JP2001256995A - Nonaqueous electrolytic solution and its secondary battery - Google Patents

Nonaqueous electrolytic solution and its secondary battery

Info

Publication number
JP2001256995A
JP2001256995A JP2000068400A JP2000068400A JP2001256995A JP 2001256995 A JP2001256995 A JP 2001256995A JP 2000068400 A JP2000068400 A JP 2000068400A JP 2000068400 A JP2000068400 A JP 2000068400A JP 2001256995 A JP2001256995 A JP 2001256995A
Authority
JP
Japan
Prior art keywords
group
aqueous electrolyte
alkyl group
compound
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000068400A
Other languages
Japanese (ja)
Other versions
JP4093699B2 (en
Inventor
Manabu Yamada
学 山田
Naohiro Kubota
直宏 久保田
Yasunori Takeuchi
康紀 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Denso Corp
Original Assignee
Denso Corp
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Asahi Denka Kogyo KK filed Critical Denso Corp
Priority to JP2000068400A priority Critical patent/JP4093699B2/en
Publication of JP2001256995A publication Critical patent/JP2001256995A/en
Application granted granted Critical
Publication of JP4093699B2 publication Critical patent/JP4093699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution and its secondary battery maintaining low variation rate of electric capacity and internal resistance at the time of repeating charge and discharge and improving battery cycle characteristics. SOLUTION: The nonaqueous electrolytic solution comprising an electrolytic salt dissolved into an organic solvent is added with an oxygen-contained aliphatic compound having an alkynyl and/or alkynylene with no active hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の炭素−炭素
三重結合を有する化合物を添加した非水電解液及び該非
水電解液を用いたことを特徴とする非水電解液二次電池
に関し、詳しくは活性水素を持たない炭素−炭素三重結
合を有する酸素含有脂肪族化合物を電解液に添加するこ
とで、充放電の繰り返し時に電気容量や内部抵抗の変化
率が小さい非水電解液及び非水電解液二次電池に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte to which a compound having a specific carbon-carbon triple bond is added, and a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte. Specifically, by adding an oxygen-containing aliphatic compound having a carbon-carbon triple bond having no active hydrogen to the electrolyte, a non-aqueous electrolyte and a non-aqueous electrolyte having a small rate of change in electric capacity and internal resistance during repeated charge and discharge. The present invention relates to an electrolyte secondary battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年の
携帯用パソコン、ハンディビデオカメラ等の携帯電子機
器の普及に伴い、高電圧、高エネルギー密度を有する非
水電解液二次電池が電源として広く用いられるようにな
った。また、環境問題から電池自動車や電池を動力の一
部に利用したハイブリッド車の実用化が行われている。
2. Description of the Related Art With the spread of portable electronic devices such as portable personal computers and handy video cameras in recent years, non-aqueous electrolyte secondary batteries having high voltage and high energy density have been used as power sources. It has become widely used. Also, due to environmental problems, battery vehicles and hybrid vehicles that use batteries as part of power are being put to practical use.

【0003】しかし、非水電解液二次電池は、充放電を
繰り返すことで電気容量の低下や内部抵抗の上昇を示
し、安定した電力供給源としての信頼性が不足してい
た。
[0003] However, the non-aqueous electrolyte secondary battery shows a decrease in electric capacity and an increase in internal resistance by repeating charge and discharge, and thus lacks reliability as a stable power supply source.

【0004】非水電解液二次電池の安定性向上のため
に、電解液に種々の添加剤が提案されている。例えば、
特開平6−84523号公報にはアミン化合物を添加す
ることが提案され、サイクル特性は向上しているもの
の、容量が低下する欠点があり、特開平10−6459
1号公報にはアリールアルキルエーテル化合物やアリー
ルアリールエーテル化合物が提案されているがこれらも
満足のいくものではなかった。また、特開平5−159
787号公報には炭素−炭素三重結合を有するプロパギ
ルアルコール等のアルコールを添加することで貯蔵中の
回路電圧の低下を抑制することが提案されている。しか
し、活性水素を有するアルコール類の添加は電解液の安
全性を損なうため実用的ではなかった。
[0004] In order to improve the stability of the nonaqueous electrolyte secondary battery, various additives have been proposed for the electrolyte. For example,
JP-A-6-84523 proposes to add an amine compound, and although the cycle characteristics are improved, there is a disadvantage that the capacity is reduced.
No. 1 proposes arylalkyl ether compounds and arylaryl ether compounds, but these have not been satisfactory. In addition, Japanese Patent Application Laid-Open No. 5-159
No. 787 proposes to suppress a decrease in circuit voltage during storage by adding an alcohol such as propargyl alcohol having a carbon-carbon triple bond. However, the addition of alcohols having active hydrogen is not practical because it impairs the safety of the electrolytic solution.

【0005】このように、種々の有機物の安定剤として
公知の化合物から選択された添加剤は、安定化効果は示
すものの、満足のいくものではなく、アルキル基とアル
キニル基によりサイクル特性に顕著な効果の差異が生じ
ることは示唆されていなかった。
As described above, additives selected from compounds known as stabilizers for various organic substances, although exhibiting a stabilizing effect, are not satisfactory, and have remarkable cycle characteristics due to alkyl groups and alkynyl groups. No difference in effect was suggested.

【0006】従って、本発明の目的は、充放電の繰り返
し時に電気容量や内部抵抗の変化率が小さく、電池のサ
イクル特性を向上させた非水電解液及び非水電解液二次
電池を提供することにある。
Accordingly, an object of the present invention is to provide a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery having a small rate of change in electric capacity and internal resistance during repeated charging and discharging, and having improved cycle characteristics of the battery. It is in.

【0007】[0007]

【課題を解決するための手段】本発明者らは、検討の結
果、非水電解液を製造するに際して、活性水素を持たな
い炭素−炭素三重結合を有する酸素含有脂肪族化合物を
電解液に添加することによって、上記目的が達成し得る
ことを知見した。
As a result of the study, the present inventors have found that when producing a non-aqueous electrolyte, an oxygen-containing aliphatic compound having a carbon-carbon triple bond having no active hydrogen is added to the electrolyte. By doing so, it has been found that the above object can be achieved.

【0008】本発明は、上記知見に基づきなされたもの
で、電解質塩を有機溶媒に溶解した非水電解液におい
て、活性水素を持たないアルキニル基及び/又はアルキ
ニレン基を有する酸素含有脂肪族化合物を添加したこと
を特徴とする非水電解液を提供するものである。
[0008] The present invention has been made based on the above-mentioned findings, and it is an object of the present invention to provide a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in an organic solvent, wherein an oxygen-containing aliphatic compound having an alkynyl group and / or an alkynylene group having no active hydrogen is used. It is intended to provide a non-aqueous electrolyte solution characterized by being added.

【0009】また、本発明は、非水電解液と正極と負極
とを有する非水電解液二次電池において、活性水素を持
たないアルキニル基及び/又はアルキニレン基を有する
酸素含有脂肪族化合物を添加した上記非水電解液を用い
たことを特徴とする非水電解液二次電池を提供するもの
である。
The present invention also relates to a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, a positive electrode and a negative electrode, wherein an oxygen-containing aliphatic compound having an alkynyl group and / or an alkynylene group having no active hydrogen is added. A non-aqueous electrolyte secondary battery characterized by using the above-mentioned non-aqueous electrolyte.

【0010】[0010]

【発明の実施の形態】以下に本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0011】本発明に用いられる活性水素を持たないア
ルキニル基及び/又はアルキニレン基を有する酸素含有
脂肪族化合物としては、例えば、一般式(I)で表され
る化合物が挙げられる。
The oxygen-containing aliphatic compound having an alkynyl group and / or an alkynylene group having no active hydrogen used in the present invention includes, for example, a compound represented by the general formula (I).

【0012】[0012]

【化5】 (式中、R1 、R3 は炭素原子数1〜8のアルキル基、
アルケニル基、アルキニル基を、R2 は炭素原子数1〜
4のアルキレン基、アルケニレン基、アルキニレン基を
表し、但し、R1 、R2 、R3 のいずれか1つはアルキ
ニル基又はアルキニレン基であり、X1 及びX2 はエー
テル結合、エステル結合、炭酸エステル結合を、nは0
又は1の数を表す)
Embedded image (Wherein, R 1 and R 3 are an alkyl group having 1 to 8 carbon atoms,
R 2 represents an alkenyl group or an alkynyl group;
4 represents an alkylene group, alkenylene group, or alkynylene group, provided that any one of R 1 , R 2 , and R 3 is an alkynyl group or an alkynylene group, and X 1 and X 2 are an ether bond, an ester bond, Ester bond, n is 0
Or represents the number of 1)

【0013】上記一般式(I)において、R1 、R3
表されるアルキル基としては、メチル、エチル、プロピ
ル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル
等が、アルケニル基としては、ビニル、プロペニル、ブ
テニル等が、アルキニル基としては、プロパルギル、
1,1−ジメチル−2−プロピニル、1−メチル−2−
エチル−2−プロピニル、1−メチル−1−イソブチル
−2−プロピニル等が挙げられる。
In the general formula (I), the alkyl groups represented by R 1 and R 3 include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl, and the alkenyl groups include vinyl and Propenyl, butenyl and the like, as the alkynyl group, propargyl,
1,1-dimethyl-2-propynyl, 1-methyl-2-
Ethyl-2-propynyl, 1-methyl-1-isobutyl-2-propynyl and the like can be mentioned.

【0014】R2 で表されるアルキレン基としては、エ
チレン、プロピレン等が、アルケニレン基としては、ビ
ニレン、ブテニレン等が、アルキニレン基としては、エ
チニレン、プロピニレン、2−ブチニレン、1,1,
4,4−テトラメチル−2−ブチニレン、1,4−ジメ
チル−1,4−ジエチル−2−ブチニレン、1,4−ジ
メチル−1,4−ジイソブチル−2−ブチニレン等が挙
げられる。
The alkylene group represented by R 2 is ethylene, propylene, etc., the alkenylene group is vinylene, butenylene, etc., and the alkynylene group is ethynylene, propynylene, 2-butynylene, 1,1,1,2.
4,4-tetramethyl-2-butynylene, 1,4-dimethyl-1,4-diethyl-2-butynylene, 1,4-dimethyl-1,4-diisobutyl-2-butynylene and the like can be mentioned.

【0015】上記一般式(I)で表される化合物として
は、より具体的には、以下の化合物No. 1〜7が挙げら
れる。但し、本発明は、以下の化合物により何ら制限さ
れるものではない。
More specifically, the compounds represented by the above general formula (I) include the following compound Nos. 1 to 7. However, the present invention is not limited at all by the following compounds.

【0016】[0016]

【化6】 Embedded image

【0017】[0017]

【化7】 Embedded image

【0018】[0018]

【化8】 Embedded image

【0019】[0019]

【化9】 Embedded image

【0020】[0020]

【化10】 Embedded image

【0021】[0021]

【化11】 Embedded image

【0022】[0022]

【化12】 Embedded image

【0023】上記一般式(I)で表される化合物は、プ
ロパルギルアルコール等のアルキニル化合物を用いて通
常のエステル化反応、エーテル化反応、炭酸エステル化
反応を行うことで合成できる。
The compound represented by the above general formula (I) can be synthesized by performing a usual esterification reaction, etherification reaction or carbonic esterification reaction using an alkynyl compound such as propargyl alcohol.

【0024】これらは、自己重合し易い化合物であり、
サイクル初期に、電極界面において重合反応することに
より、安定な被膜を形成し、サイクルに伴う界面抵抗の
増加を抑制することができると考えられる。また、この
効果を発現するためには、電解液中に、0.01〜10
体積%の添加量で上記化合物を添加することが望まし
く、0.1〜5体積%がより望ましい。
These are compounds which easily undergo self-polymerization,
It is considered that a polymerization reaction occurs at the electrode interface in the early stage of the cycle, thereby forming a stable film and suppressing an increase in interface resistance due to the cycle. In order to exhibit this effect, 0.01 to 10%
It is desirable to add the above compound in the amount of volume%, more desirably 0.1 to 5 volume%.

【0025】本発明において、活性酸素を持たないアル
キニル基及び/又はアルキニレン基を有する酸素含有脂
肪族化合物は、単独又は他の非水溶媒と組み合わされて
電解液として用いられ、他の非水溶媒、特に、鎖状カー
ボネート及び環状カーボネートと組み合わせることが好
ましい。このように組み合わせることでサイクル特性に
優れるばかりでなく、電解液の粘度、得られる電池の電
気容量、出力等のバランスのとれた電解液が提供でき
る。
In the present invention, the alkynyl group having no active oxygen and / or the oxygen-containing aliphatic compound having an alkynylene group is used alone or in combination with another non-aqueous solvent as an electrolytic solution. It is particularly preferred to combine with a chain carbonate and a cyclic carbonate. By combining in this way, it is possible to provide not only excellent cycle characteristics but also an electrolyte solution in which the viscosity of the electrolyte solution, the electric capacity of the obtained battery, and the output are well balanced.

【0026】本発明の非水電解液に用いられる他のの溶
媒の例を以下に列挙する。しかしながら、特に限定され
るものではなく、電解液全般に添加することにより、界
面抵抗の増加を抑制することができる。
Examples of other solvents used in the non-aqueous electrolyte of the present invention are listed below. However, the present invention is not particularly limited, and an increase in interface resistance can be suppressed by adding it to the entire electrolytic solution.

【0027】環状カーボネート化合物等は、比誘電率が
高いため、電解液の誘電率を上げる役割を果たしてお
り、具体的には、エチレンカーボネート、プロピレンカ
ーボネート、ビニレンカーボネート、ブチレンカーボネ
ート等の環状カーボネート、γ−ブチロラクトン、γ−
バレロラクトン等の環状エステル、テトラメチルスルホ
ラン、ジメチルスルフォキシド、N−メチルピロリド
ン、ジメチルフォルムアミドやこれらの誘導体等が挙げ
られる。
Since the cyclic carbonate compound has a high relative dielectric constant, it plays a role in increasing the dielectric constant of the electrolytic solution. Specifically, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, and γ -Butyrolactone, γ-
Examples include cyclic esters such as valerolactone, tetramethylsulfolane, dimethylsulfoxide, N-methylpyrrolidone, dimethylformamide, and derivatives thereof.

【0028】鎖状カーボネート等は、電解液の粘度を低
くすることができる。そのため、電解質イオンの移動性
を高くすることができる等、出力密度等の電池特性を優
れたものにすることができる。また、低粘度であるた
め、低温での電解液の性能を高くすることができる。具
体的には、ジメチルカーボネート、エチルメチルカーボ
ネート、ジエチルカーボネート、エチル−n−ブチルカ
ーボネート、メチル−t−ブチルカーボネート、ジ−i
−プロピルカーボネート、t−ブチル−i−プロピルカ
ーボネート等の鎖状カーボネート、ジメトキシエタン、
エトキシメトキシエタン、ジエトキシエタン等の鎖状エ
ーテル、テトラヒドロフラン、ジオキソラン、ジオキサ
ン等の環状エーテル、蟻酸メチル、蟻酸エチル、酢酸メ
チル、酢酸エチル、プロピオン酸メチル、プロピオン酸
エチル等の鎖状エステル、アセトニトリル、プロピオニ
トリル、ニトロメタンやこれらの誘導体等が挙げられ
る。
The chain carbonate or the like can lower the viscosity of the electrolytic solution. Therefore, battery characteristics such as output density can be improved, for example, the mobility of electrolyte ions can be increased. Further, since the viscosity is low, the performance of the electrolyte at a low temperature can be improved. Specifically, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t-butyl carbonate, di-i
Chain carbonates such as -propyl carbonate, t-butyl-i-propyl carbonate, dimethoxyethane,
Chain ethers such as ethoxymethoxyethane and diethoxyethane, cyclic ethers such as tetrahydrofuran, dioxolan, and dioxane; chain esters such as methyl formate, ethyl formate, methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate; acetonitrile; Examples include propionitrile, nitromethane, and derivatives thereof.

【0029】リン含有有機化合物は、電解液の難燃性を
高いものにすることができる。そのために、非水電解液
二次電池の安全性を高いものにすることができる。この
リン含有有機化合物としては、リン酸エステル、ホスホ
ン酸エステル又はホスフィン酸エステルからなる群から
選ばれたリン含有化合物の少なくとも1種以上を用いる
ことが望ましい。具体的には、トリメチルホスフェー
ト、トリエチルホスフェート等のリン酸エステル類、ジ
エチルメタンホスホネート、ジ−(2,2,2−トリフ
ルオロエチル)メタンホスホネート等のホスホン酸エス
テル類、ホスフィン酸エステル類等を用いることができ
る。また、これらの複数の混合物を使用してもよい。
The phosphorus-containing organic compound can increase the flame retardancy of the electrolytic solution. Therefore, the safety of the nonaqueous electrolyte secondary battery can be enhanced. As the phosphorus-containing organic compound, it is desirable to use at least one or more phosphorus-containing compounds selected from the group consisting of phosphate esters, phosphonate esters and phosphinate esters. Specifically, phosphoric acid esters such as trimethyl phosphate and triethyl phosphate, phosphonic acid esters such as diethyl methane phosphonate and di- (2,2,2-trifluoroethyl) methane phosphonate, and phosphinic acid esters are used. be able to. Further, a mixture of a plurality of these may be used.

【0030】下記一般式(II)で表されるアルキレンビ
スカーボネート化合物は、電解液の揮発性を低くするこ
とができ、また、高温での保存特性に優れるため高温で
の電池特性を高いものにすることができる。この構造
も、特に限定されるものではないが、1,2−ビス(メ
トキシカルボニルオキシ)エタンや、1,2−ビス(エ
トキシカルボニルオキシ)エタン、1,2−ビス(エト
キシカルボニルオキシ)プロパン等を用いることができ
る。
The alkylene biscarbonate compound represented by the following general formula (II) can lower the volatility of the electrolytic solution, and has excellent storage characteristics at high temperatures, so that the battery characteristics at high temperatures can be improved. can do. This structure is not particularly limited, but includes 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, and the like. Can be used.

【0031】[0031]

【化13】 (式中、R4 、R6 は各々独立に炭素原子数1〜4のア
ルキル基を、R5 は炭素原子数1〜3の直鎖又は分岐の
アルキレン基を表す)
Embedded image (In the formula, R 4 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, and R 5 represents a linear or branched alkylene group having 1 to 3 carbon atoms.)

【0032】ここで、R4 、R6 で表されるアルキル基
としては、メチル、エチル、プロピル、ブチル等が、R
5 で表されるアルキレン基としては、エチレン等が挙げ
られる。
The alkyl groups represented by R 4 and R 6 include methyl, ethyl, propyl, butyl and the like.
Examples of the alkylene group represented by 5 include ethylene and the like.

【0033】上記鎖状カーボネートとしては、下記一般
式(III )で表される化合物が特に電気的特性が優れる
ので好ましい。
As the above-mentioned chain carbonate, a compound represented by the following general formula (III) is preferable because it has particularly excellent electric properties.

【0034】[0034]

【化14】 (式中、R7 、R8 は各々独立に炭素原子数1〜4のア
ルキル基を表し、少なくとも一方は炭素原子数3以上の
アルキル基を表す)
Embedded image (In the formula, R 7 and R 8 each independently represent an alkyl group having 1 to 4 carbon atoms, and at least one represents an alkyl group having 3 or more carbon atoms.)

【0035】ここで、R7 、R8 で表されるアルキル基
としては、メチル、エチル、プロピル、ブチル等が挙げ
られる。
Here, examples of the alkyl group represented by R 7 and R 8 include methyl, ethyl, propyl, butyl and the like.

【0036】下記一般式(IV)で表されるグリコールジ
エーテル化合物は、末端基がフッ素原子で置換されてい
るために、電極界面において、界面活性剤のような作用
を発揮して、非水電解液の電極への親和性を高めること
ができ、初期の電池内部抵抗の低減やリチウムイオンの
移動性を高めることができる。この構造も、特に限定さ
れるものではないが、エチレングリコールビス(トリフ
ルオロエチル)エーテル、i−プロピレングリコール
(トリフルオロエチル)エーテル、エチレングリコール
ビス(トリフルオロメチル)エーテル、ジエチレングリ
コールビス(トリフルオロエチル)エーテル等を用いる
ことができる。
Since the terminal group of the glycol diether compound represented by the following general formula (IV) is substituted with a fluorine atom, the glycol diether compound exhibits an action like a surfactant at the electrode interface, and is non-aqueous. The affinity of the electrolyte for the electrode can be increased, and the initial internal resistance of the battery can be reduced and the mobility of lithium ions can be increased. This structure is not particularly limited, but ethylene glycol bis (trifluoroethyl) ether, i-propylene glycol (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (trifluoroethyl) ) Ether and the like can be used.

【0037】[0037]

【化15】 (式中、R9 、R11は炭素原子数1〜8のアルキル基又
はハロゲン原子で置換されたアルキル基を、R10は炭素
原子数1〜4の分岐又は直鎖のアルキレン基又はハロゲ
ン原子で置換されたアルキレン基を、n2は1≦n2≦
4の数を表し、R 9 、R10、R11のいずれか1つはハロ
ゲン原子で置換されている基を表す)
Embedded image(Where R9, R11Is an alkyl group having 1 to 8 carbon atoms or
Is an alkyl group substituted with a halogen atom,TenIs carbon
A branched or linear alkylene group having 1 to 4 atoms or halogen
N2 is an alkylene group substituted with a non-atom atom, 1 ≦ n2 ≦
4 represents the number R 9, RTen, R11Any one of is halo
Represents a group substituted with a gen atom)

【0038】ここで、R9 、R11で示されるアルキル基
としては、メチル、エチル、プロピル、ブチル、ペンチ
ル、ヘキシル、ヘプチル、オクチル等が、R10で示され
るアルキレン基としては、エチレン、プロピレン等が挙
げられる。
The alkyl groups represented by R 9 and R 11 include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl and the like, and the alkylene groups represented by R 10 include ethylene, propylene And the like.

【0039】電解質としては、従来公知の電解質が用い
られ、例えば、LiPF6 、LiBF4 、LiAs
6 、LiCF3 SO3 、LiN(CF3 SO2 2
LiC(CF3 SO2 3 、LiSbF6 、LiSiF
5 、LiAlF4 、LiSCN、LiClO4 、LiC
l、LiF、LiBr、LiI、LiAlCl4 、Na
ClO4 、NaBF4 、NaI等が挙げられ、中でも、
LiPF6 、LiBF4 、LiClO4 、LiAsF6
等の無機塩、並びに、CF3 SO3 Li、N(CF 3
2 2 Li、C(CF3 SO2 3 Li等の有機塩か
らなる群より選ばれる一種又は二種以上の塩の組合せが
電気特性に優れるので好ましい。
As the electrolyte, a conventionally known electrolyte is used.
For example, LiPF6, LiBFFour, LiAs
F6, LiCFThreeSOThree, LiN (CFThreeSOTwo)Two,
LiC (CFThreeSOTwo)Three, LiSbF6, LiSiF
Five, LiAlFFour, LiSCN, LiClOFour, LiC
1, LiF, LiBr, LiI, LiAlClFour, Na
ClOFour, NaBFFour, NaI and the like.
LiPF6, LiBFFour, LiClOFour, LiAsF6
And an inorganic salt such as CFThreeSOThreeLi, N (CF ThreeS
OTwo)TwoLi, C (CFThreeSOTwo)ThreeOrganic salt such as Li
One or a combination of two or more salts selected from the group consisting of
It is preferable because it has excellent electrical characteristics.

【0040】上記電解質は、電解液中の濃度が、0.1
〜3.0モル/リットル、特に0.5〜2.0モル/リ
ットルとなるように、上記有機溶媒に溶解することが好
ましい。該電解液の濃度が0.1モル/リットルより小
さいと充分な電流密度を得られないことがあり、3.0
モル/リットルより大きいと電解液の安定性を損なう恐
れがある。
The above electrolyte has a concentration in the electrolyte of 0.1%.
It is preferable to dissolve in the above-mentioned organic solvent so as to be 3.0 to 3.0 mol / l, particularly 0.5 to 2.0 mol / l. If the concentration of the electrolytic solution is less than 0.1 mol / liter, a sufficient current density may not be obtained in some cases.
If it is higher than mol / liter, the stability of the electrolyte may be impaired.

【0041】本発明の電解液は、一次又は二次電池、特
に後述する非水電解液二次電池を構成する非水電解液と
して好適に使用できる。
The electrolyte of the present invention can be suitably used as a non-aqueous electrolyte constituting a primary or secondary battery, particularly a non-aqueous electrolyte secondary battery described later.

【0042】電極材料としては、正極及び負極があり、
正極としては、正極活物質と結着剤と導電材とをスラリ
ー化したものを集電体に塗布し、乾燥してシート状にし
たものが使用される。正極活物質としては、TiS2
TiS3 、MoS3 、FeS 2 、Li(1-x) MnO2
Li(1-x) Mn2 4 、Li(1-x) CoO2 、Li(1
-x) NiO2 、LiV2 3 、V2 5 等が挙げられ
る。なお、該正極活物質の例示におけるXは0〜1の数
を示す。これら正極活物質のうち、リチウムと遷移金属
の複合酸化物が好ましく、LiCoO2 、LiNi
2 、LiMn2 4 、LiMnO2 、LiV2 3
が好ましい。負極及び正極活物質の結着剤としては、例
えば、ポリフッ化ビニリデン、ポリテトラフルオロエチ
レン、EPDM、SBR、NBR、フッ素ゴム等が挙げ
られるが、これらに限定されない。
The electrode material includes a positive electrode and a negative electrode.
For the positive electrode, a slurry of a positive electrode active material, a binder, and a conductive material is used.
And apply it to a current collector and dry it to form a sheet.
Is used. As the positive electrode active material, TiSTwo,
TiSThree, MoSThree, FeS Two, Li(1-x)MnOTwo,
Li(1-x)MnTwoOFour, Li(1-x)CoOTwo, Li(1
-x)NiOTwo, LiVTwoOThree, VTwoOFiveEtc.
You. X in the examples of the positive electrode active material is a number of 0 to 1.
Is shown. Of these positive electrode active materials, lithium and transition metals
Are preferred, and LiCoOTwo, LiNi
OTwo, LiMnTwoOFour, LiMnOTwo, LiVTwoOThreeetc
Is preferred. Examples of binders for negative and positive electrode active materials
For example, polyvinylidene fluoride, polytetrafluoroethylene
Len, EPDM, SBR, NBR, fluoro rubber, etc.
But not limited to these.

【0043】負極としては、通常、負極活物質と結着剤
とを溶媒でスラリー化したものを集電体に塗布し、乾燥
してシート状にしたものが使用される。負極活物質とし
ては、リチウム、リチウム合金、スズ化合物等の無機化
合物、炭素質材料、導電性ポリマー等が挙げられる。特
に、安全性の高いリチウムイオンを吸蔵、放出できる炭
素質材料が好ましい。この炭素質材料は特に限定されな
いが、黒鉛及び石油系コークス、石炭系コークス、石油
系ピッチの炭化物、石炭系ピッチの炭化物、フェノール
樹脂、結晶セルロース等の樹脂の炭化物等及びこれらを
一部炭化した炭素材、ファーネスブラック、アセチレン
ブラック、ピッチ系炭素繊維、PAN系炭素繊維等が挙
げられる。
As the negative electrode, one obtained by slurrying a negative electrode active material and a binder with a solvent is applied to a current collector and dried to form a sheet. Examples of the negative electrode active material include inorganic compounds such as lithium, lithium alloys and tin compounds, carbonaceous materials, and conductive polymers. In particular, a carbonaceous material that can store and release highly safe lithium ions is preferable. This carbonaceous material is not particularly limited, but graphite and petroleum-based coke, coal-based coke, petroleum-based pitch carbide, coal-based pitch carbide, phenolic resin, carbonized resin such as crystalline cellulose, and partially carbonized these Examples include carbon materials, furnace black, acetylene black, pitch-based carbon fibers, and PAN-based carbon fibers.

【0044】正極の導電材としては、黒鉛の微粒子、ア
セチレンブラック等のカーボンブラック、ニードルコー
クス等の無定形炭素の微粒子等が使用されるが、これら
に限定されない。スラリー化する溶媒としては、通常は
結着剤を溶解する有機溶剤が使用される。例えば、N−
メチルピロリドン、ジメチルホルムアミド、ジメチルア
セトアミド、メチルエチルケトン、シクロヘキサノン、
酢酸メチル、アクリル酸メチル、ジエチルトリアミン、
N−N−ジメチルアミノプロピルアミン、エチレンオキ
シド、テトラヒドロフラン等を挙げることができるがこ
れに限定されない。また、水に分散剤、増粘剤等を加え
てSBR等のラテックスで活物質をスラリー化する場合
もある。
Examples of the conductive material for the positive electrode include graphite fine particles, carbon black such as acetylene black, and amorphous carbon fine particles such as needle coke, but are not limited thereto. As a solvent for forming a slurry, an organic solvent that dissolves a binder is usually used. For example, N-
Methylpyrrolidone, dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone,
Methyl acetate, methyl acrylate, diethyltriamine,
Examples include, but are not limited to, N-N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, and the like. In some cases, the active material is slurried with latex such as SBR by adding a dispersant, a thickener, and the like to water.

【0045】負極の集電体には、通常、銅、ニッケル、
ステンレス鋼、ニッケルメッキ鋼等が使用され、正極集
電体には、通常、アルミニウム、ステンレス鋼、ニッケ
ルメッキ鋼等が使用される。
The current collector of the negative electrode usually contains copper, nickel,
Stainless steel, nickel-plated steel, or the like is used, and aluminum, stainless steel, nickel-plated steel, or the like is usually used for the positive electrode current collector.

【0046】本発明の非水電解液二次電池では正極と負
極の間にセパレータを用いるが、通常用いられる高分子
の微多孔フィルムを特に限定なく使用できる。例えば、
ポリエチレン、ポリプロピレン、ポリフッ化ビニリデ
ン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリ
アクリルアミド、ポリテトラフルオロエチレン、ポリス
ルホン、ポリエーテルスルホン、ポリカーボネート、ポ
リアミド、ポリイミド、ポリエチレンオキシドやポリプ
ロピレンオキシド等のポリエーテル類、カルボキシメチ
ルセルロースやヒドロキシプロピルセルロース等の種々
のセルロース類、ポリ(メタ)アクリル酸及びその種々
のエステル類等を主体とする高分子化合物やその誘導
体、これらの共重合体や混合物からなるフィルム等が挙
げられる。また、このようなフィルムを単独で用いても
よいし、これらのフィルムを重ね合わせた複層フィルム
でもよい。さらにこれらのフィルムには種々の添加剤を
用いてもよく、その種類や含有量は特に制限されない。
これらの微多孔フィルムの中で、本発明の非水電解液二
次電池にはポリエチレンやポリプロピレン、ポリフッ化
ビニリデン、ポリスルホンが好ましく用いられる。
In the non-aqueous electrolyte secondary battery of the present invention, a separator is used between the positive electrode and the negative electrode, but a commonly used polymer microporous film can be used without any particular limitation. For example,
Polyethers such as polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene oxide, carboxymethylcellulose and hydroxy Examples thereof include films composed of various celluloses such as propylcellulose, polymer compounds mainly composed of poly (meth) acrylic acid and various esters thereof, derivatives thereof, and copolymers and mixtures thereof. Further, such a film may be used alone, or a multilayer film in which these films are laminated. Further, various additives may be used for these films, and the types and contents thereof are not particularly limited.
Among these microporous films, polyethylene, polypropylene, polyvinylidene fluoride, and polysulfone are preferably used for the nonaqueous electrolyte secondary battery of the present invention.

【0047】これらのセパレータフィルムは、電解液が
しみ込んでイオンが透過し易いように、微多孔化がなさ
れている。この微多孔化の方法としては、高分子化合物
と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を
抽出除去して多孔化する「相分離法」と、溶融した高分
子化合物を高ドラフトで押し出し製膜した後に熱処理
し、結晶を一方向に配列させさらに延伸によって結晶間
に間隙を形成して多孔化をはかる「延伸法」等が挙げら
れ、用いられる高分子フィルムによって適宜選択され
る。特に、本発明に好ましく用いられるポリエチレンや
ポリフッ化ビニリデンに対しては、相分離法が好ましく
用いられる。
[0047] These separator films are microporous so that the electrolyte solution can permeate and ions easily permeate. The microporous method includes a phase separation method in which a film of a polymer compound and a solvent is formed while microphase-separating the solution, and the solvent is extracted and removed to form a porous layer. The film is extruded into a film, and then heat-treated, and the crystals are arranged in one direction. Further, a "stretching method" for forming a gap between the crystals by stretching to make the crystals porous, and the like are appropriately selected depending on the polymer film used. . In particular, a phase separation method is preferably used for polyethylene and polyvinylidene fluoride preferably used in the present invention.

【0048】上記構成からなる本発明の非水電解液二次
電池は、その形状には特に制限を受けず、コイン型、円
筒型、角型等、種々の形状の電池として使用できる。図
1は、本発明の非水電解液二次電池のコイン型電池の例
を、図2及び図3は円筒型電池の例を示したものであ
る。
The non-aqueous electrolyte secondary battery of the present invention having the above-mentioned structure is not particularly limited in its shape, and can be used as batteries of various shapes such as a coin type, a cylindrical type and a square type. FIG. 1 shows an example of a coin-type battery of the non-aqueous electrolyte secondary battery of the present invention, and FIGS. 2 and 3 show examples of a cylindrical battery.

【0049】図1〜3においては、1は負極、1' は負
極板、1" は負極リード、2 は負極集電体、3は正極
も3' は正極板、3" は正極リード、4は正極集電体、
5は電解液、6はセパレーター、7は正極端子、8は負
極端子、10は非水電解液二次電池、11はケース、1
2は絶縁板、13はガスケット、14は安全弁、15P
TC素子をそれぞれ示す。
In FIGS. 1 to 3, 1 is a negative electrode, 1 'is a negative electrode plate, 1 "is a negative electrode lead, 2 is a negative electrode current collector, 3 is a positive electrode and 3' is a positive electrode plate, 3" is a positive electrode lead, Is the positive electrode current collector,
5 is an electrolyte, 6 is a separator, 7 is a positive electrode terminal, 8 is a negative electrode terminal, 10 is a non-aqueous electrolyte secondary battery, 11 is a case, 1
2 is an insulating plate, 13 is a gasket, 14 is a safety valve, 15P
Each TC element is shown.

【0050】本発明の作用については明確ではないが、
初期サイクルにおいて、本発明で用いられる活性水素を
持たないアルキニル基及び/又はアルキニレン基を有す
る酸素含有脂肪族化合物が電極界面において重合反応す
ることにより、被膜を形成するためであると考えられ
る。このために、初期の内部抵抗は、無添加に比べて増
加するが、被膜が安定なために、サイクルに伴う電極と
電解液の副反応が抑制でき、サイクルによる内部抵抗の
増加を抑制することができると考えられる。
Although the function of the present invention is not clear,
This is presumably because in the initial cycle, the alkynyl group having no active hydrogen and / or the oxygen-containing aliphatic compound having an alkynylene group used in the present invention undergoes a polymerization reaction at the electrode interface to form a film. For this reason, the initial internal resistance increases as compared to the case where no additive is added, but since the film is stable, side reactions between the electrode and the electrolyte during the cycle can be suppressed, and the increase in the internal resistance due to the cycle can be suppressed. It is thought that it is possible.

【0051】[0051]

【実施例】以下に、実施例により本発明を詳細に説明す
る。但し、以下の実施例により本発明はなんら制限され
るものではない。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited by the following examples.

【0052】(正極の作成)LiMn2 4 90重量
部、グラファイト6重量部及びポリフッ化ビニリデン4
重量部を混合して、正極材料とした。この正極材料をN
−メチル−2−ピロリドンに分散させ、スラリー状とし
た。このスラリーをアルミニウム製の正極集電体に塗布
し、乾燥後、プレス成型して、正極電極とした。
(Preparation of Positive Electrode) 90 parts by weight of LiMn 2 O 4 , 6 parts by weight of graphite and 4 parts by weight of polyvinylidene fluoride
The parts by weight were mixed to obtain a positive electrode material. This positive electrode material is
-Methyl-2-pyrrolidone to form a slurry. The slurry was applied to a positive electrode current collector made of aluminum, dried, and press-formed to obtain a positive electrode.

【0053】(負極の作成)炭素材料粉末を90重量部
にポリフッ化ビニリデン10重量部を混合して、負極材
料とした。この負極材料をN−メチル−2−ピロリドン
に分散させてスラリー状とした。このスラリーを銅製の
負極集電体に塗布し、乾燥後、プレス成型して、負極電
極とした。
(Preparation of Negative Electrode) 90 parts by weight of a carbon material powder and 10 parts by weight of polyvinylidene fluoride were mixed to prepare a negative electrode material. This negative electrode material was dispersed in N-methyl-2-pyrrolidone to form a slurry. This slurry was applied to a negative electrode current collector made of copper, dried, and press-formed to obtain a negative electrode.

【0054】(電解液の作成)有機溶媒を実施例1−1
〜1−8及び比較例1−1〜1−5に記載の各体積%で
混合し、さらに、LiPF6 を1モル/リットルの濃度
で溶解し、試験化合物(表1及び表2記載)を表1及び
表2記載の配合量(体積%)で添加して非水電解液とし
た。
(Preparation of Electrolytic Solution) An organic solvent was used in Example 1-1.
To 1-8 and Comparative Examples 1-1 to 1-5 at each volume%, and further, LiPF 6 was dissolved at a concentration of 1 mol / liter, and the test compounds (described in Tables 1 and 2) were dissolved. A non-aqueous electrolyte was obtained by adding the components (volume%) shown in Tables 1 and 2.

【0055】(電池の作成)上述の電極をケースに溶接
し、厚さ25μmの微孔ポリプロピレン製のフィルムを
介し、電解液を含有する上記した図1で示すコイン型非
水電解液二次電池を作成した。
(Preparation of Battery) The above-mentioned electrode was welded to a case, and a coin-type non-aqueous electrolyte secondary battery shown in FIG. 1 containing an electrolyte was contained through a microporous polypropylene film having a thickness of 25 μm. It was created.

【0056】(評価方法)上記非水電解液二次電池を用
いて、20℃及び60℃で、4.2V、1mA/c
2 、4時間の定電流定電圧による充電、及び0.5m
A/cm2 の定電流で終止電圧を3.0Vとする放電の
充放電を行い、放電容量(mAh)、内部抵抗(Ω)の
初期値及び充放電50サイクル後の放電容量維持率
(%)と内部抵抗、すなわち抵抗維持(Ω)からサイク
ル特性(安定性)を評価した。20℃の結果を表1に、
60℃の結果を表2にそれぞれ示す。
(Evaluation method) Using the above nonaqueous electrolyte secondary battery, at 20 ° C. and 60 ° C., 4.2 V, 1 mA / c
m 2 , charge for 4 hours with constant current and constant voltage, and 0.5 m
Charging / discharging was performed at a constant current of A / cm 2 with a final voltage of 3.0 V, and the discharge capacity (mAh), the initial value of the internal resistance (Ω), and the discharge capacity maintenance rate (%) after 50 cycles of charge / discharge. ) And internal resistance, that is, resistance maintenance (Ω), to evaluate the cycle characteristics (stability). Table 1 shows the results at 20 ° C.
Table 2 shows the results at 60 ° C.

【0057】〔実施例1−1〜1−9及び比較例1−1
〜1−3〕エチレンカーボネートとジメチルカーボネー
トの体積比1:1の混合溶媒に、LiPF6を1モル/
リットルの濃度で溶解した電解液に、試験化合物(表1
参照)を加えて電解液とした。
[Examples 1-1 to 1-9 and Comparative Example 1-1]
~ 1-3] LiPF6 was added to a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1 at a ratio of 1 mol /
The test compound (Table 1) was added to the electrolyte dissolved at a concentration of 1 liter.
) To obtain an electrolyte solution.

【0058】〔実施例1−10及び比較例1−4〕エチ
レンカーボネートを30体積%、ジエチルカーボネート
を60体積%、トリエチルホスフェートを10体積%の
混合溶媒に、LiPF6 を1モル/リットルの濃度で溶
解した電解液に、試験化合物(表1及び表2参照)を加
えて電解液とした。
[Examples 1-10 and Comparative Examples 1-4] A mixed solvent of 30% by volume of ethylene carbonate, 60% by volume of diethyl carbonate and 10% by volume of triethyl phosphate, and a concentration of LiPF 6 of 1 mol / L were used. A test compound (see Tables 1 and 2) was added to the electrolytic solution dissolved in the above to prepare an electrolytic solution.

【0059】〔実施例1−11及び比較例1−5〕エチ
レンカーボネートを30体積%、1,2−ビス(エトキ
シカルボニルオキシ)エタンを10体積%、エチル−n
−ブチルカーボネートを40体積%、エチレングリコー
ルビス(トリフルオロエチル)エーテルを10体積%、
トリエチルホスフェートを10体積%の混合溶媒に、L
iPF6 を1モル/リットルの濃度で溶解した電解液
に、試験化合物(表1及び表2参照)を加えて電解液と
した。
Example 1-11 and Comparative Example 1-5 30% by volume of ethylene carbonate, 10% by volume of 1,2-bis (ethoxycarbonyloxy) ethane and ethyl-n
-40% by volume of butyl carbonate, 10% by volume of ethylene glycol bis (trifluoroethyl) ether,
Triethyl phosphate was added to a 10% by volume mixed solvent, and L
A test compound (see Tables 1 and 2) was added to an electrolytic solution in which iPF 6 was dissolved at a concentration of 1 mol / liter to obtain an electrolytic solution.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】上記の表1及び表2の評価結果から明らか
なように、実施例1−1〜1−11に示した、本発明に
係る活性水素を持たないアルキニル基及び/又はアルキ
ニレン基を有する酸素含有脂肪族化合物を添加した電解
液を用いた非水電解液二次電池は、60℃でも充放電に
よる放電容量の低下や内部抵抗の上昇が小さい。しか
し、未添加の比較例1−1と1−4及び1−5では充放
電後の放電容量が大きく低下し、内部抵抗の増加も大き
い。また、活性水素を有するアルキニル基を有する化合
物を添加した比較例1−2や活性水素を持たないアルキ
ニル基を有する酸素含有芳香族化合物を添加した比較例
1−3では初期の放電容量が小さく、内部抵抗は大き
い。また、50サイクル後の容量維持率が小さく、内部
抵抗の上昇が大きい。
As is clear from the evaluation results in Tables 1 and 2, the alkynyl group and / or alkynylene group having no active hydrogen according to the present invention shown in Examples 1-1 to 1-11 is provided. A non-aqueous electrolyte secondary battery using an electrolyte to which an oxygen-containing aliphatic compound is added has a small decrease in discharge capacity and an increase in internal resistance due to charge and discharge even at 60 ° C. However, in Comparative Examples 1-1, 1-4, and 1-5 where no additive was added, the discharge capacity after charge and discharge was significantly reduced, and the internal resistance was also greatly increased. Further, in Comparative Example 1-2 in which a compound having an alkynyl group having active hydrogen was added, and in Comparative Example 1-3 in which an oxygen-containing aromatic compound having an alkynyl group having no active hydrogen was added, the initial discharge capacity was small. The internal resistance is large. Further, the capacity retention rate after 50 cycles is small, and the rise in internal resistance is large.

【0063】[0063]

【発明の効果】以上説明したように、活性水素を持たな
いアルキニル基及び/又はアルキニレン基を有する酸素
含有脂肪族化合物を添加した本発明の非水電解液を用い
ることで、充放電の繰り返し時に電気容量や内部抵抗の
変化率が小さく、サイクル特性に優れた非水電解液二次
電池を提供できる。
As described above, the use of the non-aqueous electrolyte solution of the present invention to which an alkynyl group having no active hydrogen and / or an oxygen-containing aliphatic compound having an alkynylene group is added enables the charge and discharge to be repeated. It is possible to provide a nonaqueous electrolyte secondary battery having a small rate of change in electric capacity and internal resistance and excellent cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のコイン型非水電解液二次電池
の構造の一例を概略的に示す縦断面図である。
FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a coin-type non-aqueous electrolyte secondary battery of the present invention.

【図2】図2は、本発明の非水電解液二次電池としての
リチウム二次電池(円筒型)の基本構成を示す概略図で
ある。
FIG. 2 is a schematic diagram showing a basic configuration of a lithium secondary battery (cylindrical type) as a non-aqueous electrolyte secondary battery of the present invention.

【図3】図3は、本発明の非水電解液二次電池としての
リチウム二次電池(円筒型)の内部構造を断面として示
す斜視図である。
FIG. 3 is a perspective view showing a cross section of an internal structure of a lithium secondary battery (cylindrical type) as a nonaqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 :負極 1' :負極板 1" :負極リード 2 :負極集電体 3 :正極 3' :正極板 3" :正極リード 4 :正極集電体 5 :電解液 6 :セパレーター 7 :正極端子 8 :負極端子 10:非水電解液二次電池 11:ケース 12:絶縁板 13:ガスケット 14:安全弁 15:PTC素子 1: negative electrode 1 ': negative electrode plate 1 ": negative electrode lead 2: negative electrode current collector 3: positive electrode 3': positive electrode plate 3": positive electrode lead 4: positive electrode current collector 5: electrolytic solution 6: separator 7: positive electrode terminal 8 : Negative electrode terminal 10: non-aqueous electrolyte secondary battery 11: case 12: insulating plate 13: gasket 14: safety valve 15: PTC element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 直宏 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 竹内 康紀 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AJ06 AK03 AL06 AM03 AM05 AM07 BJ02 BJ03 BJ12 BJ14 EJ11 HJ01 HJ02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naohiro Kubota 7-35 Higashiogu, Arakawa-ku, Tokyo Asahi Denka Kako Kogyo Co., Ltd. Asahi Denka Kogyo Co., Ltd. F-term (reference) 5H029 AJ03 AJ05 AJ06 AK03 AL06 AM03 AM05 AM07 BJ02 BJ03 BJ12 BJ14 EJ11 HJ01 HJ02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電解質塩を有機溶媒に溶解した非水電解
液において、活性水素を持たないアルキニル基及び/又
はアルキニレン基を有する酸素含有脂肪族化合物を添加
したことを特徴とする非水電解液。
1. A non-aqueous electrolyte comprising a non-aqueous electrolyte in which an electrolyte salt is dissolved in an organic solvent, wherein an alkynyl group having no active hydrogen and / or an oxygen-containing aliphatic compound having an alkynylene group is added. .
【請求項2】 上記活性水素を持たないアルキニル基及
び/又はアルキニレン基を有する酸素含有脂肪族化合物
が下記一般式(I)で表される化合物である請求項1記
載の非水電解液。 【化1】 (式中、R1 、R3 は炭素原子数1〜8のアルキル基、
アルケニル基、アルキニル基を、R2 は炭素原子数1〜
4のアルキレン基、アルケニレン基、アルキニレン基を
表し、但し、R1 、R2 、R3 のいずれか1つはアルキ
ニル基又はアルキニレン基であり、X1 及びX2 はエー
テル結合、エステル結合、炭酸エステル結合を、nは0
又は1の数を表す)
2. The non-aqueous electrolyte according to claim 1, wherein the oxygen-containing aliphatic compound having an alkynyl group and / or an alkynylene group having no active hydrogen is a compound represented by the following general formula (I). Embedded image (Wherein, R 1 and R 3 are an alkyl group having 1 to 8 carbon atoms,
R 2 represents an alkenyl group or an alkynyl group;
4 represents an alkylene group, alkenylene group, or alkynylene group, provided that any one of R 1 , R 2 , and R 3 is an alkynyl group or an alkynylene group, and X 1 and X 2 are an ether bond, an ester bond, Ester bond, n is 0
Or represents the number of 1)
【請求項3】 上記一般式(I)で表される化合物が、
電解液中に、0.01〜10体積%存在していることを
特徴とする請求項2記載の非水電解液。
3. The compound represented by the above general formula (I)
3. The non-aqueous electrolyte according to claim 2, wherein the electrolyte is present in an amount of 0.01 to 10% by volume.
【請求項4】 上記電解液が環状カーボネート化合物と
鎖状カーボネート化合物をそれぞれ少なくとも1種以上
含有している請求項1、2又は3記載の非水電解液。
4. The non-aqueous electrolytic solution according to claim 1, wherein the electrolytic solution contains at least one kind of a cyclic carbonate compound and at least one kind of a chain carbonate compound.
【請求項5】 リン含有化合物を1種以上含有する請求
項2記載の非水電解液。
5. The non-aqueous electrolyte according to claim 2, which contains at least one phosphorus-containing compound.
【請求項6】 下記一般式(II)、(III )及び(IV)
のいずれかで表される化合物を少なくとも1 種以上含有
されている請求項2記載の非水電解液。 【化2】 (式中、R4 、R6 は各々独立に炭素原子数1〜4のア
ルキル基を、R5 は炭素原子数1〜3の直鎖又は分岐の
アルキレン基を表す) 【化3】 (式中、R7 、R8 は各々独立に炭素原子数1〜4のア
ルキル基を表し、少なくとも一方は炭素原子数3以上の
アルキル基を表す) 【化4】 (式中、R9 、R11は炭素原子数1〜8のアルキル基又
はハロゲン原子で置換されたアルキル基を、R10は炭素
原子数1〜4の分岐又は直鎖のアルキレン基又はハロゲ
ン原子で置換されたアルキレン基を、n2は1≦n2≦
4の数を表し、R 9 、R10、R11のいずれか1つはハロ
ゲン原子で置換されている基を表す)
6. The following general formulas (II), (III) and (IV)
Contains at least one compound represented by any of
The non-aqueous electrolyte according to claim 2, wherein Embedded image(Where RFour, R6Are each independently an alkyl group having 1 to 4 carbon atoms.
Alkyl group to RFiveIs linear or branched having 1 to 3 carbon atoms
Represents an alkylene group)(Where R7, R8Are each independently an alkyl group having 1 to 4 carbon atoms.
Represents an alkyl group, at least one of which has 3 or more carbon atoms.
Represents an alkyl group)(Where R9, R11Is an alkyl group having 1 to 8 carbon atoms or
Is an alkyl group substituted with a halogen atom,TenIs carbon
A branched or linear alkylene group having 1 to 4 atoms or halogen
N2 is an alkylene group substituted with a non-atom atom, 1 ≦ n2 ≦
4 represents the number R 9, RTen, R11Any one of is halo
Represents a group substituted with a gen atom)
【請求項7】 上記電解質塩が、リチウムイオンとPF
6 、BF4 、ClO 4 及びAsF6 の中から選ばれたア
ニオンとから構成される無機塩並びにリチウムイオンと
SO3 CF3 、N(CF3 SO2 2 、C(CF3 SO
2 3 及びこれらの誘導体の中から構成される有機塩か
らなる群から選ばれる1種又は2種以上の塩の組合せか
らなる請求項1〜6のいずれかに記載の非水電解液。
7. The method according to claim 7, wherein the electrolyte salt is lithium ion and PF
6, BFFour, ClO FourAnd AsF6A selected from
Inorganic salt and lithium ion
SOThreeCFThree, N (CFThreeSOTwo)Two, C (CFThreeSO
Two)ThreeAnd organic salts composed of these derivatives?
A combination of one or more salts selected from the group consisting of
The non-aqueous electrolytic solution according to any one of claims 1 to 6, comprising:
【請求項8】 非水電解液と正極と負極とを有する非水
電解液二次電池において、請求項1〜7に記載の非水電
解液を用いたことを特徴とする非水電解液二次電池。
8. A non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, a positive electrode and a negative electrode, wherein the non-aqueous electrolyte according to claim 1 is used. Next battery.
JP2000068400A 2000-03-13 2000-03-13 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery Expired - Fee Related JP4093699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068400A JP4093699B2 (en) 2000-03-13 2000-03-13 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068400A JP4093699B2 (en) 2000-03-13 2000-03-13 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001256995A true JP2001256995A (en) 2001-09-21
JP4093699B2 JP4093699B2 (en) 2008-06-04

Family

ID=18587457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068400A Expired - Fee Related JP4093699B2 (en) 2000-03-13 2000-03-13 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4093699B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100399A (en) * 2000-09-20 2002-04-05 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary cell using it
WO2005122318A1 (en) * 2004-05-28 2005-12-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2006173096A (en) * 2004-11-18 2006-06-29 Matsushita Electric Ind Co Ltd Organic electrolyte battery
WO2006077763A1 (en) * 2005-01-20 2006-07-27 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2007066864A (en) * 2005-08-05 2007-03-15 Ube Ind Ltd Non-aqueous electrolytic liquid and lithium secondary battery using the same
JP2009110959A (en) * 2007-10-26 2009-05-21 Samsung Sdi Co Ltd Vinyl compound employing organic electrolyte and lithium cell
JP2009193836A (en) * 2008-02-15 2009-08-27 Adeka Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the electrolyte
WO2011034067A1 (en) 2009-09-15 2011-03-24 宇部興産株式会社 Nonaqueous electrolyte solution and electrochemical element using same
WO2013115041A1 (en) * 2012-01-30 2013-08-08 日本電気株式会社 Nonaqueous electrolyte solution and secondary battery using same
WO2013114946A1 (en) * 2012-02-03 2013-08-08 日本電気株式会社 Lithium secondary cell
US8795904B2 (en) 2010-05-13 2014-08-05 The United States Of America As Represented By The Secretary Of The Army Nonaqueous electrolyte solvents and additives
CN104025365A (en) * 2011-12-28 2014-09-03 宇部兴产株式会社 Non-aqueous electrolyte and electrical storage device using same
KR20180086601A (en) 2017-01-23 2018-08-01 주식회사 엘지화학 Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
JPWO2017061464A1 (en) * 2015-10-09 2018-09-06 宇部興産株式会社 Non-aqueous electrolyte and power storage device using the same
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry
KR20200075715A (en) 2018-12-18 2020-06-26 한국화학연구원 Additive for non-aqueous liquid electrolyte, coating agent for separator and lithium secondary cell comprising the same
KR20200106429A (en) 2019-03-04 2020-09-14 한국화학연구원 Substituted ring-type Isothiazole compounds, non-aqueous solution electrolyte agent comprising thereof and lithium secondary battery comprising the same
KR20220059607A (en) 2020-11-03 2022-05-10 주식회사 엘지에너지솔루션 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
WO2022196238A1 (en) * 2021-03-15 2022-09-22 株式会社村田製作所 Electrolyte solution for secondary battery, and secondary battery
CN115799638A (en) * 2022-12-16 2023-03-14 苏州祺添新材料有限公司 Electrolyte additive composition of lithium ion battery, electrolyte containing additive composition and application of electrolyte
CN116154281A (en) * 2021-11-22 2023-05-23 张家港市国泰华荣化工新材料有限公司 Nonaqueous electrolyte and high-voltage lithium battery containing same
WO2023248829A1 (en) * 2022-06-23 2023-12-28 株式会社村田製作所 Electrolyte solution for secondary batteries, and secondary battery
US11876177B2 (en) 2017-08-24 2024-01-16 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6225903B2 (en) * 2012-07-02 2017-11-08 日本電気株式会社 Secondary battery

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710116B2 (en) * 2000-09-20 2011-06-29 宇部興産株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
JP2002100399A (en) * 2000-09-20 2002-04-05 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary cell using it
US7727677B2 (en) 2004-05-28 2010-06-01 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
WO2005122318A1 (en) * 2004-05-28 2005-12-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JPWO2005122318A1 (en) * 2004-05-28 2008-04-10 宇部興産株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
JP2006173096A (en) * 2004-11-18 2006-06-29 Matsushita Electric Ind Co Ltd Organic electrolyte battery
US7754380B2 (en) 2005-01-20 2010-07-13 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2012079711A (en) * 2005-01-20 2012-04-19 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2010118356A (en) * 2005-01-20 2010-05-27 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2013239468A (en) * 2005-01-20 2013-11-28 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using the same
US8530080B2 (en) 2005-01-20 2013-09-10 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
US8440349B2 (en) 2005-01-20 2013-05-14 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
WO2006077763A1 (en) * 2005-01-20 2006-07-27 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2007066864A (en) * 2005-08-05 2007-03-15 Ube Ind Ltd Non-aqueous electrolytic liquid and lithium secondary battery using the same
JP2009110959A (en) * 2007-10-26 2009-05-21 Samsung Sdi Co Ltd Vinyl compound employing organic electrolyte and lithium cell
US8632917B2 (en) 2007-10-26 2014-01-21 Samsung Sdi Co., Ltd. Organic electrolyte solution including vinyl-based compound and lithium battery using the same
KR101386164B1 (en) 2007-10-26 2014-04-17 삼성에스디아이 주식회사 Organic electrolytic solution comprising vinyl based compound and lithium battery employing the same
JP2009193836A (en) * 2008-02-15 2009-08-27 Adeka Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the electrolyte
WO2011034067A1 (en) 2009-09-15 2011-03-24 宇部興産株式会社 Nonaqueous electrolyte solution and electrochemical element using same
EP2908376A1 (en) 2009-09-15 2015-08-19 Ube Industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same
US8795904B2 (en) 2010-05-13 2014-08-05 The United States Of America As Represented By The Secretary Of The Army Nonaqueous electrolyte solvents and additives
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry
CN104025365A (en) * 2011-12-28 2014-09-03 宇部兴产株式会社 Non-aqueous electrolyte and electrical storage device using same
WO2013115041A1 (en) * 2012-01-30 2013-08-08 日本電気株式会社 Nonaqueous electrolyte solution and secondary battery using same
JPWO2013115041A1 (en) * 2012-01-30 2015-05-11 日本電気株式会社 Non-aqueous electrolyte and secondary battery using the same
WO2013114946A1 (en) * 2012-02-03 2013-08-08 日本電気株式会社 Lithium secondary cell
US10003100B2 (en) 2012-02-03 2018-06-19 Nec Corporation Nonaqueous electrolyte with fluorine containing ether compound for lithium secondary battery
JPWO2017061464A1 (en) * 2015-10-09 2018-09-06 宇部興産株式会社 Non-aqueous electrolyte and power storage device using the same
JP2019520687A (en) * 2017-01-23 2019-07-18 エルジー・ケム・リミテッド Additive for non-aqueous electrolyte, non-aqueous electrolyte for lithium secondary battery containing the same, and lithium secondary battery
EP3419099B1 (en) * 2017-01-23 2023-11-08 LG Energy Solution, Ltd. Additive for non-aqueous electrolyte, lithium secondary battery non-aqueous electrolyte comprising same, and lithium secondary battery
CN108886168A (en) * 2017-01-23 2018-11-23 株式会社Lg化学 Additive for non-aqueous electrolytic solution, the non-aqueous electrolytic solution for lithium secondary battery and the lithium secondary battery including the non-aqueous electrolytic solution
US20190334207A1 (en) * 2017-01-23 2019-10-31 Lg Chem, Ltd. Additive For Non-aqueous Electrolyte Solution, And Non-aqueous Electrolyte Solution For Lithium Secondary Battery And Lithium Secondary Battery Which Include The Same
KR20180086601A (en) 2017-01-23 2018-08-01 주식회사 엘지화학 Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
US10923768B2 (en) * 2017-01-23 2021-02-16 Lg Chem, Ltd. Alkynyl-containing compound additive for non-aqueous electrolyte solution, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same
US11876177B2 (en) 2017-08-24 2024-01-16 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR20200075715A (en) 2018-12-18 2020-06-26 한국화학연구원 Additive for non-aqueous liquid electrolyte, coating agent for separator and lithium secondary cell comprising the same
KR20200106429A (en) 2019-03-04 2020-09-14 한국화학연구원 Substituted ring-type Isothiazole compounds, non-aqueous solution electrolyte agent comprising thereof and lithium secondary battery comprising the same
WO2022097945A1 (en) 2020-11-03 2022-05-12 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
KR20220059607A (en) 2020-11-03 2022-05-10 주식회사 엘지에너지솔루션 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
WO2022196238A1 (en) * 2021-03-15 2022-09-22 株式会社村田製作所 Electrolyte solution for secondary battery, and secondary battery
CN116154281A (en) * 2021-11-22 2023-05-23 张家港市国泰华荣化工新材料有限公司 Nonaqueous electrolyte and high-voltage lithium battery containing same
WO2023087648A1 (en) * 2021-11-22 2023-05-25 张家港市国泰华荣化工新材料有限公司 Non-aqueous electrolyte solution and high-voltage lithium battery containing same
WO2023248829A1 (en) * 2022-06-23 2023-12-28 株式会社村田製作所 Electrolyte solution for secondary batteries, and secondary battery
CN115799638A (en) * 2022-12-16 2023-03-14 苏州祺添新材料有限公司 Electrolyte additive composition of lithium ion battery, electrolyte containing additive composition and application of electrolyte
CN115799638B (en) * 2022-12-16 2024-02-27 苏州祺添新材料股份有限公司 Electrolyte additive composition of lithium ion battery, electrolyte containing additive composition and application of electrolyte

Also Published As

Publication number Publication date
JP4093699B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
CN108428940B (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
JP4093699B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
US11177507B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
JP5004495B2 (en) Non-aqueous electrolyte and secondary battery using the electrolyte
JP5955629B2 (en) Non-aqueous electrolyte secondary battery
KR101881450B1 (en) Non-aqueous electrolyte secondary battery
JP5072379B2 (en) Non-aqueous electrolyte and secondary battery using the electrolyte
JP5222538B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
JP2004039510A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the electrolyte
JP6713452B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4931489B2 (en) Non-aqueous electrolyte and secondary battery using the electrolyte
JP2007012595A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
WO2016013480A1 (en) Nonaqueous electrolyte secondary battery, nonaqueous electrolyte solution and compound
JP2013145702A (en) Nonaqueous electrolyte secondary battery, and nonaqueous electrolyte for secondary battery
JP5084164B2 (en) Non-aqueous electrolyte and secondary battery using the electrolyte
JP5897869B2 (en) New fluorosilane compounds
CN114361588B (en) Lithium ion battery
JP2002373702A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
JP2001345120A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using this electrolyte
WO2013069529A1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery using said electrolyte solution
KR20180019912A (en) Nonaqueous electrolytic solution and lithium secondary battery
JP4854316B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
WO2023104038A1 (en) Secondary battery
JP2010027361A (en) Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using nonaqueous electrolyte
JP4827287B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070913

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees