JP5897869B2 - New fluorosilane compounds - Google Patents

New fluorosilane compounds Download PDF

Info

Publication number
JP5897869B2
JP5897869B2 JP2011240048A JP2011240048A JP5897869B2 JP 5897869 B2 JP5897869 B2 JP 5897869B2 JP 2011240048 A JP2011240048 A JP 2011240048A JP 2011240048 A JP2011240048 A JP 2011240048A JP 5897869 B2 JP5897869 B2 JP 5897869B2
Authority
JP
Japan
Prior art keywords
carbonate
positive electrode
methyl
lithium
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011240048A
Other languages
Japanese (ja)
Other versions
JP2013098028A (en
Inventor
滝 敬之
敬之 滝
裕知 渡辺
裕知 渡辺
厚輝 渋谷
厚輝 渋谷
晃子 田崎
晃子 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2011240048A priority Critical patent/JP5897869B2/en
Publication of JP2013098028A publication Critical patent/JP2013098028A/en
Application granted granted Critical
Publication of JP5897869B2 publication Critical patent/JP5897869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解液二次電池に関し、詳しくは、特定のフルオロシラン化合物を含有する非水電解液を有する非水電解液二次電池、及び該非水電解液の添加剤として好適な新規フルオロシラン化合物に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more specifically, a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte containing a specific fluorosilane compound, and a novel novel suitable as an additive for the non-aqueous electrolyte The present invention relates to a fluorosilane compound.

近年の携帯用パソコン、ハンディビデオカメラ、情報端末等の携帯電子機器の普及に伴い、高電圧、高エネルギー密度を有する非水電解液二次電池が電源として広く用いられるようになった。また、環境問題の観点から、電池自動車や電力を動力の一部に利用したハイブリッド車の実用化が行われている。   With the spread of portable electronic devices such as portable personal computers, handy video cameras, and information terminals in recent years, non-aqueous electrolyte secondary batteries having high voltage and high energy density have been widely used as power sources. Also, from the viewpoint of environmental problems, battery cars and hybrid cars using electric power as a part of power have been put into practical use.

非水電解液二次電池では、非水電解液二次電池の安定性や電気特性の向上のために、非水電解液用の種々の添加剤が提案されている。このような添加剤として、1,3−プロパンスルトン(例えば、特許文献1を参照)、ビニルエチレンカーボネート(例えば、特許文献2を参照)、ビニレンカーボネート(例えば、特許文献3を参照)、1,3−プロパンスルトン、ブタンスルトン(例えば、特許文献4を参照)、ビニレンカーボネート(例えば、特許文献5を参照)、ビニルエチレンカーボネート(例えば、特許文献6を参照)等が提案されており、中でも、ビニレンカーボネートは効果が大きいことから広く使用されている。これらの添加剤は、負極の表面にSEI(Solid Electrolyte Interface:固体電解質膜)と呼ばれる安定な被膜を形成し、この被膜が負極の表面を覆うことにより、非水電解液の還元分解を抑制するものと考えられている。   In non-aqueous electrolyte secondary batteries, various additives for non-aqueous electrolyte solutions have been proposed in order to improve the stability and electrical characteristics of non-aqueous electrolyte secondary batteries. Examples of such additives include 1,3-propane sultone (for example, see Patent Document 1), vinyl ethylene carbonate (for example, see Patent Document 2), vinylene carbonate (for example, see Patent Document 3), 1, 3-Propane sultone, butane sultone (for example, refer to Patent Document 4), vinylene carbonate (for example, refer to Patent Document 5), vinyl ethylene carbonate (for example, refer to Patent Document 6), and the like have been proposed. Carbonate is widely used because of its great effect. These additives form a stable film called SEI (Solid Electrolyte Interface) on the surface of the negative electrode, and this film covers the surface of the negative electrode, thereby suppressing reductive decomposition of the non-aqueous electrolyte. It is considered a thing.

近年では、コバルトやニッケル等の希少金属の価格の高騰と共に、マンガンや鉄等の低価格の金属材料を使用した正極剤の使用及び開発が急速に浸透してきている。このうちマンガンを含有する遷移金属酸化物リチウム含有塩は、リチウム二次電池の容量や出力の面で性能的に優れていることから注目されている正極剤の一つである。しかしながら、マンガンを含有する遷移金属酸化物リチウム含有塩を正極活物質として使用したリチウム二次電池では、正極よりマンガンが溶出しやすく、その溶出したマンガンによって副反応が起こり、電池の劣化が起り、容量や出力の低下が起こることがわかっている。
正極からのマンガンの溶出を抑制する方法として、非水電解液用の種々の添加剤が提案されている。このような添加剤として、ジスルホン酸エステル等が提案されている(例えば、特許文献7)が、さらなる改良が求められていた。
In recent years, as the prices of rare metals such as cobalt and nickel have soared, the use and development of cathode agents using low-cost metal materials such as manganese and iron have rapidly spread. Among these, the transition metal oxide lithium-containing salt containing manganese is one of the positive electrode agents attracting attention because of its excellent performance in terms of capacity and output of the lithium secondary battery. However, in a lithium secondary battery using a transition metal oxide lithium-containing salt containing manganese as a positive electrode active material, manganese is easily eluted from the positive electrode, side reactions occur due to the eluted manganese, and the battery deteriorates. It has been found that capacity and output decrease.
As a method for suppressing elution of manganese from the positive electrode, various additives for non-aqueous electrolyte solutions have been proposed. As such additives, disulfonic acid esters and the like have been proposed (for example, Patent Document 7), but further improvement has been demanded.

特開昭63−102173号公報JP 63-102173 A 特開平4−87156号公報JP-A-4-87156 特開平5−74486号公報Japanese Patent Laid-Open No. 5-74486 特開平10−50342号公報Japanese Patent Laid-Open No. 10-50342 特開平8−045545号公報JP-A-8-045545 特開2001−6729号公報JP 2001-6729 A 特開2004−281368号公報JP 2004-281368 A

従って、本発明の目的は、遷移金属とリチウムを含有する正極を使用した非水電解液二次電池において、正極から溶出した遷移金属による非水電解液二次電池の劣化を抑制し、高温保存や高温での充放電を経ても小さな内部抵抗と高い電気容量が維持出来るようにすることにある。   Accordingly, an object of the present invention is to suppress deterioration of a non-aqueous electrolyte secondary battery due to a transition metal eluted from the positive electrode in a non-aqueous electrolyte secondary battery using a positive electrode containing a transition metal and lithium, and store at high temperature. In other words, a small internal resistance and a high electric capacity can be maintained even after charging and discharging at high temperatures.

本発明者らは、鋭意検討を行なった結果、特定の構造のフルオロシラン化合物を含有する非水電解液を使用することで上記目的を達成できることを見出し、本発明を完成させた。   As a result of intensive studies, the present inventors have found that the above object can be achieved by using a nonaqueous electrolytic solution containing a fluorosilane compound having a specific structure, and completed the present invention.

即ち、本発明は、リチウムが脱挿入可能な負極、遷移金属とリチウムを含有する正極、及びリチウム塩を有機溶媒に溶解させた非水電解液を有する非水電解液二次電池において、
上記非水電解液中に、炭素原子数1〜6の炭化水素の水素原子3〜14個をアルキルジフルオロシリル基で置換したフルオロシラン化合物を含有することを特徴とする非水電解液二次電池を提供するものである。
That is, the present invention provides a non-aqueous electrolyte secondary battery having a negative electrode from which lithium can be inserted and removed, a positive electrode containing a transition metal and lithium, and a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent.
A non-aqueous electrolyte secondary battery comprising a fluorosilane compound in which 3 to 14 hydrogen atoms of a hydrocarbon having 1 to 6 carbon atoms are substituted with an alkyldifluorosilyl group in the non-aqueous electrolyte. Is to provide.

また、本発明は、下記一般式(1’)で表される新規フルオロシラン化合物を提供するものである。

Figure 0005897869
(式中、R1'は炭素原子数1〜8のアルキル基を表わし、n’は3又は4の数を表す。) The present invention also provides a novel fluorosilane compound represented by the following general formula (1 ′).
Figure 0005897869
(In the formula, R 1 ′ represents an alkyl group having 1 to 8 carbon atoms, and n ′ represents a number of 3 or 4.)

本発明によれば、遷移金属とリチウムを含有する正極を使用した非水電解液二次電池において、高温保存若しくは高温充放電を経ても小さな内部抵抗と高い電気容量の維持が実現できる。   According to the present invention, in a non-aqueous electrolyte secondary battery using a positive electrode containing a transition metal and lithium, a low internal resistance and a high electric capacity can be maintained even after high-temperature storage or high-temperature charge / discharge.

図1は、本発明の非水電解液二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention. 図2は、本発明の非水電解液二次電池の円筒型電池の基本構成を示す概略図である。FIG. 2 is a schematic diagram showing a basic configuration of a cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention. 図3は、本発明の非水電解液二次電池の円筒型電池の内部構造を断面として示す斜視図である。FIG. 3 is a perspective view showing the internal structure of the cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention as a cross section.

以下、本発明について好ましい実施形態に基づき詳細に説明する。
本発明は、リチウムが脱挿入可能な負極、遷移金属とリチウムを含有する正極及びリチウム塩を有機溶媒に溶解させた非水電解液を有する非水電解液二次電池において、該非水電解液中に、炭素原子数1〜6の炭化水素の水素原子3〜14個をアルキルジフルオロシリル基で置換したフルオロシラン化合物を含有する点に特徴を有する。初めに、本発明で使用されるリチウムが脱挿入可能な負極について説明する。
Hereinafter, the present invention will be described in detail based on preferred embodiments.
The present invention relates to a nonaqueous electrolyte secondary battery having a negative electrode from which lithium can be inserted and removed, a positive electrode containing a transition metal and lithium, and a nonaqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent. And a fluorosilane compound in which 3 to 14 hydrogen atoms of a hydrocarbon having 1 to 6 carbon atoms are substituted with an alkyldifluorosilyl group. First, the negative electrode from which lithium can be inserted and removed used in the present invention will be described.

