JP4075180B2 - Nonaqueous electrolyte and lithium secondary battery using the same - Google Patents

Nonaqueous electrolyte and lithium secondary battery using the same Download PDF

Info

Publication number
JP4075180B2
JP4075180B2 JP00498199A JP498199A JP4075180B2 JP 4075180 B2 JP4075180 B2 JP 4075180B2 JP 00498199 A JP00498199 A JP 00498199A JP 498199 A JP498199 A JP 498199A JP 4075180 B2 JP4075180 B2 JP 4075180B2
Authority
JP
Japan
Prior art keywords
battery
electrolyte
lithium secondary
secondary battery
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00498199A
Other languages
Japanese (ja)
Other versions
JP2000208166A (en
Inventor
俊一 浜本
浩司 安部
勉 高井
保男 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP00498199A priority Critical patent/JP4075180B2/en
Publication of JP2000208166A publication Critical patent/JP2000208166A/en
Application granted granted Critical
Publication of JP4075180B2 publication Critical patent/JP4075180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池のサイクル特性や電気容量、保存特性などの電池特性にも優れたリチウム二次電池を提供することができる新規なリチウム電池用非水電解液、およびそれを用いたリチウム二次電池に関する。
【0002】
【従来の技術】
近年、リチウム二次電池は小型電子機器などの駆動用電源として広く使用されている。リチウム二次電池は、主に正極、非水電解液および負極から構成されており、特に、LiCoO2などのリチウム複合酸化物を正極とし、炭素材料又はリチウム金属を負極としたリチウム二次電池が好適に使用されている。そして、そのリチウム二次電池用の電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などのカーボネート類が好適に使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、電池のサイクル特性および電気容量などの電池特性について、さらに優れた特性を有する二次電池が求められている。
リチウム二次電池の電解液に使用される非水溶媒としては、EC、PC等の高誘電率溶媒が好適に使用されているが、これら高誘電率溶媒単独では粘度が高く十分なイオン伝導度を得ることができないため、一般にはジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)等の低粘度溶媒を適当な配合比で混合し、できるだけ高い導電率が得られるように電解液を調製している。
しかし、負極として例えば天然黒鉛や人造黒鉛などの高結晶化した炭素材料を用いたリチウム二次電池は、電解液が負極で分解して不可逆容量が増大したり、場合によっては炭素材料の剥離が起こることがある。この不可逆容量の増大や炭素材料の剥離は、電解液中の溶媒が充電時に分解することにより起こるものであり、炭素材料と電解液との界面における溶媒の電気化学的還元に起因するものである。中でも、融点が低く(−55℃)誘電率の高いPCは、低温においても高い電気伝導性を有するが、黒鉛負極を用いる場合にはPCの分解が起こってリチウム二次電池用には使用できないという問題点があった。一方、ECは充放電を繰り返す間に一部分解が起こり、電池性能の低下が生じる。また、融点が38℃であるため、低温で使用した際に電解液が凝固して電気容量が得られないという問題点があった。このため、これらPC系、あるいはEC系電解液を用いた場合には、電池のサイクル特性および電気容量などの電池特性は必ずしも満足なものではないのが現状である。
【0004】
本発明は、前記のようなリチウム二次電池用電解液に関する課題を解決し、電池のサイクル特性に優れ、さらに電気容量や充電状態での保存特性などの電池特性にも優れたリチウム二次電池を構成することができるリチウム二次電池用の電解液、およびそれを用いたリチウム二次電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意検討を重ねた結果、ECあるいはPCの代わりに一般式(I)で表されるようなグリセリンカーボネート誘導体を使用することで上記課題が達成されることを見いだした。すなわち、グリセリンカーボネート誘導体は、誘電率が高く、融点が低く、しかも黒鉛負極上でも分解しないので、従来の高誘電率溶媒に比べて優れた特性を示す。本発明は、正極と炭素材料を含む負極および非水溶媒に電解質が溶解されている非水電解液からなるリチウム二次電池において、該非水電解液中に下記一般式(I)
【化3】

Figure 0004075180
(式中、Rは炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。)で表されるグリセリンカーボネート誘導体が非水溶媒の容量に対し5〜60容量%の範囲で含有されていることを特徴とするリチウム二次電池に関する。
【0006】
また、本発明は、正極と炭素材料を含む負極および非水溶媒に電解質が溶解されている非水電解液からなるリチウム二次電池用電解液において、該非水電解液中に下記一般式(I)
【化4】
Figure 0004075180
(式中、Rは炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。)で表されるグリセリンカーボネート誘導体が非水溶媒の容量に対し5〜60容量%の範囲で含有されていることを特徴とするリチウム二次電池用電解液に関する。
