JP3444243B2 - Nonaqueous electrolyte and lithium secondary battery using the same - Google Patents

Nonaqueous electrolyte and lithium secondary battery using the same

Info

Publication number
JP3444243B2
JP3444243B2 JP21970899A JP21970899A JP3444243B2 JP 3444243 B2 JP3444243 B2 JP 3444243B2 JP 21970899 A JP21970899 A JP 21970899A JP 21970899 A JP21970899 A JP 21970899A JP 3444243 B2 JP3444243 B2 JP 3444243B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
battery
electrolytic solution
disulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21970899A
Other languages
Japanese (ja)
Other versions
JP2001052735A (en
Inventor
俊一 浜本
浩司 安部
勉 高井
保男 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP21970899A priority Critical patent/JP3444243B2/en
Priority to CNB00129234XA priority patent/CN1193450C/en
Publication of JP2001052735A publication Critical patent/JP2001052735A/en
Priority to US10/021,130 priority patent/US6866966B2/en
Application granted granted Critical
Publication of JP3444243B2 publication Critical patent/JP3444243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池のサイクル特
性や電気容量、保存特性などの電池特性にも優れたリチ
ウム二次電池を提供することができる非水電解液、およ
びそれを用いたリチウム二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte capable of providing a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity, and storage characteristics, and a lithium using the same. Regarding secondary batteries.

【0002】[0002]

【従来の技術】近年、リチウム二次電池は小型電子機器
などの駆動用電源として広く使用されている。リチウム
二次電池は、主に正極、非水電解液及び負極から構成さ
れており、特に、LiCoO2などのリチウム複合酸化
物を正極とし、炭素材料又はリチウム金属を負極とした
リチウム二次電池が好適に使用されている。そして、そ
のリチウム二次電池用の非水電解液としては、エチレン
カーボネート(EC)、プロピレンカーボネート(P
C)などのカーボネート類が好適に使用されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as driving power sources for small electronic devices and the like. A lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolytic solution and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or a lithium metal as a negative electrode is a lithium secondary battery. It is preferably used. Then, as the non-aqueous electrolyte for the lithium secondary battery, ethylene carbonate (EC), propylene carbonate (P
Carbonates such as C) are preferably used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電池の
サイクル特性および電気容量などの電池特性について、
さらに優れた特性を有する二次電池が求められている。
正極として、例えばLiCoO2、LiMn24、Li
NiO2などを用いたリチウム二次電池は、非水電解液
中の溶媒が充電時に局部的に一部酸化分解することによ
り、該分解物が電池の望ましい電気化学的反応を阻害す
るために電池性能の低下を生じる。これは正極材料と非
水電解液との界面における溶媒の電気化学的酸化に起因
するものと思われる。また、負極として例えば天然黒鉛
や人造黒鉛などの高結晶化した炭素材料を用いたリチウ
ム二次電池は、非水電解液中の溶媒が充電時に負極表面
で還元分解し、非水電解液溶媒として一般に広く使用さ
れているECにおいても充放電を繰り返す間に一部還元
分解が起こり、電池性能の低下が起こる。このため、電
池のサイクル特性および電気容量などの電池特性は必ず
しも満足なものではないのが現状である。
However, regarding the battery cycle characteristics and battery characteristics such as electric capacity,
There is a demand for secondary batteries having even more excellent characteristics.
As the positive electrode, for example, LiCoO 2 , LiMn 2 O 4 , Li
In a lithium secondary battery using NiO 2 or the like, a solvent in a non-aqueous electrolyte is partially oxidatively decomposed during charging, and the decomposed product inhibits a desired electrochemical reaction of the battery. This results in poor performance. This is probably due to the electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte. Further, for example, a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode, the solvent in the non-aqueous electrolytic solution is reductively decomposed on the surface of the negative electrode during charging, and as a non-aqueous electrolytic solution solvent. Even in the generally widely used EC, a part of reductive decomposition occurs during repeated charging and discharging, resulting in deterioration of battery performance. Therefore, at present, the battery cycle characteristics and battery characteristics such as electric capacity are not always satisfactory.

【0004】本発明は、前記のようなリチウム二次電池
用非水電解液に関する課題を解決し、電池のサイクル特
性に優れ、さらに電気容量や充電状態での保存特性など
の電池特性にも優れたリチウム二次電池を構成すること
ができるリチウム二次電池用の非水電解液、およびそれ
を用いたリチウム二次電池を提供することを目的とす
る。
The present invention solves the problems relating to the non-aqueous electrolyte for a lithium secondary battery as described above, is excellent in battery cycle characteristics, and is also excellent in battery characteristics such as electric capacity and storage characteristics in a charged state. Another object of the present invention is to provide a non-aqueous electrolyte solution for a lithium secondary battery, which can form a lithium secondary battery, and a lithium secondary battery using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、非水溶媒に電
解質が溶解されている非水電解液において、該非水電解
液中に下記式(I)
The present invention provides a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein the following formula (I) is contained in the non-aqueous electrolytic solution.

【0006】[0006]

【化5】 (ただし、X1、X2はそれぞれ独立して炭素数1〜6の
アルキル基、炭素数2〜6のアルケニル基、炭素数2〜
6のアルキニル基、炭素数3〜6のシクロアルキル基、
アリール基、炭素数2〜7のアシル基、炭素数1〜7の
アルカンスルホニル基、炭素数6〜10のアリールスル
ホニル基、炭素数2〜7のエステル基を示す。)で表さ
れる置換基に酸素を含有したジスルフィド誘導体、およ
び下記式(II)
[Chemical 5] (However, X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and 2 to 2 carbon atoms.
An alkynyl group having 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms,
An aryl group, an acyl group having 2 to 7 carbon atoms, an alkanesulfonyl group having 1 to 7 carbon atoms, an arylsulfonyl group having 6 to 10 carbon atoms, and an ester group having 2 to 7 carbon atoms are shown. ) A disulfide derivative containing oxygen as a substituent represented by the following formula, and the following formula (II)

【0007】[0007]

【化6】 (ただし、X3、X4はそれぞれ独立してF、Cl、B
r、I、CF3、CCl3、CBr3を示す。)で表され
る置換基にハロゲンを含有したジスルフィド誘導体が
0.01〜5重量%含有されていることを特徴とする非
水電解液に関する。また、正極、負極および非水溶媒に
電解質が溶解されている非水電解液からなるリチウム二
次電池において、該非水電解液中に下記式(I)
[Chemical 6] (However, X 3 , X 4 are independently F, Cl, B
r, I, CF 3 , CCl 3 , and CBr 3 are shown. And a disulfide derivative containing halogen in the substituent represented by (4) is contained in an amount of 0.01 to 5% by weight. Further, in a lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, the following formula (I) is contained in the non-aqueous electrolytic solution.