本発明で使用されるリチウムが脱挿入可能な負極は、リチウムが脱挿入可能であれば特に限定されないが、好ましくは次の通りである。即ち、本発明では、負極として、負極活物質、結着剤等を有機溶媒又は水でスラリー化したものを集電体に塗布し、乾燥してシート状にしたものが使用される。負極活物質としては、黒鉛粒子が好ましく用いられる。この黒鉛粒子の原料は、天然黒鉛でも人造黒鉛でもよい。天然黒鉛は、天然黒鉛鉱石等の天然から採掘された鉱石であり、例えば、鱗片状黒鉛、鱗上黒鉛、土状黒鉛等が挙げられる。人造黒鉛は、上記天然黒鉛、石炭コークス、難黒鉛化炭素、アセチレンブラック、炭素繊維、石油コークス、炭化水素溶媒、ニードルコークス、フェノール樹脂、フラン樹脂等の炭素含有化合物を焼成処理して得られる黒鉛であり、通常これらを粉砕してから使用される。   The negative electrode from which lithium can be inserted and removed used in the present invention is not particularly limited as long as lithium can be inserted and removed, but is preferably as follows. That is, in the present invention, as the negative electrode, a negative electrode active material, a binder or the like slurryed with an organic solvent or water is applied to a current collector and dried to form a sheet. As the negative electrode active material, graphite particles are preferably used. The raw material for the graphite particles may be natural graphite or artificial graphite. Natural graphite is an ore mined from nature such as natural graphite ore, and examples thereof include flaky graphite, scale graphite, and earth graphite. Artificial graphite is graphite obtained by firing a carbon-containing compound such as natural graphite, coal coke, non-graphitizable carbon, acetylene black, carbon fiber, petroleum coke, hydrocarbon solvent, needle coke, phenol resin, furan resin. Usually, these are used after being crushed.

負極活物質に使用される黒鉛としては、表面を非結晶性炭素で被覆した被覆結晶性炭素材料も挙げられるが、本発明に使用される黒鉛としては、表面に結晶面が露わになっている非被覆結晶性炭素材料が好ましい。非被覆結晶性炭素材料と被覆結晶性炭素材料の判別方法としては、ラマン分光測定による方法が挙げられる。アルゴンレーザーによるラマン分光測定を用いて結晶性炭素材料の物性を測定した場合、波長1580cm-1付近の吸収ピークは黒鉛構造に起因するピークであり、波長1360cm-1付近の吸収ピークは黒鉛構造の乱れから生じるピークである。そして、これらのピーク比は、結晶性炭素材料の表面部分の結晶化(黒鉛化)の程度を表す指標となる。本発明において、表面に結晶面が露わになっている非被覆結晶性炭素材料とは、波長514.5ナノメートルのアルゴンレーザーラマン分光測定における1360cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の比[IG/ID]が0.10以下であるものをいう。尚、一般に負極に使用される被覆結晶性炭素材料のIG/IDは、おおよそ、0.13〜0.23である。 Examples of the graphite used for the negative electrode active material include a coated crystalline carbon material whose surface is coated with amorphous carbon. However, as the graphite used in the present invention, the crystal surface is exposed on the surface. An uncoated crystalline carbon material is preferred. As a method for discriminating between the uncoated crystalline carbon material and the coated crystalline carbon material, a method by Raman spectroscopic measurement may be mentioned. When measuring the physical properties of the crystalline carbon material using a Raman spectroscopic measurement by an argon laser, the absorption peak near a wavelength of 1580 cm -1 is a peak due to the graphite structure, the absorption peak wavelength of around 1360 cm -1 is the graphite structure It is a peak resulting from disturbance. These peak ratios serve as indices indicating the degree of crystallization (graphitization) of the surface portion of the crystalline carbon material. In the present invention, an uncoated crystalline carbon material having a crystal face exposed on the surface means a peak intensity (I D ) near 1360 cm −1 and 1580 cm in argon laser Raman spectroscopy measurement at a wavelength of 514.5 nanometers. The peak intensity (I G ) ratio [I G / I D ] near −1 is 0.10 or less. In general, I G / ID of the coated crystalline carbon material used for the negative electrode is approximately 0.13 to 0.23.

負極の結着剤(バインダー)としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム、ポリアクリル酸等が挙げられるが、これらに限定されない。負極の結着剤の使用量は、負極活物質100質量部に対し、0.001〜5質量部が好ましく、0.05〜3質量部が更に好ましく、0.01〜2質量部が最も好ましい。負極のスラリー化する溶媒としては、例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン等が挙げられるが、これらに限定されない。負極の溶媒の使用量は、負極活物質100質量部に対し、30〜300質量部が好ましく、50〜200質量部が更に好ましい。
また、負極の集電体には、通常、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用される。
Examples of the negative electrode binder (binder) include, but are not limited to, polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, fluororubber, and polyacrylic acid. The amount of the binder used for the negative electrode is preferably 0.001 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, and most preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the negative electrode active material. . Examples of the solvent for slurrying the negative electrode include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, polyethylene oxide, tetrahydrofuran and the like. However, it is not limited to these. The amount of the negative electrode solvent used is preferably from 30 to 300 parts by weight, more preferably from 50 to 200 parts by weight, based on 100 parts by weight of the negative electrode active material.
Moreover, copper, nickel, stainless steel, nickel-plated steel, etc. are normally used for the negative electrode current collector.

次に、本発明で使用される遷移金属とリチウムを含有する正極について説明する。本発明で使用される正極としては、通常の二次電池と同様に、正極活物質、結着剤、導電材等を有機溶媒又は水でスラリー化したものを集電体に塗布し、乾燥してシート状にしたものが使用される。本発明において、正極活物質は、遷移金属とリチウムを含有するものであり、1種の遷移金属とリチウムを含有する物質が好ましく、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物等が挙げられ、これらを混合して使用してもよい。上記リチウム遷移金属複合酸化物の遷移金属としてはバナジウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅等が好ましい。リチウム遷移金属複合酸化物の具体例としては、LiCoO2等のリチウムコバルト複合酸化物、LiNiO2等のリチウムニッケル複合酸化物、LiMnO2、LiMn24、Li2MnO3等のリチウムマンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム等の他の金属で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5Mn0.52、LiNi0.80Co0.17Al0.032、LiNi1/3Co1/3Mn1/32、LiMn1.8Al0.24、LiMn1.5Ni0.54等が挙げられる。上記リチウム含有遷移金属リン酸化合物の遷移金属としては、バナジウム、チタン、マンガン、鉄、コバルト、ニッケル等が好ましく、具体例としては、例えば、LiFePO4等のリン酸鉄類、LiCoPO4等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム、ニオブ等の他の金属で置換したもの等が挙げられる。
本発明の非水電解液二次電池の正極に使用される正極活物質としては、後で説明する炭素原子数1〜6の炭化水素の水素原子3〜14個をアルキルジフルオロシリル基で置換したフルオロシラン化合物の添加効果が出やすいことから、マンガンを含有するリチウム含有金属酸化物が好ましい。マンガンを含有するリチウム含有化合物の中では、正極活物質としての性能に優れることから、Li1.1Mn1.8Mg0.14、Li1.1Mn1.85Al0.054、LiNi1/3Co1/3Mn1/52、及びLiNi0.5Co0.2Mn0.32が好ましい。
Next, the positive electrode containing a transition metal and lithium used in the present invention will be described. As a positive electrode used in the present invention, a positive electrode active material, a binder, a conductive material, etc., which are slurried with an organic solvent or water, are applied to a current collector and dried, as in a normal secondary battery. A sheet is used. In the present invention, the positive electrode active material contains a transition metal and lithium, and a material containing one kind of transition metal and lithium is preferable. For example, a lithium transition metal composite oxide, a lithium-containing transition metal phosphate compound These may be used, and these may be used in combination. As the transition metal of the lithium transition metal composite oxide, vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper and the like are preferable. Specific examples of the lithium transition metal composite oxide include lithium cobalt composite oxide such as LiCoO 2 , lithium nickel composite oxide such as LiNiO 2 , and lithium manganese composite oxide such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 3. Some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium, etc. The thing substituted with the other metal etc. are mentioned. Specific examples of the substituted ones include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.80 Co 0.17 Al 0.03 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4 or the like. As the transition metal of the lithium-containing transition metal phosphate compound, vanadium, titanium, manganese, iron, cobalt, nickel and the like are preferable. Specific examples thereof include iron phosphates such as LiFePO 4 and phosphorus such as LiCoPO 4. Cobalt acids, some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium And those substituted with other metals such as niobium.
As the positive electrode active material used for the positive electrode of the non-aqueous electrolyte secondary battery of the present invention, 3 to 14 hydrogen atoms of a hydrocarbon having 1 to 6 carbon atoms, which will be described later, were substituted with an alkyldifluorosilyl group. A lithium-containing metal oxide containing manganese is preferable because the effect of adding a fluorosilane compound is likely to occur. Among lithium-containing compounds containing manganese, since it has excellent performance as a positive electrode active material, Li 1.1 Mn 1.8 Mg 0.1 O 4 , Li 1.1 Mn 1.85 Al 0.05 O 4 , LiNi 1/3 Co 1/3 Mn 1 / 5 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferred.

正極の結着剤及びスラリー化する溶媒は、上記負極で使用されるものと同様である。正極の結着剤の使用量は、正極活物質100質量部に対し、0.1〜12質量部が好ましく、0.5〜8質量部が更に好ましく、1.0〜6質量部が最も好ましい。正極の溶媒の使用量は、正極活物質100質量部に対し、30〜300質量部が好ましく、50〜200質量部が更に好ましい。
正極の導電材としては、グラファイトの微粒子、アセチレンブラック、ケッチェンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等、カーボンナノファイバー等が使用されるが、これらに限定されない。正極の導電材の使用量は、正極活物質100質量部に対し、0.01〜20質量部が好ましく、0.1〜10質量部が更に好ましい。
正極の集電体としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。
The binder for the positive electrode and the solvent for slurrying are the same as those used for the negative electrode. The amount of the binder used for the positive electrode is preferably 0.1 to 12 parts by mass, more preferably 0.5 to 8 parts by mass, and most preferably 1.0 to 6 parts by mass with respect to 100 parts by mass of the positive electrode active material. . 30-300 mass parts is preferable with respect to 100 mass parts of positive electrode active materials, and, as for the usage-amount of the solvent of a positive electrode, 50-200 mass parts is still more preferable.
Examples of the conductive material for the positive electrode include graphite fine particles, carbon black such as acetylene black and ketjen black, amorphous carbon fine particles such as needle coke, and the like, but are not limited thereto. 0.01-20 mass parts is preferable with respect to 100 mass parts of positive electrode active materials, and, as for the usage-amount of the electrically conductive material of a positive electrode, 0.1-10 mass parts is still more preferable.
As the positive electrode current collector, aluminum, stainless steel, nickel-plated steel or the like is usually used.

