JP3610898B2 - Non-aqueous electrolyte and lithium secondary battery using the same - Google Patents

Non-aqueous electrolyte and lithium secondary battery using the same Download PDF

Info

Publication number
JP3610898B2
JP3610898B2 JP2000298136A JP2000298136A JP3610898B2 JP 3610898 B2 JP3610898 B2 JP 3610898B2 JP 2000298136 A JP2000298136 A JP 2000298136A JP 2000298136 A JP2000298136 A JP 2000298136A JP 3610898 B2 JP3610898 B2 JP 3610898B2
Authority
JP
Japan
Prior art keywords
carbonate
tert
aqueous electrolyte
battery
butylbenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000298136A
Other languages
Japanese (ja)
Other versions
JP2002110229A (en
Inventor
俊一 浜本
浩司 安部
基 湯口
保男 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2000298136A priority Critical patent/JP3610898B2/en
Publication of JP2002110229A publication Critical patent/JP2002110229A/en
Application granted granted Critical
Publication of JP3610898B2 publication Critical patent/JP3610898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池のサイクル特性や電気容量、保存特性などの電池特性にも優れたリチウム二次電池を提供することができる非水電解液、およびそれを用いたリチウム二次電池に関する。
【0002】
【従来の技術】
近年、リチウム二次電池は小型電子機器などの駆動用電源として広く使用されている。リチウム二次電池は、主に正極、非水電解液及び負極から構成されており、特に、LiCoOなどのリチウム複合酸化物を正極とし、炭素材料又はリチウム金属を負極としたリチウム二次電池が好適に使用されている。そして、そのリチウム二次電池用の非水電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などのカーボネート類が好適に使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、電池のサイクル特性および電気容量などの電池特性について、さらに優れた特性を有する二次電池が求められている。
正極として、例えばLiCoO、LiMn、LiNiOなどを用いたリチウム二次電池は、非水電解液中の溶媒が充電時に局部的に一部酸化分解することにより、該分解物が電池の望ましい電気化学的反応を阻害するために電池性能の低下を生じる。これは正極材料と非水電解液との界面における溶媒の電気化学的酸化に起因するものと思われる。
また、負極として例えば天然黒鉛や人造黒鉛などの高結晶化した炭素材料を用いたリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解し、非水電解液溶媒として一般に広く使用されているECにおいても充放電を繰り返す間に一部還元分解が起こり、電池性能の低下が起こる。
このため、電池のサイクル特性および電気容量などの電池特性は必ずしも満足なものではないのが現状である。
【0004】
本発明は、前記のようなリチウム二次電池用非水電解液に関する課題を解決し、電池のサイクル特性に優れ、さらに電気容量などの電池特性にも優れたリチウム二次電池を構成することができるリチウム二次電池用の非水電解液、およびそれを用いたリチウム二次電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、非水溶媒に電解質が溶解されているリチウム二次電池用非水電解液において、該非水電解液中に、1−tert−ブチル−4−フルオロベンゼン、1−tert−ブチル−4−クロロベンゼン、1−ブロモ−2−tert−ブチルベンゼン、1−ブロモ−3−tert−ブチルベンゼン、1−ブロモ−4−tert−ブチルベンゼン、1−tert−ブチル−3,5−ジブロモベンゼン、及び1−tert−ブチル−4−ヨードベンゼンからなる群より選ばれるtert−ブチルベンゼン誘導体が含有されていることを特徴とする非水電解液にある
【0006】
本発明において、tert−ブチルベンゼン誘導体が、非水電解液中に0.5〜5重量%含有されていることが好ましい
【0007】
本発明において、非水溶媒が環状カーボネートと鎖状カーボネートとを含有することが好ましい。環状カーボネートと鎖状カーボネートとは、容量比(環状カーボネート:鎖状カーボネート)で1:9〜4:1の割合で含まれていることが好ましい
【0008】
本発明において、非水溶媒中に環状カーボネートが二種類以上含まれていることが好ましい
【0009】
本発明は、正極、負極および上記の本発明の非水電解液からなるリチウム二次電池にもある
【0010】
本発明の非水電解液は、リチウム二次電池の構成部材として使用される。二次電池を構成する非水電解液以外の構成部材については特に限定されず、従来使用されている種々の構成部材を使用できる。
【0011】
【発明の実施の形態】
本発明は、非水溶媒に電解質が溶解されているリチウム二次電池用非水電解液において、該非水電解液中に、特定のtert−ブチルベンゼン誘導体が含有されていることを特徴とする
【0012】
本発明で用いるtert−ブチルベンゼン誘導体は、1−tert−ブチル−4−フルオロベンゼン、1−tert−ブチル−4−クロロベンゼン、1−ブロモ−2−tert−ブチルベンゼン、1−ブロモ−3−tert−ブチルベンゼン、1−ブロモ−4−tert−ブチルベンゼン、1−tert−ブチル−3,5−ジブロモベンゼン、及び1−tert−ブチル−4−ヨードベンゼンからなる群より選ばれる
【0013】
非水電解液中に含有される上記tert−ブチルベンゼン誘導体の含有量は、過度に多いと電池性能が低下することがあり、また、過度に少ないと期待した十分な電池性能が得られない。したがって、その含有量は非水電解液にの重量に対して0.1〜20重量%、好ましくは0.2〜10重量%、特に好ましくは0.5〜5重量%の範囲がサイクル特性が向上するのでよい。
【0014】
本発明で使用される非水溶媒としては、高誘電率溶媒と低粘度溶媒とからなるものが好ましい。
高誘電率溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類が好適に挙げられる。これらの高誘電率溶媒は、1種類で使用してもよく、また2種類以上組み合わせて使用してもよい。
【0015】
低粘度溶媒としては、例えば、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート類、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンなどのエーテル類、γ−ブチロラクトンなどのラクトン類、アセトニトリルなどのニトリル類、プロピオン酸メチル、ピバリン酸メチル、ピバリン酸オクチルなどのエステル類、ジメチルホルムアミドなどのアミド類が挙げられる。これらの低粘度溶媒は1種類で使用してもよく、また2種類以上組み合わせて使用してもよい。
高誘電率溶媒と低粘度溶媒とはそれぞれ任意に選択され組み合わせて使用される。なお、前記の高誘電率溶媒および低粘度溶媒は、容量比(高誘電率溶媒:低粘度溶媒)で通常1:9〜4:1、好ましくは1:4〜7:3の割合で使用される。
【0016】
本発明で使用される電解質としては、例えば、LiPF、LiBF、LiClO、LiN(SOCF、LiN(SO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso−C、LiPF(iso−C)などが挙げられる。これらの電解質は、1種類で使用してもよく、2種類以上組み合わせて使用してもよい。これら電解質は、前記の非水溶媒に通常0.1〜3M、好ましくは0.5〜1.5Mの濃度で溶解されて使用される。
【0017】
本発明の非水電解液は、例えば、前記の高誘電率溶媒や低粘度溶媒を混合し、これに前記の電解質を溶解し、前記の特定のtert−ブチルベンゼン誘導体を溶解することにより得られる。
【0018】
例えば、正極活物質としてはコバルト、マンガン、ニッケル、クロム、鉄およびバナジウムからなる群より選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物が使用される。このような複合金属酸化物としては、例えば、LiCoO、LiMn、LiNiO、LiNi0.8CO0.2などが挙げられる。これらの正極活物質は、1種類だけを選択して使用しても良いし、2種類以上を組み合わせて用いても良い。
【0019】
正極は、前記の正極活物質をアセチレンブラック、カーボンブラックなどの導電剤、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤および溶剤と混練して正極合剤とした後、この正極材料を集電体としてのアルミニウム箔やステンレス製のラス板に塗布して、乾燥、加圧成型後、50℃〜250℃程度の温度で2時間程度真空下で加熱処理することにより作製される。
【0020】
負極活物質としては、リチウム金属やリチウム合金、またはリチウムを吸蔵・放出可能な黒鉛型結晶構造を有する炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊維〕または複合スズ酸化物などの物質が使用される。特に、格子面(002)の面間隔(d002)が0.335〜0.340nmである黒鉛型結晶構造を有する炭素材料を使用することが好ましい。これらの負極活物質は、1種類だけを選択して使用しても良いし、2種類以上を組み合わせて用いても良い。なお、炭素材料のような粉末材料はエチレンプロピレンジエンターポリマー(EPDM)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して負極合剤として使用される。負極の製造方法は、特に限定されず、上記の正極の製造方法と同様な方法により製造することができる。
【0021】
リチウム二次電池の構造は特に限定されるものではなく、単層又は複層の正極、負極、セパレータを有するコイン型電池やポリマー電池、さらに、ロール状の正極、負極およびロール状のセパレータを有する円筒型電池や角型電池などが一例として挙げられる。なお、セパレータとしては公知のポリオレフィンの微多孔膜、織布、不織布などが使用される。
【0022】
【実施例】
次に、実施例および比較例を挙げて、本発明を具体的に説明する。
実施例1
〔非水電解液の調製〕
EC:PC:DEC(容量比)=30:5:65の非水溶媒を調製し、これにLiPFを1Mの濃度になるように溶解して非水電解液を調製した後、さらに1−ブロモ−4−tert−ブチルベンゼンを非水電解液に対して2.0重量%となるように加えた。
【0023】
〔リチウム二次電池の作製および電池特性の測定〕
LiCoO(正極活物質)を80重量%、アセチレンブラック(導電剤)を10重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加えて混合したものをアルミニウム箔上に塗布し、乾燥、加圧成型、加熱処理して正極を調製した。人造黒鉛(負極活物質)を90重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、加圧成型、加熱処理して負極を調製した。そして、ポリプロピレン微多孔性フィルムのセパレータを用い、上記の非水電解液を注入させてコイン電池(直径20mm、厚さ3.2mm)を作製した。
このコイン電池を用いて、室温(20℃)下、0.8mAの定電流及び定電圧で、終止電圧4.2Vまで5時間充電し、次に0.8mAの定電流下、終止電圧2.7Vまで放電し、この充放電を繰り返した。初期充放電容量は、4−tert−ブチルベンゼン誘導体無添加の1M LiPF−EC/PC/DEC(容量比30/5/65)を非水電解液として用いた場合(比較例1)を1とした相対値で1.03であり、50サイクル後の電池特性を測定したところ、初期放電容量を100%としたときの放電容量維持率は92.4%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。
【0024】
実施例2
1−ブロモ−4−tert−ブチルベンゼンを非水電解液に対して5.0重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は91.9%であった。コイン電池の作製条件および電池特性を表1に示す。
【0025】
実施例3
添加剤として、1−ブロモ−4−tert−ブチルベンゼンを非水電解液に対して0.5重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は91.3%であった。コイン電池の作製条件および電池特性を表1に示す。
【0026】
比較例1
EC:PC:DEC(容量比)=30:5:65の非水溶媒を調製し、これにLiPFを1Mの濃度になるように溶解した。このときtert−ブチルベンゼン誘導体は全く添加しなかった。この非水電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定した。初期放電容量に対し、50サイクル後の放電容量維持率は82.6%であった。コイン電池の作製条件および電池特性を表1に示す。
【0027】
実施例4
EC:PC:DEC(容量比)=30:5:65の非水溶媒を調製し、これにLiPFを1Mの濃度になるように溶解して非水電解液を調整した後、さらに1−tert−ブチル−4−ヨードベンゼンを非水電解液に対して2.0重量%となるように加えた。この非水電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定したところ、初期放電容量は4−tert−ブチルベンゼン誘導体無添加の1M LiPF−EC/PC/DEC(容量比30/5/65)を非水電解液として用いた場合(比較例1)を1とした相対値で1.02であり、50サイクル後の電池特性を測定したところ、初期放電容量を100%としたときの放電容量維持率は92.1%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。
【0028】
実施例5
非水電解液として、1M LiPF−EC/PC/MEC/DMC(容量比30/5/50/15)を使用し、正極活物質として、LiCoOに代えてLiNi0.8CO0.2を使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は91.1%であった。コイン電池の作製条件および電池特性を表1に示す。
【0029】
実施例6
非水電解液として、1M LiBF−EC/PC/DEC/DMC(容量比30/5/30/35)を使用し、正極活物質として、LiCoOに代えてLiMnを使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は92.5%であった。コイン電池の作製条件および電池特性を表1に示す。
【0030】
【表1】

Figure 0003610898
【0031】
なお、本発明は記載の実施例に限定されず、発明の趣旨から容易に類推可能な様々な組み合わせが可能である。特に、上記実施例の溶媒の組み合わせは限定されるものではない。更には、上記実施例はコイン電池に関するものであるが、本発明は円筒形、角柱形の電池にも適用される。
【0032】
【発明の効果】
本発明によれば、電池のサイクル特性電気容量などの電池特性に優れたリチウム二次電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte that can provide a lithium secondary battery excellent in battery characteristics such as battery cycle characteristics, electric capacity, and storage characteristics, and a lithium secondary battery using the same.
[0002]
[Prior art]
In recent years, lithium secondary batteries have been widely used as driving power sources for small electronic devices and the like. A lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode is used. It is preferably used. And as nonaqueous electrolyte solution for the lithium secondary battery, carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), etc. Are preferably used.
[0003]
[Problems to be solved by the invention]
However, there is a demand for a secondary battery having more excellent battery characteristics such as battery cycle characteristics and electric capacity.
A lithium secondary battery using, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 or the like as a positive electrode is partially decomposed by oxidation when a solvent in a non-aqueous electrolyte is locally charged. In order to inhibit the desired electrochemical reaction, the battery performance is degraded. This seems to be due to the electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte.
In addition, a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as the negative electrode is reduced and decomposed on the negative electrode surface when the solvent in the non-aqueous electrolyte is charged. Even in EC that is generally widely used, reductive decomposition occurs partly during repeated charging and discharging, resulting in a decrease in battery performance.
For this reason, at present, battery characteristics such as battery cycle characteristics and electric capacity are not always satisfactory.
[0004]
The present invention solves the problems related to the non-aqueous electrolyte for lithium secondary batteries as described above, and constitutes a lithium secondary battery excellent in battery cycle characteristics and battery characteristics such as electric capacity. An object is to provide a non-aqueous electrolyte for a lithium secondary battery, and a lithium secondary battery using the same.
[0005]
[Means for Solving the Problems]
The present invention relates to a non-aqueous electrolyte solution for a lithium secondary battery in which an electrolyte is dissolved in a non-aqueous solvent. In the non-aqueous electrolyte solution , 1-tert-butyl-4-fluorobenzene, 1-tert-butyl-4 -Chlorobenzene, 1-bromo-2-tert-butylbenzene, 1-bromo-3-tert-butylbenzene, 1-bromo-4-tert-butylbenzene, 1-tert-butyl-3,5-dibromobenzene, and A non-aqueous electrolyte is characterized by containing a tert-butylbenzene derivative selected from the group consisting of 1-tert-butyl-4-iodobenzene .
[0006]
In the present invention, the tert-butylbenzene derivative is preferably contained in the nonaqueous electrolytic solution in an amount of 0.5 to 5% by weight .
[0007]
In the present invention, the nonaqueous solvent preferably contains a cyclic carbonate and a chain carbonate. The cyclic carbonate and the chain carbonate are preferably contained in a volume ratio (cyclic carbonate: chain carbonate) of 1: 9 to 4: 1 .
[0008]
In the present invention, it is preferable that two or more kinds of cyclic carbonates are contained in the non-aqueous solvent .
[0009]
The present invention also lies in a lithium secondary battery comprising a positive electrode, a negative electrode, and the non-aqueous electrolyte of the present invention .
[0010]
The nonaqueous electrolytic solution of the present invention is used as a constituent member of a lithium secondary battery. The constituent members other than the non-aqueous electrolyte constituting the secondary battery are not particularly limited, and various conventionally used constituent members can be used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is characterized in that a specific tert-butylbenzene derivative is contained in a non-aqueous electrolyte for a lithium secondary battery in which an electrolyte is dissolved in a non-aqueous solvent .
[0012]
The tert-butylbenzene derivatives used in the present invention are 1-tert-butyl-4-fluorobenzene, 1-tert-butyl-4-chlorobenzene, 1-bromo-2-tert-butylbenzene, 1-bromo-3-tert. Selected from the group consisting of -butylbenzene, 1-bromo-4-tert-butylbenzene, 1-tert-butyl-3,5-dibromobenzene, and 1-tert-butyl-4-iodobenzene .
[0013]
The content of the tert- butyl benzene derivative contained in the non-aqueous electrolyte may be too large, the battery performance decreases, also sufficient battery performance can not be obtained as expected and too small. Therefore, the content of the cycle characteristics is in the range of 0.1 to 20% by weight, preferably 0.2 to 10% by weight, particularly preferably 0.5 to 5% by weight, based on the weight of the non-aqueous electrolyte. Because it improves.
[0014]
As the non-aqueous solvent used in the present invention, a solvent composed of a high dielectric constant solvent and a low viscosity solvent is preferable.
Preferred examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC). These high dielectric constant solvents may be used alone or in combination of two or more.
[0015]
Examples of the low viscosity solvent include chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2- Ethers such as dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, lactones such as γ-butyrolactone, nitriles such as acetonitrile, methyl propionate, methyl pivalate, octyl pivalate, etc. Examples include esters and amides such as dimethylformamide. These low viscosity solvents may be used alone or in combination of two or more.
The high dielectric constant solvent and the low viscosity solvent are arbitrarily selected and used in combination. The high dielectric constant solvent and the low viscosity solvent are usually used in a volume ratio (high dielectric constant solvent: low viscosity solvent) of 1: 9 to 4: 1, preferably 1: 4 to 7: 3. The
[0016]
Examples of the electrolyte used in the present invention include LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ), etc. Can be mentioned. These electrolytes may be used alone or in combination of two or more. These electrolytes are used by being dissolved in the non-aqueous solvent usually at a concentration of 0.1 to 3M, preferably 0.5 to 1.5M.
[0017]
The nonaqueous electrolytic solution of the present invention can be obtained, for example, by mixing the above-mentioned high dielectric constant solvent or low-viscosity solvent, dissolving the above electrolyte in this, and dissolving the above specific tert-butylbenzene derivative. .
[0018]
For example, a composite metal oxide of at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron, and vanadium and lithium is used as the positive electrode active material. Examples of such a composite metal oxide include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , and LiNi 0.8 CO 0.2 O 2 . Only one type of these positive electrode active materials may be selected and used, or two or more types may be used in combination.
[0019]
The positive electrode is composed of a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), a copolymer of acrylonitrile and butadiene. After kneading with a binder such as a polymer (NBR) and carboxymethyl cellulose (CMC) and a solvent to form a positive electrode mixture, this positive electrode material is applied to an aluminum foil or stainless steel lath plate as a current collector. After drying and pressure molding, it is produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
[0020]
Examples of the negative electrode active material include lithium metal and lithium alloy, or carbon materials having a graphite-type crystal structure capable of inserting and extracting lithium (pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), Materials such as molecular compound combustors, carbon fibers] or composite tin oxides are used. In particular, it is preferable to use a carbon material having a graphite-type crystal structure in which the lattice spacing ( 002 ) has an interplanar spacing (d 002 ) of 0.335 to 0.340 nm. Only one kind of these negative electrode active materials may be selected and used, or two or more kinds may be used in combination. Powder materials such as carbon materials are ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), and a copolymer of acrylonitrile and butadiene. Kneaded with a binder such as a polymer (NBR) or carboxymethyl cellulose (CMC) and used as a negative electrode mixture. The manufacturing method of a negative electrode is not specifically limited, It can manufacture with the method similar to the manufacturing method of said positive electrode.
[0021]
The structure of the lithium secondary battery is not particularly limited, and includes a coin-type battery or a polymer battery having a single-layer or multiple-layer positive electrode, negative electrode, and separator, and a roll-shaped positive electrode, negative electrode, and roll-shaped separator. Examples include a cylindrical battery and a square battery. A known polyolefin microporous film, woven fabric, non-woven fabric or the like is used as the separator.
[0022]
【Example】
Next, an Example and a comparative example are given and this invention is demonstrated concretely.
Example 1
(Preparation of non-aqueous electrolyte)
A non-aqueous solvent of EC: PC: DEC (volume ratio) = 30: 5: 65 was prepared, and LiPF 6 was dissolved therein to a concentration of 1 M to prepare a non-aqueous electrolyte solution. Bromo-4-tert-butylbenzene was added to 2.0 wt% with respect to the non-aqueous electrolyte.
[0023]
[Production of lithium secondary battery and measurement of battery characteristics]
80% by weight of LiCoO 2 (positive electrode active material), 10% by weight of acetylene black (conductive agent), and 10% by weight of polyvinylidene fluoride (binder) are mixed, and this is mixed with 1-methyl-2-pyrrolidone. What mixed and added the solvent was apply | coated on the aluminum foil, and it dried, press-molded, and heat-processed, and prepared the positive electrode. 90% by weight of artificial graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) were mixed, and 1-methyl-2-pyrrolidone solvent was added to this, and the resulting mixture was added to the copper foil. The negative electrode was prepared by drying, pressure molding, and heat treatment. And using the separator of a polypropylene microporous film, said nonaqueous electrolyte solution was inject | poured and the coin battery (diameter 20mm, thickness 3.2mm) was produced.
Using this coin battery, it was charged at a constant current and a constant voltage of 0.8 mA at room temperature (20 ° C.) for 5 hours to a final voltage of 4.2 V, and then at a constant current of 0.8 mA and a final voltage of 2. The battery was discharged to 7 V, and this charge / discharge was repeated. The initial charge / discharge capacity is 1 when 1M LiPF 6 -EC / PC / DEC (capacity ratio 30/5/65) without addition of 4-tert-butylbenzene derivative is used as the non-aqueous electrolyte (Comparative Example 1). The relative value was 1.03, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention rate was 92.4% when the initial discharge capacity was 100%. Also, the low temperature characteristics were good. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0024]
Example 2
A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as in Example 1 except that 5.0% by weight of 1-bromo-4-tert-butylbenzene was used with respect to the non-aqueous electrolyte. When the battery characteristics of were measured, the discharge capacity retention rate was 91.9%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0025]
Example 3
A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as in Example 1 except that 1-bromo-4-tert-butylbenzene was used as an additive in an amount of 0.5% by weight based on the non-aqueous electrolyte. When the battery characteristics after 50 cycles were measured, the discharge capacity retention rate was 91.3%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0026]
Comparative Example 1
A non-aqueous solvent of EC: PC: DEC (volume ratio) = 30: 5: 65 was prepared, and LiPF 6 was dissolved therein to a concentration of 1M. At this time, no tert-butylbenzene derivative was added. Using this non-aqueous electrolyte, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. The discharge capacity retention ratio after 50 cycles was 82.6% with respect to the initial discharge capacity. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0027]
Example 4
A non-aqueous solvent of EC: PC: DEC (volume ratio) = 30: 5: 65 was prepared, and LiPF 6 was dissolved therein to a concentration of 1 M to prepare a non-aqueous electrolyte solution. tert-Butyl-4-iodobenzene was added so that it might become 2.0 weight% with respect to a non-aqueous electrolyte. Using this non-aqueous electrolyte, a coin battery was prepared in the same manner as in Example 1, and the battery characteristics were measured. The initial discharge capacity was 1M LiPF 6 -EC / PC / without the 4-tert-butylbenzene derivative added. When DEC (capacity ratio 30/5/65) was used as the nonaqueous electrolyte (Comparative Example 1), the relative value was 1.02, and the battery characteristics after 50 cycles were measured. The discharge capacity retention rate when the capacity was 100% was 92.1%. Also, the low temperature characteristics were good. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0028]
Example 5
1M LiPF 6 -EC / PC / MEC / DMC (capacity ratio 30/5/50/15) is used as the non-aqueous electrolyte, and LiNi 0.8 CO 0.2 instead of LiCoO 2 is used as the positive electrode active material. A coin battery was prepared by preparing a nonaqueous electrolytic solution in the same manner as in Example 1 except that O 2 was used. The battery characteristics after 50 cycles were measured, and the discharge capacity retention rate was 91.1%. . The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0029]
Example 6
1M LiBF 4 -EC / PC / DEC / DMC (capacity ratio 30/5/30/35) was used as the non-aqueous electrolyte, and LiMn 2 O 4 was used instead of LiCoO 2 as the positive electrode active material. Prepared a coin battery by preparing a nonaqueous electrolytic solution in the same manner as in Example 1, and measured the battery characteristics after 50 cycles. As a result, the discharge capacity retention rate was 92.5%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0030]
[Table 1]
Figure 0003610898
[0031]
Note that the present invention is not limited to the described embodiments, and various combinations that can be easily inferred from the gist of the invention are possible. In particular, the combination of solvents in the above examples is not limited. Furthermore, although the said Example is related with a coin battery, this invention is applied also to a cylindrical and prismatic battery.
[0032]
【The invention's effect】
According to the present invention, a lithium secondary battery excellent in battery characteristics such as battery cycle characteristics and electric capacity can be provided.

Claims (8)

非水溶媒に電解質が溶解されているリチウム二次電池用非水電解液において、該非水電解液中に、1−tert−ブチル−4−フルオロベンゼン、1−tert−ブチル−4−クロロベンゼン、1−ブロモ−2−tert−ブチルベンゼン、1−ブロモ−3−tert−ブチルベンゼン、1−ブロモ−4−tert−ブチルベンゼン、1−tert−ブチル−3,5−ジブロモベンゼン、及び1−tert−ブチル−4−ヨードベンゼンからなる群より選ばれるtert−ブチルベンゼン誘導体が含有されていることを特徴とする非水電解液。In a non-aqueous electrolyte for a lithium secondary battery in which an electrolyte is dissolved in a non-aqueous solvent, the non-aqueous electrolyte includes 1-tert-butyl-4-fluorobenzene, 1-tert-butyl-4-chlorobenzene, 1 -Bromo-2-tert-butylbenzene, 1-bromo-3-tert-butylbenzene, 1-bromo-4-tert-butylbenzene, 1-tert-butyl-3,5-dibromobenzene, and 1-tert- A non-aqueous electrolyte characterized by containing a tert-butylbenzene derivative selected from the group consisting of butyl-4-iodobenzene . 非水電解液中にtert−ブチルベンゼン誘導体が、0.5〜5重量%含有されている請求項1に記載の非水電解液。 The nonaqueous electrolytic solution according to claim 1, wherein the nonaqueous electrolytic solution contains 0.5 to 5% by weight of a tert-butylbenzene derivative. 非水溶媒が環状カーボネートと鎖状カーボネートとを含有する請求項1もしくは2に記載の非水電解液。The nonaqueous electrolytic solution according to claim 1 or 2, wherein the nonaqueous solvent contains a cyclic carbonate and a chain carbonate. 非水溶媒中に環状カーボネートが二種類以上含まれている請求項3に記載の非水電解液。The nonaqueous electrolytic solution according to claim 3, wherein two or more types of cyclic carbonate are contained in the nonaqueous solvent. 非水溶媒中に環状カーボネートと鎖状カーボネートとが、容量比(環状カーボネート:鎖状カーボネート)で1:9〜4:1の割合で含まれている請求項3もしくは4に記載の非水電解液。The non-aqueous electrolysis according to claim 3 or 4, wherein the non-aqueous solvent contains cyclic carbonate and chain carbonate in a volume ratio (cyclic carbonate: chain carbonate) of 1: 9 to 4: 1. liquid. 環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、もしくはビニレンカーボネートである請求項3乃至5のうちのいずれかの項に記載の非水電解液。The nonaqueous electrolytic solution according to any one of claims 3 to 5, wherein the cyclic carbonate is ethylene carbonate, propylene carbonate, butylene carbonate, or vinylene carbonate. 鎖状カーボネートが、ジメチルカーボネート、メチルエチルカーボネート、もしくはジエチルカーボネートである請求項3乃至5のうちのいずれかの項に記載の非水電解液。The nonaqueous electrolytic solution according to any one of claims 3 to 5, wherein the chain carbonate is dimethyl carbonate, methyl ethyl carbonate, or diethyl carbonate. 正極、負極および請求項1乃至7のうちのいずれかの項に記載の非水電解液からなるリチウム二次電池。A lithium secondary battery comprising a positive electrode, a negative electrode, and the nonaqueous electrolytic solution according to any one of claims 1 to 7.
JP2000298136A 2000-09-29 2000-09-29 Non-aqueous electrolyte and lithium secondary battery using the same Expired - Lifetime JP3610898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000298136A JP3610898B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000298136A JP3610898B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2002110229A JP2002110229A (en) 2002-04-12
JP3610898B2 true JP3610898B2 (en) 2005-01-19

Family

ID=18780142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000298136A Expired - Lifetime JP3610898B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3610898B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914048B2 (en) 2001-12-21 2007-05-16 日立マクセル株式会社 Non-aqueous secondary battery and portable device using the same
JP4492023B2 (en) * 2002-05-17 2010-06-30 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP4056302B2 (en) * 2002-06-21 2008-03-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2004055253A (en) * 2002-07-18 2004-02-19 Hitachi Maxell Ltd Nonaqueous secondary battery and electronic device using the same
JP4056346B2 (en) * 2002-09-30 2008-03-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2002110229A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5348090B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP4320914B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3633269B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3663897B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP3610948B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4075416B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4134414B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3945004B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2009283473A5 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3610898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250