.  黒鉛及び非晶質炭素を含む負極と、
     リチウム遷移金属複合酸化物を含む正極と、
     電解液と、
     を備え、
     前記負極の、リチウム電位に対して0.1Vとなる電位における充電状態が、42~60%であり、
     前記正極の容量に対する前記負極の容量の比率である容量比が、1.3~2.2である、リチウムイオン電池。
    A negative electrode comprising graphite and amorphous carbon;
    A positive electrode comprising a lithium transition metal composite oxide;
    An electrolyte,
    With
    The state of charge of the negative electrode at a potential of 0.1 V with respect to the lithium potential is 42 to 60%,
    A lithium ion battery, wherein a capacity ratio, which is a ratio of a capacity of the negative electrode to a capacity of the positive electrode, is 1.3 to 2.2.
  3.  請求項1又は2に記載のリチウムイオン電池において、
     前記リチウム遷移金属複合酸化物は、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物である、リチウムイオン電池。
    The lithium ion battery according to claim 1 or 2,
    The lithium transition metal composite oxide is a lithium ion battery, which is a layered lithium / nickel / manganese / cobalt composite oxide.
  4.  請求項1乃至3のいずれか1項に記載のリチウムイオン電池において、
     前記電解液は、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む、リチウムイオン電池。
     
    The lithium ion battery according to any one of claims 1 to 3,
    The electrolytic solution is a lithium ion battery including ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate.
  5.  請求項1乃至4のいずれか1項に記載のリチウムイオン電池において、
     前記正極は、正極合剤からなり、前記正極合剤の密度は、2.5~2.8g/cmである、リチウムイオン電池。
    The lithium ion battery according to any one of claims 1 to 4,
    The lithium ion battery, wherein the positive electrode is made of a positive electrode mixture, and the density of the positive electrode mixture is 2.5 to 2.8 g / cm 3 .
PCT/JP2016/079737 2015-10-22 2016-10-06 Lithium-ion cell WO2017068985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017546495A JPWO2017068985A1 (en) 2015-10-22 2016-10-06 Lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-208422 2015-10-22
JP2015208422 2015-10-22

Publications (1)

Publication Number Publication Date
WO2017068985A1 true WO2017068985A1 (en) 2017-04-27

Family

ID=58557407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079737 WO2017068985A1 (en) 2015-10-22 2016-10-06 Lithium-ion cell

Country Status (2)

Country Link
JP (1) JPWO2017068985A1 (en)
WO (1) WO2017068985A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174061A1 (en) * 2017-03-23 2018-09-27 株式会社Gsユアサ Nonaqueous electrolyte power storage device
WO2018230058A1 (en) * 2017-06-13 2018-12-20 日立オートモティブシステムズ株式会社 Secondary battery
EP4095969A4 (en) * 2020-01-23 2024-07-17 Sanyo Electric Co Nonaqueous electrolyte secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340262A (en) * 1999-05-28 2000-12-08 Toyota Central Res & Dev Lab Inc Aging treatment method for lithium secondary battery
JP2012190731A (en) * 2011-03-14 2012-10-04 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2013157136A (en) * 2012-01-27 2013-08-15 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2013171646A (en) * 2012-02-20 2013-09-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015046283A (en) * 2013-08-28 2015-03-12 新神戸電機株式会社 Lithium ion battery
JP2015060824A (en) * 2013-09-20 2015-03-30 株式会社東芝 Nonaqueous electrolyte battery and battery pack
WO2015190480A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion secondary cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340262A (en) * 1999-05-28 2000-12-08 Toyota Central Res & Dev Lab Inc Aging treatment method for lithium secondary battery
JP2012190731A (en) * 2011-03-14 2012-10-04 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2013157136A (en) * 2012-01-27 2013-08-15 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2013171646A (en) * 2012-02-20 2013-09-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015046283A (en) * 2013-08-28 2015-03-12 新神戸電機株式会社 Lithium ion battery
JP2015060824A (en) * 2013-09-20 2015-03-30 株式会社東芝 Nonaqueous electrolyte battery and battery pack
WO2015190480A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion secondary cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174061A1 (en) * 2017-03-23 2018-09-27 株式会社Gsユアサ Nonaqueous electrolyte power storage device
JPWO2018174061A1 (en) * 2017-03-23 2020-01-30 株式会社Gsユアサ Non-aqueous electrolyte storage element
US11024470B2 (en) 2017-03-23 2021-06-01 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device
JP7103344B2 (en) 2017-03-23 2022-07-20 株式会社Gsユアサ Non-aqueous electrolyte power storage element
US11562862B2 (en) 2017-03-23 2023-01-24 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device
WO2018230058A1 (en) * 2017-06-13 2018-12-20 日立オートモティブシステムズ株式会社 Secondary battery
EP4095969A4 (en) * 2020-01-23 2024-07-17 Sanyo Electric Co Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPWO2017068985A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6213675B2 (en) Lithium ion secondary battery
JPWO2015152113A1 (en) Graphite negative electrode active material, negative electrode and lithium ion secondary battery
WO2015005228A1 (en) Lithium ion battery and manufacturing method therefor
JP6376280B2 (en) Lithium ion battery, negative electrode for lithium ion battery, battery module, automobile and power storage device
WO2016104024A1 (en) Lithium ion battery
JP2017520892A (en) Positive electrode for lithium battery
JP2018092778A (en) Lithium ion secondary battery
JP6897707B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6697377B2 (en) Lithium ion secondary battery
JP2017199548A (en) Lithium ion secondary battery
JPWO2016163282A1 (en) Lithium ion secondary battery
WO2016021614A1 (en) Lithium ion cell and method for determinining bad lithium ion cell
JP2016091927A (en) Lithium ion secondary battery
WO2017068985A1 (en) Lithium-ion cell
JP2019075320A (en) Lithium ion secondary battery
WO2017022731A1 (en) Lithium ion secondary battery
JP2017199547A (en) Lithium ion secondary battery
JP2017228434A (en) Lithium ion secondary battery
CN112437993A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2017199488A (en) Lithium ion battery
JP6344470B2 (en) Lithium ion secondary battery
JPWO2016080457A1 (en) Lithium ion battery
JP2018018581A (en) Lithium ion battery
JP2018073579A (en) Lithium ion battery
JP2017188404A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857301

Country of ref document: EP

Kind code of ref document: A1