次に、本発明で使用されるリチウム塩を有機溶媒に溶解させた非水電解液(以下、本発明の非水電解液ともいう)について説明する。本発明の非水電解液は、炭素原子数1〜6の炭化水素の水素原子3〜14個をアルキルジフルオロシリル基で置換したフルオロシラン化合物を含有する。以下、このフルオロシラン化合物について説明する。
炭素原子数1〜6の炭化水素としては、炭素原子数1〜6の炭素原子と水素原子のみからなる脂肪族炭化水素又は芳香族炭化水素が挙げられる。該炭化水素を置換するアルキルジフルオロシリル基の数は、3〜14であり、好ましくは3〜10であり、更に好ましくは3〜6である。また、アルキルジフルオロシリル基としては、ジフルオロメチルシリル基、ジフルオロエチルシリル基、ジフルオロプロピルシリル基、ジフルオロブチルシリル基、ジフルオロペンチルシリル基、ジフルオロヘキシルシリル基、ジフルオロヘプチルシリル基、ジフルオロオクチルシリル基等が挙げられる。3〜14個のアルキルジフルオロシリル基は、互いに同一であっても異なっていてもよいが、製造が容易である点から同一であることが好ましい。
Next, a nonaqueous electrolytic solution in which the lithium salt used in the present invention is dissolved in an organic solvent (hereinafter also referred to as the nonaqueous electrolytic solution of the present invention) will be described. The nonaqueous electrolytic solution of the present invention contains a fluorosilane compound in which 3 to 14 hydrogen atoms of a hydrocarbon having 1 to 6 carbon atoms are substituted with an alkyldifluorosilyl group. Hereinafter, this fluorosilane compound will be described.
Examples of the hydrocarbon having 1 to 6 carbon atoms include aliphatic hydrocarbons or aromatic hydrocarbons composed of only carbon atoms having 1 to 6 carbon atoms and hydrogen atoms. The number of alkyldifluorosilyl groups substituting the hydrocarbon is 3 to 14, preferably 3 to 10, and more preferably 3 to 6. In addition, as the alkyldifluorosilyl group, difluoro ( methyl ) silyl group, difluoro ( ethyl ) silyl group, difluoro ( propyl ) silyl group, difluoro ( butyl ) silyl group, difluoro ( pentyl ) silyl group, difluoro ( hexyl ) silyl group , Difluoro ( heptyl ) silyl group, difluoro ( octyl ) silyl group and the like. 3 to 14 alkyldifluorosilyl groups may be the same or different from each other, but are preferably the same from the viewpoint of easy production.

上記のアルキルジフルオロシリル基を3つ以上有するフルオロシラン化合物の具体例としては、1,1,2,2−テトラキスジフルオロメチルシリルエタン、1,1,1,2−テトラキスジフルオロメチルシリルエタン、1,3,6−トリスジフルオロメチルシリルヘキサン、1,3,5−トリスジフルオロメチルシリルベンゼン、1,2,3−トリスジフルオロメチルシリルベンゼン、1,2,4−トリスジフルオロメチルシリルベンゼン、1,2,4,5−テトラキスジフルオロメチルシリルベンゼン、1,2,3,4−テトラキスジフルオロメチルシリルベンゼン又は下記一般式(1)で表されるフルオロシラン化合物等が挙げられる。 Specific examples of the fluorosilane compound having three or more alkyldifluorosilyl groups include 1,1,2,2-tetrakis [ difluoro ( methyl ) silyl ] ethane, 1,1,1,2-tetrakis [ difluoro ( Methyl ) silyl ] ethane, 1,3,6-tris [ difluoro ( methyl ) silyl ] hexane, 1,3,5-tris [ difluoro ( methyl ) silyl ] benzene, 1,2,3-tris [ difluoro ( methyl ) Silyl ] benzene, 1,2,4-tris [ difluoro ( methyl ) silyl ] benzene, 1,2,4,5-tetrakis [ difluoro ( methyl ) silyl ] benzene, 1,2,3,4-tetrakis [ difluoro ( Methyl ) silyl ] benzene or a fluorosilane compound represented by the following general formula (1).

上記のアルキルジフルオロシリル基を3つ以上有するフルオロシラン化合物の中でも、下記一般式(1)で表されるフルオロシラン化合物は、原料の入手が容易であるため好ましい。   Among the fluorosilane compounds having three or more alkyldifluorosilyl groups, the fluorosilane compound represented by the following general formula (1) is preferable because the raw materials are easily available.

Figure 0005897869
(式中、R1は炭素原子数1〜8のアルキル基を表わし、nは3又は4の数を表す。)
Figure 0005897869
(In the formula, R 1 represents an alkyl group having 1 to 8 carbon atoms, and n represents a number of 3 or 4.)

上記一般式(1)において、R1が表す炭素原子数1〜8のアルキル基としては、メチル、エチル、プロピル、2−プロピニル、ブチル、イソブチル、s−ブチル、t−ブチル、ペンチル、イソペンチル、シクロペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル等が挙げられる。中でも、リチウムイオンの移動への悪影響が少なく充電特性が良好であることから、メチル及びエチルが好ましく、メチルが最も好ましい。 In the general formula (1), R 1 represents an alkyl group having 1 to 8 carbon atoms, such as methyl, ethyl, propyl, 2-propynyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, isopentyl, Examples include cyclopentyl, hexyl, cyclohexyl, heptyl, octyl and the like. Of these, methyl and ethyl are preferable, and methyl is most preferable because it has little adverse effect on the movement of lithium ions and good charge characteristics.

上記一般式(1)で表されるフルオロシラン化合物の具体例としては、例えば、トリスジフルオロメチルシリルメタン、トリスジフルオロエチルシリルメタン、トリスジフルオロプロピルシリルメタン、トリスジフルオロブチルシリルメタン、トリスジフルオロペンチルシリルメタン、トリスジフルオロヘキシルシリルメタン、トリスジフルオロヘプチルシリルメタン、トリスジフルオロオクチルシリルメタン、テトラキスジフルオロメチルシリルメタン、テトラキスジフルオロエチルシリルメタン、テトラキスジフルオロプロピルシリルメタン、テトラキスジフルオロブチルシリルメタン、テトラキスジフルオロペンチルシリルメタン、テトラキスジフルオロヘキシルシリルメタン、テトラキスジフルオロヘプチルシリルメタン、テトラキスジフルオロオクチルシリルメタン等が挙げられる。 Specific examples of the fluorosilane compound represented by the general formula (1) include, for example, tris [ difluoro ( methyl ) silyl ] methane, tris [ difluoro ( ethyl ) silyl ] methane, and tris [ difluoro ( propyl ) silyl ] methane. , Tris [ difluoro ( butyl ) silyl ] methane, tris [ difluoro ( pentyl ) silyl ] methane, tris [ difluoro ( hexyl ) silyl ] methane, tris [ difluoro ( heptyl ) silyl ] methane, tris [ difluoro ( octyl ) silyl ] methane , tetrakis [difluoro (methyl) silyl] methane, tetrakis [difluoro (ethyl) silyl] methane, tetrakis [difluoro (propyl) silyl] methane, tetrakis [difluoro (butyl) silyl] methane, tetrakis [difluoro (pentyl) Siri ] Methane, tetrakis [difluoro (hexyl) silyl] methane, tetrakis [difluoro (heptyl) silyl] methane, tetrakis [difluoro (octyl) silyl] methane, and the like.

本発明の非水電解液において、上述の炭素原子数1〜6の炭化水素の水素原子3〜14個をアルキルジフルオロシリル基で置換したフルオロシラン化合物は、1種のみを使用してもよいし、2種以上を組み合わせて用いてもよい。
本発明の非水電解液において、炭素原子数1〜6の炭化水素の水素原子3〜14個をアルキルジフルオロシリル基で置換したフルオロシラン化合物の含有量が、あまりに少ない場合には十分な効果を発揮できず、またあまりに多い場合は、配合量に見合う増量効果は得られないばかりか、却って非水電解液の特性に悪影響を及ぼすことがあることから、上記フルオロシラン化合物の含有量は、非水電解液中、0.001〜5質量%が好ましく、0.01〜3質量%が更に好ましく、0.03〜1.5質量%が最も好ましい。
In the nonaqueous electrolytic solution of the present invention, only one kind of fluorosilane compound in which 3 to 14 hydrogen atoms of the hydrocarbon having 1 to 6 carbon atoms are substituted with an alkyldifluorosilyl group may be used. Two or more kinds may be used in combination.
In the non-aqueous electrolyte of the present invention, when the content of the fluorosilane compound in which 3 to 14 hydrogen atoms of a hydrocarbon having 1 to 6 carbon atoms is substituted with an alkyldifluorosilyl group is too small, a sufficient effect is obtained. If the amount of the fluorosilane compound is too large, not only the increase effect corresponding to the blending amount is not obtained, but the properties of the nonaqueous electrolyte may be adversely affected. In the water electrolyte, 0.001 to 5 mass% is preferable, 0.01 to 3 mass% is more preferable, and 0.03 to 1.5 mass% is most preferable.

本発明の非水電解液は、さらに、不飽和基を有する環状カーボネート化合物、鎖状カーボネート化合物、不飽和ジエステル化合物、環状硫酸エステル、環状亜硫酸エステル、スルトン、又はハロゲン化環状カーボネート化合物等の添加剤を含有することが好ましい。   The nonaqueous electrolytic solution of the present invention further includes an additive such as a cyclic carbonate compound having an unsaturated group, a chain carbonate compound, an unsaturated diester compound, a cyclic sulfate, a cyclic sulfite, a sultone, or a halogenated cyclic carbonate compound. It is preferable to contain.

