JP2003040885A - Glycerol dicarbonate derivative, non-aqueous electrolyte solution produced by using the same, polymer electrolyte and cell - Google Patents

Glycerol dicarbonate derivative, non-aqueous electrolyte solution produced by using the same, polymer electrolyte and cell

Info

Publication number
JP2003040885A
JP2003040885A JP2001228311A JP2001228311A JP2003040885A JP 2003040885 A JP2003040885 A JP 2003040885A JP 2001228311 A JP2001228311 A JP 2001228311A JP 2001228311 A JP2001228311 A JP 2001228311A JP 2003040885 A JP2003040885 A JP 2003040885A
Authority
JP
Japan
Prior art keywords
electrolyte
dec
glycerin
polymer
ionic conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001228311A
Other languages
Japanese (ja)
Inventor
Tatsuo Fujinami
達雄 藤波
An Mehta Mary
アン メータ メアリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genesis Research Institute Inc
Toyota Motor Corp
Original Assignee
Genesis Research Institute Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Research Institute Inc, Toyota Motor Corp filed Critical Genesis Research Institute Inc
Priority to JP2001228311A priority Critical patent/JP2003040885A/en
Publication of JP2003040885A publication Critical patent/JP2003040885A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To contribute to the stabilization of the interface between an electrode and an electrolyte, and solve the problems of the lowering of interfacial resistance, by using a glycerol dicarbonate derivative for the production of a non- aqueous electrolyte solution, a polymer electrolyte and a cell. SOLUTION: The glycerol dicarbonate derivative is expressed by formula. A non-aqueous electrolyte solution is obtained by dissolving an electrolyte salt in the glycerol dicarbonate derivative. A polymer electrolyte is obtained by adding an electrolyte salt and the glycerol dicarbonate derivative to a host polymer and a cell produced by using the non-aqueous electrolyte solution or the polymer electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、グリセリンジカー
ボネート誘導体、それを用いた非水電解液、高分子電解
質および電池に関する。
TECHNICAL FIELD The present invention relates to a glycerin dicarbonate derivative, a non-aqueous electrolytic solution using the same, a polymer electrolyte and a battery.

【0002】[0002]

【従来の技術】近年、リチウム二次電池は、小型電子機
器などの駆動用電源として広く使用されている。リチウ
ム電池は、主に正極、非水電解液および負極から構成さ
れており、特に、LiCoO2などのリチウム複合酸化
物を正極とし、炭素材料またはリチウム金属を負極とし
たリチウム二次電池が使用されている。そして、リチウ
ム二次電池用の電解液としては、エチレンカーボネート
(EC)、プロピレンカーボネート(PC)などのカー
ボネート類が使用されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as driving power sources for small electronic devices and the like. A lithium battery is mainly composed of a positive electrode, a non-aqueous electrolyte and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode is used. ing. Then, as the electrolytic solution for the lithium secondary battery, carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) are used.

【0003】しかしながら、電池のサイクル特性および
電気容量などの電池特性について、さらに優れた特性を
有する二次電池が求められている。リチウム二次電池の
電解液に使用される非水溶媒としては、EC、PCなど
の高誘電率溶媒が使用されているが、これら高誘電率溶
媒単独では粘度が高く十分なイオン伝導度を得ることが
できないため、一般にはジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)、ジエチル
カーボネート(DEC)などの低粘度溶媒を適当な配合
比で混合し、出来るだけ高い導電率が得られるように電
解液を調製している。
However, there is a demand for a secondary battery having more excellent battery characteristics such as battery cycle characteristics and electric capacity. High-dielectric constant solvents such as EC and PC are used as the non-aqueous solvent used in the electrolytic solution of the lithium secondary battery, but these high-dielectric constant solvents alone have high viscosity and sufficient ionic conductivity. In general, dimethyl carbonate (DM
C), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), and other low-viscosity solvents are mixed in an appropriate mixing ratio to prepare an electrolytic solution so that the highest possible conductivity is obtained.

【0004】上記の非水溶液に電解質が溶解されている
非水電解液において、その非水電解液の性能を高めるた
め各種のグリセリンカーボネート誘導体を添加したもの
が開示されている。
A non-aqueous electrolytic solution in which an electrolyte is dissolved in the above-mentioned non-aqueous solution is disclosed in which various glycerin carbonate derivatives are added in order to enhance the performance of the non-aqueous electrolytic solution.

【0005】例えば特開2000−208166には、
4−アセトキシメチル−1,3−ジオキソラン−2−オ
ンなどのグリセリンのアルキルオキシメチルエーテルと
炭酸エステルから得られるグリセリンカーボネート誘導
体を非水電解質溶媒として用いたリチウム二次電池の開
示がある。
For example, Japanese Patent Laid-Open No. 2000-208166 discloses that
There is a disclosure of a lithium secondary battery using a glycerin carbonate derivative obtained from an alkyloxymethyl ether of glycerin such as 4-acetoxymethyl-1,3-dioxolan-2-one and a carbonic acid ester as a non-aqueous electrolyte solvent.

【0006】また、特開2000−323170には、
4−アルキル−1,3−ジオキソランー2−オン誘導体
をリチウム電池用の非水電解質溶媒の開示がある。ここ
で用いられる溶媒は、アルキルグリセリンエーテルと炭
酸エステルとをアルカリの存在下で反応させて得られる
溶媒である。
Further, Japanese Patent Laid-Open No. 2000-323170 discloses that
There is a disclosure of a non-aqueous electrolyte solvent for a 4-alkyl-1,3-dioxolan-2-one derivative for a lithium battery. The solvent used here is a solvent obtained by reacting an alkyl glycerin ether and a carbonic acid ester in the presence of an alkali.

【0007】これらのグリセリンカーボネート誘導体を
添加することにより、高誘電率であるが粘性の高いE
C、PCなどの溶媒と共に用いると、サイクル特性や保
存特性に優れた二次電池用電解液が得られる。
By adding these glycerin carbonate derivatives, E having a high dielectric constant but a high viscosity can be obtained.
When used with a solvent such as C or PC, an electrolytic solution for a secondary battery having excellent cycle characteristics and storage characteristics can be obtained.

【0008】しかし、上記の化合物を含む非水電解液で
も、電極−電解質界面での安定性や界面抵抗の低減と経
時的増大の抑制については十分な効果が得られていない
のが現状である。
However, the present situation is that even the non-aqueous electrolyte containing the above compound is not sufficiently effective in reducing the stability and interface resistance at the electrode-electrolyte interface and suppressing the increase over time. .

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記の事情
に鑑みてなされたもので、グリセリンジカーボネート誘
導体の合成を検討したところ新規物質が得られた。この
高沸点のグリセリンジカーボネート誘導体を用いて、非
水電解液、高分子電解質、および電池の作製に適用して
電極と電解質界面の安定化に寄与し界面抵抗の低減など
の不具合を改良を図ることを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. When the synthesis of glycerin dicarbonate derivatives was studied, new substances were obtained. Using this high boiling point glycerin dicarbonate derivative, it is applied to the preparation of non-aqueous electrolytes, polymer electrolytes, and batteries to contribute to the stabilization of the electrode-electrolyte interface and improve the problems such as reduction of interface resistance. This is an issue.

【0010】[0010]

【課題を解決するための手段】本発明のグリセリンジカ
ーボネート誘導体は、下記の化2式で表される化合物で
ある。
The glycerin dicarbonate derivative of the present invention is a compound represented by the following chemical formula 2.

【0011】[0011]

【化2】 [Chemical 2]

【0012】(化2式中Rは炭素数1〜6のアルキル
基、ハロゲン化アルキル基、アリル基を表す) 本発明の非水電解液は、電解質塩を上記化2式のグリセ
リンジカーボネート誘導体に溶解したものである。
(Wherein R represents an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group, an allyl group) The non-aqueous electrolytic solution of the present invention comprises an electrolyte salt and a glycerin dicarbonate derivative represented by the above chemical formula 2. Is dissolved in.

【0013】本発明の非水電解液は、上記化2式のグリ
セリンジカーボネート誘導体に他の非水溶媒と電解質塩
を溶解したものである。
The non-aqueous electrolytic solution of the present invention is obtained by dissolving another non-aqueous solvent and an electrolyte salt in the glycerin dicarbonate derivative represented by the chemical formula (2).

【0014】本発明の高分子電解質は、ホストポリマー
に上記化2式のグリセリンジカーボネート誘導体と電解
質塩を添加したものである。
The polymer electrolyte of the present invention is a host polymer to which the glycerin dicarbonate derivative of the above formula 2 and an electrolyte salt are added.

【0015】本発明の電池は、上記化2式のグリセリン
ジカーボネート誘導体を含む電解液または高分子電解質
を用いたものである。
The battery of the present invention uses an electrolytic solution or a polymer electrolyte containing the glycerin dicarbonate derivative represented by the above formula (2).

【0016】[0016]

【発明の実施の形態】本発明の化2式で示すグリセリン
ジカーボネート誘導体(以下GC−DCと略称する)
は、不活性ガス雰囲気下で触媒、例えば金属リチウムを
グリセリンに溶解させた後、過剰の炭酸エステルを加え
ておよそ120℃で加熱することで、グリセリンが炭酸
エステルとエステル交換反応を行い、炭酸エステルを構
成するアルコールがグリセリン1モル分子に対して3モ
ル分子を留出させて分離することで得られる物質であ
る。Rがエチル基の場合の反応工程を化3式に示す。な
お、化3式のGC−DCはエチル誘導体の意味でGC−
DECと記載している。
BEST MODE FOR CARRYING OUT THE INVENTION A glycerin dicarbonate derivative represented by the chemical formula 2 of the present invention (hereinafter abbreviated as GC-DC)
Is a catalyst such as metallic lithium dissolved in glycerin under an inert gas atmosphere, and then an excess of carbonic acid ester is added and heated at about 120 ° C., so that glycerin undergoes transesterification reaction with carbonic acid ester to form carbonic acid ester. The alcohol constituting the is a substance obtained by distilling and separating 3 mol molecules per 1 mol molecule of glycerin. The reaction process when R is an ethyl group is shown in Chemical formula 3. It should be noted that GC-DC in the chemical formula 3 means GC-DC in the sense of ethyl derivative
It is described as DEC.

【0017】[0017]

【化3】 [Chemical 3]

【0018】式3中のRは、縮合反応に使用する炭酸エ
ステルのエステル基を構成するアルコールのアルキル
基、アリル基に相当するものであり、メチル、エチル、
プロピル、ブチル、フェニル基、さらにはハロゲン原子
を導入した例えばフッ化アルキル基などが挙げられる。
R in the formula 3 corresponds to an alkyl group or an allyl group of an alcohol constituting the ester group of the carbonic acid ester used in the condensation reaction, and is methyl, ethyl,
Examples thereof include a propyl group, a butyl group, a phenyl group, and a halogenated alkyl group such as a fluoroalkyl group.

【0019】この炭酸エステルのアルコール成分は、エ
ステル交換により遊離した時点で反応系から容易に留去
により除去できる沸点のものであることが好ましい。
It is preferable that the alcohol component of the carbonic acid ester has a boiling point that can be easily removed from the reaction system by distillation when liberated by transesterification.

【0020】生成物のGC−DCは、過剰に添加された
炭酸エステルを留去した後、減圧蒸留することで、高純
度のGC−DCが無色透明でやや粘性のある液状物質と
して得られる。
The product GC-DC is obtained by distilling off the excessively added carbonic acid ester and then distilling under reduced pressure to obtain high-purity GC-DC as a colorless transparent liquid substance having a little viscosity.

【0021】生成物は例えばRがエチルの場合の、赤外
線スペクトル(図1)、1H−NMRスペクトル(図
2)、13CのNMRスペクトル(図3)、および元素分
析により確認した。
The product was confirmed by infrared spectrum (FIG. 1), 1 H-NMR spectrum (FIG. 2), 13 C NMR spectrum (FIG. 3), and elemental analysis when R is ethyl.

【0022】生成物中に残留する微量の未反応の水酸基
は、非水溶媒に溶解してリチウムを添加して加熱するこ
とで容易に除去できる。
The trace amount of unreacted hydroxyl groups remaining in the product can be easily removed by dissolving in a non-aqueous solvent, adding lithium and heating.

【0023】本発明の非水電解液は、上記で得られたG
C−DCを種々のリチウム塩を溶解させて形成すること
ができる。リチウム塩の溶解は、例えばテトラヒドロフ
ランなどの溶媒中にGC−DCとリチウム塩を添加して
室温または加熱して均一に溶解した溶液とし、その後、
必要に応じて混合に用いた溶媒を減圧蒸留により除去す
ると粘性のある液体状の電解液が得られる。
The non-aqueous electrolyte of the present invention is the G obtained above.
C-DC can be formed by dissolving various lithium salts. To dissolve the lithium salt, for example, GC-DC and the lithium salt are added to a solvent such as tetrahydrofuran, and the solution is uniformly dissolved by heating at room temperature or heating, and then,
If necessary, the solvent used for mixing is removed by vacuum distillation to obtain a viscous liquid electrolytic solution.

【0024】この電解液はイオン導電性を示し、電解液
としての特性を示す。例えばLiPF6をリチウム塩と
した電解液は、イオン導電性を示しリチウム塩量を増加
させるとイオン導電率も増加する。
This electrolytic solution exhibits ionic conductivity and exhibits characteristics as an electrolytic solution. For example, an electrolytic solution containing LiPF 6 as a lithium salt exhibits ionic conductivity, and the ionic conductivity increases as the amount of lithium salt increases.

【0025】一般に高誘電率(高粘度)溶媒と、低粘度
(低誘電率)溶媒とを適量比で混合して、高いイオン導
電率の電解液が得られることが知られている。
It is generally known that a high-dielectric constant (high-viscosity) solvent and a low-viscosity (low-dielectric constant) solvent are mixed at an appropriate ratio to obtain an electrolytic solution having a high ionic conductivity.

【0026】本発明のGC−DCも、DME(1,2−
ジメトキシエタン)などの他の非水溶媒を混合すること
でより高いイオン導電率を示す非水電解液を得ることが
できる。
The GC-DC of the present invention is also DME (1,2-
A non-aqueous electrolyte solution having a higher ionic conductivity can be obtained by mixing another non-aqueous solvent such as dimethoxyethane).

【0027】GC−DCと共に使用できるその他の非水
溶媒としては、例えば、ジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)、ジエチル
カーボネート(DEC)などの鎖状カーボネート類、テ
トラヒドロフラン(THF)、2−メチルテトラヒドロ
フラン、1,4−ジオキサンン、1,2−ジメトキシエ
タン、1,2−ジエトキシエタン、1,2−ジブトキシ
エタンなどのエーテル類、γ−ブチロラクトンなどのラ
クトン類、アセトニトリルなどのニトリル類、プロピオ
ン酸メチルなどのエステル類、ジメチルホルムアミドな
どのアミド類が挙げられる。これらは1種類で使用して
も良く、また2種類以上を組み合わせて使用してイオン
導電率を上げることができる。
Other non-aqueous solvents that can be used with GC-DC include, for example, dimethyl carbonate (DM
C), chain carbonates such as methyl ethyl carbonate (MEC) and diethyl carbonate (DEC), tetrahydrofuran (THF), 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2- Examples thereof include ethers such as diethoxyethane and 1,2-dibutoxyethane, lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, and amides such as dimethylformamide. These may be used alone or in combination of two or more to increase the ionic conductivity.

【0028】これらの電解質は、通常0.1〜3M、好
ましくは0.5〜1.5Mの濃度で溶解されて使用され
る。
These electrolytes are usually used after being dissolved at a concentration of 0.1 to 3M, preferably 0.5 to 1.5M.

【0029】本発明の高分子電解質は、ホストポリマー
に相当する高分子と、リチウム塩、GC−DCを、例え
ばアセトニトリルに溶解させた後、溶媒を減圧で除去す
ることで固体状の電解質が形成できる。
In the polymer electrolyte of the present invention, a polymer corresponding to a host polymer, a lithium salt and GC-DC are dissolved in, for example, acetonitrile, and the solvent is removed under reduced pressure to form a solid electrolyte. it can.

【0030】ホストポリマーとしては、例えばポリメタ
クリル酸メチル(PMMA)、ポリエチレンオキサイド
(PEO)などを用い、リチウム塩,GC−DC、を混
合して高分子電解質を形成する。また、必要に応じて他
の非水溶媒を配合することも可能である。
As the host polymer, for example, polymethylmethacrylate (PMMA), polyethylene oxide (PEO) or the like is used, and a lithium salt and GC-DC are mixed to form a polymer electrolyte. Moreover, it is also possible to mix other non-aqueous solvent as needed.

【0031】使用できるリチウム塩としては、例えば,
LiPF6、LiBF4、LiN(SO2CF32、Li
N(SO2252、LiC(SO2CF33などが挙
げられる。これらの電解質は1種類で使用しても良く、
2種類以上を組み合わせて使用しても良い。
Examples of lithium salts that can be used include:
LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , Li
Examples include N (SO 2 C 2 F 5 ) 2 and LiC (SO 2 CF 3 ) 3 . These electrolytes may be used alone,
You may use it in combination of 2 or more types.

【0032】PEOとリチウム塩およびGC−DC配合
の高分子電解質では,GC−DCが高沸点の安全な可塑
剤として働き、PEOのエーテル鎖の運動性を向上させ
イオン導電率を高めていると考えられる。
In a polymer electrolyte containing PEO, a lithium salt and GC-DC, GC-DC acts as a safe plasticizer having a high boiling point to improve the mobility of the ether chain of PEO and enhance the ionic conductivity. Conceivable.

【0033】上記の高分子電解質を用いて作製した電池
は、正極界面抵抗を低減させることができる。これは負
極、正極間で不動態相が形成され、電解質−正極界面抵
抗が大きく減少する。これは電極−電解質の微視的な接
着性の向上、電極中での正極活物質−PEO部分での界
面状態が向上するためと考えられる。
The battery prepared by using the above-mentioned polymer electrolyte can reduce the positive electrode interfacial resistance. This forms a passive phase between the negative electrode and the positive electrode, and the electrolyte-positive electrode interface resistance is greatly reduced. It is considered that this is because the microscopic adhesion of the electrode-electrolyte is improved and the interface state of the positive electrode active material-PEO portion in the electrode is improved.

【0034】GC−DCを含む電解液の電気化学的安定
性は、PCを含む電解液に比べて高くより広い電位窓を
持っていることに基づくものと考えられる。
It is considered that the electrochemical stability of the electrolytic solution containing GC-DC is higher than that of the electrolytic solution containing PC and has a wider potential window.

【0035】本発明の電解液は、リチウム二次電池の構
成部材として使用される。二次電池を構成する電解液以
外の構成部材については特に限定されず、従来使用され
ている種々の構成部材が使用できる。例えば、正極活物
質としてはコバルト、マンガン、ニッケル、クロム、鉄
およびバナジウムからなる群より選ばれる少なくとも1
種類の金属とリチウムとの複合酸化物が使用される。こ
の様な複合金属酸化物としては、例えば、LiCo
2、LiMn24、LiNiO2、LiPF6、LiT
rif、LiTFSIなどが挙げられる。
The electrolytic solution of the present invention is used as a constituent member of a lithium secondary battery. The constituent members other than the electrolytic solution that constitute the secondary battery are not particularly limited, and various conventionally used constituent members can be used. For example, as the positive electrode active material, at least one selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium.
A complex oxide of a type of metal and lithium is used. As such a composite metal oxide, for example, LiCo
O 2 , LiMn 2 O 4 , LiNiO 2 , LiPF 6 , LiT
Rif, LiTFSI, etc. are mentioned.

【0036】正極は、前記の正極活物質をアセチレンブ
ラック、カーボンブラックなどの導電剤およびポリテト
ラフルオロエチレン(PTFE)、ポリフッ化ビニリデ
ン(PVDF)などの結着剤と混練して正極合剤とした
後、この正極材料を集電体としてのアルミニウムやステ
ンレス製の箔やラス板に塗布して、乾燥、加圧成形後、
50℃〜250℃程度の温度で2時間程真空下で加熱処
理することで作製される。
For the positive electrode, the positive electrode active material was kneaded with a conductive agent such as acetylene black or carbon black and a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) to prepare a positive electrode mixture. After that, this positive electrode material is applied to a foil or lath plate made of aluminum or stainless steel as a current collector, dried, pressure-molded,
It is produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.

【0037】負極活物質としては、リチウム金属、リチ
ウム合金、およびリチウムを吸蔵、放出可能な炭素材料
のグラファイトなどが使用される。なお、炭素材料のよ
うな粉末材料はエチレンプロピレンジエンポリマー(E
PDM)、ポリテトラフルオロエチレン(PTFE)、
ポリフッ化ビニリデン(PVDF)などの結着剤と混練
して負極合剤として使用される。
As the negative electrode active material, lithium metal, lithium alloy, graphite which is a carbon material capable of absorbing and releasing lithium, and the like are used. In addition, powdered materials such as carbon materials are ethylene propylene diene polymer (E
PDM), polytetrafluoroethylene (PTFE),
It is kneaded with a binder such as polyvinylidene fluoride (PVDF) and used as a negative electrode mixture.

【0038】二次電池の構成は特に限定されるものでな
く、正極、負極および単層または複層のセパレータを有
するコイン型電池、更に、正極負極およびロール状のセ
パレータを有する円筒型電池や角型電池などが一例とし
て挙げられる。なお、セパレータとしては、公知のポリ
オレフィンの微多孔膜、織布、不織布などが使用でき
る。
The structure of the secondary battery is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, a cylindrical battery having a positive-negative electrode and a roll-shaped separator, and a square battery. For example, a type battery or the like can be given. As the separator, a known polyolefin microporous film, woven fabric, non-woven fabric, or the like can be used.

【0039】[0039]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below based on examples.

【0040】4−(エトキシカーボニルオキシメチル)
−1,3−ジオキソラン−2−オン(GE−DEC)の
合成 アルゴン雰囲気下で300mlの三つ口フラスコに小破片
のリチウム金属を入れておき、グリセリン(18.756g、
0.204mol)を入れ室温で12時間撹拌してリチウム金属
を溶解させた。溶け残ったリチウム金属は系内から除去
した。次に前記三つ口フラスコにディーンスターク管お
よび球冷却管を接続し、過剰量のジエチルカーボネート
を加え、120℃のオイルバス中で3時間加熱撹拌し
て、生成されるエタノールを留去した。その後加熱(12
6℃)撹拌を24時間おこない反応を完結させた。反応
終了後、未反応ジエチルカーボネートを減圧下で留去し
た(室温、0.1mmHg)。
4- (ethoxycarbonyloxymethyl)
Synthesis of -1,3-dioxolan-2-one (GE-DEC) A small piece of lithium metal was placed in a 300 ml three-necked flask under an argon atmosphere, and glycerin (18.756 g,
0.204 mol) was added and the mixture was stirred at room temperature for 12 hours to dissolve lithium metal. The undissolved lithium metal was removed from the system. Next, a Dean-Stark tube and a bulb cooling tube were connected to the three-necked flask, an excess amount of diethyl carbonate was added, and the mixture was heated and stirred in an oil bath at 120 ° C. for 3 hours to distill off the produced ethanol. Then heat (12
The reaction was completed by stirring for 24 hours. After completion of the reaction, unreacted diethyl carbonate was distilled off under reduced pressure (room temperature, 0.1 mmHg).

【0041】前記の残留物を40mlの酢酸エチルに溶解
し、わずかに酸性化した水10mlで酢酸エチル溶液を4
回洗うことにより、リチウム塩および未反応グリセリン
を除いた。次いで酢酸エチル溶液を硫酸マグネシウムで
一晩乾燥させた後、溶媒の酢酸エチルを留去し、残留物
を減圧蒸留する事により(129〜130℃、0.045mmHg)無
色透明なやや粘性のある液体を得た(18.819g、収率52.
5%)。
The above residue was dissolved in 40 ml of ethyl acetate and the ethyl acetate solution was added to 4 ml of 10 ml of slightly acidified water.
The lithium salt and unreacted glycerin were removed by washing twice. Then, the ethyl acetate solution was dried overnight with magnesium sulfate, the solvent ethyl acetate was distilled off, and the residue was distilled under reduced pressure (129-130 ° C, 0.045 mmHg) to give a colorless transparent slightly viscous liquid. Obtained (18.819 g, yield 52.
Five%).

【0042】(リチウム金属によるGC−DEC中の残
留OH基の処理)アルゴン雰囲気下でGC−DEC(18.
283g)およびリチウム金属の小破片を100ml二つ口フ
ラスコに移した。この混合物をオイルバスの温度を40
℃に保ちながら12時間攪拌した。攪拌の際、数回5分
間超音波をかけることによりOH基とリチウム金属との
反応を促進させた。攪拌終了後、系内からリチウム金属
を除去し、減圧蒸留(130〜134℃、0.06mmHg)を行うこと
により無色透明な液体を得た(14.688g、収率80.3%)。
(Treatment of residual OH groups in GC-DEC with lithium metal) GC-DEC (18.
283 g) and small pieces of lithium metal were transferred to a 100 ml two-necked flask. Add this mixture to an oil bath at 40
The mixture was stirred for 12 hours while maintaining the temperature at 0 ° C. At the time of stirring, the reaction between the OH group and lithium metal was promoted by applying ultrasonic waves several times for 5 minutes. After completion of stirring, lithium metal was removed from the system, and vacuum distillation (130 to 134 ° C., 0.06 mmHg) was performed to obtain a colorless transparent liquid (14.688 g, yield 80.3%).

【0043】生成物(GC−DEC)は、約0.05m
mHg、130℃と非常に高い沸点であった。生成物は
赤外線スペクトル、NMR元素分析で環状カーボネート
と非環状カーボネート構造を有することを確認した。
The product (GC-DEC) is about 0.05 m
It had a very high boiling point of mHg and 130 ° C. The product was confirmed to have a cyclic carbonate and an acyclic carbonate structure by infrared spectrum and NMR elemental analysis.

【0044】[0044]

【化4】 [Chemical 4]

【0045】化4式にスペクトルの原子の位置判定用の
ナンバリングを付して示した。
The numbering for determining the position of the atom in the spectrum is added to the formula (4).

【0046】FT−IR(図1)、2990cm-1(C
3)、1800cm-12C=O環上)、1750cm -18C=O
鎖上)、772cm-1、712cm-1
FT-IR (Fig. 1), 2990 cm-1(C
H3), 1800 cm-1(2C = on the O ring), 1750 cm -1(8C = O
(On the chain), 772 cm-1, 712 cm-1.

【0047】1H−NMR(図2)1.25〜1.41(t,3
H-CH3)、4.13〜4.67(m、2HC4H2、m、2HC10H2、m、2HC6H2)、
4.82〜5.06(m、1HC5H)、13C−NMR(図3)14.0(C
11)、64.3(C10)、66.0(C5)、66.7(C4)、74.2(C6)、154.3、15
4.7(C2,C8) の測定結果を示した。
1 H-NMR (FIG. 2) 1.25 to 1.41 (t, 3
H-CH 3 ), 4.13 to 4.67 (m, 2HC 4 H 2 , m, 2HC 10 H 2 , m, 2HC 6 H 2 ),
4.82 to 5.06 (m, 1HC 5 H), 13 C-NMR (Fig. 3) 14.0 (C
11 ), 64.3 (C 10 ), 66.0 (C 5 ), 66.7 (C 4 ), 74.2 (C 6 ), 154.3, 15
The measurement result of 4.7 (C 2 , C 8 ) is shown.

【0048】この生成物の元素分析結果は、炭素44.
23%(計算値44.22%)、水素5.21%(計算
値5.3%)であった。
The result of elemental analysis of this product is carbon 44.
It was 23% (calculated value 44.22%) and hydrogen 5.21% (calculated value 5.3%).

【0049】生成物GC−DECの熱的性質(融点)
を、示差熱分析(DSC)を用いて測定した。測定結果
をPC、ECと比較した結果を表1および図4に示し
た。
Thermal properties (melting point) of the product GC-DEC
Was measured using differential thermal analysis (DSC). The results of comparison of the measurement results with PC and EC are shown in Table 1 and FIG.

【0050】[0050]

【表1】 [Table 1]

【0051】DSCのグラフによるとGC−DECの融
点を示すピークが約−46℃付近にみられる。この値は
一般的な環状炭酸エステルであるPCとほぼ同程度であ
り、ECのように室温付近で固体とならないことがわか
った。沸点は129〜130℃(0.045mmHg)であった。
この値は760mmHgに換算すると約380℃となり高沸
点で引火性が低いことを示している。
According to the graph of DSC, a peak showing the melting point of GC-DEC is seen around -46 ° C. This value was almost the same as that of PC, which is a general cyclic ester carbonate, and it was found that it does not become a solid around room temperature like EC. The boiling point was 129 to 130 ° C. (0.045 mmHg).
This value is about 380 ° C. when converted to 760 mmHg, which indicates that it has a high boiling point and low flammability.

【0052】(LiPF6/GE−DEC電解質の調
製)LiPF6(0.112g、0.732mmol)とGC−DEC
(0.3813g、2.165mmol)を50mlの二つ口フラスコに量
り取り20mlのテトラヒドロフランに溶かした。この混
合溶液を6時間撹拌した後、テトラヒドロフランを室温
で減圧留去した。白色のもろい固体を得た(0.4810g、
収率97.5%)。
(Preparation of LiPF 6 / GE-DEC electrolyte) LiPF 6 (0.112 g, 0.732 mmol) and GC-DEC
(0.3813 g, 2.165 mmol) was weighed into a 50 ml two-necked flask and dissolved in 20 ml of tetrahydrofuran. After stirring this mixed solution for 6 hours, tetrahydrofuran was distilled off under reduced pressure at room temperature. A white brittle solid was obtained (0.4810 g,
Yield 97.5%).

【0053】上記の方法で種々のリチウム塩濃度の異な
る電解質を調製してイオン導電率の測定に供した。
Various electrolytes having different lithium salt concentrations were prepared by the above-mentioned method and subjected to measurement of ionic conductivity.

【0054】(LiPF6/GC−DEC電解質のイオ
ン導電率の測定)各リチウム塩濃度におけるイオン導電
率と機械的性質を表2に示した。またイオン導電率とリ
チウム塩濃度の関係を図5に示した。
(Measurement of Ionic Conductivity of LiPF 6 / GC-DEC Electrolyte) The ionic conductivity and mechanical properties at each lithium salt concentration are shown in Table 2. The relationship between ionic conductivity and lithium salt concentration is shown in FIG.

【0055】[0055]

【表2】 [Table 2]

【0056】表2に示すリチウム塩濃度m=1.47で
は電解質は均一なもろい固体であったが、それ以上のリ
チウム塩濃度では液相と固相に相分離を起こしてしま
い、均一な電解質を得ることはできなかった。しかし、
それ以下のリチウム塩濃度では均一な液状電解液が得ら
れた。
At the lithium salt concentration m = 1.47 shown in Table 2, the electrolyte was a uniform brittle solid, but at a lithium salt concentration higher than that, phase separation occurred between the liquid phase and the solid phase, and the uniform electrolyte was obtained. Couldn't get But,
At a lithium salt concentration lower than that, a uniform liquid electrolyte was obtained.

【0057】図5に示しようにイオン導電率はLiPF
6の濃度が増加すると上昇し、その後減少、再び上昇し
た。一般的にリチウムイオン電池に用いられる非極性有
機溶媒と比べるとイオン導電率は低い値を示した。これ
はGC−DECの最初のイオン導電率の上昇は電解質中
のキャリヤー数の増加によるものと考えられる。その次
にみられるイオン導電率の減少は電解質の粘性の上昇に
よるキャリヤーの移動度の低下および溶媒−イオン、イ
オン−イオン間相互作用によるキャリヤー数の減少によ
るものと考えられる。再びイオン導電率は上昇している
が、高会合体の形成によるキャリヤーイオンの増加もし
くは電解質が相分離していることに起因するものと考え
られる。
As shown in FIG. 5, the ionic conductivity is LiPF.
It increased when the concentration of 6 increased, then decreased and increased again. The ionic conductivity was lower than that of the non-polar organic solvent generally used for lithium ion batteries. It is considered that the initial increase in the ionic conductivity of GC-DEC is due to the increase in the number of carriers in the electrolyte. It is considered that the subsequent decrease in ionic conductivity is due to a decrease in carrier mobility due to an increase in the viscosity of the electrolyte and a decrease in the number of carriers due to a solvent-ion or ion-ion interaction. Although the ionic conductivity is rising again, it is considered to be due to the increase of carrier ions due to the formation of highly associated bodies or the phase separation of the electrolyte.

【0058】(GC−DEC/DME/LiPF6電解
液)一般に高誘電率(高粘度)溶媒と低粘度(低誘電
率)溶媒を適量比で混合することにより、高いイオン導
電率の電解液を得られることが知られている。そこでG
C−DECに代表的な非プロトン性溶媒であるDME
(εr=7.2 η0=0.46)を混合し、GC−DEC/DME/
LiPF6電解液を調製しその評価を行った。電解液中
のリチウム塩濃度は0.5Mに固定した。混合比とイオ
ン導電率の測定結果を図6に示した。
(GC-DEC / DME / LiPF 6 Electrolyte) Generally, a high dielectric constant (high viscosity) solvent and a low viscosity (low dielectric constant) solvent are mixed at an appropriate ratio to obtain an electrolyte having a high ionic conductivity. It is known to be obtained. So G
DME which is a typical aprotic solvent for C-DEC
(εr = 7.2 η0 = 0.46) is mixed, and GC-DEC / DME /
A LiPF 6 electrolytic solution was prepared and evaluated. The lithium salt concentration in the electrolytic solution was fixed at 0.5M. The measurement results of the mixing ratio and the ionic conductivity are shown in FIG.

【0059】図6に示したようにDME混合量を増して
いくとイオン電導率が二桁上昇した。これはGC−DE
Cの粘性が非常に高いためDMEにより粘度が適度に低
下したためと考えられる。GC−DEC:DME=2
0:80容量%の比で最も高いイオン導電率1.0×1
-2S/cmが得られたがLiPF6は高い解離性を持って
いるためDME中でも解離しやすいと思われる。また粘
性がやや高いと言われるPCと混合した電解質において
も測定の結果10-3オーダーに達することが分かり、粘
性を改善できれば高い誘電率をもつので導電率はさらに
高いものとなると推測できる。 (PEO系固体高分子電解質の調製)PEO(ポリエチ
レンオキサイド)、リチウム塩としてLiTrif、L
iTFSIを用いた。電解質の調製はGC−DECを5
0mlの二つ口フラスコに移し、アセトニトリルに攪拌に
よって溶解させた。アセトニトリルを加熱によって除去
した後、減圧乾燥を行うことによって白色の固体を得
た。ここで電解質中のリチウム塩濃度はO/Li(PE
O中の酸素とリチウム比)=20とした。 (GC−DECを含むPMMA系高分子ゲル電解質)合
成したGC−DECを用いて高分子電解質を調製した。
ホストポリマーとしてPMMA(ポリメタクリル酸メチ
ル)、塩としてLiPF6を用い、組成はPMMA(2
0重量%)/GC−DEC(75重量%)/LiPF6
(5重量%)となるようにした。機械的性質はやや柔ら
かくもう少しPMMAの量を増やすとより良い機械的性
質となると思われる。イオン導電率は室温で1.2×10-5S
/cmとあまり高くなかったが、GC−DEC/PC混合
電解液を用いれば一桁以上のイオン導電率の上昇が期待
できる。 (PEO20LiTrif/GC−DEC系高分子電解質
のイオン導電率)PEO系高分子電解質にGC−DEC
を添加し、イオン導電率に対する効果を調べた。ここで
リチウム塩としてLiTrifを用い、リチウム塩濃度
はO/Li=20に固定した。イオン導電率の温度依存
性を表3、図7に示した。
As shown in FIG. 6, as the amount of DME mixed was increased, the ion conductivity increased by two orders of magnitude. This is GC-DE
It is considered that the viscosity of C was so high that the viscosity was appropriately reduced by DME. GC-DEC: DME = 2
Highest ionic conductivity 1.0x1 at a ratio of 0: 80% by volume
Although 0 -2 S / cm was obtained, LiPF 6 seems to be easily dissociated even in DME because of its high dissociation property. Further, it was found that the electrolyte mixed with PC, which is said to have a slightly high viscosity, reached the order of 10 −3 as a result of measurement, and it can be presumed that if the viscosity can be improved, the conductivity will be higher because the dielectric constant will be high. (Preparation of PEO-based solid polymer electrolyte) PEO (polyethylene oxide), LiTrif, L as lithium salt
iTFSI was used. For the preparation of the electrolyte, use GC-DEC 5
Transferred to a 0 ml two-necked flask and dissolved in acetonitrile by stirring. After removing acetonitrile by heating, a white solid was obtained by drying under reduced pressure. Here, the lithium salt concentration in the electrolyte is O / Li (PE
The ratio of oxygen to lithium in O) was set to 20. (PMMA Polymer Gel Electrolyte Containing GC-DEC) A polymer electrolyte was prepared using the synthesized GC-DEC.
PMMA (polymethylmethacrylate) was used as the host polymer, LiPF 6 was used as the salt, and the composition was PMMA (2
0 wt%) / GC-DEC (75 wt%) / LiPF 6
(5% by weight). The mechanical properties are slightly soft and it seems that the mechanical properties become better with a little more PMMA. Ionic conductivity is 1.2 × 10 -5 S at room temperature
Although it was not so high as / cm, if the GC-DEC / PC mixed electrolyte is used, an increase in ionic conductivity of one digit or more can be expected. (Ionic conductivity of PEO 20 LiTrif / GC-DEC polymer electrolyte) GC-DEC for PEO polymer electrolyte
Was added and the effect on ionic conductivity was investigated. Here, LiTrif was used as the lithium salt, and the lithium salt concentration was fixed at O / Li = 20. The temperature dependence of ionic conductivity is shown in Table 3 and FIG.

【0060】[0060]

【表3】 [Table 3]

【0061】表3および図7に示したようにGC−DE
Cを10重量%添加したことにより約一桁のイオン導電
率の上昇がみられた。これはGC−DECが電解質中で
可塑剤として働き、PEOのエーテル鎖の運動性を向上
させたためと考えられる。イオン導電率をさらに向上さ
せるために、GC−DECの添加量を増加させることが
考えられるが、PEOではマトリックス中にGC−DE
Cを約10%以上保持するのが難しく、電解質表面にし
み出してきてしまう。これは他の環状炭酸エステル系溶
媒でも同様のことがいえる。 (PEO20LiTFSI/GC−DEC系高分子電解質
のイオン導電率)PEO系高分子電解質にGC−DEC
を添加し、イオン導電率に対する効果を調べた。ここで
リチウム塩としてLiTFSIを用い、リチウム塩濃度はO/
Li=20に固定した。イオン導電率の温度依存性を表
4、図8に示す。
GC-DE as shown in Table 3 and FIG.
An increase in ionic conductivity of about one digit was observed by adding 10% by weight of C. It is considered that this is because GC-DEC worked as a plasticizer in the electrolyte and improved the mobility of the ether chain of PEO. It is considered that the amount of GC-DEC added is increased in order to further improve the ionic conductivity, but in PEO, GC-DE is added in the matrix.
It is difficult to hold C at about 10% or more, and C oozes out on the surface of the electrolyte. The same can be said for other cyclic carbonate ester solvents. (Ionic conductivity of PEO 20 LiTFSI / GC-DEC type polymer electrolyte) GC-DEC for PEO type polymer electrolyte
Was added and the effect on ionic conductivity was investigated. Here, LiTFSI is used as the lithium salt, and the lithium salt concentration is O /
It was fixed at Li = 20. The temperature dependence of ionic conductivity is shown in Table 4 and FIG.

【0062】[0062]

【表4】 [Table 4]

【0063】表4および図8に示したように10重量%
のGC−DECを添加したことによりリチウム塩として
LiTrifを用いた場合と同様にイオン導電率が上昇
した。この効果はPEOの結晶の融点よりも低い温度範
囲でより明らか(約一桁)であった。これはLiTri
f系と同じようにGC−DECが電解質中で可塑剤とし
て働き、エーテル鎖の運動性を向上させていると考えら
れる。またLiTrif系と同様に10重量%以上のG
C−DECは電解質中に保持することが難しい。このこ
とから架橋構造を有するPEO系の高分子を用いれば、
電解質中の溶媒保持率を増加させることができると考え
られる。 (PEO系電解質/Li界面抵抗におけるGC−DEC
の効果)界面抵抗測定に用いた電解質の組成を表5に示
す。また電解質/Li界面抵抗の時間依存性を図9に示
した。
10% by weight as shown in Table 4 and FIG.
The ionic conductivity was increased by adding GC-DEC in the same manner as in the case of using LiTrif as the lithium salt. This effect was more obvious (about one digit) in the temperature range lower than the melting point of PEO crystals. This is LiTri
It is considered that GC-DEC acts as a plasticizer in the electrolyte as in the case of the f type, and improves the mobility of the ether chain. Further, as in the case of the LiTrif system, G of 10 wt% or more
C-DEC is difficult to keep in the electrolyte. Therefore, if a PEO-based polymer having a crosslinked structure is used,
It is believed that the solvent retention in the electrolyte can be increased. (GC-DEC in PEO-based electrolyte / Li interface resistance
Effect) The composition of the electrolyte used for the interface resistance measurement is shown in Table 5. The time dependence of the electrolyte / Li interface resistance is shown in FIG.

【0064】[0064]

【表5】 [Table 5]

【0065】表5に示したようにPEOをバインダーと
して用いた正極に少量のGC−DECを電解質中に添加
することにより、図9に示すように初期的な界面抵抗が
GC−DECを添加しないものに比べて減少した。これ
は電極―電解質の接着性の向上、電極中での正極活物質
−PEO部分での界面状態が向上したためと考えられ
る。
As shown in Table 5, by adding a small amount of GC-DEC to the positive electrode using PEO as a binder in the electrolyte, the initial interface resistance does not include GC-DEC as shown in FIG. It decreased compared to the one. It is considered that this is because the adhesion between the electrode and the electrolyte was improved, and the state of the interface between the positive electrode active material and the PEO portion in the electrode was improved.

【0066】一般的に炭酸エステル系溶媒と負極、正極
間でLiCO3などの物質を含む不動態相の形成が報告
されており、GC−DECにおいても同種の不動態相が
形成された可能性が考えられる。
It has been generally reported that a passive phase containing a substance such as LiCO 3 is formed between a carbonate ester solvent and a negative electrode or a positive electrode, and it is possible that the same passive phase was formed in GC-DEC. Can be considered.

【0067】(PEO系電解質/Li界面抵抗における
CD−DECの効果)界面抵抗測定に用いた電解質の組
成を表6に示した。
(Effect of CD-DEC on PEO Electrolyte / Li Interface Resistance) The composition of the electrolyte used for the interface resistance measurement is shown in Table 6.

【0068】[0068]

【表6】 [Table 6]

【0069】また電解質/Li界面の時間依存性を図1
0に示した。
FIG. 1 shows the time dependence of the electrolyte / Li interface.
It was shown at 0.

【0070】GC−DECを電解質中に添加することに
より、初期的な界面抵抗が減少した。これは電極−電解
質の接触性の向上が考えられる。使用したGC−DEC
は、未処理、LiAlH4処理、Li処理したもののそ
れぞれと比較した。
Addition of GC-DEC into the electrolyte reduced the initial interfacial resistance. This is considered to improve the electrode-electrolyte contact property. Used GC-DEC
Was compared with untreated, LiAlH 4 treated, and Li treated.

【0071】図10に示したように、界面抵抗は約50
時間後から急激な上昇を示した。これはGC−DEC中
の未反応OH基がリチウムと反応し、表面上にLi塩を
形成し、このLi塩がGC−DECの分解触媒として作
用したのではないかと考えられる。今回の測定に用いた
GC−DECは赤外線スペクトル(IR)測定によって
OH基が確認できなかった。しかし今回の結果からIR
では検出されない程度のOH基が存在し、界面抵抗に影
響をおよぼすと考えられる。そこでGC−DEC中のO
H基をliAlH4またはLiとの反応によって処理す
ることを試みた。この結果、界面抵抗の急激な上昇が処
理前と比べて遅くなり、OH処理の効果はリチウム金属
がより有効であると考えられる。
As shown in FIG. 10, the interface resistance is about 50.
After a lapse of time, it showed a sharp rise. It is considered that this is because unreacted OH groups in GC-DEC reacted with lithium to form a Li salt on the surface, and this Li salt acted as a decomposition catalyst of GC-DEC. In the GC-DEC used for this measurement, OH groups could not be confirmed by infrared spectrum (IR) measurement. But from this result, IR
It is considered that there is an OH group which is not detected in the above, and it affects the interface resistance. So O in GC-DEC
Attempts were made to treat the H group by reaction with liAlH 4 or Li. As a result, the abrupt increase in interfacial resistance becomes slower than that before the treatment, and it is considered that lithium metal is more effective in the effect of the OH treatment.

【0072】(GC−DECを含む高分子電解質/Li
Co0.2Ni0.82電極の界面抵抗)電解質/電極の界
面の性質は電池の性能に大きな影響を与える。そこでL
iCo0.2Ni0.82電極/PEO20Li(CF3
22N系の界面についてCD−DECの影響を検討し
た。
(Polymer electrolyte containing GC-DEC / Li
Co 0.2 Ni 0.8 O 2 Electrode Interface Resistance) The nature of the electrolyte / electrode interface has a great influence on the battery performance. So L
iCo 0.2 Ni 0.8 O 2 electrode / PEO 20 Li (CF 3 S
The influence of CD-DEC was examined on the O 2 ) 2 N interface.

【0073】高分子電解質としてよく使用されているP
EO20Li(CF3SO22Nに10wt%BaTiO3
を加えて膜を調製した。
P which is often used as a polymer electrolyte
10 wt% BaTiO 3 in EO 20 Li (CF 3 SO 2 ) 2 N
Was added to prepare a membrane.

【0074】GC−DECを含む電極膜および比較する
ためにGC−CEDを含まない電極膜を以下の組成で調
製した。
An electrode film containing GC-DEC and an electrode film containing no GC-CED for comparison were prepared with the following compositions.

【0075】GC−DECを含む系:PEO20Li(C
3SO22N(33%)、アセチレンブラック(A
B)(9%)、LiCo0.2Ni0.82(54%)、G
C−DEC(3%)/PEO20LiTFSI+10%B
aTiO3/PEO20LiTFSI(33%)、アセチ
レンブラック(AB)(9%)、LiCo0.2Ni0.8
2(54%)、GC−DEC(3%) GC−DECを含まない系:PEO20Li(CF3
22N(33%)、アセチレンブラック(AB)(9
%)、LiCo0.2Ni0.82(54%)/PEO20
iTFSI+10%BaTiO3/PEO20LiTFS
I(33%)、アセチレンブラック(AB)(9%)、
LiCo0.2Ni0.82(54%)/PEO20LiTF
SI 高分子電解質の膜を図11に示すように電極膜の間に挟
んでACインピータンス法によって界面抵抗を測定し
た。
System containing GC-DEC: PEO20Li (C
F3SO2)2N (33%), acetylene black (A
B) (9%), LiCo0.2Ni0.8O2(54%), G
C-DEC (3%) / PEO20LiTFSI + 10% B
aTiO3/ PEO20LiTFSI (33%), acetyl
Renblack (AB) (9%), LiCo0.2Ni0.8O
2(54%), GC-DEC (3%) System without GC-DEC: PEO20Li (CF3S
O2)2N (33%), acetylene black (AB) (9
%), LiCo0.2Ni0.8O2(54%) / PEO20L
iTFSI + 10% BaTiO3/ PEO20LiTFS
I (33%), acetylene black (AB) (9%),
LiCo0.2Ni0.8O2(54%) / PEO20LiTF
SI The polymer electrolyte membrane is sandwiched between the electrode membranes as shown in FIG.
Then, measure the interfacial resistance by AC impedance method
It was

【0076】図12に示したように時間によってACイ
ンピータンスのプロットの変化が観測された。ACイン
ピータンスのプロットの高周波での交点は高分子電解質
の抵抗を示す。中周波数側にも一つの小さな半円が現れ
た。高ー中周波数での半円による抵抗の時間変化を図1
3に示した。
As shown in FIG. 12, a change in the plot of AC impedance was observed with time. The high frequency intersection of the plot of AC impedance indicates the resistance of the polyelectrolyte. One small semicircle also appeared on the medium frequency side. Figure 1 shows the time-dependent change in resistance due to a semicircle at high and medium frequencies.
Shown in 3.

【0077】図12に示すように、時間が長くなると高
分子電解質の抵抗が小さくなる(a)。これはGC−D
ECが電解質層に拡散して、電解質層の抵抗が小さくな
る(イオン導電率が上昇する)ためと思われる。また
(b)に示すように時間が長くなると高分子電解質の抵
抗が減少する。これは電解質がGC−DECを取り込む
ことによると考えられる。
As shown in FIG. 12, as the time increases, the resistance of the polymer electrolyte decreases (a). This is GC-D
It is considered that EC is diffused into the electrolyte layer and the resistance of the electrolyte layer is reduced (the ionic conductivity is increased). Further, as shown in (b), the resistance of the polymer electrolyte decreases as the time increases. It is considered that this is because the electrolyte takes up GC-DEC.

【0078】図13における高ー中周波数半円による抵
抗は、GC−DECを添加することによって電極/電解
質界面での不動体膜が形成され界面が安定化されるため
と考えられる。
The resistance due to the high-medium frequency semicircle in FIG. 13 is considered to be because the addition of GC-DEC forms a passive film at the electrode / electrolyte interface and stabilizes the interface.

【0079】(GC−DECを含電解液の電気化学的安
定性)サイクリックボルタンメトリー(CV)を用いて、
GC−DECの電気化学的安定性を測定した。リチウム
塩としてLiTrifを用い、比較のために0.5MP
C-LiTrif、0.5M GC−DEC−LiTri
fについて測定を行った。測定結果のカソード側を図1
4に示す。
(Electrochemical Stability of Electrolyte Containing GC-DEC) Using cyclic voltammetry (CV),
The electrochemical stability of GC-DEC was measured. LiTrif is used as the lithium salt, 0.5MP for comparison
C-LiTrif, 0.5M GC-DEC-LiTri
The measurement was performed for f. Figure 1 shows the cathode side of the measurement results.
4 shows.

【0080】図15から電解質の酸化と思われるピーク
がみられる。どちらの電解質も+3.0V付近にリチウ
ム金属の溶解、およびストリッピングが確認されてお
り、このことから二つの電解質について比較すると0.
5M LiTrif−GC−DECの方が0.5M L
iTrif−PCよりも広い電位窓を持っていることが
わかる。これはPCとGC−DECの電位窓の違いによ
るものと考えられる。
From FIG. 15, there is a peak which is considered to be the oxidation of the electrolyte. Dissolution of lithium metal and stripping were confirmed in the vicinity of +3.0 V in both electrolytes. Therefore, when comparing the two electrolytes, it was found that
0.5M L for 5M LiTrif-GC-DEC
It can be seen that it has a wider potential window than iTrif-PC. This is considered to be due to the difference in potential window between PC and GC-DEC.

【0081】[0081]

【発明の効果】本発明のGC−DECは、新規な非プロ
トン溶媒であり、非水電解質として電池などの電解液に
用いられる高粘度溶媒に添加して粘度を下げることがで
きる。EC、PC等に比べて高沸点で引火性が低い。
INDUSTRIAL APPLICABILITY The GC-DEC of the present invention is a novel aprotic solvent and can be added as a non-aqueous electrolyte to a high-viscosity solvent used in an electrolytic solution for a battery or the like to reduce the viscosity. High boiling point and low flammability compared to EC, PC, etc.

【0082】また非水電解液,高分子電解質に用いる
と、GC−DECの誘電率の高さから、イオン導電率が
実用的なレベルの電解液、電解質が得られる。
When it is used as a non-aqueous electrolytic solution or a polymer electrolyte, an electrolytic solution or electrolyte having a practical level of ionic conductivity can be obtained due to the high dielectric constant of GC-DEC.

【0083】電池としては,特にポリマー電池に用いる
と、安全な高沸点可塑剤としてイオン導電率を向上させ
るだけでなく、電極−電解質界面の安定化に寄与し,界
面抵抗の低減と経時的増大の抑制の効果が得られる。
When used as a battery, especially in a polymer battery, it not only improves the ionic conductivity as a safe high boiling point plasticizer but also contributes to the stabilization of the electrode-electrolyte interface, reducing the interface resistance and increasing with time. The effect of suppressing is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】GC−DECの赤外線スペクトルを示す。FIG. 1 shows an infrared spectrum of GC-DEC.

【図2】GC−DECの1H−NMRのスペクトルであ
る。
FIG. 2 is a 1 H-NMR spectrum of GC-DEC.

【図3】GC−DECの13C−NMRのスペクトルであ
る。
FIG. 3 is a 13 C-NMR spectrum of GC-DEC.

【図4】GC−DECにDSC測定のチャートである。FIG. 4 is a chart of DSC measurement on GC-DEC.

【図5】LiPF6/GC−DEC電解質のイオン濃度
と電解質濃度との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the ion concentration and the electrolyte concentration of LiPF 6 / GC-DEC electrolyte.

【図6】GC−DEC/DME/LiPF6電解液のD
MEの添加量を変化させた時のイオン電導率のグラフで
ある。
FIG. 6D of GC-DEC / DME / LiPF 6 electrolyte
It is a graph of the ionic conductivity when the amount of ME added is changed.

【図7】GC−DEC/PEO/LiTrif電解液の
イオン電導率の温度変化のグラフである。
FIG. 7 is a graph of temperature change of ionic conductivity of GC-DEC / PEO / LiTrif electrolyte.

【図8】GC−DEC/PEOE/LiTFSI電解液
のイオン電導率の温度変化のグラフである。
FIG. 8 is a graph of temperature change of ionic conductivity of GC-DEC / PEOE / LiTFSI electrolyte.

【図9】PEO系電解質のLi界面抵抗におけるGC−
DECの添加効果を示すグラフである。
FIG. 9 shows the GC-in the Li interface resistance of PEO-based electrolyte.
It is a graph which shows the addition effect of DEC.

【図10】ACインピータンスの測定による界面抵抗の
時間変化を示すグラフである。
FIG. 10 is a graph showing a change over time in interfacial resistance by measuring AC impedance.

【図11】ACインピータンス測定に用いた高分子電解
質の膜を電極膜で挟んで測定した膜の構成を示す図であ
る。
FIG. 11 is a diagram showing a configuration of a membrane measured by sandwiching a polymer electrolyte membrane used for AC impedance measurement with electrode membranes.

【図12】ACインピータンスの測定結果のグラフでa
はGC−DECを含まないもの、bはGC−DECを含
むものである。
FIG. 12 is a graph showing a result of measurement of AC impedance.
Indicates that GC-DEC is not included, and b indicates that GC-DEC is included.

【図13】ACインピータンスの測定における高−中周
波数での半円による抵抗の時間変化を表すグラフであ
る。
FIG. 13 is a graph showing the change with time in resistance due to a semicircle at high and medium frequencies in the measurement of AC impedance.

【図14】GC−DECを含む電解液の電気化学的安定
性を示すグラフである。
FIG. 14 is a graph showing the electrochemical stability of an electrolytic solution containing GC-DEC.

フロントページの続き (72)発明者 メアリ アン メータ 静岡県浜松市富塚町1873−4 レイクコー ト富塚204 Fターム(参考) 5G301 CA16 CA30 CD01 5H029 AJ04 AJ05 AJ06 AK03 AL07 AL12 AM03 AM04 AM05 AM07 AM16 CJ08 DJ09 HJ02 Continued front page    (72) Inventor Mary Ammeter             1873-4 Tomitsukacho, Hamamatsu City, Shizuoka Prefecture             Tomitsuka 204 F-term (reference) 5G301 CA16 CA30 CD01                 5H029 AJ04 AJ05 AJ06 AK03 AL07                       AL12 AM03 AM04 AM05 AM07                       AM16 CJ08 DJ09 HJ02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】下記一般式で表されるグリセリンジカーボ
ネート誘導体。 【化1】 (式中Rは炭素数1〜6のアルキル基、ハロゲン化アル
キル基、アリル基を表す)
1. A glycerin dicarbonate derivative represented by the following general formula. [Chemical 1] (In the formula, R represents an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group, or an allyl group)
【請求項2】電解質塩を上記化1式のグリセリンジカー
ボネート誘導体に溶解した非水電解液。
2. A non-aqueous electrolytic solution in which an electrolyte salt is dissolved in the glycerin dicarbonate derivative of the above chemical formula 1.
【請求項3】上記化1式のグリセリンジカーボネート誘
導体に他の非水溶媒と電解質塩を溶解した非水電解液。
3. A non-aqueous electrolytic solution in which another non-aqueous solvent and an electrolyte salt are dissolved in the glycerin dicarbonate derivative of the above chemical formula 1.
【請求項4】ホストポリマーに上記化1式のグリセリン
ジカーボネート誘導体と電解質塩を添加した高分子電解
質。
4. A polymer electrolyte obtained by adding a glycerin dicarbonate derivative represented by the above chemical formula 1 and an electrolyte salt to a host polymer.
【請求項5】上記化1式のグリセリンジカーボネート誘
導体を含む電解液または高分子電解質を用いた電池。
5. A battery using an electrolytic solution or a polymer electrolyte containing the glycerin dicarbonate derivative represented by the chemical formula 1 above.
JP2001228311A 2001-07-27 2001-07-27 Glycerol dicarbonate derivative, non-aqueous electrolyte solution produced by using the same, polymer electrolyte and cell Pending JP2003040885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228311A JP2003040885A (en) 2001-07-27 2001-07-27 Glycerol dicarbonate derivative, non-aqueous electrolyte solution produced by using the same, polymer electrolyte and cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228311A JP2003040885A (en) 2001-07-27 2001-07-27 Glycerol dicarbonate derivative, non-aqueous electrolyte solution produced by using the same, polymer electrolyte and cell

Publications (1)

Publication Number Publication Date
JP2003040885A true JP2003040885A (en) 2003-02-13

Family

ID=19060843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228311A Pending JP2003040885A (en) 2001-07-27 2001-07-27 Glycerol dicarbonate derivative, non-aqueous electrolyte solution produced by using the same, polymer electrolyte and cell

Country Status (1)

Country Link
JP (1) JP2003040885A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172084A (en) * 2002-11-20 2004-06-17 Samsung Sdi Co Ltd Electrolyte material for lithium secondary battery and lithium secondary battery including it
JP2006219406A (en) * 2005-02-09 2006-08-24 Utsunomiya Univ Highly carbon dioxide-immobilized compound
JP2008504661A (en) * 2004-06-28 2008-02-14 バッツキャップ Ion conducting materials containing oligoether sulfate
WO2008143293A1 (en) * 2007-05-21 2008-11-27 Nitto Denko Corporation Novel carbonate compound
JP2011084512A (en) * 2009-10-15 2011-04-28 Asahi Kasei Chemicals Corp Cyclic carbonate
JP2014182951A (en) * 2013-03-19 2014-09-29 Asahi Kasei Corp Electrolyte for nonaqueous electrochemical device and lithium ion secondary battery
WO2020054866A1 (en) * 2018-09-14 2020-03-19 旭化成株式会社 Nonaqueous secondary battery
WO2022202607A1 (en) * 2021-03-24 2022-09-29 東亞合成株式会社 Solid or gel electrolyte, cured-type composition for solid or gel electrolyte, and lithium ion secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558656A (en) * 1968-04-19 1971-01-26 Smith Kline French Lab Glycerol trichloroethyl carbonate and derivatives
JPS55141482A (en) * 1979-04-13 1980-11-05 Poudres & Explosifs Ste Nale Carbonate having cyclic carbonate group
JP2000091162A (en) * 1998-09-09 2000-03-31 Mitsui Chemicals Inc Non-aqueous electrolyte for capacitor and capacitor using the same
JP2000208166A (en) * 1999-01-12 2000-07-28 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using it
JP2000323170A (en) * 1999-05-07 2000-11-24 Lion Corp Non-protonic solvent excellent in electrochemical stability
WO2001052340A1 (en) * 2000-01-10 2001-07-19 Lg Chemical Co., Ltd New electrolytes and lithium ion battery using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558656A (en) * 1968-04-19 1971-01-26 Smith Kline French Lab Glycerol trichloroethyl carbonate and derivatives
JPS55141482A (en) * 1979-04-13 1980-11-05 Poudres & Explosifs Ste Nale Carbonate having cyclic carbonate group
JP2000091162A (en) * 1998-09-09 2000-03-31 Mitsui Chemicals Inc Non-aqueous electrolyte for capacitor and capacitor using the same
JP2000208166A (en) * 1999-01-12 2000-07-28 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using it
JP2000323170A (en) * 1999-05-07 2000-11-24 Lion Corp Non-protonic solvent excellent in electrochemical stability
WO2001052340A1 (en) * 2000-01-10 2001-07-19 Lg Chemical Co., Ltd New electrolytes and lithium ion battery using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172084A (en) * 2002-11-20 2004-06-17 Samsung Sdi Co Ltd Electrolyte material for lithium secondary battery and lithium secondary battery including it
JP4583009B2 (en) * 2002-11-20 2010-11-17 三星エスディアイ株式会社 ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
KR101222093B1 (en) 2004-06-28 2013-01-14 밧츠캅 Ionic conducting material containing an oligoether sulphate
JP2008504661A (en) * 2004-06-28 2008-02-14 バッツキャップ Ion conducting materials containing oligoether sulfate
JP2006219406A (en) * 2005-02-09 2006-08-24 Utsunomiya Univ Highly carbon dioxide-immobilized compound
WO2008143293A1 (en) * 2007-05-21 2008-11-27 Nitto Denko Corporation Novel carbonate compound
JP2011084512A (en) * 2009-10-15 2011-04-28 Asahi Kasei Chemicals Corp Cyclic carbonate
JP2014182951A (en) * 2013-03-19 2014-09-29 Asahi Kasei Corp Electrolyte for nonaqueous electrochemical device and lithium ion secondary battery
WO2020054866A1 (en) * 2018-09-14 2020-03-19 旭化成株式会社 Nonaqueous secondary battery
JPWO2020054866A1 (en) * 2018-09-14 2021-03-18 旭化成株式会社 Non-aqueous secondary battery
CN112602224A (en) * 2018-09-14 2021-04-02 旭化成株式会社 Nonaqueous secondary battery
JP7019063B2 (en) 2018-09-14 2022-02-14 旭化成株式会社 Non-water-based secondary battery
WO2022202607A1 (en) * 2021-03-24 2022-09-29 東亞合成株式会社 Solid or gel electrolyte, cured-type composition for solid or gel electrolyte, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4591505B2 (en) Electrolyte
JP6879811B2 (en) Lithium salt complex compounds, battery additives, non-aqueous electrolytes for batteries, and lithium secondary batteries
JP5212241B2 (en) Non-aqueous electrolyte and lithium secondary battery
KR20080042119A (en) Electrolyte composition
JP4651114B2 (en) Method for producing lithium salt
JP5956680B2 (en) Non-aqueous electrolyte for battery, novel compound, polymer electrolyte, and lithium secondary battery
WO2006077894A1 (en) Quaternary ammonium salt, electrolyte, electrolyte solution and electrochemical device
EP3050872B1 (en) Fluorinated sulfonamide as electrolyte (co-)solvent for lithium-ion batteries
Yong et al. Novel choline-based ionic liquids as safe electrolytes for high-voltage lithium-ion batteries
WO2016084792A1 (en) Ionic liquid, method for preparing same, and use of same
JP4929766B2 (en) Electrolyte
JP5074817B2 (en) BF3 complex and method for producing BF3 complex
JP2003040885A (en) Glycerol dicarbonate derivative, non-aqueous electrolyte solution produced by using the same, polymer electrolyte and cell
JP2010097802A (en) Electrolytic solution
JP4904950B2 (en) Electric double layer capacitor
JP5398321B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
TAKEHARA et al. Physical and electrolytic properties of fluoroethyl methyl carbonate
JP2008258031A (en) Polymer secondary battery
JP2007257875A (en) Electrolyte for nonaqueous electrolyte battery, electrolyte and nonaqueous electrolyte battery
JP5718867B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM BATTERY, METHOD FOR PRODUCING THE SAME, AND LITHIUM BATTERY HAVING THE ELECTROLYTE SOLUTION FOR THE LITHIUM BATTERY
JP5063172B2 (en) Electrolyte for electric double layer capacitor
JP4470956B2 (en) Method for producing non-aqueous electrolyte for lithium secondary battery
WO2022107450A1 (en) Solid electrolyte, battery and method for producing solid electrolyte
JP2002100401A (en) Nonaqueous electrolyte and electrochemical device using the same
JP2009105028A (en) Ammonium salt, electrolyte using same, electrolyte, additive, and electricity accumulation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110929