【0008】[0008]

【化7】 (ただし、X1、X2はそれぞれ独立して炭素数1〜6の
アルキル基、炭素数2〜6のアルケニル基、炭素数2〜
6のアルキニル基、炭素数3〜6のシクロアルキル基、
アリール基、炭素数2〜7のアシル基、炭素数1〜7の
アルカンスルホニル基、炭素数6〜10のアリールスル
ホニル基、炭素数2〜7のエステル基を示す。)で表さ
れる置換基に酸素を含有したジスルフィド誘導体、およ
び下記式(II)
[Chemical 7] (However, X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and 2 to 2 carbon atoms.
An alkynyl group having 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms,
An aryl group, an acyl group having 2 to 7 carbon atoms, an alkanesulfonyl group having 1 to 7 carbon atoms, an arylsulfonyl group having 6 to 10 carbon atoms, and an ester group having 2 to 7 carbon atoms are shown. ) A disulfide derivative containing oxygen as a substituent represented by the following formula, and the following formula (II)

【0009】[0009]

【化8】 (ただし、X3、X4はそれぞれ独立してF、Cl、B
r、I、CF3、CCl3、CBr3を示す。)で表され
る置換基にハロゲンを含有したジスルフィド誘導体が
0.01〜5重量%含有されていることを特徴とするリ
チウム二次電池に関する。
[Chemical 8] (However, X 3 , X 4 are independently F, Cl, B
r, I, CF 3 , CCl 3 , and CBr 3 are shown. The present invention relates to a lithium secondary battery containing 0.01 to 5% by weight of a disulfide derivative containing halogen as a substituent represented by the formula (1).

【0010】本発明の非水電解液は、リチウム二次電池
の構成部材として使用される。二次電池を構成する非水
電解液以外の構成部材については特に限定されず、従来
使用されている種々の構成部材を使用できる。
The non-aqueous electrolytic solution of the present invention is used as a constituent member of a lithium secondary battery. The constituent members other than the non-aqueous electrolyte that constitute the secondary battery are not particularly limited, and various conventionally used constituent members can be used.

【0011】[0011]

【発明の実施の形態】非水溶媒に電解質が溶解されてい
る電解液に含有される前記式(I)で表されるジスルフ
ィド誘導体において、X1、X2はメチル基、エチル基、
プロピル基、ブチル基、ペンチル基、ヘキシル基のよう
な炭素数1〜6のアルキル基が好ましい。アルキル基は
イソプロピル基、イソブチル基、イソペンチル基のよう
な分枝アルキル基でもよく、シクロプロピル基、シクロ
ヘキシル基のようなシクロアルキル基でもよい。また、
ビニル基、1−プロペニル基、アリル基のようなアルケ
ニル基でもよく、エチニル基、2−プロピニル基のよう
なアルキニル基でもよい。また、フェニル基、p−トリ
ル基などのアリール基でもよい。また、アセチル基、プ
ロピオニル基、アクリロイル基、ベンゾイル基などのア
シル基でもよく、メタンスルホニル基、エタンスルホニ
ル基、ベンゼンスルホニル基などのスルホニル基でもよ
い。さらに、メトキシカルボニル基、エトキシカルボニ
ル基、フェノキシカルボニル基、ベンジルオキシカルボ
ニル基などのエステル基でもよい。また、前記式(I
I)で表されるジスルフィド誘導体において、X3、X4
はF、Cl、Br、Iのようなハロゲン原子、あるい
は、CF3、CCl3、CBr3のようなハロゲン原子を
含有した置換基が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the disulfide derivative represented by the above formula (I) contained in an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, X 1 and X 2 are a methyl group, an ethyl group,
An alkyl group having 1 to 6 carbon atoms such as a propyl group, a butyl group, a pentyl group and a hexyl group is preferable. The alkyl group may be a branched alkyl group such as an isopropyl group, an isobutyl group and an isopentyl group, or a cycloalkyl group such as a cyclopropyl group and a cyclohexyl group. Also,
It may be an alkenyl group such as a vinyl group, a 1-propenyl group or an allyl group, or an alkynyl group such as an ethynyl group or a 2-propynyl group. Further, an aryl group such as a phenyl group or a p-tolyl group may be used. Further, it may be an acyl group such as an acetyl group, a propionyl group, an acryloyl group and a benzoyl group, or a sulfonyl group such as a methanesulfonyl group, an ethanesulfonyl group and a benzenesulfonyl group. Further, an ester group such as a methoxycarbonyl group, an ethoxycarbonyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group may be used. In addition, the above formula (I
In the disulfide derivative represented by I), X 3 , X 4
Is preferably a halogen atom such as F, Cl, Br or I, or a substituent containing a halogen atom such as CF 3 , CCl 3 or CBr 3 .

【0012】前記一般式(I)で表されるジスルフィド
誘導体の具体例としては、例えば、ビス(4−メトキシ
フェニル)ジスルフィド〔X1、X2=メチル基〕、ビス
(3−メトキシフェニル)ジスルフィド〔X1、X2=メ
チル基〕、ビス(2−メトキシフェニル)ジスルフィド
〔X1、X2=メチル基〕、ビス(4−エトキシフェニ
ル)ジスルフィド〔X1、X2=エチル基〕、ビス(4−
イソプロポキシフェニル)ジスルフィド〔X1、X2=イ
ソプロピル基〕、ビス(4−シクロヘキシルオキシフェ
ニル)ジスルフィド〔X1、X2=シクロヘキシル基〕、
ビス(4−アリルオキシフェニル)ジスルフィド
〔X1、X2=アリル基〕、ビス〔4−(2−プロピニル
オキシ)フェニル〕ジスルフィド〔X1、X2=2−プロ
ピニル基〕、ビス(4−フェノキシフェニル)ジスルフ
ィド〔X1、X2=フェニル基〕、ビス(4−アセトキシ
フェニル)ジスルフィド〔X1、X2=アセチル基〕、ビ
ス(4−ベンゾイルオキシフェニル)ジスルフィド〔X
1、X2=ベンゾイル基〕、ビス(4−メタンスルホニル
オキシフェニル)ジスルフィド〔X1、X2=メタンスル
ホニル基〕、ビス(4−ベンゼンスルホニルオキシフェ
ニル)ジスルフィド〔X1、X2=ベンゼンスルホニル
基〕、ビス(4−メトキシカルボニルオキシフェニル)
ジスルフィド〔X1、X2=メトキシカルボニル基〕、ビ
ス(4−フェノキシカルボニルオキシフェニル)ジスル
フィド〔X1、X2=フェノキシカルボニル基〕などが挙
げられる。また、前記一般式(II)で表されるジスル
フィド誘導体の具体例としては、例えば、ビス(4−フ
ルオロフェニル)ジスルフィド〔X3、X4=F〕、ビス
(4−クロロフェニル)ジスルフィド〔X3、X4=C
l〕、ビス(4−ブロモフェニル)ジスルフィド
〔X3、X4=Br〕、ビス(4−ヨードフェニル)ジス
ルフィド〔X3、X4=I〕、ビス(4−トリフルオロメ
チルフェニル)ジスルフィド〔X3、X4=CF3〕、ビ
ス(4−トリクロロメチルフェニル)ジスルフィド〔X
3、X4=CCl3〕、ビス(4−トリブロモメチルフェ
ニル)ジスルフィド〔X3、X4=CBr3〕が挙げられ
る。
Specific examples of the disulfide derivative represented by the general formula (I) include bis (4-methoxyphenyl) disulfide [X 1 , X 2 = methyl group] and bis (3-methoxyphenyl) disulfide. [X 1 , X 2 = methyl group], bis (2-methoxyphenyl) disulfide [X 1 , X 2 = methyl group], bis (4-ethoxyphenyl) disulfide [X 1 , X 2 = ethyl group], bis (4-
Isopropoxyphenyl) disulfide [X 1 , X 2 = isopropyl group], bis (4-cyclohexyloxyphenyl) disulfide [X 1 , X 2 = cyclohexyl group],
Bis (4-allyloxyphenyl) disulfide [X 1 , X 2 = allyl group], bis [4- (2-propynyloxy) phenyl] disulfide [X 1 , X 2 = 2-propynyl group], bis (4- Phenoxyphenyl) disulfide [X 1 , X 2 = phenyl group], bis (4-acetoxyphenyl) disulfide [X 1 , X 2 = acetyl group], bis (4-benzoyloxyphenyl) disulfide [X
1 , X 2 = benzoyl group], bis (4-methanesulfonyloxyphenyl) disulfide [X 1 , X 2 = methanesulfonyl group], bis (4-benzenesulfonyloxyphenyl) disulfide [X 1 , X 2 = benzenesulfonyl Group], bis (4-methoxycarbonyloxyphenyl)
And disulfide [X 1 , X 2 = methoxycarbonyl group], bis (4-phenoxycarbonyloxyphenyl) disulfide [X 1 , X 2 = phenoxycarbonyl group] and the like. Specific examples of the disulfide derivative represented by the general formula (II) are, for example, bis (4-fluorophenyl) disulfide [X 3, X 4 = F], bis (4-chlorophenyl) disulfide [X 3 , X 4 = C
l], bis (4-bromophenyl) disulfide [X 3 , X 4 = Br], bis (4-iodophenyl) disulfide [X 3 , X 4 = I], bis (4-trifluoromethylphenyl) disulfide [ X 3 , X 4 = CF 3 ], bis (4-trichloromethylphenyl) disulfide [X
3 , X 4 = CCl 3 ], bis (4-tribromomethylphenyl) disulfide [X 3 , X 4 = CBr 3 ].

【0013】非水電解液中に含有される前記式(I)で
表される置換基に酸素を含有したジスルフィド誘導体の
含有量は、過度に多いと電池性能が低下することがあ
り、また、過度に少ないと期待した十分な電池性能が得
られない。したがって、その含有量は非水電解液の重量
に対して0.01〜5重量%の範囲がサイクル特性が向
上するのでよい。
If the content of the disulfide derivative containing oxygen as a substituent represented by the formula (I) contained in the non-aqueous electrolyte is excessively large, the battery performance may be deteriorated. If it is too small, the expected battery performance will not be obtained. Therefore, the content is preferably in the range of 0.01 to 5% by weight with respect to the weight of the non-aqueous electrolyte, because the cycle characteristics are improved.

【0014】本発明で使用される非水溶媒としては、高
誘電率溶媒と低粘度溶媒とからなるものが好ましい。高
誘電率溶媒としては、例えば、エチレンカーボネート
(EC)、プロピレンカーボネート(PC)、ブチレン
カーボネート(BC)などの環状カーボネート類が好適
に挙げられる。これらの高誘電率溶媒は、一種類で使用
してもよく、また二種類以上組み合わせて使用してもよ
い。
The non-aqueous solvent used in the present invention is preferably a solvent composed of a high dielectric constant solvent and a low viscosity solvent. Preferable examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate (BC). These high dielectric constant solvents may be used alone or in combination of two or more.

【0015】低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジエチルカーボネート(DEC)などの鎖状カ
ーボネート類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、1,2−ジブト
キシエタンなどのエーテル類、γ−ブチロラクトンなど
のラクトン類、アセトニトリルなどのニトリル類、プロ
ピオン酸メチルなどのエステル類、ジメチルホルムアミ
ドなどのアミド類が挙げられる。これらの低粘度溶媒は
一種類で使用してもよく、また二種類以上組み合わせて
使用してもよい。高誘電率溶媒と低粘度溶媒とはそれぞ
れ任意に選択され組み合わせて使用される。なお、前記
の高誘電率溶媒および低粘度溶媒は、容量比(高誘電率
溶媒:低粘度溶媒)で通常1:9〜4:1、好ましくは
1:4〜7:3の割合で使用される。
Examples of the low-viscosity solvent include dimethyl carbonate (DMC) and methyl ethyl carbonate (M
EC), chain carbonates such as diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane And ethers, lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, and amides such as dimethylformamide. These low-viscosity solvents may be used alone or in combination of two or more. The high dielectric constant solvent and the low viscosity solvent are arbitrarily selected and used in combination. The high dielectric constant solvent and the low viscosity solvent are usually used in a volume ratio (high dielectric constant solvent: low viscosity solvent) of 1: 9 to 4: 1, preferably 1: 4 to 7: 3. It

【0016】本発明で使用される電解質としては、例え
ば、LiPF6、LiBF4、LiClO4、LiN(S
2CF32、LiN(SO2252、LiC(SO2
CF33などが挙げられる。これらの電解質は、一種類
で使用してもよく、二種類以上組み合わせて使用しても
よい。これら電解質は、前記の非水溶媒に通常0.1〜
3M、好ましくは0.5〜1.5Mの濃度で溶解されて
使用される。
Examples of the electrolyte used in the present invention include LiPF 6 , LiBF 4 , LiClO 4 , LiN (S
O 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2
CF 3 ) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are usually added to the above non-aqueous solvent in an amount of 0.1 to 0.1%.
It is used by being dissolved at a concentration of 3M, preferably 0.5 to 1.5M.

【0017】本発明の非水電解液は、例えば、前記の高
誘電率溶媒や低粘度溶媒を混合し、これに前記の電解質
を溶解し、前記式(I)で表される置換基に酸素を含有
したジスルフィド誘導体を溶解することにより得られ
る。
The non-aqueous electrolytic solution of the present invention is prepared by, for example, mixing the above-mentioned high dielectric constant solvent or low-viscosity solvent, dissolving the above electrolyte therein, and adding oxygen to the substituent represented by the above formula (I). It is obtained by dissolving a disulfide derivative containing

【0018】例えば、正極活物質としてはコバルト、マ
ンガン、ニッケル、クロム、鉄およびバナジウムからな
る群より選ばれる少なくとも一種類の金属とリチウムと
の複合金属酸化物が使用される。このような複合金属酸
化物としては、例えば、LiCoO2、LiMn24
LiNiO2などが挙げられる。
For example, as the positive electrode active material, a composite metal oxide of at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium and lithium is used. Examples of such complex metal oxides include LiCoO 2 , LiMn 2 O 4 ,
Examples thereof include LiNiO 2 .

【0019】正極は、前記の正極活物質をアセチレンブ
ラック、カーボンブラックなどの導電剤、ポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)などの結着剤および溶剤と混練して正極合
剤とした後、この正極材料を集電体としてのアルミニウ
ム箔やステンレス製のラス板に塗布して、乾燥、加圧成
型後、50℃〜250℃程度の温度で2時間程度真空下
で加熱処理することにより作製される。
The positive electrode is prepared by kneading the above positive electrode active material with a conductive agent such as acetylene black or carbon black, a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF), and a solvent to mix the positive electrode. Then, this positive electrode material is applied to an aluminum foil or a stainless steel lath plate as a current collector, dried, pressure-molded, and then heat-treated under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It is produced by

【0020】負極活物質としては、リチウム金属やリチ
ウム合金、およびリチウムを吸蔵・放出可能な黒鉛型結
晶構造を有する炭素材料〔熱分解炭素類、コークス類、
グラファイト類(人造黒鉛、天然黒鉛など)、有機高分
子化合物燃焼体、炭素繊維〕や複合スズ酸化物などの物
質が使用される。特に、格子面(002)の面間隔(d
002)が0.335〜0.340nm(ナノメータ)で
ある黒鉛型結晶構造を有する炭素材料を使用することが
好ましい。なお、炭素材料のような粉末材料はエチレン
プロピレンジエンターポリマー(EPDM)、ポリテト
ラフルオロエチレン(PTFE)、ポリフッ化ビニリデ
ン(PVDF)などの結着剤と混練して負極合剤として
使用される。
As the negative electrode active material, lithium metal or lithium alloy, and a carbon material having a graphite type crystal structure capable of inserting and extracting lithium [pyrolytic carbons, cokes,
Materials such as graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustors, carbon fibers] and complex tin oxides are used. In particular, the interplanar spacing (d) of the lattice plane (002)
It is preferable to use a carbon material having a graphite type crystal structure in which 002 ) is 0.335 to 0.340 nm (nanometer). A powder material such as a carbon material is kneaded with a binder such as ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (PVDF) to be used as a negative electrode mixture.

【0021】リチウム二次電池の構造は特に限定される
ものではなく、正極、負極および単層又は複層のセパレ
ータを有するコイン型電池、さらに、正極、負極および
ロール状のセパレータを有する円筒型電池や角型電池な
どが一例として挙げられる。なお、セパレータとしては
公知のポリオレフィンの微多孔膜、織布、不織布などが
使用される。
The structure of the lithium secondary battery is not particularly limited, and a coin type battery having a positive electrode, a negative electrode and a single-layer or multi-layer separator, and a cylindrical battery having a positive electrode, a negative electrode and a roll-shaped separator. An example is a square battery or the like. As the separator, a well-known polyolefin microporous film, woven fabric, non-woven fabric, or the like is used.

【0022】[0022]

【実施例】次に、実施例および比較例を挙げて、本発明
を具体的に説明する。 実施例1 〔非水電解液の調製〕EC:DMC(容量比)=1:2
の非水溶媒を調製し、これにLiPF6を1Mの濃度に
なるように溶解して非水電解液を調製した後、さらにビ
ス(4−メトキシフェニル)ジスルフィド〔X1、X2
メチル基〕を非水電解液に対して0.1重量%となるよ
うに加えた。
EXAMPLES Next, the present invention will be specifically described with reference to Examples and Comparative Examples. Example 1 [Preparation of non-aqueous electrolyte] EC: DMC (volume ratio) = 1: 2
Of non-aqueous solvent was prepared and LiPF 6 was dissolved therein to a concentration of 1 M to prepare a non-aqueous electrolytic solution, and then bis (4-methoxyphenyl) disulfide [X 1 , X 2 =
Methyl group] was added to the non-aqueous electrolytic solution so as to be 0.1% by weight.

【0023】〔リチウム二次電池の作製および電池特性
の測定〕LiCoO2(正極活物質)を80重量%、ア
セチレンブラック(導電剤)を10重量%、ポリフッ化
ビニリデン(結着剤)を10重量%の割合で混合し、こ
れに1−メチル−2−ピロリドン溶剤を加えて混合した
ものをアルミニウム箔上に塗布し、乾燥、加圧成型、加
熱処理して正極を調製した。天然黒鉛(負極活物質)を
90重量%、ポリフッ化ビニリデン(結着剤)を10重
量%の割合で混合し、これに1−メチル−2−ピロリド
ン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、
加圧成型、加熱処理して負極を調製した。そして、ポリ
プロピレン微多孔性フィルムのセパレータを用い、上記
の非水電解液を注入させてコイン電池(直径20mm、
厚さ3.2mm)を作製した。このコイン電池を用い
て、室温(20℃)下、0.8mAの定電流及び定電圧
で、終止電圧4.2Vまで5時間充電し、次に0.8m
Aの定電流下、終止電圧2.7Vまで放電し、この充放
電を繰り返した。初期充放電容量は、EC−DMC(1
/2)を非水電解液として用いた場合(比較例1)とほ
ぼ同等であり、60サイクル後の電池特性を測定したと
ころ、初期放電容量を100%としたときの放電容量維
持率は93.5%であった。また、低温特性も良好であ
った。コイン電池の作製条件および電池特性を表1に示
す。
[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] 80% by weight of LiCoO 2 (positive electrode active material), 10% by weight of acetylene black (conductive agent), and 10% by weight of polyvinylidene fluoride (binder). %, And a mixture of 1-methyl-2-pyrrolidone solvent added and mixed was applied onto an aluminum foil, dried, pressure-molded, and heat-treated to prepare a positive electrode. 90% by weight of natural graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) were mixed, 1-methyl-2-pyrrolidone solvent was added thereto, and the mixture was mixed on a copper foil. Apply to, dry
A negative electrode was prepared by pressure molding and heat treatment. Then, using a polypropylene microporous film separator, the above-mentioned non-aqueous electrolyte was injected and a coin battery (diameter 20 mm,
A thickness of 3.2 mm) was produced. Using this coin battery, it was charged at a constant current and a constant voltage of 0.8 mA at room temperature (20 ° C.) to a final voltage of 4.2 V for 5 hours, and then 0.8 m.
Under the constant current of A, the battery was discharged to a final voltage of 2.7 V, and this charging / discharging was repeated. The initial charge / discharge capacity is EC-DMC (1
/ 2) was used as a non-aqueous electrolyte (Comparative Example 1), and the battery characteristics after 60 cycles were measured. As a result, the discharge capacity retention ratio was 93 when the initial discharge capacity was 100%. It was 0.5%. The low temperature characteristics were also good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0024】実施例2 添加剤として、ビス(4−メトキシフェニル)ジスルフ
ィド〔X1、X2=メチル基〕を非水電解液に対して0.
05重量%使用したほかは実施例1と同様に非水電解液
を調製してコイン電池を作製し、60サイクル後の電池
特性を測定したところ、放電容量維持率は92.1%で
あった。コイン電池の作製条件および電池特性を表1に
示す。
Example 2 As an additive, bis (4-methoxyphenyl) disulfide [X 1 , X 2 = methyl group] was added to the non-aqueous electrolyte solution in an amount of 0.
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the amount of the used battery was 05% by weight, and a coin battery was prepared. After 60 cycles, the battery characteristics were measured. The discharge capacity retention rate was 92.1%. . Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0025】実施例3 添加剤として、ビス(4−メトキシフェニル)ジスルフ
ィド〔X1、X2=メチル基〕を非水電解液に対して0.
2重量%使用したほかは実施例1と同様に非水電解液を
調製してコイン電池を作製し、60サイクル後の電池特
性を測定したところ、放電容量維持率は92.4%であ
った。コイン電池の作製条件および電池特性を表1に示
す。
Example 3 As an additive, bis (4-methoxyphenyl) disulfide [X 1 , X 2 = methyl group] was added to the nonaqueous electrolytic solution in an amount of 0.
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 2% by weight was used, and a coin battery was prepared. After 60 cycles, the battery characteristics were measured. The discharge capacity retention rate was 92.4%. . Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0026】実施例4 添加剤として、ビス(4−アセトキシフェニル)ジスル
フィド〔X1、X2=アセチル基〕を非水電解液に対して
0.1重量%使用したほかは実施例1と同様に非水電解
液を調製してコイン電池を作製し、60サイクル後の電
池特性を測定したところ、放電容量維持率は91.2%
であった。コイン電池の作製条件および電池特性を表1
に示す。
Example 4 Same as Example 1 except that bis (4-acetoxyphenyl) disulfide [X 1 , X 2 = acetyl group] was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. A non-aqueous electrolyte solution was prepared to prepare a coin battery, and the battery characteristics after 60 cycles were measured. The discharge capacity retention rate was 91.2%.
Met. Table 1 shows the coin battery manufacturing conditions and battery characteristics.
Shown in.

【0027】実施例5 添加剤として、ビス(4−メタンスルホニルオキシフェ
ニル)ジスルフィド〔X1、X2=メタンスルホニル基〕
を非水電解液に対して0.1重量%使用したほかは実施
例1と同様に非水電解液を調製してコイン電池を作製
し、60サイクル後の電池特性を測定したところ、放電
容量維持率は92.9%であった。コイン電池の作製条
件および電池特性を表1に示す。
Example 5 As an additive, bis (4-methanesulfonyloxyphenyl) disulfide [X 1 , X 2 = methanesulfonyl group]
Was used in the same manner as in Example 1 except that 0.1% by weight was used with respect to the non-aqueous electrolytic solution to prepare a coin battery, and the battery characteristics after 60 cycles were measured. The maintenance rate was 92.9%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0028】実施例6 添加剤として、ビス(4−メトキシカルボニルオキシフ
ェニル)ジスルフィド〔X1、X2=メトキシカルボニル
基〕を非水電解液に対して0.1重量%使用したほかは
実施例1と同様に非水電解液を調製してコイン電池を作
製し、60サイクル後の電池特性を測定したところ、放
電容量維持率は92.7%であった。コイン電池の作製
条件および電池特性を表1に示す。
Example 6 Bis (4-methoxycarbonyloxyphenyl) disulfide [X 1 , X 2 = methoxycarbonyl group] was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. A non-aqueous electrolyte was prepared in the same manner as in No. 1 to prepare a coin battery, and the battery characteristics after 60 cycles were measured, whereupon the discharge capacity retention rate was 92.7%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0029】実施例7 添加剤として、ビス(4−フルオロフェニル)ジスルフ
ィド〔X3、X4=F〕を非水電解液に対して0.1重量
%使用したほかは実施例1と同様に非水電解液を調製し
てコイン電池を作製し、60サイクル後の電池特性を測
定したところ、放電容量維持率は92.8%であった。
コイン電池の作製条件および電池特性を表1に示す。
Example 7 Similar to Example 1 except that bis (4-fluorophenyl) disulfide [X 3 , X 4 = F] was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. When a non-aqueous electrolyte was prepared to prepare a coin battery and the battery characteristics after 60 cycles were measured, the discharge capacity retention rate was 92.8%.
Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0030】実施例8 添加剤として、ビス(4−クロロフェニル)ジスルフィ
ド〔X3、X4=Cl〕を非水電解液に対して0.1重量
%使用したほかは実施例1と同様に非水電解液を調製し
てコイン電池を作製し、60サイクル後の電池特性を測
定したところ、放電容量維持率は91.6%であった。
コイン電池の作製条件および電池特性を表1に示す。
Example 8 Similar to Example 1, except that bis (4-chlorophenyl) disulfide [X 3 , X 4 = Cl] was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. A water battery was prepared to prepare a coin battery, and the battery characteristics after 60 cycles were measured, whereupon the discharge capacity retention ratio was 91.6%.
Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0031】実施例9 添加剤として、ビス(4−トリフルオロメチルフェニ
ル)ジスルフィド〔X3、X4=CF3〕を非水電解液に
対して0.1重量%使用したほかは実施例1と同様に非
水電解液を調製してコイン電池を作製し、60サイクル
後の電池特性を測定したところ、放電容量維持率は9
2.5%であった。コイン電池の作製条件および電池特
性を表1に示す。
Example 9 Example 1 except that bis (4-trifluoromethylphenyl) disulfide [X 3 , X 4 = CF 3 ] was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. A non-aqueous electrolyte was prepared in the same manner as in 1. to produce a coin battery, and the battery characteristics after 60 cycles were measured.
It was 2.5%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0032】実施例10 EC:PC:DMC(容量比)=1:1:2の非水溶媒
を調製し、これにLiPF6を1Mの濃度になるように
溶解して非水電解液を調整した後、さらにビス(4−メ
トキシフェニル)ジスルフィド〔X1、X2=メチル基〕
を非水電解液に対して0.1重量%となるように加え
た。この非水電解液を使用して実施例1と同様にコイン
電池を作製し、電池特性を測定したところ、初期放電容
量はEC−DMC(容量比1/2)のみを非水電解液と
して用いた場合(比較例1)とほぼ同等であり、60サ
イクル後の電池特性を測定したところ、初期放電容量を
100%としたときの放電容量維持率は93.0%であ
った。また、低温特性も良好であった。コイン電池の作
製条件および電池特性を表1に示す。
Example 10 A non-aqueous solvent of EC: PC: DMC (volume ratio) = 1: 1: 2 was prepared, and LiPF 6 was dissolved therein to a concentration of 1 M to prepare a non-aqueous electrolytic solution. And then bis (4-methoxyphenyl) disulfide [X 1 , X 2 = methyl group]
Was added so as to be 0.1% by weight with respect to the non-aqueous electrolyte. Using this non-aqueous electrolyte, a coin battery was prepared in the same manner as in Example 1 and the battery characteristics were measured. As a result, the initial discharge capacity was EC-DMC (capacity ratio 1/2) only as the non-aqueous electrolyte. When the battery characteristics after 60 cycles were measured, the discharge capacity retention ratio was 93.0% when the initial discharge capacity was 100%. The low temperature characteristics were also good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0033】実施例11 負極活物質として、天然黒鉛に代えて人造黒鉛を使用し
たほかは実施例1と同様に非水電解液を調製してコイン
電池を作製し、60サイクル後の電池特性を測定したと
ころ、放電容量維持率は90.3%であった。コイン電
池の作製条件および電池特性を表1に示す。
Example 11 As a negative electrode active material, a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that artificial graphite was used in place of natural graphite to prepare a coin battery, and the battery characteristics after 60 cycles were evaluated. When measured, the discharge capacity retention rate was 90.3%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0034】実施例12 正極活物質として、LiCoO2に代えてLiMn24
を使用したほかは実施例1と同様に非水電解液を調製し
てコイン電池を作製し、60サイクル後の電池特性を測
定したところ、放電容量維持率は94.5%であった。
コイン電池の作製条件および電池特性を表1に示す。
Example 12 As a positive electrode active material, LiMn 2 O 4 was used instead of LiCoO 2.
A coin battery was prepared by preparing a non-aqueous electrolyte solution in the same manner as in Example 1 except that was used, and the battery characteristics after 60 cycles were measured. The discharge capacity retention rate was 94.5%.
Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0035】比較例1 EC:DMC(容量比)=1:2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解した。
このときジスルフィドは全く添加しなかった。この非水
電解液を使用して実施例1と同様にコイン電池を作製
し、電池特性を測定した。初期放電容量に対し、60サ
イクル後の放電容量維持率は83.8%であった。コイ
ン電池の作製条件および電池特性を表1に示す。
Comparative Example 1 A non-aqueous solvent of EC: DMC (volume ratio) = 1: 2 was prepared,
LiPF 6 was dissolved in this to a concentration of 1M.
At this time, disulfide was not added at all. Using this non-aqueous electrolytic solution, a coin battery was produced in the same manner as in Example 1 and the battery characteristics were measured. The discharge capacity retention ratio after 60 cycles was 83.8% with respect to the initial discharge capacity. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0036】比較例2 添加剤として、ジフェニルジスルフィド〔X3、X4=な
し〕を非水電解液に対して0.1重量%使用したほかは
実施例1と同様に非水電解液を調製してコイン電池を作
製し、60サイクル後の電池特性を測定したところ、放
電容量維持率は88.7%であった。コイン電池の作製
条件および電池特性を表1に示す。以上のように、本発
明の添加剤を含有した電解液を用いると、無添加の系に
比べ、サイクル特性が飛躍的に向上した。これは、充電
時に添加剤が正極上で酸化分解し、電池の可逆性を良好
にする被膜を形成するためであると考えられる。また、
本発明の添加剤は、ベンゼン環に置換基を含有していな
いジフェニルジスルフィド添加系に比べても、より良好
なサイクル特性が得られた。この理由としては、ベンゼ
ン環に酸素、あるいはハロゲンなどの非共有電子対を多
く持つ原子が置換することで、充電時にそれらの原子か
ら正極へ電子が流れ込み、よりスムーズな酸化反応が起
こるためであると思われる。また、サイクル特性だけで
なく、本発明の添加剤はジフェニルジスルフィドに比べ
電解液への溶解性が良好であった。これは、ベンゼン環
に置換基を有することで、極性が上がるためであると思
われる。さらに、本発明の添加剤はジスルフィド化合物
特有の悪臭が、ジフェニルジスルフィドに比べ、明らか
に少ない。これも、ベンゼン環上の置換基の影響である
と思われる。このように、本発明の添加剤は、ベンゼン
環状に置換基を有さないジフェニルジスルフィドに比
べ、サイクル特性だけでなく、電解液への溶解性、悪臭
の少なさなどの取り扱い上の面からも優位性を持つの
で、電解液の添加剤としてより優れたものであると言え
る。
Comparative Example 2 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that 0.1% by weight of diphenyldisulfide [X 3 , X 4 = none] was used as an additive with respect to the nonaqueous electrolytic solution. Then, a coin battery was produced, and the battery characteristics after 60 cycles were measured, whereupon the discharge capacity retention rate was 88.7%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery. As described above, when the electrolytic solution containing the additive of the present invention was used, the cycle characteristics were dramatically improved as compared with the system without addition. It is considered that this is because the additive is oxidatively decomposed on the positive electrode during charging and forms a film that improves the reversibility of the battery. Also,
With the additive of the present invention, even better cycle characteristics were obtained compared to the diphenyl disulfide addition system in which the benzene ring does not contain a substituent. The reason for this is that the benzene ring is replaced by an atom having many unshared electron pairs such as oxygen or halogen, and electrons flow from these atoms to the positive electrode during charging, resulting in a smoother oxidation reaction. I think that the. In addition to the cycle characteristics, the additive of the present invention had better solubility in an electrolytic solution than diphenyl disulfide. It is considered that this is because having a substituent on the benzene ring increases the polarity. Further, the additive of the present invention has less odor peculiar to the disulfide compound than the diphenyl disulfide. This is also likely to be due to the substituents on the benzene ring. As described above, the additive of the present invention has not only cycle characteristics but also solubility in an electrolytic solution and handling in terms of less bad odor as compared with diphenyl disulfide having no substituent in the benzene ring. Because of its superiority, it can be said that it is a better additive for the electrolyte.

【0037】なお、本発明は記載の実施例に限定され
ず、発明の趣旨から容易に類推可能な様々な組み合わせ
が可能である。特に、上記実施例の溶媒の組み合わせは
限定されるものではない。更には、上記実施例はコイン
電池に関するものであるが、本発明は円筒形、角柱形の
電池にも適用される。
The present invention is not limited to the embodiments described above, and various combinations that can be easily inferred from the spirit of the invention are possible. In particular, the combination of solvents in the above examples is not limited. Furthermore, although the above embodiments relate to coin batteries, the present invention is also applicable to cylindrical and prismatic batteries.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明によれば、電池のサイクル特性、
電気容量、保存特性などの電池特性に優れたリチウム二
次電池を提供することができる。
According to the present invention, the cycle characteristics of the battery,
A lithium secondary battery having excellent battery characteristics such as electric capacity and storage characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−320779(JP,A) 特開 平6−36797(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-7-320779 (JP, A) JP-A-6-36797 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非水溶媒に電解質が溶解されている非
水電解液において、該非水電解液中に下記式(I) 【化1】 (ただし、X1、X2はそれぞれ独立して炭素数1〜6の
アルキル基、炭素数2〜6のアルケニル基、炭素数2〜
6のアルキニル基、炭素数3〜6のシクロアルキル基、
アリール基、炭素数2〜7のアシル基、炭素数1〜7の
アルカンスルホニル基、炭素数6〜10のアリールスル
ホニル基、炭素数2〜7のエステル基を示す。)で表さ
れる置換基に酸素を含有したジスルフィド誘導体が0.
01〜5重量%含有されていることを特徴とするリチウ
ム二次電池用非水電解液。
1. A non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution has the following formula (I): (However, X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and 2 to 2 carbon atoms.
An alkynyl group having 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms,
An aryl group, an acyl group having 2 to 7 carbon atoms, an alkanesulfonyl group having 1 to 7 carbon atoms, an arylsulfonyl group having 6 to 10 carbon atoms, and an ester group having 2 to 7 carbon atoms are shown. ) Is a disulfide derivative containing oxygen as a substituent.
Lithium, characterized in that 01-5 are contained wt%
Non-aqueous electrolyte for secondary batteries .
【請求項2】 非水溶媒に電解質が溶解されている非
水電解液において、該非水電解液中に下記式(II) 【化2】 (ただし、X3、X4はそれぞれ独立してF、Cl、B
r、I、CF3、CCl3、CBr3を示す。)で表され
る置換基にハロゲンを含有したジスルフィド誘導体が
0.01〜5重量%含有されていることを特徴とする
チウム二次電池用非水電解液。
2. A non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution has the following formula (II): (However, X 3 , X 4 are independently F, Cl, B
r, I, CF 3 , CCl 3 , and CBr 3 are shown. Li that) disulfide derivatives containing a halogen substituent represented by is characterized in that it is 0.01 to 5 wt%
A non-aqueous electrolyte for a rechargeable lithium battery .
【請求項3】 正極、負極および非水溶媒に電解質が
溶解されている非水電解液からなるリチウム二次電池に
おいて、該非水電解液中に下記式(I) 【化3】 (ただし、X1、X2はそれぞれ独立して炭素数1〜6の
アルキル基、炭素数2〜6のアルケニル基、炭素数2〜
6のアルキニル基、炭素数3〜6のシクロアルキル基、
アリール基、炭素数2〜7のアシル基、炭素数1〜7の
アルカンスルホニル基、炭素数6〜10のアリールスル
ホニル基、炭素数2〜7のエステル基を示す。)で表さ
れる置換基に酸素を含有したジスルフィド誘導体が0.
01〜5重量%含有されていることを特徴とするリチウ
ム二次電池。
3. A lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution has the following formula (I): (However, X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and 2 to 2 carbon atoms.
An alkynyl group having 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms,
An aryl group, an acyl group having 2 to 7 carbon atoms, an alkanesulfonyl group having 1 to 7 carbon atoms, an arylsulfonyl group having 6 to 10 carbon atoms, and an ester group having 2 to 7 carbon atoms are shown. ) Is a disulfide derivative containing oxygen as a substituent.
A lithium secondary battery characterized by being contained in an amount of 01 to 5% by weight.
【請求項4】 正極、負極および非水溶媒に電解質が
溶解されている非水電解液からなるリチウム二次電池に
おいて、該非水電解液中に下記式(II) 【化4】 (ただし、X3、X4はそれぞれ独立してF、Cl、B
r、I、CF3、CCl3、CBr3を示す。)で表され
る置換基にハロゲンを含有したジスルフィド誘導体が
0.01〜5重量%含有されていることを特徴とするリ
チウム二次電池。
4. A lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution has the following formula (II): (However, X 3 , X 4 are independently F, Cl, B
r, I, CF 3 , CCl 3 , and CBr 3 are shown. ) A lithium secondary battery containing 0.01 to 5% by weight of a disulfide derivative containing a halogen as a substituent.
JP21970899A 1999-08-03 1999-08-03 Nonaqueous electrolyte and lithium secondary battery using the same Expired - Lifetime JP3444243B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21970899A JP3444243B2 (en) 1999-08-03 1999-08-03 Nonaqueous electrolyte and lithium secondary battery using the same
CNB00129234XA CN1193450C (en) 1999-08-03 2000-08-03 Non-water secondary cell with high discharge capacitance
US10/021,130 US6866966B2 (en) 1999-08-03 2001-10-22 Non-aqueous secondary battery having enhanced discharge capacity retention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21970899A JP3444243B2 (en) 1999-08-03 1999-08-03 Nonaqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2001052735A JP2001052735A (en) 2001-02-23
JP3444243B2 true JP3444243B2 (en) 2003-09-08

Family

ID=16739732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21970899A Expired - Lifetime JP3444243B2 (en) 1999-08-03 1999-08-03 Nonaqueous electrolyte and lithium secondary battery using the same

Country Status (2)

Country Link
JP (1) JP3444243B2 (en)
CN (1) CN1193450C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866966B2 (en) * 1999-08-03 2005-03-15 Ube Industries, Ltd. Non-aqueous secondary battery having enhanced discharge capacity retention

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036206A1 (en) * 1999-11-12 2001-05-25 Fargo Electronics, Inc. Thermal printhead compensation
JP4974404B2 (en) * 2000-07-10 2012-07-11 日立マクセルエナジー株式会社 Non-aqueous secondary battery
EP1199766B1 (en) * 2000-10-20 2008-05-28 Ube Industries, Ltd. Non-aqueous secondary battery having enhanced discharge capacity retention
KR100558842B1 (en) * 2001-05-16 2006-03-10 에스케이씨 주식회사 Organic electrolytic solution and lithium battery adopting the same
KR100558846B1 (en) * 2003-08-19 2006-03-10 에스케이씨 주식회사 Electrolyte composition, lithium battery using the same and preparing method therefor
KR20050096401A (en) 2004-03-30 2005-10-06 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
JP5092232B2 (en) * 2005-12-14 2012-12-05 株式会社Gsユアサ Non-aqueous electrolyte battery
JP5219303B2 (en) * 2010-04-14 2013-06-26 日立マクセル株式会社 Non-aqueous secondary battery
WO2013005828A1 (en) 2011-07-07 2013-01-10 住友精化株式会社 Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
JP6024387B2 (en) * 2012-10-26 2016-11-16 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
CN104205472B (en) * 2012-03-30 2017-04-12 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte cell using same
US20170117588A1 (en) 2014-03-28 2017-04-27 Sumitomo Seika Chemicals Co., Ltd. Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
PL3349290T3 (en) 2015-09-09 2024-04-02 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
KR102592773B1 (en) 2015-11-06 2023-10-23 스미토모 세이카 가부시키가이샤 Additives for non-aqueous electrolytes, non-aqueous electrolytes, and power storage devices
CN109962290B (en) * 2017-12-25 2020-12-11 张家港市国泰华荣化工新材料有限公司 Lithium battery electrolyte and lithium battery
CN108736067B (en) * 2018-05-28 2020-08-14 合肥国轩高科动力能源有限公司 Lithium ion battery electrolyte for improving flatulence and cycle performance under high voltage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636797A (en) * 1992-07-15 1994-02-10 Fuji Photo Film Co Ltd Lithium secondary battery
JPH07320779A (en) * 1994-05-20 1995-12-08 Sanyo Electric Co Ltd Nonaqueous electrolytic battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866966B2 (en) * 1999-08-03 2005-03-15 Ube Industries, Ltd. Non-aqueous secondary battery having enhanced discharge capacity retention

Also Published As

Publication number Publication date
JP2001052735A (en) 2001-02-23
CN1193450C (en) 2005-03-16
CN1285622A (en) 2001-02-28

Similar Documents

Publication Publication Date Title
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3823683B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3951486B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP3444243B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2001313071A (en) Nonaqueous electrolyte and lithium secondary cell using it
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4193295B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JPH11273724A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JPH11273725A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using it
JP4423785B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4423781B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2000195546A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it
JP4432397B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2001023689A (en) Nonaqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3444243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term