上記不飽和基を有する環状カーボネート化合物としては、ビニレンカーボネート、ビニルエチレンカーボネート、プロピリデンカーボネート、エチレンエチリデンカーボネート、エチレンイソプロピリデンカーボンート等が挙げられ、ビニレンカーボネート及びビニルエチレンカーボネートが好ましく、上記鎖状カーボネート化合物としては、ジプロパルギルカーボネート、プロパルギルメチルカーボネート、エチルプロパルギルカーボネート、ビス(1−メチルプロパルギル)カーボネート、ビス(1−ジメチルプロパルギル)カーボネート等が挙げられる。上記不飽和ジエステル化合物としては、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジブチル、マレイン酸ジペンチル、マレイン酸ジヘキシル、マレイン酸ジヘプチル、マレイン酸ジオクチル、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジプロピル、フマル酸ジブチル、フマル酸ジペンチル、フマル酸ジヘキシル、フマル酸ジヘプチル、フマル酸ジオクチル、アセチレンジカルボン酸ジメチル、アセチレンジカルボン酸ジエチル、アセチレンジカルボン酸ジプロピル、アセチレンジカルボン酸ジブチル、アセチレンジカルボン酸ジペンチル、アセチレンジカルボン酸ジヘキシル、アセチレンジカルボン酸ジヘプチル、アセチレンジカルボン酸ジオクチル等が挙げられ、上記環状硫酸エステルとしては、1,3,2-ジオキサチオラン−2,2−ジオキサイド、1,3−プロパンジオールシクリックスルフェート、プロパン−1,2−シクリックスルフェート等が挙げられ、上記環状亜硫酸エステルとしては、亜硫酸エチレン、亜硫酸プロピレン等が挙げられ、上記スルトンとしては、プロパンスルトン、ブタンスルトン、1,5,2,4−ジオキサジチオラン−2,2,4,4−テトラオキサイド等が挙げられる。上記ハロゲン化環状カーボネート化合物としては、クロロエチレンカーボネート、ジクロロエチレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート等が挙げられる。これら添加剤の中でも、ビニレンカーボネート、ビニルエチレンカーボネート、ジプロパルギルカーボネート、アセチレンジカルボン酸ジメチル、アセチレンジカルボン酸ジエチル、プロパンスルトン、ブタンスルトン、クロロエチレンカーボネート、ジクロロエチレンカーボネート、及びフルオロエチレンカーボネートが好ましく、ビニレンカーボネート、ジプロパルギルカーボネート、アセチレンジカルボン酸ジメチル、プロパンスルトン、及びフルオロエチレンカーボネートがさらに好ましく、ビニレンカーボネート、ジプロパルギルカーボネート、プロパンスルトン、及びフルオロエチレンカーボネートが最も好ましい。   Examples of the cyclic carbonate compound having an unsaturated group include vinylene carbonate, vinyl ethylene carbonate, propylidene carbonate, ethylene ethylidene carbonate, ethylene isopropylidene carbonate, vinylene carbonate and vinyl ethylene carbonate are preferred, and the above chain carbonate Examples of the compound include dipropargyl carbonate, propargyl methyl carbonate, ethyl propargyl carbonate, bis (1-methylpropargyl) carbonate, bis (1-dimethylpropargyl) carbonate, and the like. Examples of the unsaturated diester compounds include dimethyl maleate, diethyl maleate, dipropyl maleate, dibutyl maleate, dipentyl maleate, dihexyl maleate, diheptyl maleate, dioctyl maleate, dimethyl fumarate, diethyl fumarate, and fumaric acid. Dipropyl, dibutyl fumarate, dipentyl fumarate, dihexyl fumarate, diheptyl fumarate, dioctyl fumarate, dimethyl acetylenedicarboxylate, diethyl acetylenedicarboxylate, dipropyl acetylenedicarboxylate, dibutyl acetylenedicarboxylate, dipentyl acetylenedicarboxylate, acetylenedicarboxylic acid Examples include dihexyl, diheptyl acetylenedicarboxylate, dioctyl acetylenedicarboxylate, and the above cyclic sulfates. 1,3,2-dioxathiolane-2,2-dioxide, 1,3-propanediol cyclic sulfate, propane-1,2-cyclic sulfate and the like. Examples of the cyclic sulfite ester include ethylene sulfite. And propylene sulfite. Examples of the sultone include propane sultone, butane sultone, 1,5,2,4-dioxadithiolane-2,2,4,4-tetraoxide, and the like. Examples of the halogenated cyclic carbonate compound include chloroethylene carbonate, dichloroethylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, and the like. Among these additives, vinylene carbonate, vinyl ethylene carbonate, dipropargyl carbonate, dimethyl acetylenedicarboxylate, diethyl acetylenedicarboxylate, propane sultone, butane sultone, chloroethylene carbonate, dichloroethylene carbonate, and fluoroethylene carbonate are preferable, vinylene carbonate, diethylene carbonate, Propargyl carbonate, dimethyl acetylenedicarboxylate, propane sultone, and fluoroethylene carbonate are more preferable, and vinylene carbonate, dipropargyl carbonate, propane sultone, and fluoroethylene carbonate are most preferable.

これらの添加剤は1種のみを使用してもよいし、2種以上を組合せて使用してもよい。本発明の非水電解液において、これらの添加剤の含有量が、あまりに少ない場合には十分な効果を発揮できず、またあまりに多い場合には、配合量に見合う増量効果は得られないばかりか、却って非水電解液の特性に悪影響を及ぼすことがあることから、これらの添加剤の含有量は、合計で非水電解液中、0.005〜10質量%が好ましく、0.02〜5質量%が更に好ましく、0.05〜3質量%が最も好ましい。   These additives may be used alone or in combination of two or more. In the non-aqueous electrolyte of the present invention, when the content of these additives is too small, a sufficient effect cannot be exhibited, and when the content is too large, an increase effect corresponding to the blending amount cannot be obtained. However, since the properties of the non-aqueous electrolyte may be adversely affected, the total content of these additives is preferably 0.005 to 10% by mass in the non-aqueous electrolyte, and 0.02 to 5%. % By mass is more preferable, and 0.05 to 3% by mass is most preferable.

本発明の非水電解液で使用される有機溶媒としては、非水電解液に通常用いられているものを1種又は2種以上組み合わせて用いることができる。具体的には、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物、アマイド化合物、飽和鎖状カーボネート化合物、飽和鎖状エーテル化合物、環状エーテル化合物、飽和鎖状エステル化合物等が挙げられる。   As an organic solvent used with the non-aqueous electrolyte of this invention, what is normally used for the non-aqueous electrolyte can be used 1 type or in combination of 2 or more types. Specific examples include saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, saturated chain carbonate compounds, saturated chain ether compounds, cyclic ether compounds, and saturated chain ester compounds.

上記有機溶媒のうち、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物及びアマイド化合物は、比誘電率が高いため、電解液の誘電率を上げる役割を果たし、中でも、飽和環状カーボネート化合物が好ましい。斯かる飽和環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2−プロピレンカーボネート、1,3−プロピレンカーボネート、1,2−ブチレンカーボネート、1,3−ブチレンカーボネート、1,1,−ジメチルエチレンカーボネート等が挙げられる。上記飽和環状エステル化合物としては、γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、δ−ヘキサノラクトン、δ−オクタノラクトン等が挙げられる。上記スルホキシド化合物としては、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジフェニルスルホキシド、チオフェン等が挙げられる。上記スルホン化合物としては、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホン、スルホラン(テトラメチレンスルホンともいう)、3−メチルスルホラン、3,4−ジメチルスルホラン、3,4−ジフェニメチルスルホラン、スルホレン、3−メチルスルホレン、3−エチルスルホレン、3−ブロモメチルスルホレン等が挙げられ、スルホラン及びテトラメチルスルホランが好ましい。上記アマイド化合物としては、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
上記有機溶媒のうち、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物及び飽和鎖状エステル化合物は、非水電解液の粘度を低くすることができ、電解質イオンの移動性を高くすることができる等、出力密度等の電池特性を優れたものにすることができる。また、低粘度であるため、低温での電池用非水電解液の性能を高くすることができ、中でも、飽和鎖状カーボネート化合物が好ましい。斯かる飽和鎖状カーボネート化合物としては、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、エチルブチルカーボネート、メチル−t−ブチルカーボネート、ジイソプロピルカーボネート、t−ブチルプロピルカーボネート等が挙げられる。上記の鎖状エーテル又は環状エーテル化合物としては、例えば、ジメトキシエタン(DME)、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2−ビス(メトキシカルボニルオキシ)エタン、1,2−ビス(エトキシカルボニルオキシ)エタン、1,2−ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、プロピレングリコールビス(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でも、ジオキソランが好ましい。
上記飽和鎖状エステル化合物としては、分子中の炭素原子数の合計が2〜8であるモノエステル化合物及びジエステル化合物が好ましく、具体的な化合物としては、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、マロン酸メチル、マロン酸エチル、コハク酸メチル、コハク酸エチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、エチレングリコールジアセチル、プロピレングリコールジアセチル等が挙げられ、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、及びプロピオン酸エチルが好ましい。
Among the above organic solvents, saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds and amide compounds have a high relative dielectric constant, and thus serve to increase the dielectric constant of the electrolyte. Is preferred. Examples of such saturated cyclic carbonate compounds include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1, -dimethylethylene carbonate. Etc. Examples of the saturated cyclic ester compound include γ-butyrolactone, γ-valerolactone, γ-caprolactone, δ-hexanolactone, and δ-octanolactone. Examples of the sulfoxide compound include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene, and the like. Examples of the sulfone compounds include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methyl sulfolane, 3,4-dimethyl sulfolane, 3,4-diphenimethyl sulfolane, sulfolene. , 3-methylsulfolene, 3-ethylsulfolene, 3-bromomethylsulfolene and the like, and sulfolane and tetramethylsulfolane are preferable. Examples of the amide compound include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
Among the above organic solvents, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds and saturated chain ester compounds can lower the viscosity of the non-aqueous electrolyte and increase the mobility of electrolyte ions. Battery characteristics such as output density can be made excellent. Moreover, since it is low-viscosity, the performance of the nonaqueous electrolyte solution for batteries at low temperatures can be enhanced, and among these, saturated chain carbonate compounds are preferred. Examples of such saturated chain carbonate compounds include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, and t-butyl propyl carbonate. Etc. Examples of the chain ether or cyclic ether compound include dimethoxyethane (DME), ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, 1,2- Bis (ethoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, Examples include diethylene glycol bis (trifluoroethyl) ether, and among these, dioxolane is preferable.
As the saturated chain ester compound, monoester compounds and diester compounds having a total of 2 to 8 carbon atoms in the molecule are preferable, and specific compounds include methyl formate, ethyl formate, methyl acetate, and ethyl acetate. , Propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, ethyl trimethyl acetate, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate, 3 -Methyl methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetyl, propylene glycol diacetyl and the like, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, as well as Propionic acid ethyl are preferred.

その他、有機溶媒としてアセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体を用いることもできる。   In addition, acetonitrile, propionitrile, nitromethane, and derivatives thereof can also be used as the organic solvent.

本発明の非水電解液に使用されるリチウム塩としては、従来公知のリチウム塩が用いられ、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiCF3CO2、LiN(CF3SO22、LiC(CF3SO23、LiB(CF3SO34、LiB(C242、LiBF2(C24)、LiSbF6、LiSiF5、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlF4、LiAlCl4、及びこれらの誘導体等が挙げられ、これらの中でも、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、及びLiC(CF3SO23並びにLiCF3SO3の誘導体、及びLiC(CF3SO23の誘導体からなる群から選ばれる1種以上を用いるのが、電気特性に優れるので好ましい。 As the lithium salt used in the non-aqueous electrolyte of the present invention, a conventionally known lithium salt is used. For example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, LiB (CF 3 SO 3) 4, LiB (C 2 O 4) 2, LiBF 2 (C 2 O 4), LiSbF 6, LiSiF 5, LiAlF 4, Examples include LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, LiAlF 4 , LiAlCl 4 , and derivatives thereof. Among these, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , and derivatives of LiC (CF 3 SO 2) 3 and LiCF 3 SO 3, and LiC the (CF 3 SO 2) 1 or more selected from the group consisting of 3 derivatives Are the are preferred because of excellent electrical characteristics.

上記リチウム塩は、本発明の非水電解液中の濃度が、0.1〜3.0mol/L、特に0.5〜2.0mol/Lとなるように、上記有機溶媒に溶解することが好ましい。該リチウム塩の濃度が0.1mol/Lより小さいと、充分な電流密度を得られないことがあり、3.0mol/Lより大きいと、非水電解液の安定性を損なう恐れがある。   The lithium salt can be dissolved in the organic solvent so that the concentration in the non-aqueous electrolyte of the present invention is 0.1 to 3.0 mol / L, particularly 0.5 to 2.0 mol / L. preferable. If the concentration of the lithium salt is less than 0.1 mol / L, a sufficient current density may not be obtained, and if it is more than 3.0 mol / L, the stability of the nonaqueous electrolyte may be impaired.

また、本発明の非水電解液には、難燃性を付与するために、ハロゲン系、リン系、その他の難燃剤を適宜添加することができる。難燃剤の添加量が、あまりに少ない場合には十分な難燃化効果を発揮できず、またあまりに多い場合は、配合量に見合う増量効果は得られないばかりか、却って電池用非水電解液の特性に悪影響を及ぼすことがあることから、本発明の非水電解液を構成する有機溶媒に対して、5〜100質量%であることが好ましく、10〜50質量%であることが更に好ましい。   In addition, halogen-based, phosphorus-based, and other flame retardants can be appropriately added to the nonaqueous electrolytic solution of the present invention in order to impart flame retardancy. If the amount of flame retardant added is too small, sufficient flame retarding effect cannot be achieved, and if it is too large, an increase effect corresponding to the blending amount cannot be obtained. Since the properties may be adversely affected, the content is preferably 5 to 100% by mass, and more preferably 10 to 50% by mass with respect to the organic solvent constituting the nonaqueous electrolytic solution of the present invention.

本発明の非水電解液二次電池では、正極と負極との間にセパレータを用いることが好ましく、該セパレータとしては、通常用いられる高分子の微多孔フィルムを特に限定なく使用できる。該フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられる。これらのフィルムは、単独で用いてもよいし、これらのフィルムを重ね合わせて複層フィルムとして用いてもよい。さらに、これらのフィルムには、種々の添加剤を用いてもよく、その種類や含有量は特に制限されない。これらのフィルムの中でも、本発明の非水電解液二次電池には、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなるフィルムが好ましく用いられる。   In the non-aqueous electrolyte secondary battery of the present invention, it is preferable to use a separator between the positive electrode and the negative electrode. As the separator, a commonly used polymer microporous film can be used without any particular limitation. Examples of the film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene oxide. Films composed of ethers, various celluloses such as carboxymethylcellulose and hydroxypropylcellulose, polymer compounds mainly composed of poly (meth) acrylic acid and various esters thereof, derivatives thereof, copolymers and mixtures thereof. Etc. These films may be used alone, or may be used as a multilayer film by superimposing these films. Furthermore, various additives may be used for these films, and the type and content thereof are not particularly limited. Among these films, a film made of polyethylene, polypropylene, polyvinylidene fluoride, or polysulfone is preferably used for the nonaqueous electrolyte secondary battery of the present invention.

これらのフィルムは、電解液がしみ込んでイオンが透過し易いように、微多孔化がなされている。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」と、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、さらに延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられるフィルムによって適宜選択される。   These films are microporous so that the electrolyte can penetrate and ions can easily pass therethrough. The microporosity method includes a phase separation method in which a polymer compound and a solvent solution are formed into a film while microphase separation is performed, and the solvent is extracted and removed to make it porous. The film is extruded and then heat-treated, the crystals are aligned in one direction, and a gap is formed between the crystals by stretching to make it porous, and so on.

本発明の非水電解液二次電池において、電極材料、非水電解液及びセパレータには、より安全性を向上する目的で、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、ヒンダードアミン化合物等を添加してもよい。   In the non-aqueous electrolyte secondary battery of the present invention, the electrode material, the non-aqueous electrolyte, and the separator include a phenol-based antioxidant, a phosphorus-based antioxidant, and a thioether-based antioxidant for the purpose of improving safety. A hindered amine compound or the like may be added.

上記構成からなる本発明の非水電解液二次電池は、その形状には特に制限を受けず、コイン型、円筒型、角型等、種々の形状とすることができる。図1は、本発明の非水電解液二次電池のコイン型電池の一例を、図2及び図3は円筒型電池の一例をそれぞれ示したものである。   The shape of the non-aqueous electrolyte secondary battery of the present invention having the above configuration is not particularly limited, and can be various shapes such as a coin shape, a cylindrical shape, and a square shape. FIG. 1 shows an example of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention, and FIGS. 2 and 3 show examples of a cylindrical battery, respectively.

図1に示すコイン型の非水電解液二次電池10において、1はリチウムイオンを放出できる正極、1aは正極集電体、2は正極から放出されたリチウムイオンを吸蔵、放出できる炭素質材料よりなる負極、2aは負極集電体、3は本発明の非水電解液、4はステンレス製の正極ケース、5はステンレス製の負極ケース、6はポリプロピレン製のガスケット、7はポリエチレン製のセパレータである。   In the coin-type non-aqueous electrolyte secondary battery 10 shown in FIG. 1, 1 is a positive electrode capable of releasing lithium ions, 1a is a positive electrode current collector, and 2 is a carbonaceous material capable of inserting and extracting lithium ions released from the positive electrode. The negative electrode current collector, 2a is a negative electrode current collector, 3 is a non-aqueous electrolyte of the present invention, 4 is a stainless steel positive electrode case, 5 is a stainless steel negative electrode case, 6 is a polypropylene gasket, and 7 is a polyethylene separator. It is.

また、図2及び図3に示す円筒型の非水電解液二次電池10'において、11は負極、12は負極集電体、13は正極、14は正極集電体、15は本発明の非水電解液、16はセパレータ、17は正極端子、18は負極端子、19は負極板、20は負極リード、21は正極板、22は正極リード、23はケース、24は絶縁板、25はガスケット、26は安全弁、27はPTC素子である。   Further, in the cylindrical nonaqueous electrolyte secondary battery 10 ′ shown in FIGS. 2 and 3, 11 is a negative electrode, 12 is a negative electrode current collector, 13 is a positive electrode, 14 is a positive electrode current collector, and 15 is the present invention. Nonaqueous electrolyte, 16 is a separator, 17 is a positive electrode terminal, 18 is a negative electrode terminal, 19 is a negative electrode plate, 20 is a negative electrode lead, 21 is a positive electrode plate, 22 is a positive electrode lead, 23 is a case, 24 is an insulating plate, 25 is A gasket, 26 is a safety valve, and 27 is a PTC element.

次に、本発明の新規化合物について説明する。尚、特に説明しない点については、上記一般式(1)で表わされるフルオロシラン化合物における説明が適宜適用される。
本発明の新規化合物は、上記一般式(1’)で表わされる。
上記一般式(1’)中のR1'が表す基としては、上記一般式(1)中のR1と同様の基が挙げられる。
Next, the novel compound of the present invention will be described. In addition, about the point which is not demonstrated especially, the description in the fluorosilane compound represented by the said General formula (1) is applied suitably.
The novel compound of the present invention is represented by the above general formula (1 ′).
Examples of the group represented by 'R 1 in the general formula (1)' include the same groups as R 1 in the general formula (1).

本発明の新規化合物の製造方法は特に限定されるものではないが、例えば、Journal of American Chemical Society, 85, 2243 (1963)に記載されているハロゲン化炭化水素とクロロシランのマグネシウムによるカップリング反応によって製造したクロロシラン化合物をフッ素化することにより、製造することができる。   The production method of the novel compound of the present invention is not particularly limited. For example, the coupling reaction of halogenated hydrocarbon and chlorosilane with magnesium described in Journal of American Chemical Society, 85, 2243 (1963). It can be produced by fluorinating the produced chlorosilane compound.

本発明の新規化合物は、上述したように、非水電解液二次電池に用いられる非水電解液の添加剤として使用される他、有機・無機化合物の保護基原料、CVD(化学気相成長法)の原料ガス等にも使用される。   As described above, the novel compound of the present invention is used as an additive for non-aqueous electrolytes used in non-aqueous electrolyte secondary batteries, as well as protective group raw materials for organic and inorganic compounds, CVD (chemical vapor deposition). It is also used as a raw material gas.

以下に、実施例及び比較例により本発明をさらに詳細に説明する。ただし、以下の実施例等により本発明はなんら制限されるものではない。尚、実施例中の「部」や「%」は、特にことわらないかぎり質量によるものである。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following examples. In the examples, “parts” and “%” are based on mass unless otherwise specified.

下記製造例1及び2は、本発明の上記一般式(1’)で表されるフルオロシラン化合物の合成例であり、下記製造例3は、負極で増粘剤として使用するVEMALiの合成例であり、下記実施例1〜10及び比較例1〜8は、本発明の非水電解液二次電池の実施例並びにその比較例である。   The following Production Examples 1 and 2 are synthesis examples of the fluorosilane compound represented by the general formula (1 ′) of the present invention, and the following Production Example 3 is a synthesis example of VEMALi used as a thickener in the negative electrode. The following Examples 1 to 10 and Comparative Examples 1 to 8 are examples of the nonaqueous electrolyte secondary battery of the present invention and comparative examples thereof.

〔製造例1〕トリスジフルオロメチルシリルメタン(化合物A1)の合成
還流器を付けた200mlの3口フラスコに、マグネシウム9.0gを仕込み、窒素を流しながら攪拌して、マグネシウムを活性化した。メチルジクロロシラン50.0g及びテトラヒドロフラン100mlを加えてから、水冷下でブロロホルム25gを30分かけて滴下した。滴下終了後、発熱が落ち着いてから50℃のオイルバスで3時間加熱を続けた。室温に戻してヘキサン50mlを加えてから発生したマグネシウム塩を濾過で除去し、濾液を蒸留することでトリスクロロメチルシリルメタン16.5gを得た。
トリスクロロメチルシリルメタン12.0gとシクロペンタン18.0gを100mlのPFA製三角フラスコに仕込み、氷冷下で23%フッ化水素水27.1gを20分かけて滴下した。氷冷下でさらに10時間攪拌を続けた後、発生した結晶を濾別した。得られた結晶を熱したヘキサンに溶解させ、ヘキサン溶液をデカンテーションすることで、結晶に付着していた水分を除去した。ヘキサン溶液を冷却することで、結晶を析出させ、発生した結晶を濾別・乾燥することで、目的物であるトリスジフルオロメチルシリルメタン(化合物A1)の針状結晶5.2gを得た。以下、化合物A1のスペクトルデータ(1H−NMR及びGC−MS)を示す。
1H−NMR:0.48−0.58ppm(多重度:m、プロトン数:10H、測定溶媒:CDCl3
GC−MS(m/z):256、241、137、91、47
[Production Example 1] Synthesis of tris [ difluoro ( methyl ) silyl ] methane (Compound A1) Into a 200 ml three-necked flask equipped with a reflux condenser, 9.0 g of magnesium was charged and stirred while flowing nitrogen to activate the magnesium. Turned into. After adding 50.0 g of methyldichlorosilane and 100 ml of tetrahydrofuran, 25 g of bromoform was added dropwise over 30 minutes under water cooling. After completion of the dropping, heating was continued for 3 hours in an oil bath at 50 ° C. after the exotherm subsided. After returning to room temperature and adding 50 ml of hexane, the generated magnesium salt was removed by filtration, and the filtrate was distilled to obtain 16.5 g of tris [ chloro ( methyl ) silyl ] methane.
12.0 g of tris [ chloro ( methyl ) silyl ] methane and 18.0 g of cyclopentane were charged into a 100 ml PFA Erlenmeyer flask, and 27.1 g of 23% aqueous hydrogen fluoride was added dropwise over 20 minutes under ice cooling. Stirring was further continued for 10 hours under ice cooling, and the generated crystals were separated by filtration. The obtained crystal was dissolved in heated hexane, and the hexane solution was decanted to remove water adhering to the crystal. Crystals are precipitated by cooling the hexane solution, and the generated crystals are separated by filtration and dried to obtain 5.2 g of needle-like crystals of tris [ difluoro ( methyl ) silyl ] methane (compound A1) as the target product. Obtained. Hereinafter, the spectrum data ( 1 H-NMR and GC-MS) of Compound A1 are shown.
1 H-NMR: 0.48-0.58 ppm (Multiplicity: m, number of protons: 10H, measurement solvent: CDCl 3 )
GC-MS (m / z): 256, 241, 137, 91, 47

〔製造例2〕テトラキスジフルオロメチルシリルメタン(化合物A2)の合成
還流器を付けた200mlの3口フラスコに、マグネシウム8.5gを仕込み、窒素を流しながら攪拌して、マグネシウムを活性化した。メチルジクロロシラン50.0g、及びテトラヒドロフラン50mlを加えてから、水冷下でテトラブロモメタン25gとテトラヒドロフラン50mlの溶液を30分かけて滴下した。滴下終了後、発熱が落ち着いてから50℃のオイルバスで4時間加熱を続けた。室温に戻してヘキサン50mlを加えてから発生したマグネシウム塩を濾過で除去し、濾液を蒸留することでテトラキスクロロメチルシリルメタン12.4gを得た。
テトラキスクロロメチルシリルメタン12.0gとシクロペンタン18.0gを100mlのPFA製三角フラスコに仕込み、氷冷下で23%フッ化水素水32.4gを20分かけて滴下した。氷冷下でさらに10時間攪拌を続けた後、発生した結晶を濾別した。得られた結晶を熱したヘキサンに溶解させ、ヘキサン溶液をデカンテーションすることで、結晶に付着していた水分を除去した。ヘキサン溶液を冷却することで、結晶を析出させ、発生した結晶を濾別・乾燥することで、目的物であるテトラキスジフルオロメチルシリルメタン(化合物A2)の針状結晶4.8gを得た。以下、化合物A2のスペクトルデータ(1H−NMR及びGC−MS)を示す。
1H−NMR:0.55ppm(プロトン数:12H、測定溶媒:CDCl3
GC−MS(m/z):336、321、217、91、47
[Production Example 2] Synthesis of tetrakis [ difluoro ( methyl ) silyl ] methane (Compound A2) 8.5 g of magnesium was charged into a 200 ml three-necked flask equipped with a refluxer and stirred while flowing nitrogen to activate the magnesium. Turned into. After adding 50.0 g of methyldichlorosilane and 50 ml of tetrahydrofuran, a solution of 25 g of tetrabromomethane and 50 ml of tetrahydrofuran was added dropwise over 30 minutes under water cooling. After completion of the dropping, heating was continued for 4 hours in an oil bath at 50 ° C. after the exotherm settled. After returning to room temperature and adding 50 ml of hexane, the generated magnesium salt was removed by filtration, and the filtrate was distilled to obtain 12.4 g of tetrakis [ chloro ( methyl ) silyl ] methane.
12.0 g of tetrakis [ chloro ( methyl ) silyl ] methane and 18.0 g of cyclopentane were charged into a 100 ml PFA Erlenmeyer flask, and 32.4 g of 23% aqueous hydrogen fluoride was added dropwise over 20 minutes under ice cooling. Stirring was further continued for 10 hours under ice cooling, and the generated crystals were separated by filtration. The obtained crystal was dissolved in heated hexane, and the hexane solution was decanted to remove water adhering to the crystal. Crystals are precipitated by cooling the hexane solution, and the generated crystals are separated by filtration and dried to obtain 4.8 g of needle-like crystals of tetrakis [ difluoro ( methyl ) silyl ] methane (compound A2) as the target product. Obtained. Hereinafter, the spectrum data ( 1 H-NMR and GC-MS) of Compound A2 are shown.
1 H-NMR: 0.55 ppm (proton number: 12H, measurement solvent: CDCl 3 )
GC-MS (m / z): 336, 321, 217, 91, 47

〔製造例3〕VEMALi(増粘剤)の合成
重量平均分子量240万のメチルビニルエーテルと無水マレイン酸の共重合体(VEMA)80.0g、水酸化リチウムの1水和物38.7g、及びイオン交換水562gをビーカー中でマグネチックスターラーを用いて攪拌した。均一の水溶液になった時点で、グラスフィルターでろ過を行い、メチルビニルエーテルと無水マレイン酸の共重合体の水溶性重合体中和塩(VEMALi)の水溶液を得た。
[Production Example 3] Synthesis of VEMALi (thickening agent) 80.0 g of a methyl vinyl ether / maleic anhydride copolymer (VEMA) having a weight average molecular weight of 2.4 million, 38.7 g of lithium hydroxide monohydrate, and ions 562 g of exchanged water was stirred in a beaker using a magnetic stirrer. When a uniform aqueous solution was obtained, the solution was filtered through a glass filter to obtain an aqueous solution of a water-soluble polymer neutralized salt (VEMALi) of a copolymer of methyl vinyl ether and maleic anhydride.

〔実施例1〜10及び比較例1〜8〕非水電解液二次電池の作製及び評価
実施例及び比較例において、非水電解液二次電池(リチウム二次電池)は、以下の作製手順に従って作製された。
[Examples 1 to 10 and Comparative Examples 1 to 8] Production and Evaluation of Nonaqueous Electrolyte Secondary Batteries In Examples and Comparative Examples, nonaqueous electrolyte secondary batteries (lithium secondary batteries) are prepared as follows. It was made according to.

<作製手順>
〔正極Aの作製〕
正極活物質としてLiNi1/3Co1/3Mn1/3290質量部、導電材としてアセチレンブラック5質量部、及びバインダーとしてポリフッ化ビニリデン(PVDF)5質量部を混合した後、N−メチル−2−ピロリドン(NMP)140質量部に分散させてスラリー状とした。このスラリーをアルミニウム製の集電体に塗布し、乾燥後、プレス成型した。その後、この正極を所定の大きさにカットして円盤状正極Aを作製した。
<Production procedure>
[Preparation of positive electrode A]
After mixing 90 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive material, and 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder, N— A slurry was prepared by dispersing in 140 parts by mass of methyl-2-pyrrolidone (NMP). This slurry was applied to an aluminum current collector, dried and press-molded. Then, this positive electrode was cut into a predetermined size to produce a disc-shaped positive electrode A.

〔正極Bの作製〕
正極活物質としてLiMn2472質量部、及びLiNi1/3Co1/3Mn1/3218質量部、導電材としてアセチレンブラック5質量部、並びにバインダーとしてポリフッ化ビニリデン(PVDF)5質量部を混合した後、N−メチル−2−ピロリドン(NMP)140質量部に分散させてスラリー状とした。このスラリーをアルミニウム製の集電体に塗布し、乾燥後、プレス成型した。その後、この正極を所定の大きさにカットして円盤状正極Bを作製した。
[Preparation of positive electrode B]
72 parts by mass of LiMn 2 O 4 and 18 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) 5 as a binder After mixing parts by mass, it was dispersed in 140 parts by mass of N-methyl-2-pyrrolidone (NMP) to form a slurry. This slurry was applied to an aluminum current collector, dried and press-molded. Thereafter, the positive electrode was cut into a predetermined size to produce a disc-shaped positive electrode B.

〔負極の作製〕
負極活物質として結晶の層間距離0.3364ナノメートル、比表面積3.5m2/g、IC/IDが0.06の表面処理を行っていない人造黒鉛96.0質量部、及びアセチレンブラック1.0重量部、バインダーとしてスチレンブタジエンゴム 1.5質量部、並びに増粘剤としてVEMALi 1.5質量部を混合し、水120質量部に分散させてスラリー状とした。このスラリーを銅製の負極集電体に塗布し、乾燥後、プレス成型した。その後、この負極を所定の大きさにカットし、円盤状負極を作製した。
(Production of negative electrode)
96.0 parts by weight of artificial graphite not subjected to surface treatment as a negative electrode active material having a crystal interlayer distance of 0.3364 nanometers, a specific surface area of 3.5 m 2 / g, I C / ID of 0.06, and acetylene black 1.0 part by weight, 1.5 parts by weight of styrene butadiene rubber as a binder, and 1.5 parts by weight of VEMALi as a thickener were mixed and dispersed in 120 parts by weight of water to form a slurry. This slurry was applied to a copper negative electrode current collector, dried and press-molded. Then, this negative electrode was cut into a predetermined size to produce a disc-shaped negative electrode.

〔電解質溶液Aの調製〕
エチレンカーボネート30体積%、エチルメチルカーボネート40体積%、ジメチルカーボネート25体積%及び酢酸プロピル5体積%からなる混合溶媒に、LiPF6を1mol/Lの濃度で溶解し電解質溶液Aを調製した。
[Preparation of electrolyte solution A]
LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent composed of 30% by volume of ethylene carbonate, 40% by volume of ethyl methyl carbonate, 25% by volume of dimethyl carbonate and 5% by volume of propyl acetate to prepare an electrolyte solution A.

〔電解質溶液Bの調製〕
エチレンカーボネート30体積%、エチルメチルカーボネート40体積%、及びジメチルカーボネート30体積%からなる混合溶媒に、LiPF6を1mol/Lの濃度で溶解し電解質溶液Bを調製した。
[Preparation of electrolyte solution B]
LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent composed of 30% by volume of ethylene carbonate, 40% by volume of ethyl methyl carbonate, and 30% by volume of dimethyl carbonate to prepare an electrolyte solution B.

〔非水電解液の調製〕
電解液添加剤として、製造例1又は2で得られた本発明の化合物A1〜A2、下記に示す本発明の化合物A3、下記に示す化合物B1〜B2、比較の化合物A’1〜A’3を、〔表1〕又は〔表2〕に示す割合で電解質溶液A又はBに溶解し、本発明の非水電解液及び比較の非水電解液を調製した。尚、〔表1〕及び〔表2〕中の( )内の数字は、非水電解液における濃度(質量%)を表す。
(Preparation of non-aqueous electrolyte)
As an electrolytic solution additive, the compounds A1 to A2 of the present invention obtained in Production Example 1 or 2, the compound A3 of the present invention shown below, the compounds B1 to B2 shown below, and the comparative compounds A′1 to A′3 Were dissolved in the electrolyte solution A or B at the ratio shown in [Table 1] or [Table 2] to prepare the nonaqueous electrolytic solution of the present invention and the comparative nonaqueous electrolytic solution. The numbers in parentheses in [Table 1] and [Table 2] represent the concentration (mass%) in the non-aqueous electrolyte.

〔化合物A3〕
トリスジフルオロエチルシリルメタン
〔化合物B1〕
ビニレンカーボネート
〔化合物B2〕
プロパンスルトン
〔化合物A1’〕
ジフルオロジヘキシルシラン
〔化合物A2’〕
ジフルオロジフェニルシラン
〔化合物A3’〕
1,2−ビス(フルオロジメチルシリル)エタン
[Compound A3]
Tris [ difluoro ( ethyl ) silyl ] methane [Compound B1]
Vinylene carbonate [Compound B2]
Propane sultone [Compound A1 ']
Difluorodihexylsilane [Compound A2 ′]
Difluorodiphenylsilane [Compound A3 ′]
1,2-bis (fluorodimethylsilyl) ethane

〔電池の組み立て〕
得られた円盤状正極A又は正極Bと円盤状負極を、厚さ25μmのポリエチレン製の微多孔フィルムを挟んでケース内に保持した。その後、本発明の非水電解液又は比較の非水電解液と正極との組合せが〔表1〕又は〔表2〕となるように、それぞれの非水電解液をケース内に注入し、ケースを密閉、封止して、実施例1〜10及び比較例1〜8のリチウム二次電池(φ20mm、厚さ3.2mmのコイン型)を製作した。
[Assembling the battery]
The obtained disc-shaped positive electrode A or positive electrode B and disc-shaped negative electrode were held in a case with a microporous film made of polyethylene having a thickness of 25 μm interposed therebetween. Thereafter, each non-aqueous electrolyte solution is injected into the case so that the combination of the non-aqueous electrolyte solution of the present invention or the comparative non-aqueous electrolyte solution and the positive electrode becomes [Table 1] or [Table 2]. Were sealed and sealed, and lithium secondary batteries (a coin type having a diameter of 20 mm and a thickness of 3.2 mm) of Examples 1 to 10 and Comparative Examples 1 to 8 were manufactured.

Figure 0005897869
Figure 0005897869

Figure 0005897869
Figure 0005897869

実施例1〜10及び比較例1〜8のリチウム二次電池を用いて、下記試験法により、初期特性試験及びサイクル特性試験を行った。初期特性試験では、放電容量比及び内部抵抗比を求めた。またサイクル特性試験では、放電容量維持率及び内部抵抗増加率を求めた。これらの試験結果を下記〔表2〕に示す。尚、放電容量比が高いほど、内部抵抗比の数値が低いほど初期特性に優れる非水電解液二次電池である。また、放電容量維持率が高いほど、内部増加率が低いほどサイクル特性に優れる非水電解液二次電池である。   Using the lithium secondary batteries of Examples 1 to 10 and Comparative Examples 1 to 8, an initial characteristic test and a cycle characteristic test were performed by the following test methods. In the initial characteristic test, the discharge capacity ratio and the internal resistance ratio were obtained. In the cycle characteristic test, the discharge capacity maintenance rate and the internal resistance increase rate were obtained. The test results are shown in [Table 2] below. In addition, it is a non-aqueous electrolyte secondary battery which is excellent in initial characteristics, so that the discharge capacity ratio is high and the numerical value of internal resistance ratio is low. Moreover, it is a non-aqueous electrolyte secondary battery which is excellent in cycle characteristics, so that a discharge capacity maintenance factor is high and an internal increase rate is low.

<正極Aの場合の初期特性試験方法>
a.放電容量比の測定方法
リチウム二次電池を、20℃の恒温槽内に入れ、充電電流0.3mA/cm2(0.2C相当の電流値)で4.3Vまで定電流定電圧充電し、放電電流0.3mA/cm2(0.2C相当の電流値)で3.0Vまで定電流放電する操作を5回行った。その後、充電電流0.3mA/cm2で4.3Vまで定電流定電圧充電し、放電電流0.3mA/cm2で3.0Vまで定電流放電した。この6回目に測定した放電容量を、電池の初期放電容量とし、下記式に示すように、放電容量比(%)を、実施例1の初期放電容量を100とした場合の初期放電容量の割合として求めた。
放電容量比(%)=[(初期放電容量)/(実施例1における初期放電容量)]×100
<Initial characteristic test method for positive electrode A>
a. Method for measuring discharge capacity ratio A lithium secondary battery is placed in a constant temperature bath at 20 ° C., and charged at a constant current and a constant voltage up to 4.3 V with a charging current of 0.3 mA / cm 2 (current value corresponding to 0.2 C). The operation of performing a constant current discharge to 3.0 V at a discharge current of 0.3 mA / cm 2 (current value corresponding to 0.2 C) was performed five times. Thereafter, 4.3 V until a constant current and constant voltage charging at a charging current 0.3 mA / cm 2, and a constant current discharge to 3.0V at a discharge current 0.3 mA / cm 2. The discharge capacity measured at the sixth time was defined as the initial discharge capacity of the battery, and the ratio of the initial discharge capacity when the discharge capacity ratio (%) was 100 as the initial discharge capacity of Example 1 as shown in the following formula. As sought.
Discharge capacity ratio (%) = [(initial discharge capacity) / (initial discharge capacity in Example 1)] × 100

b.内部抵抗比の測定方法
上記6回目の放電容量を測定後のリチウム二次電池について、先ず、充電電流1.5mA/cm2(1C相当の電流値)でSOC60%になるように定電流充電し、交流インピーダンス測定装置(IVIUM TECHNOLOGIES製、商品名:モバイル型ポテンショスタットCompactStat)を用いて、周波数100kHz〜0.02Hzまで走査し、縦軸に虚数部、横軸に実数部を示すコール−コールプロットを作成した。続いて、このコール−コールプロットにおいて、円弧部分を円でフィッティングして、この円の実数部分と交差する二点のうち、大きい方の値を、電池の初期内部抵抗とし、下記式に示すように、内部抵抗比(%)を、実施例1の初期内部抵抗を100とした場合の初期内部抵抗の割合として求めた。
内部抵抗比(%)=[(初期内部抵抗)/(実施例1における初期内部抵抗)]×100
b. Measuring method of internal resistance ratio About the lithium secondary battery after measuring the discharge capacity at the sixth time, first, constant current charging was performed so that the SOC was 60% at a charging current of 1.5 mA / cm 2 (current value equivalent to 1 C). Using an AC impedance measuring device (product name: mobile potentiostat CompactStat, manufactured by IVIUM TECHNOLOGIES), scanning is performed from a frequency of 100 kHz to 0.02 Hz, and the ordinate indicates the imaginary part and the abscissa indicates the real part. It was created. Subsequently, in this Cole-Cole plot, the arc part is fitted with a circle, and the larger value of the two points intersecting the real part of the circle is taken as the initial internal resistance of the battery, as shown in the following formula: The internal resistance ratio (%) was determined as the ratio of the initial internal resistance when the initial internal resistance of Example 1 was 100.
Internal resistance ratio (%) = [(initial internal resistance) / (initial internal resistance in Example 1)] × 100

<正極Bの場合の初期特性試験方法>
リチウム二次電池を、20℃の恒温槽内に入れ、充電電流0.3mA/cm2(0.2C相当の電流値)で4.2Vまで定電流定電圧充電し、放電電流0.3mA/cm2(0.2C相当の電流値)で3.0Vまで定電流放電する操作を5回行った。その後、充電電流0.3mA/cm2で4.2Vまで定電流定電圧充電し、放電電流0.3mA/cm2で3.0Vまで定電流放電した。この6回目に測定した放電容量を、電池の初期放電容量とし、正極Aの場合の初期特性試験方法と同様にして、放電容量比(%)を求めた。また、6回目の放電容量を測定後のリチウム二次電池について、正極Aの場合の初期特性試験方法と同様にして、内部抵抗比(%)を求めた。
<Initial characteristic test method for positive electrode B>
The lithium secondary battery was placed in a constant temperature bath at 20 ° C., charged at a constant current and a constant voltage up to 4.2 V with a charging current of 0.3 mA / cm 2 (current value corresponding to 0.2 C), and a discharge current of 0.3 mA / The operation of discharging a constant current to 3.0 V at cm 2 (current value corresponding to 0.2 C) was performed 5 times. Thereafter, the battery was charged at a constant current and a constant voltage up to 4.2 V at a charging current of 0.3 mA / cm 2 and discharged at a constant current of 3.0 mA at a discharge current of 0.3 mA / cm 2 . The discharge capacity measured at the sixth time was defined as the initial discharge capacity of the battery, and the discharge capacity ratio (%) was determined in the same manner as the initial characteristic test method in the case of the positive electrode A. For the lithium secondary battery after measuring the discharge capacity at the sixth time, the internal resistance ratio (%) was determined in the same manner as the initial characteristic test method in the case of the positive electrode A.

<正極Aの場合のサイクル特性試験方法>
a.放電容量維持率の測定方法
初期特性試験後のリチウム二次電池を、60℃の恒温槽内に入れ、充電電流1.5mA/cm2(1C相当の電流値、1Cは電池容量を1時間で放電する電流値)で4.3Vまで定電流充電し、放電電流1.5mA/cm2で3.0Vまで定電流放電を行うサイクルを200回繰り返して行った。この200回目の放電容量をサイクル試験後の放電容量とし、下記式に示すように、放電容量維持率(%)を、初期放電容量を100とした場合のサイクル試験後の放電容量の割合として求めた。
放電容量維持率(%)=[(サイクル試験後の放電容量)/(初期放電容量)]×100
<Cycle characteristic test method for positive electrode A>
a. Method for measuring discharge capacity retention rate The lithium secondary battery after the initial characteristic test was placed in a constant temperature bath at 60 ° C., and a charging current of 1.5 mA / cm 2 (current value equivalent to 1 C, 1 C represents the battery capacity in 1 hour. The cycle of carrying out constant current charging to 4.3 V at a discharging current value) and constant current discharging to 3.0 V at a discharging current of 1.5 mA / cm 2 was repeated 200 times. The 200th discharge capacity is defined as the discharge capacity after the cycle test, and the discharge capacity retention rate (%) is obtained as the ratio of the discharge capacity after the cycle test when the initial discharge capacity is 100 as shown in the following formula. It was.
Discharge capacity retention rate (%) = [(discharge capacity after cycle test) / (initial discharge capacity)] × 100

b.内部抵抗増加率の測定方法
サイクル試験後、雰囲気温度を20℃に戻して、20℃における内部抵抗を、上記内部抵抗比の測定方法と同様にして測定し、この時の内部抵抗を、サイクル試験後の内部抵抗とし、下記式に示すように、内部抵抗増加率(%)を、各電池の初期内部抵抗を100とした場合のサイクル試験後の内部抵抗の増加の割合として求めた。
内部抵抗増加率(%)=[(サイクル試験後の内部抵抗−初期内部抵抗)/(初期内部抵抗)]×100
b. Method for measuring rate of increase in internal resistance After the cycle test, the ambient temperature is returned to 20 ° C., and the internal resistance at 20 ° C. is measured in the same manner as the method for measuring the internal resistance ratio. The internal resistance increase rate (%) was determined as the rate of increase in internal resistance after the cycle test when the initial internal resistance of each battery was 100, as shown in the following formula.
Internal resistance increase rate (%) = [(internal resistance after cycle test−initial internal resistance) / (initial internal resistance)] × 100

<正極Bの場合のサイクル特性試験方法>
初期特性試験後のリチウム二次電池を、60℃の恒温槽内に入れ、充電電流1.5mA/cm2(1C相当の電流値、1Cは電池容量を1時間で放電する電流値)で4.2Vまで定電流充電し、放電電流1.5mA/cm2で3.0Vまで定電流放電を行うサイクルを200回繰り返して行った。この200回目の放電容量をサイクル試験後の放電容量とし、正極Aの場合のサイクル特性試験方法と同様にして、放電容量維持率(%)を求めた。また、サイクル試験後のリチウム二次電池について、正極Aの場合のサイクル特性試験方法と同様にして、内部抵抗増加率(%)を求めた。
<Cycle characteristic test method for positive electrode B>
The lithium secondary battery after the initial characteristic test is placed in a constant temperature bath at 60 ° C., and the charging current is 1.5 mA / cm 2 (current value equivalent to 1C, 1C is the current value at which the battery capacity is discharged in 1 hour). The cycle of charging at a constant current to 2 V and discharging at a constant current of 1.5 mA / cm 2 to 3.0 V was repeated 200 times. The discharge capacity at the 200th time was defined as the discharge capacity after the cycle test, and the discharge capacity retention rate (%) was determined in the same manner as the cycle characteristic test method in the case of the positive electrode A. For the lithium secondary battery after the cycle test, the rate of increase in internal resistance (%) was determined in the same manner as the cycle characteristic test method for positive electrode A.

Figure 0005897869
Figure 0005897869

Figure 0005897869
Figure 0005897869

〔表3〕及び〔表4〕の結果から明らかなように、分子内にアルキルジフルオロシリル基が3つ以上結合したフルオロシラン化合物を非水電解液に含有することを特徴とする本発明の非水電解液二次電池は、60℃でのサイクル試験後において、上記フルオロシラン化合物を少量添加した場合であっても、内部抵抗及び放電容量の面で優れており、優れた電池特性を維持できることが確認できた。   As is apparent from the results of [Table 3] and [Table 4], the non-aqueous electrolyte contains a fluorosilane compound having three or more alkyldifluorosilyl groups bonded in the molecule. The water electrolyte secondary battery is excellent in terms of internal resistance and discharge capacity and can maintain excellent battery characteristics even when a small amount of the fluorosilane compound is added after a cycle test at 60 ° C. Was confirmed.

本発明の非水電解液二次電池は、小さな内部抵抗と高い放電容量を長期使用及び温度変化の大きい場合においても維持することが出来るため有用なものである。   The non-aqueous electrolyte secondary battery of the present invention is useful because it can maintain a small internal resistance and a high discharge capacity even when used for a long period of time and a large temperature change.

1 正極
1a 正極集電体
2 負極
2a 負極集電体
3 電解液
4 正極ケース
5 負極ケース
6 ガスケット
7 セパレータ
10 コイン型の非水電解液二次電池
10' 円筒型の非水電解液二次電池
11 負極
12 負極集電体
13 正極
14 正極集電体
15 非水電解液
16 セパレータ
17 正極端子
18 負極端子
19 負極板
20 負極リード
21 正極
22 正極リード
23 ケース
24 絶縁板
25 ガスケット
26 安全弁
27 PTC素子
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 2 Negative electrode 2a Negative electrode collector 3 Electrolyte 4 Positive electrode case 5 Negative electrode case 6 Gasket 7 Separator 10 Coin type nonaqueous electrolyte secondary battery 10 'Cylindrical type nonaqueous electrolyte secondary battery 11 Negative electrode 12 Negative electrode current collector 13 Positive electrode 14 Positive electrode current collector 15 Nonaqueous electrolyte 16 Separator 17 Positive electrode terminal 18 Negative electrode terminal 19 Negative electrode plate 20 Negative electrode lead 21 Positive electrode 22 Positive electrode lead 23 Case 24 Insulating plate 25 Gasket 26 Safety valve 27 PTC element

Claims (1)

下記一般式(1’)で表されるフルオロシラン化合物。
Figure 0005897869
(式中、R1'は炭素原子数1〜8のアルキル基を表わし、n’は3又は4の数を表す。)
A fluorosilane compound represented by the following general formula (1 ′).
Figure 0005897869
(In the formula, R 1 ′ represents an alkyl group having 1 to 8 carbon atoms, and n ′ represents a number of 3 or 4.)
JP2011240048A 2011-11-01 2011-11-01 New fluorosilane compounds Expired - Fee Related JP5897869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011240048A JP5897869B2 (en) 2011-11-01 2011-11-01 New fluorosilane compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011240048A JP5897869B2 (en) 2011-11-01 2011-11-01 New fluorosilane compounds

Publications (2)

Publication Number Publication Date
JP2013098028A JP2013098028A (en) 2013-05-20
JP5897869B2 true JP5897869B2 (en) 2016-04-06

Family

ID=48619759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240048A Expired - Fee Related JP5897869B2 (en) 2011-11-01 2011-11-01 New fluorosilane compounds

Country Status (1)

Country Link
JP (1) JP5897869B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888387A (en) * 2019-02-01 2019-06-14 无锡凯帕德瑞科技有限公司 Capacitor batteries electrolyte and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170031648A (en) * 2014-07-16 2017-03-21 가부시키가이샤 아데카 Nonaqueous electrolyte secondary battery and nonaqueous electrolyte solution
JP2016098189A (en) * 2014-11-19 2016-05-30 セントラル硝子株式会社 Fluorine-containing ether compound, nonaqueous electrolyte and nonaqueous electrolyte battery
KR20180089244A (en) * 2017-01-31 2018-08-08 삼성전자주식회사 Lithium secondary battery comprising the electrolyte containing monofluorosilane compound
WO2020080452A1 (en) * 2018-10-18 2020-04-23 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, and nonaqueous electrolyte secondary battery
CN112216867B (en) * 2020-09-29 2023-02-07 中国科学院成都有机化学有限公司 Electrolyte additive, lithium ion high-voltage electrolyte and lithium ion battery
CN115513528B (en) * 2022-11-21 2023-05-05 广州天赐高新材料股份有限公司 Nonaqueous electrolyte and secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951524B2 (en) * 1993-12-10 1999-09-20 財団法人韓国科学技術研究院 Method for producing trissilylmethane
JP2511244B2 (en) * 1993-12-22 1996-06-26 財団法人韓国科学技術研究院 Tris (silyl) alkane and method for producing the same
JP3810062B2 (en) * 2001-01-22 2006-08-16 株式会社デンソー Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
DE102005048802A1 (en) * 2005-10-10 2007-04-12 Solvay Fluor Gmbh Fluorinated additives for lithium-ion batteries
JP5671775B2 (en) * 2006-01-27 2015-02-18 三菱化学株式会社 Lithium ion secondary battery
JP2011082001A (en) * 2009-10-06 2011-04-21 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP5781294B2 (en) * 2010-11-16 2015-09-16 株式会社Adeka Non-aqueous electrolyte secondary battery
JP5823261B2 (en) * 2011-11-10 2015-11-25 株式会社Adeka Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888387A (en) * 2019-02-01 2019-06-14 无锡凯帕德瑞科技有限公司 Capacitor batteries electrolyte and preparation method thereof
CN109888387B (en) * 2019-02-01 2021-10-08 无锡凯帕德瑞科技有限公司 Capacitor battery electrolyte and preparation method thereof

Also Published As

Publication number Publication date
JP2013098028A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5955629B2 (en) Non-aqueous electrolyte secondary battery
KR101881445B1 (en) Non-aqueous electrolyte secondary battery
EP3113274B1 (en) Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery using same
JP5881119B2 (en) Non-aqueous electrolyte secondary battery
KR101881450B1 (en) Non-aqueous electrolyte secondary battery
JP5391944B2 (en) Non-aqueous electrolyte and battery using the same
JP5897869B2 (en) New fluorosilane compounds
KR102613337B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
WO2016013480A1 (en) Nonaqueous electrolyte secondary battery, nonaqueous electrolyte solution and compound
KR20140036148A (en) Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
CN107210489B (en) Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR102427676B1 (en) Additives for non-aqueous electrolytes, non-aqueous electrolytes, and non-aqueous electrolyte batteries
JP2013145702A (en) Nonaqueous electrolyte secondary battery, and nonaqueous electrolyte for secondary battery
WO2012053485A1 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte battery using same
KR102380511B1 (en) Electrolyte for lithium battery, and lithium battery including the electrolyte
KR20160133410A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP6103134B2 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JP5709574B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery having the electrolyte
CN108352572B (en) Additive for nonaqueous electrolyte solution, and electricity storage device
WO2016060038A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary cell
JP5823261B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
KR20170031648A (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160303

R151 Written notification of patent or utility model registration

Ref document number: 5897869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees