JP2001243982A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001243982A
JP2001243982A JP2000060411A JP2000060411A JP2001243982A JP 2001243982 A JP2001243982 A JP 2001243982A JP 2000060411 A JP2000060411 A JP 2000060411A JP 2000060411 A JP2000060411 A JP 2000060411A JP 2001243982 A JP2001243982 A JP 2001243982A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
positive electrode
formula
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000060411A
Other languages
Japanese (ja)
Inventor
Hidetoshi Honbou
英利 本棒
Tadashi Muranaka
村中  廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2000060411A priority Critical patent/JP2001243982A/en
Publication of JP2001243982A publication Critical patent/JP2001243982A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery that has a high discharge voltage (4.2 V or more). SOLUTION: The lithium secondary battery comprises a positive electrode and a negative electrode which occlude and discharge lithium ion and an electrolyte containing the above lithium ion. The above positive electrode is composed of a positive electrode active material, a conductive material, a binder and a current collector, and the above conductive material is made of amorphous graphite, and the above electrolyte contains at least one or more kinds of a compound as expressed in the formula (1) or formula (2) (wherein, R1, R2 shows alkyl radical of carbon number 1 to 10 and R1 and R2 may be same.) and has an average discharge voltage of 4.2 V or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話やノート
型パーソナルコンピュータ等のポータブル機器、電気自
動車の駆動電源、電力貯蔵用電源に用いるに好適なリチ
ウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery suitable for use in portable equipment such as a portable telephone or a notebook personal computer, a driving power supply for an electric vehicle, and a power storage power supply.

【0002】[0002]

【従来の技術】二次電池の特性改善に関する従来技術と
して、常温から低温での充放電改善を目的とした特開平
11−317241号公報あるいは特開平11−283
666号公報には、電解液にジメチルスルホキシド、ス
ルホラン、亜硫酸ジメチル、亜硫酸ジエチル等の硫黄含
有化合物が使用できることが開示されている。
2. Description of the Related Art As a conventional technique for improving the characteristics of a secondary battery, Japanese Patent Application Laid-Open No. 11-317241 or Japanese Patent Application Laid-Open No.
No. 666 discloses that a sulfur-containing compound such as dimethyl sulfoxide, sulfolane, dimethyl sulfite, diethyl sulfite and the like can be used in the electrolytic solution.

【0003】また、特開平11−162511号公報で
は、電解液に硫黄含有化合物を添加することによって、
低温特性、長期安定性、サイクル特性等が改善できるこ
とが開示されている。また、特開平9−245833号
公報では、硫酸ジアルキルを電解液に添加することによ
って、負極のサイクル特性が改善できることが開示され
ている。
[0003] In Japanese Patent Application Laid-Open No. 11-162511, a sulfur-containing compound is added to an electrolytic solution.
It is disclosed that low-temperature characteristics, long-term stability, cycle characteristics, and the like can be improved. JP-A-9-245833 discloses that the cycle characteristics of a negative electrode can be improved by adding a dialkyl sulfate to an electrolytic solution.

【0004】このように、二次電池の特性改善のため
に、電解液に硫黄含有化合物を溶媒あるいは添加剤とし
て加えることが開示されている。
As described above, it is disclosed that a sulfur-containing compound is added as a solvent or an additive to an electrolytic solution in order to improve the characteristics of a secondary battery.

【0005】しかし、上記従来のリチウム二次電池の平
均放電電圧は、3.6V〜3.8Vであるが、近年これよ
りも、高電圧(4.2V以上)の電池が要求されるよう
になってきた。
[0005] However, the average discharge voltage of the above-mentioned conventional lithium secondary battery is 3.6 V to 3.8 V. In recent years, a higher voltage battery (4.2 V or more) has been required. It has become.

【0006】特開平9−167635号には、電解液の
耐電圧を向上させるために亜硫酸エステル化合物を添加
することが開示されているが、必ずしも十分とは云えな
い。
Japanese Patent Application Laid-Open No. 9-167635 discloses that a sulfite compound is added to improve the withstand voltage of an electrolytic solution, but this is not always sufficient.

【0007】[0007]

【発明が解決しようとする課題】現在、市販されている
LiCoO2を正極活物質とするリチウム二次電池で
は、充電の上限電圧が4.2Vに設定されており、放電
での平均電圧が3.6V〜3.8Vの範囲である。
At present, in a commercially available lithium secondary battery using LiCoO 2 as a positive electrode active material, the upper limit voltage of charging is set to 4.2 V, and the average voltage in discharging is 3 V. The range is from 0.6V to 3.8V.

【0008】これに対して、平均電圧が4.2V以上と
高電圧を発生する電池は、電圧を高くすることで、複数
本の電池を使用する機器での使用する電池数を削減で
き、また、高エネルギー化を実現できる等の優れたメリ
ットがある。
On the other hand, for a battery that generates a high voltage with an average voltage of 4.2 V or more, increasing the voltage can reduce the number of batteries used in a device using a plurality of batteries. There are excellent merits such as realizing high energy.

【0009】しかしながら、平均電圧を増加させるに
は、当然のことながら、充電の上限電圧も従来よりも高
電圧化する必要がある。そこで、本発明者らは4.5V
ないし5.2Vの範囲まで充電電圧を高くすることを試
みたが、充電電圧を上記のように高く設定すると、正極
を構成する正極活物質あるいは導電剤の表面で電解液を
分解してしまうために十分なサイクル特性が得られない
と云うことが分かった。
However, in order to increase the average voltage, it is, of course, necessary to make the upper limit voltage of charging higher than before. Therefore, the present inventors set the voltage of 4.5V.
Attempted to increase the charging voltage to the range of 5.2 V to 5.2 V. However, if the charging voltage is set as high as described above, the electrolytic solution is decomposed on the surface of the positive electrode active material or the conductive agent constituting the positive electrode. It was found that sufficient cycle characteristics could not be obtained.

【0010】本発明の目的は、前記の携帯電話を始めと
する移動機器や、電池を多数使用する電気自動車等の電
源として好適な、平均放電電圧の高い(4.2V以上)
リチウム二次電池を提供することにある。
An object of the present invention is to provide a high average discharge voltage (4.2 V or higher) suitable as a power source for mobile devices such as the above-mentioned mobile phones and electric vehicles using a large number of batteries.
An object of the present invention is to provide a lithium secondary battery.

【0011】[0011]

【課題を解決するための手段】上記目的を達成できる本
発明の要旨は次のとおりである。
The gist of the present invention that can achieve the above object is as follows.

【0012】リチウムイオンを吸蔵,放出する正極およ
び負極、前記リチウムイオンを含む電解液を有するリチ
ウム二次電池において、前記正極が正極活物質、導電
剤、結着剤、および、集電体で構成され、前記導電剤が
非晶質炭素であり、かつ、前記電解液は式(1)または
式(2)
[0012] In a lithium secondary battery having a positive electrode and a negative electrode that occlude and release lithium ions, and an electrolyte solution containing the lithium ions, the positive electrode includes a positive electrode active material, a conductive agent, a binder, and a current collector. Wherein the conductive agent is amorphous carbon, and the electrolyte is of the formula (1) or (2)

【0013】[0013]

【化2】 Embedded image

【0014】〔但し、R1,R2は炭素数1〜10のアル
キル基を示し、R1,R2は同じでもよい〕で表される化
合物の少なくとも1種を含み、平均放電電圧が4.2V
以上であることを特徴とするリチウム二次電池にある。
Wherein R 1 and R 2 each represent an alkyl group having 1 to 10 carbon atoms, and R 1 and R 2 may be the same, and have an average discharge voltage of 4 .2V
This is the feature of the lithium secondary battery.

【0015】前記電解液に含まれる前記式(1)または
式(2)で表される化合物の濃度が0.05〜0.5mo
l/dm3である。
The concentration of the compound represented by the formula (1) or (2) contained in the electrolyte solution is 0.05 to 0.5 mol.
1 / dm 3 .

【0016】前記正極活物質としては、化学式LiNi
xMn2-x4(但し、0.4≦x≦0.6)または、化学
式LiNixyMn2-x-y4(但し、Qは周期律表IIa
族,IIIa族,IVa族,第4周期の遷移金属,Zn,A
l,Ga,Si,Geから選ばれる少なくとも1種、
0.4≦x≦0.6、0<y≦0.1を示す)で表される
化合物であり、該正極活物質の平均粒径は3〜20μm
であって、最大粒径50μm以下の粒子が体積分率で9
0%以上存在することが望ましい。
As the positive electrode active material, a chemical formula LiNi
x Mn 2-x O 4 (where 0.4 ≦ x ≦ 0.6) or a chemical formula LiNi x Q y Mn 2-xy O 4 (where Q is the periodic table IIa
Group, IIIa group, IVa group, 4th period transition metal, Zn, A
at least one selected from l, Ga, Si, and Ge;
0.4 ≦ x ≦ 0.6, 0 <y ≦ 0.1), and the average particle size of the positive electrode active material is 3 to 20 μm.
Wherein particles having a maximum particle size of 50 μm or less have a volume fraction of 9
Desirably, it is present at 0% or more.

【0017】また、前記LiNixMn2-x4におい
て、x≧0.5の場合、正極の内部抵抗が大きくなる
が、異種元素として周期律表IIa族,IIIa族,IVa
族,第4周期の遷移金属,Zn,Al,Ga,Si,G
eから選ばれる少なくとも1種を添加したLiNix
2-x4を用いることによって、内部抵抗を低減でき
る。
In the case of LiNi x Mn 2-x O 4 , when x ≧ 0.5, the internal resistance of the positive electrode increases, but as a different element, the periodic table IIa group, IIIa group, IVa
Group, transition metal of the fourth period, Zn, Al, Ga, Si, G
LiNi x M to which at least one member selected from the group consisting of
By using n 2-x O 4, it can reduce the internal resistance.

【0018】前記導電剤としては、黒鉛層間距離が0.
344nm以上の非晶質炭素を用いる。非晶質炭素とし
ては、カーボンブラックが望ましく、その比表面積が5
0〜1000m2/gであることが望ましい。
The conductive agent has a graphite interlayer distance of 0.1 mm.
Amorphous carbon having a thickness of 344 nm or more is used. As the amorphous carbon, carbon black is desirable, and its specific surface area is 5
It is desirably 0 to 1000 m 2 / g.

【0019】カーボンブラックには熱分解法および不完
全燃焼法で製造される2種類に大別されるが、いずれの
カーボンブラックでも使用できる。それらのカーボンブ
ラック中でも、カーボンブラックの最小凝集体であるア
グリゲート同士が複雑に枝分かれした形状に連なって、
その構造が発達したものが望ましい。
Carbon black is roughly classified into two types produced by a pyrolysis method and an incomplete combustion method, and any type of carbon black can be used. Among those carbon blacks, aggregates that are the smallest aggregates of carbon black are connected in a complicatedly branched shape,
It is desirable that the structure is developed.

【0020】これは、アグリゲートが枝葉のように伸び
ることによって、電気的ネットワークの経路が多くな
り、集電性能が十分に得られるためである。このような
カーボンブラックとしてはアセチレンブラック、ケッチ
ェンブラックが挙げられる。
[0020] This is because, when the aggregates extend like branches and leaves, the number of paths in the electric network increases, and a sufficient current collection performance can be obtained. Examples of such carbon black include acetylene black and Ketjen black.

【0021】その他には、繊維状の非晶質炭素材料が望
ましい。本発明では、熱分解法によって作られる気相成
長炭素繊維、炭素材料の放電により作られるカーボンナ
ノチューブ、ピッチを紡糸して炭化処理することで得ら
れる炭素繊維等が使用できる。これらの繊維状炭素も電
気的ネットワーク経路の形成に有利であるため、集電性
能が十分に得られる。
In addition, a fibrous amorphous carbon material is desirable. In the present invention, a vapor grown carbon fiber produced by a pyrolysis method, a carbon nanotube produced by discharging a carbon material, a carbon fiber obtained by spinning pitch and carbonizing, and the like can be used. Since these fibrous carbons are also advantageous for forming an electrical network path, sufficient current collection performance can be obtained.

【0022】上記は、種々の実験結果に基づくもので、
導電剤として層間距離が0.344nm未満の黒鉛を用
いた場合、4.5V以上まで充電電圧を高くすると、電
解液中に存在するアニオンが黒鉛層間に吸蔵され、その
際に電解液が分解反応を起こしてしまうことが分かっ
た。そのために、十分なサイクル特性が得られず、黒鉛
を使用することができなかった。非晶炭素では層間にア
ニオンが吸蔵されることがなく、電解液を分解しにくい
ことが示された。
The above is based on various experimental results.
When graphite having an interlayer distance of less than 0.344 nm is used as the conductive agent, if the charging voltage is increased to 4.5 V or more, anions present in the electrolytic solution are occluded between the graphite layers, and at this time, the electrolytic solution is decomposed. It turned out to cause. Therefore, sufficient cycle characteristics were not obtained, and graphite could not be used. In the case of amorphous carbon, no anion was absorbed between the layers, indicating that the electrolyte was difficult to decompose.

【0023】なお、炭素材料の層間距離は、放電状態の
電池を解体して正極を取り出して、X線回析法によって
調べることができる。
The interlayer distance of the carbon material can be determined by disassembling the battery in the discharged state, taking out the positive electrode, and performing X-ray diffraction.

【0024】一方、負極活物質としては、リチウム金
属、リチウム合金と、黒鉛または非晶質炭素等の炭素材
料を用いる。
On the other hand, as the negative electrode active material, a lithium metal, a lithium alloy, and a carbon material such as graphite or amorphous carbon are used.

【0025】電解液の主たる溶媒としては、エチレンカ
ーボネート、プロピレンカーボネート、γ−ブチロラク
トン、スルホランの1種以上に、ジメチルカーボネー
ト、メチルエチルカーボネート、ジエチルカーボネー
ト、酢酸メチル、酢酸エチル、プロピオン酸メチル、プ
ロピオン酸エチル、ジメトキシエタン、2−メチルテト
ラヒドロフランの1種以上を加えた混合溶媒を用いる。
The main solvent of the electrolytic solution is at least one of ethylene carbonate, propylene carbonate, γ-butyrolactone and sulfolane, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, methyl propionate, propionate A mixed solvent to which one or more of ethyl, dimethoxyethane and 2-methyltetrahydrofuran are added is used.

【0026】また、電解液の溶質には、LiPF6,L
iBF4,LiClO4,LiN(CF3SO2)2,LiN
(C25SO2)2を用いる。
The solutes of the electrolyte include LiPF 6 , L
iBF 4 , LiClO 4 , LiN (CF 3 SO 2 ) 2 , LiN
(C 2 F 5 SO 2 ) 2 is used.

【0027】これらの溶媒および溶質によって調製され
た電解液に、前記式(1)あるいは式(2)で表される
化合物を0.05〜0.5mol/dm3の濃度で添加す
る。
The compound represented by the above formula (1) or (2) is added to the electrolyte prepared by using these solvents and solutes at a concentration of 0.05 to 0.5 mol / dm 3 .

【0028】前記式(1)または式(2)で表される化
合物としては、硫酸ジメチル、硫酸ジエチル、ジメチル
スルホン、または、ジエチルスルホンが好ましい。
As the compound represented by the above formula (1) or (2), dimethyl sulfate, diethyl sulfate, dimethyl sulfone or diethyl sulfone is preferable.

【0029】詳細は不明であるが、これら式(1),式
(2)で示される化合物は、SとOとの共有二重結合部
分の−SO2−を共通的な構造として有し、−SO2−の
部分が、高電位で正極活物質の表面に吸着(配位)し
て、正極活物質表面を式(1),式(2)で示される化
合物が覆い、これが保護膜として働くため溶媒の分解反
応を抑制するものと考えられる。
Although the details are unknown, these compounds represented by the formulas (1) and (2) have -SO 2 -as a common double bond between S and O as a common structure, The -SO 2- portion adsorbs (coordinates) on the surface of the positive electrode active material at a high potential, and covers the surface of the positive electrode active material with the compound represented by the formula (1) or (2). It is thought that it acts to suppress the decomposition reaction of the solvent.

【0030】上記のように、本発明では、第1に、導電
剤に非晶質炭素を用い、導電剤のアニオン吸蔵による溶
媒分解反応を抑制することと、第2に、−SO2−構造
を有する化合物を添加し正極表面での溶媒分解反応を抑
制すると云う2つの技術を合わせ、高電圧充電が可能な
リチウム二次電池を提供することができる。
As described above, in the present invention, first, amorphous carbon is used as the conductive agent to suppress the solvent decomposition reaction due to occlusion of the conductive agent by anion, and second, the -SO 2 -structure By combining the two techniques of adding a compound having the formula (1) to suppress the solvent decomposition reaction on the positive electrode surface, a lithium secondary battery capable of high-voltage charging can be provided.

【0031】なお、上記のいずれか一方だけを採用した
場合についても検討したが、電解液の分解抑制効果が不
十分であることが分かった。
The case where only one of the above was adopted was examined, but it was found that the effect of suppressing the decomposition of the electrolytic solution was insufficient.

【0032】[0032]

【発明の実施の形態】〔実施例 1〕平均粒径が10μ
m、粒径50μm以下の粒子の存在割合が体積分率で9
5%のLiNi0.4Mn1.64を正極活物質とし、以下
の方法によって正極を作製した。
[Embodiment 1] The average particle size is 10 μm.
m, the proportion of particles having a particle size of 50 μm or less is 9 by volume fraction.
Using 5% of LiNi 0.4 Mn 1.6 O 4 as a positive electrode active material, a positive electrode was produced by the following method.

【0033】正極活物質に、導電剤として黒鉛層間距離
が0.365nmのアセチレンブラックを加えて十分混
合した後、結着剤としてn−メチル−2−ピロリドン
(NMP)に溶解したポリフッ化ビニリデン(PVd
F)を加えてペースト化した。正極活物質と導電剤と結
着剤の割合は重量比で90:4:6とした。このペース
トを集電体であるアルミニウム箔に塗布し、NMPを乾
燥後、加圧成形して正極とした。
After acetylene black having a graphite interlayer distance of 0.365 nm is added to the positive electrode active material as a conductive agent and mixed well, polyvinylidene fluoride dissolved in n-methyl-2-pyrrolidone (NMP) is used as a binder. PVd
F) to give a paste. The ratio of the positive electrode active material, the conductive agent and the binder was 90: 4: 6 by weight. This paste was applied to an aluminum foil as a current collector, and NMP was dried and then pressed and formed to obtain a positive electrode.

【0034】電解液としては、溶媒にエチレンカーボネ
ートとジメチルカーボネートの体積比率1:2の混合溶
媒に、LiPF6を1mol/dm3の割合で溶解させた
溶液に、さらに、ジメチルスルホンを0.1mol/d
3添加した溶液を用いた。
As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a ratio of 1 mol / dm 3 in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 2, and further 0.1 mol of dimethyl sulfone were used. / D
The solution to which m 3 was added was used.

【0035】上記の正極、電解液、さらに負極としてリ
チウム金属を用い、図1に示す本発明のリチウム二次電
池を作製した。図中、11は正極、12は金属リチウム
負極、13はセパレータ、14は正極缶(Al製)、1
5は負極缶(Ni製)、16はガスケット、17は正極
集電体(Al製)である。
A lithium secondary battery of the present invention shown in FIG. 1 was prepared by using the above positive electrode, electrolytic solution and lithium metal as the negative electrode. In the figure, 11 is a positive electrode, 12 is a metallic lithium negative electrode, 13 is a separator, 14 is a positive electrode can (made of Al), 1
Reference numeral 5 denotes a negative electrode can (made of Ni), 16 denotes a gasket, and 17 denotes a positive electrode current collector (made of Al).

【0036】〔比較例 1〕導電剤に黒鉛層間距離が
0.337nmの黒鉛を用いた以外は、実施例1と同様
にしてリチウム二次電池を作製した。
Comparative Example 1 A lithium secondary battery was manufactured in the same manner as in Example 1, except that graphite having a graphite interlayer distance of 0.337 nm was used as the conductive agent.

【0037】〔比較例 2〕ジメチルスルホンを添加し
ないエチレンカーボネートとジメチルカーボネートの体
積比率1:2の混合溶媒に、LiPF6を1mol/d
3溶解させた電解液を用いて、実施例1と同様にして
リチウム二次電池を作製した。
COMPARATIVE EXAMPLE 2 LiPF 6 was added at 1 mol / d to a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 2 without adding dimethyl sulfone.
A lithium secondary battery was produced in the same manner as in Example 1 using the electrolytic solution in which m 3 was dissolved.

【0038】実施例1および比較例1,2のリチウム二
次電池を用いて、充電終止電圧を5.0V、放電終止電
圧を3.5V、充放電電流を3時間率(0.33C)に相
当する電流で定電流充放電を繰り返し行った。そのとき
の電池の容量維持率の変化を図2に示す。
Using the lithium secondary batteries of Example 1 and Comparative Examples 1 and 2, the end-of-charge voltage was 5.0 V, the end-of-discharge voltage was 3.5 V, and the charge / discharge current was 3 hours (0.33 C). Constant current charge / discharge was repeated with a corresponding current. FIG. 2 shows the change in the capacity retention ratio of the battery at that time.

【0039】実施例1のリチウム二次電池は、比較例
1,2に比べてサイクル特性が良好であることが分か
る。導電剤に黒鉛を用いた比較例1、あるいは、ジメチ
ルスルホンを添加しない比較例2では、いずれもその効
果が不十分であることが分かる。
It can be seen that the lithium secondary battery of Example 1 has better cycle characteristics than Comparative Examples 1 and 2. It can be seen that in Comparative Example 1 using graphite as the conductive agent or Comparative Example 2 in which dimethyl sulfone was not added, the effect was insufficient.

【0040】〔実施例 2〕ジメチルスルホンの添加量
を0.01,0.05,0.2,0.5,1mol/dm3
と変化させて、実施例1と同様にしてリチウム二次電池
を作製した。
Example 2 The addition amount of dimethyl sulfone was 0.01, 0.05, 0.2, 0.5, 1 mol / dm 3.
And a lithium secondary battery was fabricated in the same manner as in Example 1.

【0041】本実施例2のリチウム二次電池に対し、充
電終止電圧を5.0V、放電終止電圧を3.5V、充放電
電流を3時間率(0.33C)に相当する電流で、定電
流充放電を繰り返し行った。そのときの電池の容量維持
率の変化を図3に示す。
With respect to the lithium secondary battery of Example 2, the end-of-charge voltage was 5.0 V, the end-of-discharge voltage was 3.5 V, and the charge / discharge current was a constant corresponding to a 3-hour rate (0.33 C). Current charging / discharging was repeated. FIG. 3 shows the change in the capacity retention ratio of the battery at that time.

【0042】ジメチルスルホンの濃度が0.05〜0.5
mol/dm3の範囲で良好なサイクル特性が得られ
た。
When the concentration of dimethyl sulfone is 0.05 to 0.5
Good cycle characteristics were obtained in the range of mol / dm 3 .

【0043】一方、ジメチルスルホン濃度が0.01m
ol/dm3と添加量化が少ない場合、その効果がほと
んど発揮されないことが分かる。逆に、1mol/dm
3と大きい場合は、ジメチルスルホン自体も酸化分解さ
れるためかサイクル特性が悪くなることが分かった。上
記の結果から、添加剤ジメチルスルホンの添加量は0.
05〜0.5mol/dm3の範囲が望ましいことが分か
った。
On the other hand, the dimethyl sulfone concentration was 0.01 m
It can be seen that when the addition amount is small as ol / dm 3 , the effect is hardly exhibited. Conversely, 1 mol / dm
When it was as large as 3 , it was found that dimethyl sulfone itself was also oxidatively decomposed and the cycle characteristics were poor. From the above results, the additive amount of the additive dimethyl sulfone was 0.1%.
It has been found that a range of from 0.5 to 0.5 mol / dm 3 is desirable.

【0044】〔実施例 3〕ジメチルスルホンの代わり
に、ジエチルスルホン、硫酸ジメチル、硫酸ジエチル、
ジメチルスルホキシド、亜硫酸ジメチルを添加剤として
用い、実施例1と同様にしてリチウム二次電池を作製し
た。表1にこれらの添加剤の構造式を示す。
Example 3 Instead of dimethyl sulfone, diethyl sulfone, dimethyl sulfate, diethyl sulfate,
Using dimethyl sulfoxide and dimethyl sulfite as additives, a lithium secondary battery was produced in the same manner as in Example 1. Table 1 shows the structural formulas of these additives.

【0045】ジメチルスルホン、ジエチルスルホン、硫
酸ジメチルおよび硫酸ジエチルには、−SO2−構造が
共通構造として存在する。
In dimethyl sulfone, diethyl sulfone, dimethyl sulfate and diethyl sulfate, a —SO 2 — structure exists as a common structure.

【0046】[0046]

【表1】 [Table 1]

【0047】次に、前記実施例3のリチウム二次電池に
対して、充電終止電圧を5.0V、放電終止電圧を3.5
V、充放電電流を3時間率(0.33C)に相当する電
流で定電流充放電を繰り返し行った。そのときの電池の
容量維持率の変化を図4に示す。
Next, with respect to the lithium secondary battery of Example 3, the end-of-charge voltage was 5.0 V and the end-of-discharge voltage was 3.5.
V, a constant current charge / discharge was repeated at a charge / discharge current of a current corresponding to a 3-hour rate (0.33 C). FIG. 4 shows the change in the capacity retention rate of the battery at that time.

【0048】−SO2−構造を有するジエチルスルホ
ン、硫酸ジメチル、硫酸ジエチルを添加した場合のみ良
好なサイクル特性が得られ、ジメチルスルホキシドある
いは亜硫酸ジメチルのように−SO2−構造とは異なる
構造の場合は、添加剤としての効果がほとんど無いこと
が分かる。
Good cycle characteristics can be obtained only when diethyl sulfone, dimethyl sulfate or diethyl sulfate having a -SO 2 -structure is added, and a structure different from the -SO 2 -structure such as dimethyl sulfoxide or dimethyl sulfite is obtained. Shows that there is almost no effect as an additive.

【0049】[0049]

【発明の効果】導電剤に非晶質炭素を用い、電解液に前
記式(1),(2)に示す−SO2−構造を有する化合
物を添加することによって、4.5V〜5.2Vの高電位
での電解液分解反応が抑制されるために、電池電圧の高
いリチウム二次電池を実現することができる。
An amorphous carbon conductive agent according to the present invention, the formula in the electrolyte (1), -SO 2 shown in (2) - by the addition of a compound having the structure, 4.5V~5.2V Since the decomposition reaction of the electrolyte at a high potential is suppressed, a lithium secondary battery having a high battery voltage can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例、並びに、比較例で用いたリチ
ウム二次電池の模式断面図である。
FIG. 1 is a schematic sectional view of a lithium secondary battery used in Examples of the present invention and Comparative Examples.

【図2】実施例1および比較例1,2のリチウム二次電
池の容量維持率の変化を示すグラフである。
FIG. 2 is a graph showing changes in the capacity retention of the lithium secondary batteries of Example 1 and Comparative Examples 1 and 2.

【図3】実施例2のリチウム二次電池の容量維持率の変
化を示すグラフである。
FIG. 3 is a graph showing a change in the capacity retention of the lithium secondary battery of Example 2.

【図4】実施例3のリチウム二次電池の容量維持率の変
化を示すグラフである。
FIG. 4 is a graph showing a change in a capacity retention ratio of a lithium secondary battery of Example 3.

【符号の説明】[Explanation of symbols]

11…正極、12…負極、13…セパレータ、14…正
極缶、15…負極缶、16…ガスケット、17…正極集
電体。
11 positive electrode, 12 negative electrode, 13 separator, 14 positive electrode can, 15 negative electrode can, 16 gasket, 17 positive electrode current collector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H029 AJ02 AK03 AL12 AM02 AM03 AM04 AM05 AM07 DJ08 DJ18 EJ04 EJ11 HJ02 HJ07 HJ10 HJ13 5H050 AA02 BA17 CA08 CB12 DA02 DA10 EA09 FA20 HA02 HA07 HA10 HA13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Ren Muranaka 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratory, Hitachi, Ltd. 5H029 AJ02 AK03 AL12 AM02 AM03 AM04 AM05 AM07 DJ08 DJ18 EJ04 EJ11 HJ02 HJ07 HJ10 HJ13 5H050 AA02 BA17 CA08 CB12 DA02 DA10 EA09 FA20 HA02 HA07 HA10 HA13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵,放出する正極お
よび負極、前記リチウムイオンを含む電解液を有するリ
チウム二次電池において、 前記正極が正極活物質、導電剤、結着剤、および、集電
体で構成され、前記導電剤が非晶質炭素であり、かつ、
前記電解液は式(1)または式(2) 【化1】 〔但し、R1,R2は炭素数1〜10のアルキル基を示
し、R1,R2は同じでもよい〕で表される化合物の少な
くとも1種を含み、平均放電電圧が4.2V以上である
ことを特徴とするリチウム二次電池。
1. A lithium secondary battery having a positive electrode and a negative electrode that occlude and release lithium ions, and an electrolyte solution containing the lithium ions, wherein the positive electrode is a positive electrode active material, a conductive agent, a binder, and a current collector. Wherein the conductive agent is amorphous carbon, and
The electrolytic solution has the formula (1) or the formula (2) Wherein R 1 and R 2 each represent an alkyl group having 1 to 10 carbon atoms, and R 1 and R 2 may be the same, and have an average discharge voltage of 4.2 V or more. A lithium secondary battery characterized by the following.
【請求項2】 前記電解液に含まれる前記式(1)また
は式(2)で表される化合物の濃度が0.05〜0.5m
ol/dm3である請求項1に記載のリチウム二次電
池。
2. The concentration of the compound represented by the formula (1) or the formula (2) contained in the electrolytic solution is 0.05 to 0.5 m.
2. The lithium secondary battery according to claim 1, wherein the ratio is ol / dm 3 .
【請求項3】 前記式(1)または式(2)で表される
化合物が硫酸ジメチル、硫酸ジエチル、ジメチルスルホ
ン、または、ジエチルスルホンである請求項1または2
に記載のリチウム二次電池。
3. The compound represented by the formula (1) or (2) is dimethyl sulfate, diethyl sulfate, dimethyl sulfone or diethyl sulfone.
4. The lithium secondary battery according to 1.
【請求項4】 前記導電剤は、黒鉛層間距離が0.34
4nm以上の非晶質炭素であって、該非晶質炭素の比表
面積が50〜1000m2/gである請求項1,2また
は3に記載のリチウム二次電池。
4. The conductive agent has a graphite interlayer distance of 0.34.
4. The lithium secondary battery according to claim 1, wherein the carbon is amorphous carbon having a thickness of 4 nm or more, and the specific surface area of the amorphous carbon is 50 to 1000 m 2 / g. 5.
【請求項5】 前記正極活物質が、化学式LiNix
2-x4(但し、0.4≦x≦0.6)または、化学式L
iNixyMn2-x-y4(但し、Qは周期律表IIa族,
IIIa族,IVa族,第4周期の遷移金属,Zn,Al,
Ga,Si,Geから選ばれる少なくとも1種、0.4
≦x≦0.6、0<y≦0.1を示す)で表される請求項
1〜4のいずれかに記載のリチウム二次電池。
5. The method according to claim 1, wherein the positive electrode active material has a chemical formula of LiNi x M
n 2-x O 4 (where 0.4 ≦ x ≦ 0.6) or a chemical formula L
iNi x Q y Mn 2-xy O 4 (where Q is group IIa of the periodic table,
IIIa group, IVa group, fourth period transition metal, Zn, Al,
At least one selected from Ga, Si and Ge, 0.4
≤ x ≤ 0.6 and 0 <y ≤ 0.1). The lithium secondary battery according to any one of claims 1 to 4, wherein
JP2000060411A 2000-03-01 2000-03-01 Lithium secondary battery Withdrawn JP2001243982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060411A JP2001243982A (en) 2000-03-01 2000-03-01 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060411A JP2001243982A (en) 2000-03-01 2000-03-01 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001243982A true JP2001243982A (en) 2001-09-07

Family

ID=18580734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060411A Withdrawn JP2001243982A (en) 2000-03-01 2000-03-01 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001243982A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114285A (en) * 2004-10-13 2006-04-27 Samsung Sdi Co Ltd Nonaqueous electrolyte for lithium secondary battery, the lithium secondary battery, and secondary battery system
JP2006294519A (en) * 2005-04-13 2006-10-26 Sony Corp Electrolyte and battery
JP2006302756A (en) * 2005-04-22 2006-11-02 Sony Corp Battery
WO2008044850A1 (en) * 2006-10-09 2008-04-17 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
JP2012023059A (en) * 2011-10-31 2012-02-02 Sony Corp Secondary battery and electronic apparatus
JP2012243485A (en) * 2011-05-18 2012-12-10 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
CN103022562A (en) * 2011-09-26 2013-04-03 株式会社东芝 Nonaqueous electrolyte battery and battery pack
JP2014150070A (en) * 2002-07-15 2014-08-21 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using the same
US9005821B2 (en) 2009-02-25 2015-04-14 Sony Corporation Secondary battery
JP2015149250A (en) * 2014-02-07 2015-08-20 日本電気株式会社 Electrolyte, and secondary battery using the same
JP2015201335A (en) * 2014-04-08 2015-11-12 日立化成株式会社 lithium ion battery
US20190229372A1 (en) * 2006-04-27 2019-07-25 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US10587008B2 (en) 2013-11-28 2020-03-10 Nec Corporation Electrolyte solution for secondary battery and secondary battery using same
CN111146500A (en) * 2019-12-23 2020-05-12 东莞市杉杉电池材料有限公司 Fast-charging type lithium ion battery non-aqueous electrolyte and lithium ion battery containing electrolyte
CN111710909A (en) * 2020-06-28 2020-09-25 天目湖先进储能技术研究院有限公司 Multifunctional additive for lithium battery electrolyte, preparation method and application thereof
WO2020241438A1 (en) * 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050307B2 (en) 2002-07-15 2018-08-14 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium battery
US9742033B2 (en) 2002-07-15 2017-08-22 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium battery
JP2014150070A (en) * 2002-07-15 2014-08-21 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using the same
JP2006114285A (en) * 2004-10-13 2006-04-27 Samsung Sdi Co Ltd Nonaqueous electrolyte for lithium secondary battery, the lithium secondary battery, and secondary battery system
JP2006294519A (en) * 2005-04-13 2006-10-26 Sony Corp Electrolyte and battery
JP2006302756A (en) * 2005-04-22 2006-11-02 Sony Corp Battery
US20190229372A1 (en) * 2006-04-27 2019-07-25 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US11283107B2 (en) * 2006-04-27 2022-03-22 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US8524400B2 (en) 2006-10-09 2013-09-03 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
US9337510B2 (en) 2006-10-09 2016-05-10 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
WO2008044850A1 (en) * 2006-10-09 2008-04-17 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
US9005821B2 (en) 2009-02-25 2015-04-14 Sony Corporation Secondary battery
JP2012243485A (en) * 2011-05-18 2012-12-10 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2013069638A (en) * 2011-09-26 2013-04-18 Toshiba Corp Nonaqueous electrolyte battery, and battery pack
CN103022562A (en) * 2011-09-26 2013-04-03 株式会社东芝 Nonaqueous electrolyte battery and battery pack
US9246192B2 (en) 2011-09-26 2016-01-26 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
JP2012023059A (en) * 2011-10-31 2012-02-02 Sony Corp Secondary battery and electronic apparatus
US10587008B2 (en) 2013-11-28 2020-03-10 Nec Corporation Electrolyte solution for secondary battery and secondary battery using same
JP2015149250A (en) * 2014-02-07 2015-08-20 日本電気株式会社 Electrolyte, and secondary battery using the same
JP2015201335A (en) * 2014-04-08 2015-11-12 日立化成株式会社 lithium ion battery
WO2020241438A1 (en) * 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP7499455B2 (en) 2019-05-30 2024-06-14 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN111146500A (en) * 2019-12-23 2020-05-12 东莞市杉杉电池材料有限公司 Fast-charging type lithium ion battery non-aqueous electrolyte and lithium ion battery containing electrolyte
CN111710909A (en) * 2020-06-28 2020-09-25 天目湖先进储能技术研究院有限公司 Multifunctional additive for lithium battery electrolyte, preparation method and application thereof
CN111710909B (en) * 2020-06-28 2022-06-17 天目湖先进储能技术研究院有限公司 Multifunctional additive for lithium battery electrolyte, preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN111082138B (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
CN108886166B (en) Nonaqueous electrolyte additive, and nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
JP5392259B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP4837614B2 (en) Lithium secondary battery
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
KR102525619B1 (en) Rechargeable lithium battery
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
CN111293361A (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
US20100092863A1 (en) Non-aqueous electrolyte for secondary battery and secondary battery including the same
JP2001243982A (en) Lithium secondary battery
CN111048831B (en) Electrolyte for secondary battery and lithium secondary battery comprising same
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP5764526B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3978882B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US20050074670A1 (en) Lithium ion secondary cell
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
KR20080086638A (en) Electrolyte for lithium rechargeable battery and a lithium rechargeable battery comprising it
JPH11329494A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP2010135190A (en) Lithium ion secondary battery
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2002313416A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501