【0007】
電解液中に含有される前記一般式(I)で表されるグリセリンカーボネート誘導体は、充電の際に、負極である炭素材料表面で一部還元され、不働態皮膜を形成する役割を有する。このように、天然黒鉛や人造黒鉛などの活性で高結晶化した炭素材料を不働態皮膜で被覆することにより、電解液の分解が抑制され、電池の可逆性を損なうことなく正常な充放電が繰り返されるものと考えられる。
【0008】
【発明の実施の形態】
非水溶媒に電解質が溶解されている電解液に含有される前記一般式(I)で表されるグリセリンカーボネート誘導体において、Rはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような炭素数1〜6のアルキル基が好ましい。アルキル基はイソプロピル基、イソブチル基、イソペンチル基のような分枝アルキル基でもよく、シクロプロピル基、シクロヘキシル基のようなシクロアルキル基でもよい。また、フェニル基、p−トリル基などのアリール基でもよい。
【0009】
前記一般式(I)で表されるグリセリンカーボネート誘導体の具体例としては、例えば、4−アセトキシメチル−1,3−ジオキソラン−2−オン〔R=メチル基〕、4−プロピオニルオキシメチル−1,3−ジオキソラン−2−オン〔R=エチル基〕、4−ブチリルオキシメチル−1,3−ジオキソラン−2−オン〔R=n−プロピル基〕、4−イソブチリルオキシメチル−1,3−ジオキソラン−2−オン〔R=i−プロピル基〕、4−ピバロイルオキシメチル−1,3−ジオキソラン−2−オン〔R=t−ブチル基〕、4−シクロヘキサンカルボニルオキシメチル−1,3−ジオキソラン−2−オン〔R=シクロヘキシル基〕、4−ベンゾイルオキシメチル−1,3−ジオキソラン−2−オン〔R=フェニル基〕、4−p−トルオイルオキシメチル−1,3−ジオキソラン−2−オン〔R=p−トリル基〕などが挙げられる。
【0010】
前記一般式(I)で表されるグリセリンカーボネート誘導体の含有量は、過度に多いと、電解液の粘度が高すぎて十分な電池特性が得られず、また、過度に少ないと、十分な被膜が形成されず負極表面における電解液の分解を抑制できないので、非水溶媒の容量に対して5〜60容量%、特に10〜50容量%の範囲が好ましい。
【0011】
本発明でグリセリンカーボネート誘導体と共に使用される非水溶媒として、低粘度溶媒としては、例えば、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート類、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンなどのエーテル類、γ−ブチロラクトンなどのラクトン類、アセトニトリルなどのニトリル類、プロピオン酸メチルなどのエステル類、ジメチルホルムアミドなどのアミド類が挙げられる。これらの低粘度溶媒は1種類で使用してもよく、また2種類以上組み合わせて使用してもよい。また、高誘電率溶媒であるECやPCが、非水溶媒中に混合されていてもよい。
【0012】
本発明で使用される電解質としては、例えば、LiPF6、LiBF4、LiClO4、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33などが挙げられる。これらの電解質は、1種類で使用してもよく、2種類以上組み合わせて使用してもよい。これらの電解質は、前記の非水溶媒に通常0.1〜3M、好ましくは0.5〜1.5Mの濃度で溶解されて使用される。
【0013】
本発明の電解液は、例えば、前記一般式(I)で表されるグリセリンカーボネート誘導体と前記の低粘度溶媒を混合し、これに前記の電解質を溶解することにより得られる。
【0014】
本発明の電解液は、リチウム二次電池の構成部材として使用される。二次電池を構成する電解液以外の構成部材については特に限定されず、従来使用されている種々の構成部材を使用できる。
【0015】
例えば、正極材料(正極活物質)としてはコバルト、マンガン、ニッケル、クロム、鉄およびバナジウムからなる群より選ばれる少なくとも1種類の金属とリチウムとの複合金属酸化物が使用される。このような複合金属酸化物としては、例えば、LiCoO2、LiMn24、LiNiO2などが挙げられる。
【0016】
正極は、前記の正極材料をアセチレンブラック、カーボンブラックなどの導電剤およびポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などの結着剤と混練して正極合剤とした後、この正極材料を集電体としてのアルミニウムやステンレス製の箔やラス板に塗布して、乾燥、加圧成型後、50℃〜250℃程度の温度で2時間程度真空下で加熱処理することにより作製される。
【0017】
負極活物質としては、リチウム金属、リチウム合金、およびリチウムを吸蔵、放出可能な炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊維、〕や複合スズ酸化物などの物質が使用される。特に、格子面(002)の面間隔(d002)が0.335〜0.340nm(ナノメーター)である黒鉛型結晶構造を有する炭素材料を使用することが好ましい。なお、炭素材料のような粉末材料はエチレンプロピレンジエンターポリマー(EPDM)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などの結着剤と混練して負極合剤として使用される。
【0018】
リチウム二次電池の構造は特に限定されるものではなく、正極、負極および単層又は複層のセパレータを有するコイン型電池、さらに、正極、負極およびロール状のセパレータを有する円筒型電池や角型電池などが一例として挙げられる。なお、セパレータとしては公知のポリオレフィンの微多孔膜、織布、不織布などが使用される。
【0019】
【実施例】
次に、実施例および比較例を挙げて、本発明を具体的に説明する。なお、実施例5および6は参考例である。
実施例1
〔電解液の調整〕4−アセトキシメチル−1,3−ジオキソラン−2−オン〔R=メチル基〕:DMC(容量比)=33:67の非水溶媒を調整し、これにLiPFを1Mの濃度になるように溶解して電解液を調製した。
【0020】
〔リチウム二次電池の作製および電池特性の測定〕
LiCoO2(正極活物質)を80重量%、アセチレンブラック(導電剤)を10重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドンを加えてスラリー状にしてアルミ箔上に塗布した。その後、これを乾燥し、加圧成型して正極を調製した。天然黒鉛(負極活物質)を90重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドンを加えてスラリー状にして銅箔上に塗布した。その後、これを乾燥し、加圧成型して負極を調製した。そして、ポリプロピレン微多孔性フィルムのセパレータを用い、上記の電解液を含浸させてコイン電池(直径20mm、厚さ3.2mm)を作製した。
このコイン電池を用いて、室温(20℃)下、0.8mAの定電流定電圧で、終止電圧4.2Vまで5時間充電し、次に0.8mAの定電流下、終止電圧2.7Vまで放電し、この充放電を繰り返した。サイクルを重ねることによる容量低下は、1M LiPF6+EC/DMC(1/2)を電解液として用いた場合(比較例2)よりも少なく、10サイクルから100サイクルにおける放電容量維持率は、79.5%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。なお、表1中、電解液組成の欄におけるDGCはグリセリンカーボネート誘導体を表す。
【0021】
実施例2
グリセリンカーボネート誘導体として、4−プロピオニルオキシメチル−1,3−ジオキソラン−2−オン〔R=エチル基〕を使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は80.2%であった。コイン電池の作製条件および電池特性を表1に示す。
【0022】
実施例3
グリセリンカーボネート誘導体として、4−イソブチリルオキシメチル−1,3−ジオキソラン−2−オン〔R=i−プロピル基〕を使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は80.9%であった。コイン電池の作製条件および電池特性を表1に示す。
【0023】
実施例4
グリセリンカーボネート誘導体として、4−シクロヘキサンカルボニルオキシメチル−1,3−ジオキソラン−2−オン〔R=シクロヘキシル基〕を使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は78.7%であった。コイン電池の作製条件および電池特性を表1に示す。
【0024】
実施例5
グリセリンカーボネート誘導体として、4−アクリロイルオキシメチル−1,3−ジオキソラン−2−オン〔R=ビニル基〕を使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は77.9%であった。コイン電池の作製条件および電池特性を表1に示す。
【0025】
実施例6
グリセリンカーボネート誘導体として、4−プロピオロイルオキシメチル−1,3−ジオキソラン−2−オン〔R=エチニル基〕を使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は81.3%であった。コイン電池の作製条件および電池特性を表1に示す。
【0026】
実施例7
グリセリンカーボネート誘導体として、4−ベンゾイルオキシメチル−1,3−ジオキソラン−2−オン〔R=フェニル基〕を使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は78.8%であった。コイン電池の作製条件および電池特性を表1に示す。
【0027】
実施例8
4−アセトキシメチル−1,3−ジオキソラン−2−オン:DMC(容量比)=10:90にしたほかは、実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は77.4%であった。コイン電池の作製条件および電池特性を表1に示す。
【0028】
実施例9
4−アセトキシメチル−1,3−ジオキソラン−2−オン:DMC(容量比)=50:50にしたほかは、実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は78.0%であった。コイン電池の作製条件および電池特性を表1に示す。
【0029】
実施例10
非水溶媒として、4−アセトキシメチル−1,3−ジオキソラン−2−オン:DEC(容量比)=33:67を使用したほかは、実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は80.7%であった。コイン電池の作製条件および電池特性を表1に示す。
【0030】
実施例11
非水溶媒として、4−アセトキシメチル−1,3−ジオキソラン−2−オン:THF(容量比)=33:67を使用したほかは、実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は75.6%であった。コイン電池の作製条件および電池特性を表1に示す。
【0031】
実施例12
負極活物質として人造黒鉛(大阪ガス(株)製、MCMB6−28)を使用したほかは、実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は77.1%であった。コイン電池の作製条件および電池特性を表1に示す。
【0032】
実施例13
正極活物質としてスピネル型LiMn24を使用したほかは、実施例1と同様に電解液を調製してコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は78.1%であった。コイン電池の作製条件および電池特性を表1に示す。
【0033】
比較例1
PC:DMC(容量比)=33:67の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解した。この電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定したところ、初回充電寺にPCの分解が起こり全く放電できなかった。初回充電後の電池を解体して観察した結果、黒鉛負極に剥離が認められた。コイン電池の作製条件および電池特性を表1に示す。
【0034】
比較例2
EC:DMC(容量比)=50:50の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解した。この電解液を使用して実施例1と同様にコイン電池を作製し、10サイクルから100サイクルにおける放電容量維持率を測定したところ、放電容量維持率は60.0%であった。コイン電池の作製条件および電池特性を表1に示す。
【0035】
【表1】
Figure 0004075180
【0036】
なお、本発明は記載の実施例に限定されず、発明の趣旨から容易に類推可能な様々な組み合わせが可能である。特に、上記実施例の溶媒の組み合わせは限定されるものではない。更には、上記実施例はコイン電池に関するものであるが、本発明は円筒形、角柱形の電池にも適用される。
【0037】
【発明の効果】
本発明によれば、電池のサイクル特性、電気容量や充電保存特性などの電池特性に優れたリチウム二次電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a novel non-aqueous electrolyte for lithium batteries that can provide a lithium secondary battery excellent in battery characteristics such as battery cycle characteristics, electric capacity, and storage characteristics, and a lithium secondary battery using the same. It relates to batteries.
[0002]
[Prior art]
In recent years, lithium secondary batteries have been widely used as driving power sources for small electronic devices and the like. A lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode is used. It is preferably used. As the electrolyte for the lithium secondary battery, carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) are preferably used.
[0003]
[Problems to be solved by the invention]
However, there is a demand for a secondary battery having more excellent battery characteristics such as battery cycle characteristics and electric capacity.
As the non-aqueous solvent used in the electrolyte of the lithium secondary battery, high dielectric constant solvents such as EC and PC are preferably used, but these high dielectric constant solvents alone have high viscosity and sufficient ionic conductivity. In general, a low-viscosity solvent such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), or diethyl carbonate (DEC) is mixed at an appropriate blending ratio so that the highest possible conductivity can be obtained. An electrolyte is being prepared.
However, a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as the negative electrode increases the irreversible capacity due to the electrolytic solution being decomposed at the negative electrode, and in some cases, the carbon material may be peeled off. May happen. This increase in irreversible capacity and carbon material peeling are caused by decomposition of the solvent in the electrolyte during charging, and are caused by electrochemical reduction of the solvent at the interface between the carbon material and the electrolyte. . Among them, PC having a low melting point (−55 ° C.) and a high dielectric constant has high electrical conductivity even at a low temperature. However, when a graphite negative electrode is used, the PC is decomposed and cannot be used for a lithium secondary battery. There was a problem. On the other hand, EC is partially decomposed during repeated charging and discharging, resulting in a decrease in battery performance. In addition, since the melting point is 38 ° C., there is a problem that the electrolytic solution is solidified when used at a low temperature and the electric capacity cannot be obtained. For this reason, when these PC-type or EC-type electrolytes are used, the battery characteristics such as battery cycle characteristics and electric capacity are not always satisfactory.
