JP4710116B2 - Nonaqueous electrolyte and lithium secondary battery using the same - Google Patents

Nonaqueous electrolyte and lithium secondary battery using the same Download PDF

Info

Publication number
JP4710116B2
JP4710116B2 JP2000284790A JP2000284790A JP4710116B2 JP 4710116 B2 JP4710116 B2 JP 4710116B2 JP 2000284790 A JP2000284790 A JP 2000284790A JP 2000284790 A JP2000284790 A JP 2000284790A JP 4710116 B2 JP4710116 B2 JP 4710116B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
methyl group
coor
cor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000284790A
Other languages
Japanese (ja)
Other versions
JP2002100399A (en
Inventor
俊一 浜本
浩司 安部
由浩 牛越
高之 服部
保男 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2000284790A priority Critical patent/JP4710116B2/en
Publication of JP2002100399A publication Critical patent/JP2002100399A/en
Application granted granted Critical
Publication of JP4710116B2 publication Critical patent/JP4710116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池のサイクル特性や電気容量、保存特性などの電池特性にも優れたリチウム二次電池を提供することができる新規なリチウム二次電池用電解液、およびそれを用いたリチウム二次電池に関する。
【0002】
【従来の技術】
近年、リチウム二次電池は小型電子機器などの駆動用電源として広く使用されている。リチウム二次電池は、主に正極、非水電解液および負極から構成されており、特に、LiCoO2などのリチウム複合酸化物を正極とし、炭素材料又はリチウム金属を負極としたリチウム二次電池が好適に使用されている。そして、そのリチウム二次電池用の電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などのカーボネート類が好適に使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、電池のサイクル特性および電気容量などの電池特性について、さらに優れた特性を有する二次電池が求められている。
正極活物質として、例えば、LiCoO2、LiMn24、LiNiO2などを用いたリチウム二次電池は、充電時に非水電解液中の溶媒が局部的に一部酸化分解し、該分解物が電池の望ましい電気化学的反応を阻害するために電池性能の低下を生じる。これは、正極材料と非水電解液との界面における溶媒の電気化学的酸化に起因するものと思われる。
また、負極活物質として例えば天然黒鉛や人造黒鉛などの高結晶化した炭素材料を用いたリチウム二次電池は、炭素負極材料の剥離が観察され、現象の程度によって容量が不可逆となることがある。この剥離は、電解液中の溶媒が充電時に分解することにより起こるものであり、炭素負極材料と電解液との界面における溶媒の電気化学的還元に起因するものである。中でも、融点が低くて誘電率の高いPCを用いた電解液は低温においても高い電気伝導を有するが、黒鉛負極を用いる場合にはPCの分解が起こって、リチウム二次電池用には使用できないという問題点があった。また、ECも充放電を繰り返す間に一部分解が起こり、電池性能の低下が起こる。このため、電池のサイクル特性および電気容量などの電池特性は必ずしも満足なものではないのが現状である。
【0004】
本発明は、前記のようなリチウム二次電池用電解液に関する課題を解決し、電池のサイクル特性に優れ、さらに電気容量や充電状態での保存特性などの電池特性にも優れたリチウム二次電池を構成することができるリチウム二次電池用の電解液、およびそれを用いたリチウム二次電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、非水溶媒に電解質が溶解されている電解液において、該電解液中に下記一般式(I)、(II)、(III)、(IV)、
【0006】
【化9】

Figure 0004710116
【0007】
【化10】
Figure 0004710116
【0008】
【化11】
Figure 0004710116
【0009】
【化12】
Figure 0004710116
【0010】
(式中、R1、R4、R5、R6、R7、R8、R9、R10、R11、R12およびR17は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基、または水素原子を示す。但し、R4、R5、R6およびR7が同時に水素原子となることはない。式中、R2、R3、R13、R14、R15およびR16は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。また、R2とR3、R4とR5、R6とR7、R13とR14、R15とR16は、互いに結合して炭素数3〜6のシクロアルキル基を形成していても良い。式中、Y1は、−COOR18、−COR18または−SO218、Y2は、−COOR19、−COR19または−SO219、Y3は、−COOR20、−COR20または−SO220、Y4は、−COOR21、−COR21または−SO221、およびY5は、−COOR22、−COR22、−SO222を示し、前記R18、R19、R20、R21およびR22は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。ただし、nは1または2の整数を示す。)で表されるアルキン誘導体のうち少なくとも1種が電解液の重量に対して0.01〜20重量%含有されていることを特徴とするリチウム二次電池用電解液に関する。
【0011】
また、本発明は、正極、負極および非水溶媒に電解質が溶解されている電解液からなるリチウム二次電池において、該電解液中に下記一般式(I)、(II)、(III)、(IV)、
【0012】
【化13】
Figure 0004710116
【0013】
【化14】
Figure 0004710116
【0014】
【化15】
Figure 0004710116
【0015】
【化16】
Figure 0004710116
【0016】
(式中、R1、R4、R5、R6、R7、R8、R9、R10、R11、R12およびR17は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基、または水素原子を示す。但し、R4、R5、R6およびR7が同時に水素原子となることはない。式中、R2、R3、R13、R14、R15およびR16は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。また、R2とR3、R4とR5、R6とR7、R13とR14、R15とR16は、互いに結合して炭素数3〜6のシクロアルキル基を形成していても良い。式中、Y1は、−COOR18、−COR18または−SO218、Y2は、−COOR19、−COR19または−SO219、Y3は、−COOR20、−COR20または−SO220、Y4は、−COOR21、−COR21または−SO221、およびY5は、−COOR22、−COR22、−SO222を示し、前記R18、R19、R20、R21およびR22は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。ただし、nは1または2の整数を示す。)で表されるアルキン誘導体のうち少なくとも1種が電解液の重量に対して0.01〜20重量%含有されていることを特徴とするリチウム二次電池に関する。
【0017】
電解液中に含有される前記アルキン誘導体は、充電時に炭素負極表面で、電解液中の有機溶媒より先に還元分解して、該分解物の一部は、天然黒鉛や人造黒鉛などの活性で高結晶化した炭素負極表面に不働態皮膜を形成することにより、電解液中の有機溶媒の還元分解を未然に防ぐと推定される。
さらに、該分解物の一部は、正極材料表面の電位が過度に高くなった微少な過電圧部分において、電解液中の有機溶媒より先に酸化分解して、電解液中の有機溶媒の酸化分解を未然に防ぐと推定される。
これにより、電池の正常な反応を損なうことなく電解液の分解を抑制する効果を有するものと考えられる。
【0018】
【発明の実施の形態】
非水溶媒に電解質が溶解されている電解液に含有される前記一般式(I)、(II)、(III),(IV)で表されるアルキン誘導体において、R1、R4、R5、R6、R7、R8、R9、R10、R11、R12およびR17は、それぞれ独立してメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような炭素数1〜12のアルキル基が好ましい。アルキル基はイソプロピル基、イソブチル基のような分枝アルキル基でもよい。また、シクロプロピル基、シクロヘキシル基のような炭素数3〜6のシクロアルキル基でもよい。また、フェニル基、ベンジル基、p−トリル基のような炭素数6〜12のアリール基を含有するものでもよい。さらに、水素原子でもよい。但し、R4、R5、R6およびR7が同時に水素原子となることはない。式中、R2、R3、R13、R14、R15およびR16は、それぞれ独立してメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような炭素数1〜12のアルキル基が好ましい。アルキル基はイソプロピル基、イソブチル基のような分枝アルキル基でもよい。また、シクロプロピル基、シクロヘキシル基のような炭素数3〜6のシクロアルキル基でもよい。また、フェニル基、ベンジル基、p−トリル基のような炭素数6〜12のアリール基を含有するものでもよい。
【0019】
また、前記一般式(I)、(II)、(III)で表されるアルキン誘導体におけるY1、Y2、Y3、Y4およびY5において、R18、R19、R20、R21およびR22は、それぞれ独立してメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような炭素数1〜12のアルキル基が好ましい。アルキル基はイソプロピル基、イソブチル基のような分枝アルキル基でもよい。また、シクロプロピル基、シクロヘキシル基のような炭素数3〜6のシクロアルキル基でもよい。また、フェニル基、ベンジル基、p−トリル基のような炭素数6〜12のアリール基を含有するものでもよい。また、R2とR3、R4とR5、R6とR7、R13とR14、R15とR16は、互いに結合してシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基を形成していても良い。
ただし、nは1または2の整数を示す。
【0020】
前記一般式(I)で表されるアルキン誘導体の具体例として、例えば、Y1=−COOR18の場合、1,1−ジメチル−2−プロピニルメチルカーボネート〔R1=水素原子、R2=R3=メチル基、R18=メチル基、n=1〕、1,1−ジエチル−2−プロピニルメチルカーボネート〔R1=水素原子、R2=R3=エチル基、R18=メチル基、n=1〕、1,1−エチルメチル−2−プロピニルメチルカーボネート〔R1=水素原子、R2=エチル基、R3=メチル基、R18=メチル基、n=1〕、1,1−イソブチルメチル−2−プロピニルメチルカーボネート〔R1=水素原子、R2=イソブチル基、R3=メチル基、R18=メチル基、n=1〕、1,1−ジメチル−2−ブチニルメチルカーボネート〔R1=R2=R3=メチル基、R18=メチル基、n=1〕、1−エチニルシクロヘキシルメチルカーボネート〔R1=水素原子、R2とR3が結合=ペンタメチレン基、R18=メチル基、n=1〕、1,1−フェニルメチル−2−プロピニルメチルカーボネート〔R1=水素原子、R2=フェニル基、R3=メチル基、R18=メチル基、n=1〕、1,1−ジフェニル−2−プロピニルメチルカーボネート〔R1=水素原子、R2=R3=フェニル基、R18=メチル基、n=1〕、1,1−ジメチル−2−プロピニルエチルカーボネート〔R1=水素原子、R2=R3=メチル基、R18=エチル基、n=1〕などが挙げられる。Y1=−COR18の場合、酢酸1,1−ジメチル−2−プロピニル〔R1=水素原子、R2=R3=メチル基、R18=メチル基、n=1〕、酢酸1,1−ジエチル−2−プロピニル〔R1=水素原子、R2=R3=エチル基、R18=メチル基、n=1〕、酢酸1,1−エチルメチル−2−プロピニル〔R1=水素原子、R2=エチル基、R3=メチル基、R18=メチル基、n=1〕、酢酸1,1−イソブチルメチル−2−プロピニル〔R1=水素原子、R2=イソブチル基、R3=メチル基、R18=メチル基、n=1〕、酢酸1,1−ジメチル−2−ブチニル〔R1=R2=R3=メチル基、R18=メチル基、n=1〕、酢酸1−エチニルシクロヘキシル〔R1=水素原子、R2とR3が結合=ペンタメチレン基、R18=メチル基、n=1〕、酢酸1,1−フェニルメチル−2−プロピニル〔R1=水素原子、R2=フェニル基、R3=メチル基、R18=メチル基、n=1〕、酢酸1,1−ジフェニル−2−プロピニル〔R1=水素原子、R2=R3=フェニル基、R18=メチル基、n=1〕、プロピオン酸1,1−ジメチル−2−プロピニル〔R1=水素原子、R2=R3=メチル基、R18=エチル基、n=1〕などが挙げられる。Y1=−SO218の場合、メタンスルホン酸1,1−ジメチル−2−プロピニル〔R1=水素原子、R2=R3=メチル基、R18=メチル基、n=1〕、メタンスルホン酸1,1−ジエチル−2−プロピニル〔R1=水素原子、R2=R3=エチル基、R18=メチル基、n=1〕、メタンスルホン酸1,1−エチルメチル−2−プロピニル〔R1=水素原子、R2=エチル基、R3=メチル基、R18=メチル基、n=1〕、メタンスルホン酸1,1−イソブチルメチル−2−プロピニル〔R1=水素原子、R2=イソブチル基、R3=メチル基、R18=メチル基、n=1〕、メタンスルホン酸1,1−ジメチル−2−ブチニル〔R1=R2=R3=メチル基、R18=メチル基、n=1〕、メタンスルホン酸1−エチニルシクロヘキシル〔R1=水素原子、R2とR3が結合=ペンタメチレン基、R18=メチル基、n=1〕、メタンスルホン酸1,1−フェニルメチル−2−プロピニル〔R1=水素原子、R2=フェニル基、R3=メチル基、R18=メチル基、n=1〕、メタンスルホン酸1,1−ジフェニル−2−プロピニル〔R1=水素原子、R2=R3=フェニル基、R18=メチル基、n=1〕、エタンスルホン酸1,1−ジメチル−2−プロピニル〔R1=水素原子、R2=R3=メチル基、R18=エチル基、n=1〕などが挙げられる。ただし、本発明はこれらの化合物に何ら限定されるものではない。
【0021】
前記一般式(II)で表されるアルキン誘導体の具体例として、例えば、Y2=−COOR19およびY3=−COOR20の場合、3−ヘキシン−2,5−ジオール ジメチルジカーボネート〔R4=R6=メチル基、R5=R7=水素原子、R19=R20=メチル基、n=1〕、3−ヘキシン−2,5−ジオール ジエチルジカーボネート〔R4=R6=メチル基、R5=R7=水素原子、R19=R20=エチル基、n=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジメチルジカーボネート〔R4=R5=R6=R7=メチル基、R19=R20=メチル基、n=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジエチルジカーボネート〔R4=R5=R6=R7=メチル基、R19=R20=エチル基、n=1〕などが挙げられる。Y2=−COR19およびY3=−COR20の場合、3−ヘキシン−2,5−ジオール ジアセテート〔R4=R6=メチル基、R5=R7=水素原子、R19=R20=メチル基、n=1〕、3−ヘキシン−2,5−ジオール ジプロピオネート〔R4=R6=メチル基、R5=R7=水素原子、R19=R20=エチル基、n=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジアセテート〔R4=R5=R6=R7=メチル基、R19=R20=メチル基、n=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジプロピオネート〔R4=R5=R6=R7=メチル基、R19=R20=エチル基、n=1〕などが挙げられる。Y2=−SO219およびY3=−SO220の場合、3−ヘキシン−2,5−ジオールジメタンスルホネート〔R4=R6=メチル基、R5=R7=水素原子、R19=R20=メチル基、n=1〕、3−ヘキシン−2,5−ジオール ジエタンスルホネート〔R4=R6=メチル基、R5=R7=水素原子、R19=R20=エチル基、n=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジメタンスルホネート〔R4=R5=R6=R7=メチル基、R19=R20=メチル基、n=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジエタンスルホネート〔R4=R5=R6=R7=メチル基、R19=R20=エチル基、n=1〕などが挙げられる。ただし、本発明はこれらの化合物に何ら限定されるものではない。
【0022】
前記一般式(III)で表されるアルキン誘導体の具体例として、例えば、Y4=−COOR21およびY5=−COOR22の場合、2,4−ヘキサジイン−1,6−ジオール ジメチルジカーボネート〔R8=R9=R10=R11=水素原子、R21=R22=メチル基、n=1〕、2,4−ヘキサジイン−1,6−ジオール ジエチルジカーボネート〔R8=R9=R10=R11=水素原子、R21=R22=エチル基、n=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオール ジメチルジカーボネート〔R8=R9=R10=R11=メチル基、R21=R22=メチル基、n=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオールジエチルジカーボネート〔R8=R9=R10=R11=メチル基、R21=R22=エチル基、n=1〕などが挙げられる。Y4=−COR21およびY5=−COR22の場合、2,4−ヘキサジイン−1,6−ジオール ジアセテート〔R8=R9=R10=R11=水素原子、R21=R22=メチル基、n=1〕、2,4−ヘキサジイン−1,6−ジオール ジプロピオネート〔R8=R9=R10=R11=水素原子、R21=R22=エチル基、n=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオール ジアセテート〔R8=R9=R10=R11=メチル基、R21=R22=メチル基、n=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオール ジプロピオネート〔R8=R9=R10=R11=メチル基、R21=R22=エチル基、n=1〕などが挙げられる。Y4=−SO221およびY5=−SO222の場合、2,4−ヘキサジイン−1,6−ジオール ジメタンスルホネート〔R8=R9=R10=R11=水素原子、R21=R22=メチル基、n=1〕、2,4−ヘキサジイン−1,6−ジオール ジエタンスルホネート〔R8=R9=R10=R11=水素原子、R21=R22=エチル基、n=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオール ジメタンスルホネート〔R8=R9=R10=R11=メチル基、R21=R22=メチル基、n=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオール ジエタンスルホネート〔R8=R9=R10=R11=メチル基、R21=R22=エチル基、n=1〕などが挙げられる。ただし、本発明はこれらの化合物に何ら限定されるものではない。
【0023】
前記一般式(IV)で表されるアルキン誘導体の具体例としては、例えば、ジ(1,1−ジメチル−2−プロピニル)カーボネート〔R12=R17=水素原子、R13=R14=R15=R16=メチル基、n=1〕、ジ(1,1−ジエチル−2−プロピニル)カーボネート〔R12=R17=水素原子、R13=R14=R15=R16=エチル基、n=1〕、ジ(1,1−エチルメチル−2−プロピニル)カーボネート〔R12=R17=水素原子、R13=R15=エチル基、R14=R16=メチル基、n=1〕、ジ(1,1−イソブチルメチル−2−プロピニル)カーボネート〔R12=R17=水素原子、R13=R15=イソブチル基、R14=R16=メチル基、n=1〕、ジ(1,1−ジメチル−2−ブチニル)カーボネート〔R12=R17=R13=R14=R15=R16=メチル基、n=1〕、ジ(1−エチニルシクロヘキシル)カーボネート〔R12=R17=水素原子、R13とR14が結合=ペンタメチレン基、R15とR16が結合=ペンタメチレン基、n=1〕が挙げられる。ただし、本発明はこれらの化合物に何ら限定されるものではない。
【0024】
前記アルキン誘導体において、前記一般式(I)、(II)、(III)、(IV)で表されるアルキン誘導体の含有量は、過度に多いと、電解液の電導度などが変わり電池性能が低下することがあり、また、過度に少ないと、十分な皮膜が形成されず、期待した電池特性が得られないので、電解液の重量に対して0.01〜20重量%、特に0.1〜10重量%の範囲が好ましい。
【0025】
本発明で使用される非水溶媒としては、高誘電率溶媒と低粘度溶媒とからなるものが好ましい。
高誘電率溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類が好適に挙げられる。これらの高誘電率溶媒は、1種類で使用してもよく、また2種類以上組み合わせて使用してもよい。
【0026】
低粘度溶媒としては、例えば、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート類、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンなどのエーテル類、γ−ブチロラクトンなどのラクトン類、アセトニトリルなどのニトリル類、プロピオン酸メチルなどのエステル類、ジメチルホルムアミドなどのアミド類が挙げられる。これらの低粘度溶媒は1種類で使用してもよく、また2種類以上組み合わせて使用してもよい。
高誘電率溶媒と低粘度溶媒とはそれぞれ任意に選択され組み合わせて使用される。なお、前記の高誘電率溶媒および低粘度溶媒は、容量比(高誘電率溶媒:低粘度溶媒)で通常1:9〜4:1、好ましくは1:4〜7:3の割合で使用される。
【0027】
本発明で使用される電解質としては、例えば、LiPF6、LiBF4、LiClO4、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiPF4(CF32、LiPF3(C253、LiPF3(CF33、LiPF3(iso−C373、LiPF5(iso−C37)などが挙げられる。これらの電解質は、1種類で使用してもよく、2種類以上組み合わせて使用してもよい。これら電解質は、前記の非水溶媒に通常0.1〜3M、好ましくは0.5〜1.5Mの濃度で溶解されて使用される。
【0028】
本発明の電解液は、例えば、前記の高誘電率溶媒や低粘度溶媒を混合し、これに前記の電解質を溶解し、前記一般式(I)、(II)、(III)、(IV)で表されるアルキン誘導体のうち少なくとも1種を溶解することにより得られる。
【0029】
本発明の電解液は、二次電池の構成部材、特にリチウム二次電池の構成部材として好適に使用される。二次電池を構成する電解液以外の構成部材については特に限定されず、従来使用されている種々の構成部材を使用できる。
【0030】
例えば、正極活物質としてはコバルト、マンガン、ニッケル、クロム、鉄およびバナジウムからなる群より選ばれる少なくとも1種類の金属とリチウムとの複合金属酸化物が使用される。このような複合金属酸化物としては、例えば、LiCoO2、LiMn24、LiNiO2などが挙げられる。
【0031】
正極は、前記の正極活物質をアセチレンブラック、カーボンブラックなどの導電剤およびポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して正極合剤とした後、この正極材料を集電体としてのアルミニウムやステンレス製の箔やラス板に圧延して、50℃〜250℃程度の温度で2時間程度真空下で加熱処理することにより作製される。
【0032】
負極(負極活物質)としては、リチウム金属やリチウム合金、およびリチウムを吸蔵・放出可能な黒鉛型結晶構造を有する炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊維〕や複合スズ酸化物などの物質が使用される。特に、格子面(002)の面間隔(d002)が0.335〜0.340nm(ナノメーター)である黒鉛型結晶構造を有する炭素材料を使用することが好ましい。なお、炭素材料のような粉末材料はエチレンプロピレンジエンターポリマー(EPDM)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して負極合剤として使用される。
【0033】
リチウム二次電池の構造は特に限定されるものではなく、単層又は複層の正極、負極、セパレータを有するコイン型電池やポリマー電池、さらに、ロール状の正極、負極およびロール状のセパレータを有する円筒型電池や角型電池などが一例として挙げられる。なお、セパレータとしては公知のポリオレフィンの微多孔膜、織布、不織布などが使用される。
【0034】
【実施例】
次に、実施例および比較例を挙げて、本発明を具体的に説明する。
実施例1
〔電解液の調製〕
EC/DEC(容量比)=1/2の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して電解液を調製した後、さらにアルキン誘導体として1,1−ジメチル−2−プロピニルメチルカーボネート〔一般式(I)中、Y1=−COOR18、R1=水素原子、R2=R3=メチル基、R18=メチル基、n=1〕を電解液に対して2重量%となるように加えた。
【0035】
〔リチウム二次電池の作製および電池特性の測定〕
LiCoO2(正極活物質)を80重量%、アセチレンブラック(導電剤)を10重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドンを加えてスラリー状にしてアルミ箔上に塗布した。その後、これを乾燥し、加圧成形して正極を調製した。人造黒鉛(負極活物質)を90重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドンを加えてスラリー状にして銅箔上に塗布した。その後、これを乾燥し、加圧成形して負極を調製した。そして、ポリプロピレン微多孔性フィルムのセパレータを用い、上記の電解液を注入してコイン電池(直径20mm、厚さ3.2mm)を作製した。
このコイン電池を用いて、室温(20℃)下、0.8mAの定電流及び定電圧で、終止電圧4.2Vまで5時間で充電し、次に0.8mAの定電流下、終止電圧2.7Vまで放電し、この充放電を繰り返した。初期放電容量は、1M LiPF6+EC/DEC(容量比)=1/2を電解液として用いた場合(比較例1)と比較してその相対容量として算出し、1.03であった。50サイクル後の電池特性を測定したところ、初期放電容量を100%としたときの放電容量維持率は92.2%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。
【0036】
実施例2
EC/DEC(容量比)=1/2の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して電解液を調製した後、さらにアルキン誘導体として酢酸1,1−エチルメチル−2−プロピニル〔一般式(I)中、Y1=−COR18、R1=水素原子、R2=エチル基、R3=メチル基、R18=メチル基、n=1〕を電解液に対して2重量%となるように加えた。この電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定したところ、初期放電容量は、1M LiPF6+EC/DEC(容量比)=1/2を電解液として用いた場合(比較例1)と比較してその相対容量として算出し、1.02であった。50サイクル後の電池特性を測定したところ、初期放電容量を100%としたときの放電容量維持率は91.5%であった。コイン電池の作製条件および電池特性を表1に示す。
【0037】
実施例3
PC/EC/DEC(容量比)=1/2/7の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して電解液を調製した後、さらにアルキン誘導体としてメタンスルホン酸1,1−ジエチル−2−プロピニル〔一般式(I)中、Y1=−SO218、R1=水素原子、R2=R3=エチル基、R18=メチル基、n=1〕を電解液に対して2重量%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.05であり、50サイクル後の電池特性を測定したところ、放電容量維持率は91.9%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。
【0038】
実施例4
アルキン誘導体として2,5−ジメチル−3−ヘキシン−2,5−ジオール ジエチルジカーボネート〔一般式(II)中、Y2=Y3=−COOR19=−COOR20、R4=R5=R6=R7=メチル基、R19=R20=エチル基、n=1〕を電解液に対して1重量%使用したほかは実施例3と同様にコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.02であり、50サイクル後の電池特性を測定したところ、放電容量維持率は91.1%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。
【0039】
実施例5
アルキン誘導体として3−ヘキシン−2,5−ジオール ジメタンスルホネート〔一般式(II)中、Y2=Y3=−SO219=−SO220、R4=R6=メチル基、R5=R7=水素原子、R19=R20=メチル基、n=1〕を電解液に対して1重量%使用したほかは実施例3と同様にコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.03であり、50サイクル後の電池特性を測定したところ、放電容量維持率は91.6%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。
【0040】
実施例6
PC/EC/MEC(容量比)=1/2/7の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して電解液を調製した後、さらにアルキン誘導体として2,4−ヘキサジイン−1,6−ジオール ジメチルジカーボネート〔一般式(III)中、Y4=Y5=−COOR21=−COOR22、R8=R9=R10=R11=水素原子、R21=R22=メチル基、n=1〕を電解液に対して1重量%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.02であり、50サイクル後の電池特性を測定したところ、放電容量維持率は91.8%であった。コイン電池の作製条件および電池特性を表1に示す。
【0041】
実施例7
アルキン誘導体として2,4−ヘキサジイン−1,6−ジオール ジメタンスルホネート〔一般式(III)中、Y4=Y5=−SO221=−SO222、R8=R9=R10=R11=水素原子、R21=R22=メチル基、n=1〕を電解液に対して1重量%使用したほかは実施例6と同様にコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.03であり、50サイクル後の電池特性を測定したところ、放電容量維持率は91.5%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。
【0042】
実施例8
PC/EC/DMC/DEC(容量比)=1/2/3/4の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して電解液を調製した後、さらにアルキン誘導体としてジ(1,1−ジメチル−2−プロピニル)カーボネート〔一般式(IV)中、R12=R17=水素原子、R13=R14=R15=R16=メチル基、n=1〕を電解液に対して0.5重量%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.03であり、50サイクル後の電池特性を測定したところ、放電容量維持率は92.6%であった。コイン電池の作製条件および電池特性を表1に示す。
【0043】
実施例9
正極活物質として、LiCoO2に代えてLiMn24を使用したほかは実施例3と同様に電解液を調製してコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は0.83であり、50サイクル後の電池特性を測定したところ、放電容量維持率は93.1%であった。コイン電池の作製条件および電池特性を表1に示す。
【0044】
実施例10
正極活物質として、LiCoO2に代えてLiCo0.1Ni0.92を使用し、アルキン誘導体としてジ(1,1−ジメチル−2−プロピニル)カーボネート〔一般式(IV)中、R12=R17=水素原子、R13=R14=R15=R16=メチル基、n=1〕を電解液に対して0.5重量%使用したほかは実施例3と同様に電解液を調製してコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.19であり、50サイクル後の電池特性を測定したところ、放電容量維持率は90.5%であった。コイン電池の作製条件および電池特性を表1に示す。
【0045】
実施例11
負極活物質として、人造黒鉛に代えて天然黒鉛を使用したほかは実施例8と同様に電解液を調製してコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.02であり、50サイクル後の電池特性を測定したところ、放電容量維持率は93.2%であった。コイン電池の作製条件および電池特性を表1に示す。
【0046】
比較例1
EC/DEC(容量比)=1/2の非水溶媒を調製し、これにLiPF6 を1Mの濃度になるように溶解した。このときアルキン誘導体は全く添加しなかった。この電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定した。この場合の初期放電容量の相対容量を1とする。初期放電容量に対し、50サイクル後の放電容量維持率は82.8%であった。コイン電池の作製条件および電池特性を表1に示す。
【0047】
【表1】
Figure 0004710116
【0048】
なお、本発明は記載の実施例に限定されず、発明の趣旨から容易に類推可能な様々な組み合わせが可能である。特に、上記実施例の溶媒の組み合わせは限定されるものではない。更には、上記実施例はコイン電池に関するものであるが、本発明は円筒形、角柱形の電池にも適用される。
【0049】
【発明の効果】
本発明によれば、広い温度範囲でのサイクル特性や電気容量、更には保存特性などの電池特性に優れたリチウム二次電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a novel lithium secondary battery electrolyte that can provide a battery having excellent battery characteristics such as battery cycle characteristics, electric capacity, and storage characteristics, and a lithium secondary battery using the same. It relates to batteries.
[0002]
[Prior art]
In recent years, lithium secondary batteries have been widely used as driving power sources for small electronic devices and the like. A lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. 2 A lithium secondary battery having a lithium composite oxide such as a positive electrode and a carbon material or lithium metal as a negative electrode is preferably used. As the electrolyte for the lithium secondary battery, carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) are preferably used.
[0003]
[Problems to be solved by the invention]
However, there is a demand for a secondary battery having more excellent battery characteristics such as battery cycle characteristics and electric capacity.
As the positive electrode active material, for example, LiCoO 2 , LiMn 2 O Four , LiNiO 2 Lithium rechargeable batteries using the above, etc., partially degrade the oxidative decomposition of the solvent in the non-aqueous electrolyte during charging, and the decomposed product inhibits the desired electrochemical reaction of the battery. Arise. This is probably due to the electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte.
In addition, in a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode active material, peeling of the carbon negative electrode material is observed, and the capacity may be irreversible depending on the degree of the phenomenon. . This peeling is caused by the decomposition of the solvent in the electrolytic solution during charging, and is caused by the electrochemical reduction of the solvent at the interface between the carbon negative electrode material and the electrolytic solution. Among them, an electrolytic solution using a PC having a low melting point and a high dielectric constant has a high electrical conductivity even at a low temperature. However, when a graphite negative electrode is used, the PC is decomposed and cannot be used for a lithium secondary battery. There was a problem. Moreover, EC also partially decomposes during repeated charging and discharging, resulting in a decrease in battery performance. For this reason, at present, battery characteristics such as battery cycle characteristics and electric capacity are not always satisfactory.
[0004]
The present invention solves the above-described problems relating to the electrolyte for a lithium secondary battery, is excellent in battery cycle characteristics, and further excellent in battery characteristics such as electric capacity and storage characteristics in a charged state. It is an object of the present invention to provide an electrolytic solution for a lithium secondary battery that can constitute the battery, and a lithium secondary battery using the same.
[0005]
[Means for Solving the Problems]
The present invention relates to an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, in which the following general formulas (I), (II), (III), (IV),
[0006]
[Chemical 9]
Figure 0004710116
[0007]
Embedded image
Figure 0004710116
[0008]
Embedded image
Figure 0004710116
[0009]
Embedded image
Figure 0004710116
[0010]
(Wherein R 1 , R Four , R Five , R 6 , R 7 , R 8 , R 9 , R Ten , R 11 , R 12 And R 17 Each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an aryl group, or a hydrogen atom. However, R Four , R Five , R 6 And R 7 Are not simultaneously hydrogen atoms. Where R 2 , R Three , R 13 , R 14 , R 15 And R 16 Each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group. R 2 And R Three , R Four And R Five , R 6 And R 7 , R 13 And R 14 , R 15 And R 16 May be bonded to each other to form a cycloalkyl group having 3 to 6 carbon atoms. Where Y 1 Is -COOR 18 , -COR 18 Or -SO 2 R 18 , Y 2 Is -COOR 19 , -COR 19 Or -SO 2 R 19 , Y Three Is -COOR 20 , -COR 20 Or -SO 2 R 20 , Y Four Is -COOR twenty one , -COR twenty one Or -SO 2 R twenty one , And Y Five Is -COOR twenty two , -COR twenty two , -SO 2 R twenty two R 18 , R 19 , R 20 , R twenty one And R twenty two Each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group. However, n shows the integer of 1 or 2. ) Is contained in an amount of 0.01 to 20% by weight based on the weight of the electrolytic solution.
[0011]
Further, the present invention provides a lithium secondary battery comprising an electrolytic solution in which an electrolyte is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent, the following general formulas (I), (II), (III), (IV),
[0012]
Embedded image
Figure 0004710116
[0013]
Embedded image
Figure 0004710116
[0014]
Embedded image
Figure 0004710116
[0015]
Embedded image
Figure 0004710116
[0016]
(Wherein R 1 , R Four , R Five , R 6 , R 7 , R 8 , R 9 , R Ten , R 11 , R 12 And R 17 Each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an aryl group, or a hydrogen atom. However, R Four , R Five , R 6 And R 7 Are not simultaneously hydrogen atoms. Where R 2 , R Three , R 13 , R 14 , R 15 And R 16 Each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group. R 2 And R Three , R Four And R Five , R 6 And R 7 , R 13 And R 14 , R 15 And R 16 May be bonded to each other to form a cycloalkyl group having 3 to 6 carbon atoms. Where Y 1 Is -COOR 18 , -COR 18 Or -SO 2 R 18 , Y 2 Is -COOR 19 , -COR 19 Or -SO 2 R 19 , Y Three Is -COOR 20 , -COR 20 Or -SO 2 R 20 , Y Four Is -COOR twenty one , -COR twenty one Or -SO 2 R twenty one , And Y Five Is -COOR twenty two , -COR twenty two , -SO 2 R twenty two R 18 , R 19 , R 20 , R twenty one And R twenty two Each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group. However, n shows the integer of 1 or 2. The lithium secondary battery is characterized in that at least one of the alkyne derivatives represented by (II) is contained in an amount of 0.01 to 20% by weight based on the weight of the electrolyte.
[0017]
The alkyne derivative contained in the electrolytic solution is reduced and decomposed on the surface of the carbon negative electrode prior to the organic solvent in the electrolytic solution at the time of charging, and a part of the decomposed product has an activity such as natural graphite or artificial graphite. By forming a passive film on the highly crystallized carbon negative electrode surface, it is estimated that reductive decomposition of the organic solvent in the electrolytic solution is prevented.
Furthermore, a part of the decomposition product is oxidized and decomposed before the organic solvent in the electrolytic solution at a minute overvoltage portion where the potential on the surface of the positive electrode material is excessively high, so that the organic solvent in the electrolytic solution is oxidized and decomposed. It is estimated that this will be prevented.
Thereby, it is thought that it has the effect which suppresses decomposition | disassembly of electrolyte solution, without impairing the normal reaction of a battery.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the alkyne derivative represented by the general formula (I), (II), (III), or (IV) contained in the electrolyte solution in which the electrolyte is dissolved in the nonaqueous solvent, R 1 , R Four , R Five , R 6 , R 7 , R 8 , R 9 , R Ten , R 11 , R 12 And R 17 Are preferably independently an alkyl group having 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. The alkyl group may be a branched alkyl group such as isopropyl group or isobutyl group. Moreover, a C3-C6 cycloalkyl group like a cyclopropyl group and a cyclohexyl group may be sufficient. Moreover, you may contain a C6-C12 aryl group like a phenyl group, a benzyl group, and p-tolyl group. Furthermore, a hydrogen atom may be sufficient. However, R Four , R Five , R 6 And R 7 Are not simultaneously hydrogen atoms. Where R 2 , R Three , R 13 , R 14 , R 15 And R 16 Are preferably independently an alkyl group having 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. The alkyl group may be a branched alkyl group such as isopropyl group or isobutyl group. Moreover, a C3-C6 cycloalkyl group like a cyclopropyl group and a cyclohexyl group may be sufficient. Moreover, you may contain a C6-C12 aryl group like a phenyl group, a benzyl group, and p-tolyl group.
[0019]
Further, Y in the alkyne derivative represented by the general formula (I), (II), or (III) 1 , Y 2 , Y Three , Y Four And Y Five R 18 , R 19 , R 20 , R twenty one And R twenty two Are preferably independently an alkyl group having 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. The alkyl group may be a branched alkyl group such as isopropyl group or isobutyl group. Moreover, a C3-C6 cycloalkyl group like a cyclopropyl group and a cyclohexyl group may be sufficient. Moreover, you may contain a C6-C12 aryl group like a phenyl group, a benzyl group, and p-tolyl group. R 2 And R Three , R Four And R Five , R 6 And R 7 , R 13 And R 14 , R 15 And R 16 May be bonded to each other to form a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, or a cyclohexyl group.
However, n shows the integer of 1 or 2.
[0020]
Specific examples of the alkyne derivative represented by the general formula (I) include, for example, Y 1 = -COOR 18 In the case of 1,1-dimethyl-2-propynylmethyl carbonate [R 1 = Hydrogen atom, R 2 = R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-diethyl-2-propynylmethyl carbonate [R 1 = Hydrogen atom, R 2 = R Three = Ethyl group, R 18 = Methyl group, n = 1], 1,1-ethylmethyl-2-propynylmethyl carbonate [R 1 = Hydrogen atom, R 2 = Ethyl group, R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-isobutylmethyl-2-propynylmethyl carbonate [R 1 = Hydrogen atom, R 2 = Isobutyl group, R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-dimethyl-2-butynylmethyl carbonate [R 1 = R 2 = R Three = Methyl group, R 18 = Methyl group, n = 1], 1-ethynylcyclohexylmethyl carbonate [R 1 = Hydrogen atom, R 2 And R Three Is a bond = pentamethylene group, R 18 = Methyl group, n = 1], 1,1-phenylmethyl-2-propynylmethyl carbonate [R 1 = Hydrogen atom, R 2 = Phenyl group, R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-diphenyl-2-propynylmethyl carbonate [R 1 = Hydrogen atom, R 2 = R Three = Phenyl group, R 18 = Methyl group, n = 1], 1,1-dimethyl-2-propynylethyl carbonate [R 1 = Hydrogen atom, R 2 = R Three = Methyl group, R 18 = Ethyl group, n = 1] and the like. Y 1 = -COR 18 In the case of 1,1-dimethyl-2-propynyl acetate [R 1 = Hydrogen atom, R 2 = R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-diethyl-2-propynyl acetate [R 1 = Hydrogen atom, R 2 = R Three = Ethyl group, R 18 = Methyl group, n = 1], 1,1-ethylmethyl-2-propynyl acetate [R 1 = Hydrogen atom, R 2 = Ethyl group, R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-isobutylmethyl-2-propynyl acetate [R 1 = Hydrogen atom, R 2 = Isobutyl group, R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-dimethyl-2-butynyl acetate [R 1 = R 2 = R Three = Methyl group, R 18 = Methyl group, n = 1], 1-ethynylcyclohexyl acetate [R 1 = Hydrogen atom, R 2 And R Three Is a bond = pentamethylene group, R 18 = Methyl group, n = 1], 1,1-phenylmethyl-2-propynyl acetate [R 1 = Hydrogen atom, R 2 = Phenyl group, R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-diphenyl-2-propynyl acetate [R 1 = Hydrogen atom, R 2 = R Three = Phenyl group, R 18 = Methyl group, n = 1], 1,1-dimethyl-2-propynyl propionate [R 1 = Hydrogen atom, R 2 = R Three = Methyl group, R 18 = Ethyl group, n = 1] and the like. Y 1 = -SO 2 R 18 In the case of 1,1-dimethyl-2-propynyl methanesulfonate [R 1 = Hydrogen atom, R 2 = R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-diethyl-2-propynyl methanesulfonate [R 1 = Hydrogen atom, R 2 = R Three = Ethyl group, R 18 = Methyl group, n = 1], 1,1-ethylmethyl-2-propynyl methanesulfonate [R 1 = Hydrogen atom, R 2 = Ethyl group, R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-isobutylmethyl-2-propynyl methanesulfonate [R 1 = Hydrogen atom, R 2 = Isobutyl group, R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-dimethyl-2-butynyl methanesulfonate [R 1 = R 2 = R Three = Methyl group, R 18 = Methyl group, n = 1], 1-ethynylcyclohexyl methanesulfonate [R 1 = Hydrogen atom, R 2 And R Three Is a bond = pentamethylene group, R 18 = Methyl group, n = 1], 1,1-phenylmethyl-2-propynyl methanesulfonate [R 1 = Hydrogen atom, R 2 = Phenyl group, R Three = Methyl group, R 18 = Methyl group, n = 1], 1,1-diphenyl-2-propynyl methanesulfonate [R 1 = Hydrogen atom, R 2 = R Three = Phenyl group, R 18 = Methyl group, n = 1], ethanesulfonic acid 1,1-dimethyl-2-propynyl [R 1 = Hydrogen atom, R 2 = R Three = Methyl group, R 18 = Ethyl group, n = 1] and the like. However, the present invention is not limited to these compounds.
[0021]
Specific examples of the alkyne derivative represented by the general formula (II) include, for example, Y 2 = -COOR 19 And Y Three = -COOR 20 In the case of 3-hexyne-2,5-diol dimethyl dicarbonate [R Four = R 6 = Methyl group, R Five = R 7 = Hydrogen atom, R 19 = R 20 = Methyl group, n = 1], 3-hexyne-2,5-diol diethyl dicarbonate [R Four = R 6 = Methyl group, R Five = R 7 = Hydrogen atom, R 19 = R 20 = Ethyl group, n = 1], 2,5-dimethyl-3-hexyne-2,5-diol dimethyl dicarbonate [R Four = R Five = R 6 = R 7 = Methyl group, R 19 = R 20 = Methyl group, n = 1], 2,5-dimethyl-3-hexyne-2,5-diol diethyl dicarbonate [R Four = R Five = R 6 = R 7 = Methyl group, R 19 = R 20 = Ethyl group, n = 1] and the like. Y 2 = -COR 19 And Y Three = -COR 20 In the case of 3-hexyne-2,5-diol diacetate [R Four = R 6 = Methyl group, R Five = R 7 = Hydrogen atom, R 19 = R 20 = Methyl group, n = 1], 3-hexyne-2,5-diol dipropionate [R Four = R 6 = Methyl group, R Five = R 7 = Hydrogen atom, R 19 = R 20 = Ethyl group, n = 1], 2,5-dimethyl-3-hexyne-2,5-diol diacetate [R Four = R Five = R 6 = R 7 = Methyl group, R 19 = R 20 = Methyl group, n = 1], 2,5-dimethyl-3-hexyne-2,5-diol dipropionate [R Four = R Five = R 6 = R 7 = Methyl group, R 19 = R 20 = Ethyl group, n = 1] and the like. Y 2 = -SO 2 R 19 And Y Three = -SO 2 R 20 In the case of 3-hexyne-2,5-diol dimethanesulfonate [R Four = R 6 = Methyl group, R Five = R 7 = Hydrogen atom, R 19 = R 20 = Methyl group, n = 1], 3-hexyne-2,5-diol diethanesulfonate [R Four = R 6 = Methyl group, R Five = R 7 = Hydrogen atom, R 19 = R 20 = Ethyl group, n = 1], 2,5-dimethyl-3-hexyne-2,5-diol dimethanesulfonate [R Four = R Five = R 6 = R 7 = Methyl group, R 19 = R 20 = Methyl group, n = 1], 2,5-dimethyl-3-hexyne-2,5-diol diethanesulfonate [R Four = R Five = R 6 = R 7 = Methyl group, R 19 = R 20 = Ethyl group, n = 1] and the like. However, the present invention is not limited to these compounds.
[0022]
Specific examples of the alkyne derivative represented by the general formula (III) include, for example, Y Four = -COOR twenty one And Y Five = -COOR twenty two 2,4-hexadiyne-1,6-diol dimethyl dicarbonate [R 8 = R 9 = R Ten = R 11 = Hydrogen atom, R twenty one = R twenty two = Methyl group, n = 1], 2,4-hexadiyne-1,6-diol diethyl dicarbonate [R 8 = R 9 = R Ten = R 11 = Hydrogen atom, R twenty one = R twenty two = Ethyl group, n = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol dimethyl dicarbonate [R 8 = R 9 = R Ten = R 11 = Methyl group, R twenty one = R twenty two = Methyl group, n = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol diethyldicarbonate [R 8 = R 9 = R Ten = R 11 = Methyl group, R twenty one = R twenty two = Ethyl group, n = 1] and the like. Y Four = -COR twenty one And Y Five = -COR twenty two 2,4-hexadiyne-1,6-diol diacetate [R 8 = R 9 = R Ten = R 11 = Hydrogen atom, R twenty one = R twenty two = Methyl group, n = 1], 2,4-hexadiyne-1,6-diol dipropionate [R 8 = R 9 = R Ten = R 11 = Hydrogen atom, R twenty one = R twenty two = Ethyl group, n = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol diacetate [R 8 = R 9 = R Ten = R 11 = Methyl group, R twenty one = R twenty two = Methyl group, n = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol dipropionate [R 8 = R 9 = R Ten = R 11 = Methyl group, R twenty one = R twenty two = Ethyl group, n = 1] and the like. Y Four = -SO 2 R twenty one And Y Five = -SO 2 R twenty two 2,4-hexadiyne-1,6-diol dimethanesulfonate [R 8 = R 9 = R Ten = R 11 = Hydrogen atom, R twenty one = R twenty two = Methyl group, n = 1], 2,4-hexadiyne-1,6-diol diethanesulfonate [R 8 = R 9 = R Ten = R 11 = Hydrogen atom, R twenty one = R twenty two = Ethyl group, n = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol dimethanesulfonate [R 8 = R 9 = R Ten = R 11 = Methyl group, R twenty one = R twenty two = Methyl group, n = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol diethanesulfonate [R 8 = R 9 = R Ten = R 11 = Methyl group, R twenty one = R twenty two = Ethyl group, n = 1] and the like. However, the present invention is not limited to these compounds.
[0023]
Specific examples of the alkyne derivative represented by the general formula (IV) include, for example, di (1,1-dimethyl-2-propynyl) carbonate [R 12 = R 17 = Hydrogen atom, R 13 = R 14 = R 15 = R 16 = Methyl group, n = 1], di (1,1-diethyl-2-propynyl) carbonate [R 12 = R 17 = Hydrogen atom, R 13 = R 14 = R 15 = R 16 = Ethyl group, n = 1], di (1,1-ethylmethyl-2-propynyl) carbonate [R 12 = R 17 = Hydrogen atom, R 13 = R 15 = Ethyl group, R 14 = R 16 = Methyl group, n = 1], di (1,1-isobutylmethyl-2-propynyl) carbonate [R 12 = R 17 = Hydrogen atom, R 13 = R 15 = Isobutyl group, R 14 = R 16 = Methyl group, n = 1], di (1,1-dimethyl-2-butynyl) carbonate [R 12 = R 17 = R 13 = R 14 = R 15 = R 16 = Methyl group, n = 1], di (1-ethynylcyclohexyl) carbonate [R 12 = R 17 = Hydrogen atom, R 13 And R 14 Is a bond = pentamethylene group, R 15 And R 16 Is a bond = pentamethylene group, n = 1]. However, the present invention is not limited to these compounds.
[0024]
In the alkyne derivative, if the content of the alkyne derivative represented by the general formulas (I), (II), (III), and (IV) is excessively large, the conductivity of the electrolyte changes and the battery performance is changed. If the amount is too small, a sufficient film is not formed, and the expected battery characteristics cannot be obtained. Therefore, 0.01 to 20% by weight, particularly 0.1% with respect to the weight of the electrolytic solution. A range of -10 wt% is preferred.
[0025]
As the non-aqueous solvent used in the present invention, a solvent composed of a high dielectric constant solvent and a low viscosity solvent is preferable.
Preferred examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC). These high dielectric constant solvents may be used alone or in combination of two or more.
[0026]
Examples of the low viscosity solvent include chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2- Ethers such as dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, amides such as dimethylformamide Kind. These low viscosity solvents may be used alone or in combination of two or more.
The high dielectric constant solvent and the low viscosity solvent are arbitrarily selected and used in combination. The high dielectric constant solvent and the low viscosity solvent are usually used in a volume ratio (high dielectric constant solvent: low viscosity solvent) of 1: 9 to 4: 1, preferably 1: 4 to 7: 3. The
[0027]
Examples of the electrolyte used in the present invention include LiPF. 6 , LiBF Four LiClO Four , LiN (SO 2 CF Three ) 2 , LiN (SO 2 C 2 F Five ) 2 , LiC (SO 2 CF Three ) Three , LiPF Four (CF Three ) 2 , LiPF Three (C 2 F Five ) Three , LiPF Three (CF Three ) Three , LiPF Three (Iso-C Three F 7 ) Three , LiPF Five (Iso-C Three F 7 ). These electrolytes may be used alone or in combination of two or more. These electrolytes are used by being dissolved in the non-aqueous solvent usually at a concentration of 0.1 to 3M, preferably 0.5 to 1.5M.
[0028]
The electrolytic solution of the present invention is prepared, for example, by mixing the above-mentioned high dielectric constant solvent or low-viscosity solvent, and dissolving the above-mentioned electrolyte in this, and the above general formulas (I), (II), (III), (IV) It can be obtained by dissolving at least one of the alkyne derivatives represented by the formula:
[0029]
The electrolytic solution of the present invention is suitably used as a constituent member of a secondary battery, particularly as a constituent member of a lithium secondary battery. The constituent members other than the electrolytic solution constituting the secondary battery are not particularly limited, and various conventionally used constituent members can be used.
[0030]
For example, a composite metal oxide of at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium and lithium is used as the positive electrode active material. As such a composite metal oxide, for example, LiCoO 2 , LiMn 2 O Four , LiNiO 2 Etc.
[0031]
The positive electrode is composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), a copolymer of acrylonitrile and butadiene. After kneading with a binder such as a polymer (NBR), carboxymethyl cellulose (CMC) to form a positive electrode mixture, this positive electrode material is rolled into an aluminum or stainless steel foil or lath plate as a current collector, It is produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
[0032]
Examples of the negative electrode (negative electrode active material) include lithium metal and lithium alloy, and carbon materials having a graphite-type crystal structure capable of inserting and extracting lithium (pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.)) , Organic polymer compound combustion body, carbon fiber] and composite tin oxide are used. In particular, the lattice spacing (d) of the lattice plane (002) 002 ) Is preferably a carbon material having a graphite type crystal structure of 0.335 to 0.340 nm (nanometer). Powder materials such as carbon materials are ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), and a copolymer of acrylonitrile and butadiene. Kneaded with a binder such as a polymer (NBR) or carboxymethylcellulose (CMC) and used as a negative electrode mixture.
[0033]
The structure of the lithium secondary battery is not particularly limited, and has a single-layer or multiple-layer positive electrode, negative electrode, and separator having a separator, a coin-type battery or a polymer battery, and a roll-shaped positive electrode, negative electrode, and roll-shaped separator. Examples include a cylindrical battery and a square battery. A known polyolefin microporous film, woven fabric, non-woven fabric or the like is used as the separator.
[0034]
【Example】
Next, an Example and a comparative example are given and this invention is demonstrated concretely.
Example 1
(Preparation of electrolyte)
A non-aqueous solvent with EC / DEC (volume ratio) = 1/2 was prepared, and LiPF was added thereto. 6 Was dissolved to a concentration of 1M to prepare an electrolytic solution, and then 1,1-dimethyl-2-propynylmethyl carbonate [in general formula (I), Y 1 = -COOR 18 , R 1 = Hydrogen atom, R 2 = R Three = Methyl group, R 18 = Methyl group, n = 1] was added to 2 wt% with respect to the electrolytic solution.
[0035]
[Production of lithium secondary battery and measurement of battery characteristics]
LiCoO 2 80% by weight of (positive electrode active material), 10% by weight of acetylene black (conductive agent), and 10% by weight of polyvinylidene fluoride (binder) are mixed, and 1-methyl-2-pyrrolidone is added thereto. The slurry was applied to the aluminum foil. Then, this was dried and pressure-molded to prepare a positive electrode. 90% by weight of artificial graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) are mixed, and 1-methyl-2-pyrrolidone is added to this to form a slurry on a copper foil. Applied. Then, this was dried and pressure-molded to prepare a negative electrode. And using the separator of a polypropylene microporous film, said electrolyte solution was inject | poured and the coin battery (diameter 20mm, thickness 3.2mm) was produced.
Using this coin battery, it was charged at a constant current and a constant voltage of 0.8 mA at room temperature (20 ° C.) for 5 hours to a final voltage of 4.2 V, and then at a constant current of 0.8 mA and a final voltage of 2 The battery was discharged to 7 V, and this charge / discharge was repeated. Initial discharge capacity is 1M LiPF 6 + EC / DEC (capacity ratio) = 1/2 was calculated as the relative capacity in comparison with the case where Comparative Example 1 was used (Comparative Example 1), and was 1.03. When the battery characteristics after 50 cycles were measured, the discharge capacity retention rate when the initial discharge capacity was 100% was 92.2%. Also, the low temperature characteristics were good. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0036]
Example 2
A non-aqueous solvent with EC / DEC (volume ratio) = 1/2 was prepared, and LiPF was added thereto. 6 Was dissolved to a concentration of 1M to prepare an electrolytic solution, and then 1,1-ethylmethyl-2-propynyl acetate [Y in general formula (I) as an alkyne derivative. 1 = -COR 18 , R 1 = Hydrogen atom, R 2 = Ethyl group, R Three = Methyl group, R 18 = Methyl group, n = 1] was added to 2 wt% with respect to the electrolytic solution. Using this electrolytic solution, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. The initial discharge capacity was 1M LiPF. 6 + EC / DEC (capacity ratio) = 1/2 was calculated as the relative capacity in comparison with the case where Comparative Example 1 was used (Comparative Example 1), and was 1.02. When the battery characteristics after 50 cycles were measured, the discharge capacity retention rate when the initial discharge capacity was 100% was 91.5%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0037]
Example 3
PC / EC / DEC (volume ratio) = 1/2/7 non-aqueous solvent is prepared, and LiPF 6 Was dissolved to a concentration of 1M to prepare an electrolytic solution, and further, 1,1-diethyl-2-propynyl methanesulfonate [in general formula (I), Y 1 = -SO 2 R 18 , R 1 = Hydrogen atom, R 2 = R Three = Ethyl group, R 18 = Methyl group, n = 1] was used in the same manner as in Example 1 except that 2% by weight of the electrolyte was used. The coin battery was prepared and the battery characteristics were measured. The relative capacity was 1.05, and the battery characteristics after 50 cycles were measured. The discharge capacity retention rate was 91.9%. Also, the low temperature characteristics were good. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0038]
Example 4
2,5-dimethyl-3-hexyne-2,5-diol diethyldicarbonate [in general formula (II), Y 2 = Y Three = -COOR 19 = -COOR 20 , R Four = R Five = R 6 = R 7 = Methyl group, R 19 = R 20 = Ethyl group, n = 1] was used in the same manner as in Example 3 except that 1% by weight of the electrolyte was used, and the battery characteristics were measured. The relative capacity of the initial discharge capacity was 1.02. When the battery characteristics after 50 cycles were measured, the discharge capacity retention rate was 91.1%. Also, the low temperature characteristics were good. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0039]
Example 5
3-hexyne-2,5-diol dimethanesulfonate as an alkyne derivative [in general formula (II), Y 2 = Y Three = -SO 2 R 19 = -SO 2 R 20 , R Four = R 6 = Methyl group, R Five = R 7 = Hydrogen atom, R 19 = R 20 = Methyl group, n = 1] was used in the same manner as in Example 3 except that 1% by weight of the electrolyte was used, and the battery characteristics were measured. The relative capacity of the initial discharge capacity was 1.03. When the battery characteristics after 50 cycles were measured, the discharge capacity retention rate was 91.6%. Also, the low temperature characteristics were good. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0040]
Example 6
PC / EC / MEC (volume ratio) = 1/2/7 non-aqueous solvent is prepared, and LiPF 6 Was dissolved to a concentration of 1M to prepare an electrolytic solution, and 2,4-hexadiyne-1,6-diol dimethyl dicarbonate [Y in general formula (III) was further used as an alkyne derivative. Four = Y Five = -COOR twenty one = -COOR twenty two , R 8 = R 9 = R Ten = R 11 = Hydrogen atom, R twenty one = R twenty two = Methyl group, n = 1] was used in an amount of 1% by weight with respect to the electrolytic solution, and an electrolytic solution was prepared in the same manner as in Example 1 to produce a coin battery and measured for battery characteristics. The relative capacity was 1.02, and when the battery characteristics after 50 cycles were measured, the discharge capacity retention rate was 91.8%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0041]
Example 7
2,4-hexadiyne-1,6-diol dimethanesulfonate as an alkyne derivative [in general formula (III), Y Four = Y Five = -SO 2 R twenty one = -SO 2 R twenty two , R 8 = R 9 = R Ten = R 11 = Hydrogen atom, R twenty one = R twenty two = Methyl group, n = 1] was used in the same manner as in Example 6 except that 1% by weight of the electrolyte was used, and the battery characteristics were measured. The relative capacity of the initial discharge capacity was 1.03. When the battery characteristics after 50 cycles were measured, the discharge capacity retention rate was 91.5%. Also, the low temperature characteristics were good. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0042]
Example 8
PC / EC / DMC / DEC (volume ratio) = 1/2/3/4 non-aqueous solvent is prepared, and LiPF 6 Was dissolved to a concentration of 1 M to prepare an electrolytic solution, and then di (1,1-dimethyl-2-propynyl) carbonate [in general formula (IV), R 12 = R 17 = Hydrogen atom, R 13 = R 14 = R 15 = R 16 = Methyl group, n = 1] was used in the same manner as in Example 1 except that 0.5% by weight of the electrolyte was used, and a coin battery was prepared. The relative capacity of the capacity was 1.03, and when the battery characteristics after 50 cycles were measured, the discharge capacity retention rate was 92.6%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0043]
Example 9
LiCoO as positive electrode active material 2 Instead of LiMn 2 O Four In the same manner as in Example 3, an electrolyte solution was prepared to produce a coin battery, and the battery characteristics were measured. The relative capacity of the initial discharge capacity was 0.83, and the battery characteristics after 50 cycles were measured. When measured, the discharge capacity retention rate was 93.1%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0044]
Example 10
LiCoO as positive electrode active material 2 Instead of LiCo 0.1 Ni 0.9 O 2 And di (1,1-dimethyl-2-propynyl) carbonate [in general formula (IV), R 12 = R 17 = Hydrogen atom, R 13 = R 14 = R 15 = R 16 = Methyl group, n = 1] was used in the same manner as in Example 3 except that 0.5 wt% of the electrolyte was used, and a coin battery was prepared. The relative capacity was 1.19, and the battery characteristics after 50 cycles were measured. The discharge capacity retention rate was 90.5%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0045]
Example 11
A coin battery was prepared by preparing an electrolyte solution in the same manner as in Example 8 except that natural graphite was used instead of artificial graphite as the negative electrode active material, and the battery characteristics were measured. The relative capacity of the initial discharge capacity was 1 The battery characteristics after 50 cycles were measured, and the discharge capacity retention rate was 93.2%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0046]
Comparative Example 1
A non-aqueous solvent with EC / DEC (volume ratio) = 1/2 was prepared, and LiPF was added thereto. 6 Was dissolved to a concentration of 1M. At this time, no alkyne derivative was added. Using this electrolytic solution, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. In this case, the relative capacity of the initial discharge capacity is 1. The discharge capacity retention rate after 50 cycles was 82.8% with respect to the initial discharge capacity. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0047]
[Table 1]
Figure 0004710116
[0048]
In addition, this invention is not limited to the Example described, The various combination which can be easily guessed from the meaning of invention is possible. In particular, the combination of solvents in the above examples is not limited. Furthermore, although the said Example is related with a coin battery, this invention is applied also to a cylindrical and prismatic battery.
[0049]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the lithium secondary battery excellent in battery characteristics, such as cycling characteristics in a wide temperature range, an electrical capacity, and also a storage characteristic can be provided.

Claims (2)

非水溶媒に電解質が溶解されている電解液において、該電解液中に下記一般式(I)、(II)、(III)、(IV)、
Figure 0004710116
Figure 0004710116
Figure 0004710116
Figure 0004710116
(式中、R1、R4、R5、R6、R7、R8、R9、R10、R11、R12およびR17は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基、または水素原子を示す。但し、R4、R5、R6およびR7が同時に水素原子となることはない。式中、R2、R3、R13、R14、R15およびR16は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。また、R2とR3、R4とR5、R6とR7、R13とR14、R15とR16は、互いに結合して炭素数3〜6のシクロアルキル基を形成していても良い。式中、Y1は、−COOR18、−COR18または−SO218、Y2は、−COOR19、−COR19または−SO219、Y3は、−COOR20、−COR20または−SO220、Y4は、−COOR21、−COR21または−SO221、およびY5は、−COOR22、−COR22、−SO222を示し、前記R18、R19、R20、R21およびR22は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。ただし、nは1または2の整数を示す。)で表されるアルキン誘導体のうち少なくとも1種が電解液の重量に対して0.01〜20重量%含有されていることを特徴とするリチウム二次電池用電解液。
In an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, the following general formula (I), (II), (III), (IV),
Figure 0004710116
Figure 0004710116
Figure 0004710116
Figure 0004710116
Wherein R 1 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 17 are each independently an alkyl group having 1 to 12 carbon atoms. Represents a cycloalkyl group having 3 to 6 carbon atoms, an aryl group, or a hydrogen atom, provided that R 4 , R 5 , R 6, and R 7 are not hydrogen atoms at the same time, wherein R 2 , R 3 , R 13 , R 14 , R 15 and R 16 each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group, and R 2 and R 3 , R 4 and R 5 , R 6 and R 7 , R 13 and R 14 , R 15 and R 16 may be bonded to each other to form a cycloalkyl group having 3 to 6 carbon atoms. Y 1 is, -COOR 18, -COR 18 or -SO 2 R 18, Y 2 is, -COOR 19, -COR 19 or -SO 2 R 19, Y 3 is, -COOR 20, COR 20 or -SO 2 R 20, Y 4 is, -COOR 21, -COR 21 or -SO 2 R 21, and Y 5, -COOR 22, -COR 22, shows a -SO 2 R 22, wherein R 18 , R 19 , R 20 , R 21 and R 22 each independently represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group, where n is 1 or 2 An electrolyte solution for a lithium secondary battery, wherein at least one of the alkyne derivatives represented by the formula (1) is contained in an amount of 0.01 to 20% by weight based on the weight of the electrolyte solution.
正極、負極および非水溶媒に電解質が溶解されている電解液からなるリチウム二次電池において、該電解液中に下記一般式(I)、(II)、(III)、(IV)、
Figure 0004710116
Figure 0004710116
Figure 0004710116
Figure 0004710116
(式中、R1、R4、R5、R6、R7、R8、R9、R10、R11、R12およびR17は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基、または水素原子を示す。但し、R4、R5、R6およびR7が同時に水素原子となることはない。式中、R2、R3、R13、R14、R15およびR16は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。また、R2とR3、R4とR5、R6とR7、R13とR14、R15とR16は、互いに結合して炭素数3〜6のシクロアルキル基を形成していても良い。式中、Y1は、−COOR18、−COR18または−SO218、Y2は、−COOR19、−COR19または−SO219、Y3は、−COOR20、−COR20または−SO220、Y4は、−COOR21、−COR21または−SO221、およびY5は、−COOR22、−COR22、−SO222を示し、前記R18、R19、R20、R21およびR22は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。ただし、nは1または2の整数を示す。)で表されるアルキン誘導体のうち少なくとも1種が電解液の重量に対して0.01〜20重量%含有されていることを特徴とするリチウム二次電池。
In a lithium secondary battery comprising an electrolytic solution in which an electrolyte is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent, the following general formulas (I), (II), (III), (IV),
Figure 0004710116
Figure 0004710116
Figure 0004710116
Figure 0004710116
Wherein R 1 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 17 are each independently an alkyl group having 1 to 12 carbon atoms. Represents a cycloalkyl group having 3 to 6 carbon atoms, an aryl group, or a hydrogen atom, provided that R 4 , R 5 , R 6, and R 7 are not hydrogen atoms at the same time, wherein R 2 , R 3 , R 13 , R 14 , R 15 and R 16 each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group, and R 2 and R 3 , R 4 and R 5 , R 6 and R 7 , R 13 and R 14 , R 15 and R 16 may be bonded to each other to form a cycloalkyl group having 3 to 6 carbon atoms. Y 1 is, -COOR 18, -COR 18 or -SO 2 R 18, Y 2 is, -COOR 19, -COR 19 or -SO 2 R 19, Y 3 is, -COOR 20, COR 20 or -SO 2 R 20, Y 4 is, -COOR 21, -COR 21 or -SO 2 R 21, and Y 5, -COOR 22, -COR 22, shows a -SO 2 R 22, wherein R 18 , R 19 , R 20 , R 21 and R 22 each independently represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group, where n is 1 or 2 The lithium secondary battery is characterized in that 0.01 to 20% by weight of at least one alkyne derivative represented by formula (1) is contained with respect to the weight of the electrolytic solution.
JP2000284790A 2000-09-20 2000-09-20 Nonaqueous electrolyte and lithium secondary battery using the same Expired - Lifetime JP4710116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000284790A JP4710116B2 (en) 2000-09-20 2000-09-20 Nonaqueous electrolyte and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000284790A JP4710116B2 (en) 2000-09-20 2000-09-20 Nonaqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2002100399A JP2002100399A (en) 2002-04-05
JP4710116B2 true JP4710116B2 (en) 2011-06-29

Family

ID=18768951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000284790A Expired - Lifetime JP4710116B2 (en) 2000-09-20 2000-09-20 Nonaqueous electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4710116B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128100B2 (en) * 2003-03-31 2008-07-30 Tdk株式会社 Lithium ion secondary battery
TWI462364B (en) 2003-07-17 2014-11-21 Ube Industries Lithium battery for non-aqueous electrolyte and the use of its lithium battery
JP4517730B2 (en) * 2004-05-28 2010-08-04 宇部興産株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
CN100474688C (en) * 2004-05-28 2009-04-01 宇部兴产株式会社 Nonaqueous electrolytic solution and lithium secondary battery
WO2006077763A1 (en) 2005-01-20 2006-07-27 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP5034224B2 (en) * 2005-08-05 2012-09-26 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP2006269438A (en) * 2006-04-28 2006-10-05 Tdk Corp Lithium-ion secondary battery
JP5494472B2 (en) * 2008-04-02 2014-05-14 宇部興産株式会社 Nonaqueous electrolyte for lithium battery and lithium battery using the same
CN102893441B (en) * 2010-05-12 2016-05-11 三菱化学株式会社 Nonaqueous electrolyte secondary battery
CN103109410A (en) 2010-09-16 2013-05-15 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP5790135B2 (en) * 2011-05-09 2015-10-07 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP6127457B2 (en) * 2011-11-11 2017-05-17 三菱化学株式会社 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
WO2013141345A1 (en) * 2012-03-23 2013-09-26 宇部興産株式会社 Non-aqueous electrolytic solution and electricity storage device using same
EP2768064A1 (en) * 2013-02-15 2014-08-20 Basf Se Use of substituted alkynyl sulfonates, carbonates and oxalates as additives in electrolytes of secondary lithium-ion batteries
JP6096595B2 (en) * 2013-05-30 2017-03-15 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the battery
KR102264735B1 (en) * 2017-09-21 2021-06-15 주식회사 엘지에너지솔루션 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
CN116154281A (en) * 2021-11-22 2023-05-23 张家港市国泰华荣化工新材料有限公司 Nonaqueous electrolyte and high-voltage lithium battery containing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159787A (en) * 1991-12-06 1993-06-25 Hitachi Maxell Ltd Organic electrolyte battery
JPH06223875A (en) * 1993-01-21 1994-08-12 Mitsubishi Cable Ind Ltd Electrolyte for lithium secondary battery
JP2000195545A (en) * 1998-12-25 2000-07-14 Ube Ind Ltd Electrolyte for lithium secondary battery and lithium secondary battery using it
JP2001256995A (en) * 2000-03-13 2001-09-21 Denso Corp Nonaqueous electrolytic solution and its secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159787A (en) * 1991-12-06 1993-06-25 Hitachi Maxell Ltd Organic electrolyte battery
JPH06223875A (en) * 1993-01-21 1994-08-12 Mitsubishi Cable Ind Ltd Electrolyte for lithium secondary battery
JP2000195545A (en) * 1998-12-25 2000-07-14 Ube Ind Ltd Electrolyte for lithium secondary battery and lithium secondary battery using it
JP2001256995A (en) * 2000-03-13 2001-09-21 Denso Corp Nonaqueous electrolytic solution and its secondary battery

Also Published As

Publication number Publication date
JP2002100399A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3951486B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4320914B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP3911870B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3444243B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633269B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3663897B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4304404B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP3610948B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4075416B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4134414B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP3945004B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4710116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term