[0004]
The present invention solves the above-described problems relating to the electrolyte for a lithium secondary battery, is excellent in cycle characteristics of the battery, and further excellent in battery characteristics such as electric capacity and storage characteristics in a charged state. It is an object of the present invention to provide an electrolytic solution for a lithium secondary battery that can constitute the battery and a lithium secondary battery using the same.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have achieved the above problems by using a glycerin carbonate derivative represented by the general formula (I) instead of EC or PC. I found out that That is, the glycerin carbonate derivative has a high dielectric constant, a low melting point, and does not decompose even on the graphite negative electrode, and thus exhibits superior characteristics as compared with conventional high dielectric constant solvents. The present invention relates to a lithium secondary battery comprising a positive electrode, a negative electrode including a carbon material, and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent.
[Chemical 3]
Figure 0004075180
(Wherein, R represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having a carbon number of 3-6, an aryl group.) 5-60 volume glycerol carbonate derivative to volume of the non-aqueous solvent represented by The present invention relates to a lithium secondary battery characterized by being contained in a range of% .
[0006]
The present invention also provides an electrolyte for a lithium secondary battery comprising a positive electrode, a negative electrode including a carbon material, and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent. )
[Formula 4]
Figure 0004075180
(In the formula, R represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group.) The glycerol carbonate derivative represented by 5 to 60 volumes with respect to the capacity of the nonaqueous solvent. % Of the electrolyte solution for lithium secondary batteries .
[0007]
The glycerin carbonate derivative represented by the above general formula (I) contained in the electrolytic solution has a role of forming a passive film by being partially reduced on the surface of the carbon material as the negative electrode during charging. Thus, by covering the active and highly crystallized carbon material such as natural graphite or artificial graphite with a passive film, the decomposition of the electrolyte is suppressed, and normal charge and discharge can be performed without impairing the reversibility of the battery. It is considered to be repeated.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the glycerin carbonate derivative represented by the general formula (I) contained in the electrolytic solution in which the electrolyte is dissolved in the nonaqueous solvent, R is a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group. An alkyl group having 1 to 6 carbon atoms is preferred. Alkyl group is an isopropyl group, an isobutyl group may be a branched alkyl group such as an isopentyl group, a cyclopropyl group or a cycloalkyl group such as cyclohexyl group. Also, a phenyl group, or an aryl group such as p- tolyl.
[0009]
Specific examples of the glycerol carbonate derivative represented by the general formula (I) include, for example, 4-acetoxymethyl-1,3-dioxolan-2-one [R = methyl group], 4-propionyloxymethyl-1, 3-dioxolan-2-one [R = ethyl group], 4-butyryloxymethyl-1,3-dioxolan-2-one [R = n-propyl group], 4-isobutyryloxymethyl-1,3 -Dioxolan-2-one [R = i-propyl group], 4-pivaloyloxymethyl-1,3-dioxolan-2-one [R = t-butyl group], 4-cyclohexanecarbonyloxymethyl-1, 3-dioxolan-2-one [R = cyclohexyl], 4-base emissions benzoyloxy-1,3-dioxolan-2-one [R = phenyl group], 4-p-toluoyl And oxymethyl-1,3-dioxolan-2-one [R = p-tolyl group].
[0010]
When the content of the glycerin carbonate derivative represented by the general formula (I) is excessively large, the viscosity of the electrolytic solution is too high to obtain sufficient battery characteristics. Is not formed, and decomposition of the electrolyte solution on the negative electrode surface cannot be suppressed. Therefore, a range of 5 to 60% by volume, particularly 10 to 50% by volume is preferable with respect to the volume of the nonaqueous solvent.
[0011]
As the non-aqueous solvent used together with the glycerin carbonate derivative in the present invention, examples of the low viscosity solvent include chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC) and diethyl carbonate (DEC), tetrahydrofuran ( THF), 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethers such as 1,2-dibutoxyethane, lactones such as γ-butyrolactone, acetonitrile Nitriles such as, esters such as methyl propionate, and amides such as dimethylformamide. These low viscosity solvents may be used alone or in combination of two or more. Moreover, EC and PC which are high dielectric constant solvents may be mixed in a non-aqueous solvent.
[0012]
Examples of the electrolyte used in the present invention include LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 and the like. Is mentioned. These electrolytes may be used alone or in combination of two or more. These electrolytes are used by being dissolved in the non-aqueous solvent usually at a concentration of 0.1 to 3M, preferably 0.5 to 1.5M.
[0013]
The electrolytic solution of the present invention can be obtained, for example, by mixing the glycerin carbonate derivative represented by the general formula (I) and the low-viscosity solvent and dissolving the electrolyte therein.
[0014]
The electrolytic solution of the present invention is used as a constituent member of a lithium secondary battery. The constituent members other than the electrolytic solution constituting the secondary battery are not particularly limited, and various conventionally used constituent members can be used.
[0015]
For example, as the positive electrode material (positive electrode active material), a composite metal oxide of at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium and lithium is used. Examples of such a composite metal oxide include LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 .
[0016]
The positive electrode is prepared by kneading the positive electrode material with a conductive agent such as acetylene black or carbon black and a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) to form a positive electrode mixture. It is made by applying the material to an aluminum or stainless steel foil or lath plate as a current collector, drying, press molding, and then heat-treating under vacuum at a temperature of about 50 ° C to 250 ° C for about 2 hours. The
[0017]
Examples of the negative electrode active material include lithium metal, lithium alloy, and carbon materials capable of occluding and releasing lithium (pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustors, carbon Substances such as fiber,] and composite tin oxide are used. In particular, it is preferable to use a carbon material having a graphite-type crystal structure in which the lattice spacing ( 002 ) has an interplanar spacing (d 002 ) of 0.335 to 0.340 nm (nanometer). A powder material such as a carbon material is kneaded with a binder such as ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (PVDF) and used as a negative electrode mixture.
[0018]
The structure of the lithium secondary battery is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a cylindrical battery or a square type having a positive electrode, a negative electrode, and a roll separator. An example is a battery. A known polyolefin microporous film, woven fabric, non-woven fabric or the like is used as the separator.
[0019]
【Example】
Next, an Example and a comparative example are given and this invention is demonstrated concretely. Examples 5 and 6 are reference examples.
Example 1
[Preparation of electrolytic solution] 4-acetoxymethyl-1,3-dioxolan-2-one [R = methyl group]: DMC (volume ratio) = 33: 67 non-aqueous solvent was prepared, and LiPF 6 was added to 1M. An electrolytic solution was prepared by dissolving to a concentration of.
[0020]
[Production of lithium secondary battery and measurement of battery characteristics]
80% by weight of LiCoO 2 (positive electrode active material), 10% by weight of acetylene black (conductive agent), and 10% by weight of polyvinylidene fluoride (binder) are mixed, and this is mixed with 1-methyl-2-pyrrolidone. Was added to form a slurry and coated on an aluminum foil. Then, this was dried and pressure-molded to prepare a positive electrode. 90% by weight of natural graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) are mixed, and 1-methyl-2-pyrrolidone is added to this to form a slurry on a copper foil. Applied. Then, this was dried and pressure-molded to prepare a negative electrode. And the coin battery (diameter 20mm, thickness 3.2mm) was produced by impregnating said electrolyte solution using the separator of a polypropylene microporous film.
Using this coin battery, it was charged at a constant current constant voltage of 0.8 mA at room temperature (20 ° C.) for 5 hours to a final voltage of 4.2 V, and then at a constant current of 0.8 mA, a final voltage of 2.7 V. This charge and discharge was repeated. The capacity reduction due to repeated cycles is less than that in the case of using 1M LiPF 6 + EC / DMC (1/2) as the electrolyte (Comparative Example 2), and the discharge capacity retention rate from 10 cycles to 100 cycles is 79. It was 5%. Also, the low temperature characteristics were good. The production conditions and battery characteristics of the coin battery are shown in Table 1. In Table 1, DGC in the column of the electrolytic solution composition represents a glycerol carbonate derivative.
[0021]
Example 2
An electrolyte solution was prepared in the same manner as in Example 1 except that 4-propionyloxymethyl-1,3-dioxolan-2-one [R = ethyl group] was used as the glycerin carbonate derivative, and a coin battery was prepared. When the discharge capacity retention rate from 100 cycles to 100 cycles was measured, the discharge capacity retention rate was 80.2%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0022]
Example 3
An electrolyte solution was prepared in the same manner as in Example 1 except that 4-isobutyryloxymethyl-1,3-dioxolan-2-one [R = i-propyl group] was used as the glycerin carbonate derivative to prepare a coin battery. When the discharge capacity retention rate was measured from 10 cycles to 100 cycles, the discharge capacity retention rate was 80.9%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0023]
Example 4
A coin battery was prepared by preparing an electrolytic solution in the same manner as in Example 1 except that 4-cyclohexanecarbonyloxymethyl-1,3-dioxolan-2-one [R = cyclohexyl group] was used as the glycerin carbonate derivative. When the discharge capacity retention ratio from 10 cycles to 100 cycles was measured, the discharge capacity retention ratio was 78.7%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0024]
Example 5
An electrolyte solution was prepared in the same manner as in Example 1 except that 4-acryloyloxymethyl-1,3-dioxolan-2-one [R = vinyl group] was used as the glycerin carbonate derivative, and a coin battery was prepared. When the discharge capacity retention ratio from 100 cycles to 100 cycles was measured, the discharge capacity retention ratio was 77.9%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0025]
Example 6
A coin battery was prepared by preparing an electrolyte solution in the same manner as in Example 1 except that 4-propioroyloxymethyl-1,3-dioxolan-2-one [R = ethynyl group] was used as the glycerin carbonate derivative. When the discharge capacity retention ratio from 10 cycles to 100 cycles was measured, the discharge capacity retention ratio was 81.3%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0026]
Example 7
An electrolyte solution was prepared in the same manner as in Example 1 except that 4-benzoyloxymethyl-1,3-dioxolan-2-one [R = phenyl group] was used as the glycerin carbonate derivative, and a coin battery was prepared. When the discharge capacity retention ratio from 100 cycles to 100 cycles was measured, the discharge capacity retention ratio was 78.8%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0027]
Example 8
An electrolyte solution was prepared in the same manner as in Example 1 except that 4-acetoxymethyl-1,3-dioxolan-2-one: DMC (capacity ratio) was set to 10:90. When the discharge capacity retention ratio in 100 cycles was measured, the discharge capacity retention ratio was 77.4%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0028]
Example 9
An electrolyte solution was prepared in the same manner as in Example 1 except that 4-acetoxymethyl-1,3-dioxolan-2-one: DMC (capacity ratio) was set to 50:50. When the discharge capacity retention ratio in 100 cycles was measured, the discharge capacity retention ratio was 78.0%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0029]
Example 10
An electrolyte solution was prepared in the same manner as in Example 1 except that 4-acetoxymethyl-1,3-dioxolan-2-one: DEC (capacity ratio) = 33: 67 was used as the nonaqueous solvent. When the discharge capacity retention rate was measured from 10 cycles to 100 cycles, the discharge capacity retention rate was 80.7%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0030]
Example 11
An electrolyte solution was prepared in the same manner as in Example 1 except that 4-acetoxymethyl-1,3-dioxolan-2-one: THF (volume ratio) = 33: 67 was used as the non-aqueous solvent. When the discharge capacity retention rate was measured from 10 cycles to 100 cycles, the discharge capacity retention rate was 75.6%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0031]
Example 12
A coin battery was prepared by preparing an electrolyte solution in the same manner as in Example 1 except that artificial graphite (MCMB6-28, manufactured by Osaka Gas Co., Ltd.) was used as the negative electrode active material, and the discharge capacity at 10 to 100 cycles. When the maintenance factor was measured, the discharge capacity maintenance factor was 77.1%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0032]
Example 13
Except that spinel-type LiMn 2 O 4 was used as the positive electrode active material, an electrolytic solution was prepared in the same manner as in Example 1 to produce a coin battery, and the discharge capacity retention rate was measured from 10 cycles to 100 cycles. The capacity retention rate was 78.1%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0033]
Comparative Example 1
PC: DMC (volume ratio) = 33: a non-aqueous solvent to prepare a 67, a LiPF 6 was dissolved to a concentration of 1M to. Using this electrolytic solution, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. As a result, the PC was decomposed at the initial charging temple and could not be discharged at all. As a result of disassembling and observing the battery after the first charge, peeling was observed on the graphite negative electrode. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0034]
Comparative Example 2
A non-aqueous solvent with EC: DMC (volume ratio) = 50: 50 was prepared, and LiPF 6 was dissolved therein to a concentration of 1M. Using this electrolytic solution, a coin battery was produced in the same manner as in Example 1, and the discharge capacity retention rate was measured from 10 cycles to 100 cycles. As a result, the discharge capacity retention rate was 60.0%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0035]
[Table 1]
Figure 0004075180
[0036]
In addition, this invention is not limited to the Example described, The various combination which can be easily guessed from the meaning of invention is possible. In particular, the combination of solvents in the above examples is not limited. Furthermore, although the said Example is related with a coin battery, this invention is applied also to a cylindrical and prismatic battery.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the lithium secondary battery excellent in battery characteristics, such as a cycling characteristic of a battery, an electrical capacity, and a charge storage characteristic, can be provided.

Claims (2)

正極と炭素材料を含む負極および非水溶媒に電解質が溶解されている非水電解液からなるリチウム二次電池において、該非水電解液中に下記一般式(I)
Figure 0004075180
(式中、Rは炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。)で表されるグリセリンカーボネート誘導体が非水溶媒の容量に対し5〜60容量%の範囲で含有されていることを特徴とするリチウム二次電池。
In a lithium secondary battery comprising a positive electrode, a negative electrode containing a carbon material, and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, the non-aqueous electrolyte includes the following general formula (I)
Figure 0004075180
(In the formula, R represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group.) The glycerol carbonate derivative represented by 5 to 60 volumes with respect to the capacity of the nonaqueous solvent. % Lithium secondary battery characterized by being contained in the range of%.
正極と炭素材料を含む負極および非水溶媒に電解質が溶解されている非水電解液からなるリチウム二次電池用電解液において、該非水電解液中に下記一般式(I)In an electrolyte for a lithium secondary battery comprising a positive electrode, a negative electrode containing a carbon material, and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, the non-aqueous electrolyte includes the following general formula (I)
Figure 0004075180
Figure 0004075180
(式中、Rは炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。)で表されるグリセリンカーボネート誘導体が非水溶媒の容量に対し5〜60容量%の範囲で含有されていることを特徴とするリチウム二次電池用電解液。(In the formula, R represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group.) The glycerol carbonate derivative represented by 5 to 60 volumes with respect to the capacity of the nonaqueous solvent. % Electrolyte solution for lithium secondary battery, characterized by comprising
JP00498199A 1999-01-12 1999-01-12 Nonaqueous electrolyte and lithium secondary battery using the same Expired - Fee Related JP4075180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00498199A JP4075180B2 (en) 1999-01-12 1999-01-12 Nonaqueous electrolyte and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00498199A JP4075180B2 (en) 1999-01-12 1999-01-12 Nonaqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2000208166A JP2000208166A (en) 2000-07-28
JP4075180B2 true JP4075180B2 (en) 2008-04-16

Family

ID=11598791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00498199A Expired - Fee Related JP4075180B2 (en) 1999-01-12 1999-01-12 Nonaqueous electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4075180B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040885A (en) * 2001-07-27 2003-02-13 Toyota Motor Corp Glycerol dicarbonate derivative, non-aqueous electrolyte solution produced by using the same, polymer electrolyte and cell
KR100406081B1 (en) * 2001-11-20 2003-11-14 박명국 Ion conductive organic compound, electrolytes compositions containing said compound, and lithium secondary battery formed by the said compositions
DE10246139A1 (en) * 2002-10-01 2004-04-15 Basf Ag Alkylglycidol carbonates as co-surfactants
KR100483699B1 (en) * 2002-10-14 2005-04-19 주식회사 엘지화학 New additives for electrolyte and lithium ion secondary battery using the same
JP5886160B2 (en) * 2012-07-27 2016-03-16 富士フイルム株式会社 Non-aqueous secondary battery electrolyte, non-aqueous secondary battery electrolyte kit, and non-aqueous secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632224B2 (en) * 1989-12-05 1997-07-23 富士写真フイルム株式会社 Polymer solid electrolyte
JP3695947B2 (en) * 1998-06-19 2005-09-14 三井化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2000208166A (en) 2000-07-28

Similar Documents

Publication Publication Date Title
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3951486B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4320914B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3911870B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3444243B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4193295B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP3663897B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3978882B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3610948B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4075416B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees