JP4075416B2 - Nonaqueous electrolyte and lithium secondary battery using the same - Google Patents

Nonaqueous electrolyte and lithium secondary battery using the same Download PDF

Info

Publication number
JP4075416B2
JP4075416B2 JP2002069560A JP2002069560A JP4075416B2 JP 4075416 B2 JP4075416 B2 JP 4075416B2 JP 2002069560 A JP2002069560 A JP 2002069560A JP 2002069560 A JP2002069560 A JP 2002069560A JP 4075416 B2 JP4075416 B2 JP 4075416B2
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
lithium secondary
secondary battery
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002069560A
Other languages
Japanese (ja)
Other versions
JP2003272701A (en
Inventor
浩司 安部
孝明 桑田
保男 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2002069560A priority Critical patent/JP4075416B2/en
Publication of JP2003272701A publication Critical patent/JP2003272701A/en
Application granted granted Critical
Publication of JP4075416B2 publication Critical patent/JP4075416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池のサイクル特性や電気容量、保存特性などの電池特性にも優れたリチウム二次電池を提供することができる非水電解液、およびそれを用いたリチウム二次電池に関する。
【0002】
【従来の技術】
近年、リチウム二次電池は小型電子機器などの駆動用電源として広く使用されている。リチウム二次電池は、主に正極、非水電解液および負極から構成されており、特に、LiCoO2などのリチウム複合酸化物を正極とし、炭素材料又はリチウム金属を負極としたリチウム二次電池が好適に使用されている。そして、そのリチウム二次電池用の非水電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などのカーボネート類が好適に使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、電池のサイクル特性および電気容量などの電池特性について、さらに優れた特性を有する二次電池が求められている。
正極として、例えばLiCoO2、LiMn24、LiNiO2などを用いたリチウム二次電池は、非水電解液中の溶媒が充電時に局部的に一部酸化分解することにより、該分解物が電池の望ましい電気化学的反応を阻害するために電池性能の低下を生じる。これは正極材料と非水電解液との界面における溶媒の電気化学的酸化に起因するものと思われる。
また、負極として例えば天然黒鉛や人造黒鉛などの高結晶化した炭素材料を用いたリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解し、非水電解液溶媒として一般に広く使用されているECにおいても充放電を繰り返す間に一部還元分解が起こり、電池性能の低下が起こる。
このため、電池のサイクル特性および電気容量などの電池特性は必ずしも満足なものではないのが現状である。
【0004】
本発明は、前記のようなリチウム二次電池用非水電解液に関する課題を解決し、電池のサイクル特性に優れ、さらに電気容量や充電状態での保存特性などの電池特性にも優れたリチウム二次電池を構成することができるリチウム二次電池に使用できる非水電解液、およびそれを用いたリチウム二次電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、非水溶媒に電解質塩が溶解されている非水電解液において、該非水電解液中に、少なくとも1種のペンタフルオロフェニルアルカン化合物が非水電解液の重量に対して0.01以上3重量%未満含有されていることを特徴とするリチウム二次電池用非水電解液に関する。また、本発明は、正極、負極および非水溶媒に電解質塩が溶解されている非水電解液からなるリチウム二次電池において、該非水電解液中に、少なくとも1種のペンタフルオロフェニルアルカン化合物が0.01以上3重量%未満含有されていることを特徴とするリチウム二次電池に関する。
【0006】
【発明の実施の形態】
本発明において、前記ペンタフルオロフェニルアルカン化合物が、下記一般式(III)、
【化3】

Figure 0004075416
(式中、Rは炭素数1〜12のアルキル基を示す。)で表わされる化合物が好ましい。
【0007】
本発明において、非水電解液中に含有される前記一般式( III で表わされる化合物の具体例について以下に詳述する。
【0009】
本発明において、1種または2種以上のペンタフルオロフェニルアルカン化合物が非水電解液中に含有される。非水電解液中に含有される前記ペンタフルオロフェニルアルカン化合物の含有量は、過度に多いと電池性能が低下することがあり、また、過度に少ないと期待した十分な電池性能が得られない。したがって、その含有量は非水電解液の重量に対して0.01以上3重量%未満、好ましくは0.05以上3重量%未満、特に好ましくは0.1以上3重量%未満の範囲がサイクル特性が向上するのでよい。
【0010】
記一般式(III)において、R7が炭素数1〜12のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基のような置換基が挙げられる。また、イソプロピル基、tert−ブチル基、2−エチルヘキシル基のような分枝したアルキル基が挙げられる。また、ベンジル基のような前記置換基が有する水素原子のうち少なくとも1つが芳香族基で置換されたアルキル基、あるいは、アリル基(CH=CH−CH−)の如きメチレン基(CH=)のような不飽和結合を有する置換基からなるアルキル基が挙げられる。具体的なペンタフルオロフェニルアルカン化合物としては、2,3,4,5,6−ペンタフルオロトルエンが好適に挙げられる。
【0011】
本発明において、1種または2種以上のペンタフルオロフェニルアルカン化合物が非水電解液中に含有される。非水電解液中に含有される前記ペンタフルオロフェニルアルカン化合物の含有量は、過度に多いと電池性能が低下することがあり、また、過度に少ないと期待した十分な電池性能が得られない。したがって、その含有量は非水電解液の重量に対して0.01〜20重量%、好ましくは0.05〜10重量%、特に好ましくは0.1〜5重量%の範囲がサイクル特性が向上するのでよい。
【0012】
本発明で使用される非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類や、γ−ブチロラクトンなどのラクトン類、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート類、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンなどのエーテル類、アセトニトリルなどのニトリル類、プロピオン酸メチル、ピバリン酸メチル、ピバリン酸オクチルなどのエステル類、ジメチルホルムアミドなどのアミド類が挙げられる。
【0013】
これらの非水溶媒は、1種類で使用してもよく、また2種類以上を組み合わせて使用してもよい。非水溶媒の組み合わせは特に限定されないが、例えば、環状カーボネート類と鎖状カーボネート類との組み合わせ、環状カーボネート類とラクトン類との組み合わせ、環状カーボネート類3種類と鎖状カーボネート類との組み合わせなど種々の組み合わせが挙げられる。
【0014】
本発明で使用される電解質塩としては、例えば、LiPF6、LiBF4、LiClO4、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiPF4(CF32、LiPF3(C253、LiPF3(CF33、LiPF3(iso−C373、LiPF5(iso−C37)などが挙げられる。これらの電解質塩は、1種類で使用してもよく、2種類以上組み合わせて使用してもよい。これら電解質塩は、前記の非水溶媒に通常0.1〜3M、好ましくは0.5〜1.5Mの濃度で溶解されて使用される。
【0015】
本発明の電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩を溶解し、前記ペンタフルオロフェニル化合物のうち少なくとも1種を溶解することにより得られる。
【0016】
本発明の非水電解液は、二次電池、特にリチウム二次電池の構成部材として使用される。二次電池を構成する非水電解液以外の構成部材については特に限定されず、従来使用されている種々の構成部材を使用できる。
【0017】
例えば、正極活物質としてはコバルトまたはニッケルを含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種類だけを選択して使用しても良いし、2種類以上を組み合わせて用いても良い。このような複合金属酸化物としては、例えば、LiCoO2、LiNiO2、LiCo1-xNix2(0.01<x<1)などが挙げられる。また、LiCoO2とLiMn24、LiCoO2とLiNiO2、LiMn24とLiNiO2のように適当に混ぜ合わせて使用しても良い。
【0018】
正極は、前記の正極活物質をアセチレンブラック、カーボンブラックなどの導電剤およびポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して正極合剤とした後、この正極材料を集電体としてのアルミニウム箔やステンレス製のラス板に圧延して、50℃〜250℃程度の温度で2時間程度真空下に加熱処理することにより作製される。
【0019】
負極(負極活物質)としては、リチウム金属やリチウム合金、およびリチウムを吸蔵・放出可能な炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊維〕、または複合スズ酸化物などの物質が使用される。特に、格子面(002)の面間隔(d002)が0.335〜0.340nmである黒鉛型結晶構造を有する炭素材料を使用することが好ましい。これらの負極活物質は、1種類だけを選択して使用しても良いし、2種類以上を組み合わせて用いても良い。なお、炭素材料のような粉末材料はエチレンプロピレンジエンターポリマー(EPDM)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して負極合剤として使用される。負極の製造方法は、特に限定されず、上記の正極の製造方法と同様な方法により製造することができる。
【0020】
リチウム二次電池の構造は特に限定されるものではなく、正極、負極および単層又は複層のセパレータを有するコイン型電池、さらに、正極、負極およびロール状のセパレータを有する円筒型電池や角型電池などが一例として挙げられる。なお、セパレータとしては公知のポリオレフィンの微多孔膜、織布、不織布などが使用される。
【0021】
〔実施例〕次に、実施例および比較例を挙げて、本発明を具体的に説明する。(ただし、実施例1〜4、6、7、9〜11は、それぞれ参考例1〜4、6、7、9〜11とし、〔表1〕についても同様の扱いとする。)
実施例1
〔非水電解液の調製〕PC:DMC(容量比)=1:2の非水溶媒を調製し、これに電解質塩としてLiPF6を1Mの濃度になるように溶解して非水電解液を調製した後、さらに2,3,4,5,6−ペンタフルオロアニソールを非水電解液に対して0.5重量%となるように加えた。
【0022】
〔リチウム二次電池の作製および電池特性の測定〕
LiCoO2(正極活物質)を90重量%、アセチレンブラック(導電剤)を5重量%、ポリフッ化ビニリデン(結着剤)を5重量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加えて混合したものをアルミニウム箔上に塗布し、乾燥、加圧成型、加熱処理して正極を調製した。人造黒鉛(負極活物質)を90重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、加圧成型、加熱処理して負極を調製した。そして、ポリプロピレン微多孔性フィルムのセパレータを用い、上記の非水電解液を注入させてコイン電池(直径20mm、厚さ3.2mm)を作製した。
このコイン電池を用いて、室温(20℃)下、1.1mAの定電流および定電圧で、終止電圧4.2Vまで5時間充電し、次に1.1mAの定電流下、終止電圧2.7Vまで放電し、この充放電を繰り返した。初期充放電容量は、ペンタフルオロフェニル化合物を添加しない1M LiPF−EC/DEC(容量比3/7)を非水電解液として用いた場合(比較例2の初期充放電容量を1とする)と比べて0.99であり、50サイクル後の電池特性を測定したところ、初期放電容量を100%としたときの放電容量維持率は90.1%であった。コイン電池の作製条件および電池特性を表1に示す。
【0023】
実施例2
添加剤として、2,3,4,5,6−ペンタフルオロアニソールを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は90.5%であった。コイン電池の作製条件および電池特性を表1に示す。
【0024】
実施例3
添加剤として、2,3,4,5,6−ペンタフルオロアニソールを非水電解液に対して2重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は89.5%であった。コイン電池の作製条件および電池特性を表1に示す。
【0025】
実施例4
添加剤として、デカフルオロビフェニルを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は90.3%であった。コイン電池の作製条件および電池特性を表1に示す。
【0026】
実施例5
添加剤として、2,3,4,5,6−ペンタフルオロトルエンを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は89.9%であった。コイン電池の作製条件および電池特性を表1に示す。
【0027】
実施例6
非水溶媒として、EC/MEC(容量比3/7)を使用し、添加剤として、2,3,4,5,6−ペンタフルオロアニソールを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は91.7%であった。コイン電池の作製条件および電池特性を表1に示す。
【0028】
実施例7
非水溶媒として、EC/MEC(容量比3/7)を使用し、添加剤として、デカフルオロビフェニルを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は89.1%であった。コイン電池の作製条件および電池特性を表1に示す。
【0029】
実施例8
非水溶媒として、EC/MEC(容量比3/7)を使用し、添加剤として、2,3,4,5,6−ペンタフルオロトルエンを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は90.7%であった。コイン電池の作製条件および電池特性を表1に示す。
【0030】
実施例9
非水溶媒として、EC/DEC(容量比1/2)を使用し、添加剤として、2,3,4,5,6−ペンタフルオロアニソールを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は90.4%であった。コイン電池の作製条件および電池特性を表1に示す。
【0031】
実施例10
正極活物質として、LiCoOに代えてLiMnを使用し、添加剤として、2,3,4,5,6−ペンタフルオロアニソールを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は89.2%であった。コイン電池の作製条件および電池特性を表1に示す。
【0032】
実施例11
負極活物質として、人造黒鉛に代えて天然黒鉛を使用し、添加剤として、2,3,4,5,6−ペンタフルオロアニソールを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したところ、放電容量維持率は89.8%であった。コイン電池の作製条件および電池特性を表1に示す。
【0033】
比較例1
PC:DMC(容量比)=1:2の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解した。このときペンタフルオロフェニル化合物は全く添加しなかった。この非水電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定したが、全く充放電しなかった。
【0034】
比較例2
EC:DEC(容量比)=3:7の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解した。このときペンタフルオロフェニル化合物は全く添加しなかった。この非水電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定した。初期放電容量に対し、50サイクル後の放電容量維持率は82.1%であった。コイン電池の作製条件および電池特性を表1に示す。
【0035】
比較例3
添加剤として、4−フルオロアニソールを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したが、全く充放電しなかった。コイン電池の作製条件および電池特性を表1に示す。
【0036】
比較例4
添加剤として、2,4−ジフルオロアニソールを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したが、全く充放電しなかった。コイン電池の作製条件および電池特性を表1に示す。
【0037】
比較例5
添加剤として、2,4,5−トリフルオロアニソールを非水電解液に対して1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製し、50サイクル後の電池特性を測定したが、全く充放電しなかった。コイン電池の作製条件および電池特性を表1に示す。
【0038】
【表1】
Figure 0004075416
【0039】
なお、本発明は記載の実施例に限定されず、発明の趣旨から容易に類推可能な様々な組み合わせが可能である。特に、上記実施例の溶媒の組み合わせは限定されるものではない。更には、上記実施例はコイン電池に関するものであるが、本発明は円筒形、角柱形の電池にも適用される。
【0040】
【発明の効果】
本発明によれば、電池のサイクル特性、電気容量、保存特性などの電池特性に優れたリチウム二次電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte that can provide a lithium secondary battery excellent in battery characteristics such as battery cycle characteristics, electric capacity, and storage characteristics, and a lithium secondary battery using the same.
[0002]
[Prior art]
In recent years, lithium secondary batteries have been widely used as driving power sources for small electronic devices and the like. A lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode is used. It is preferably used. As the non-aqueous electrolyte for the lithium secondary battery, carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) are preferably used.
[0003]
[Problems to be solved by the invention]
However, there is a demand for a secondary battery having more excellent battery characteristics such as battery cycle characteristics and electric capacity.
A lithium secondary battery using, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 or the like as a positive electrode is partially decomposed by oxidation when a solvent in a non-aqueous electrolyte is locally charged. In order to inhibit the desired electrochemical reaction, the battery performance is degraded. This seems to be due to the electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte.
In addition, a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as the negative electrode is reduced and decomposed on the negative electrode surface when the solvent in the non-aqueous electrolyte is charged. Even in EC that is generally widely used, reductive decomposition occurs partly during repeated charging and discharging, resulting in a decrease in battery performance.
For this reason, at present, battery characteristics such as battery cycle characteristics and electric capacity are not always satisfactory.
[0004]
The present invention solves the above-mentioned problems related to the non-aqueous electrolyte for a lithium secondary battery, has excellent battery cycle characteristics, and has excellent battery characteristics such as electric capacity and storage characteristics in a charged state. It aims at providing the nonaqueous electrolyte which can be used for the lithium secondary battery which can comprise a secondary battery, and a lithium secondary battery using the same.
[0005]
[Means for Solving the Problems]
The present invention relates to a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, and at least one pentafluorophenylalkane compound is 0.01% in the non-aqueous electrolyte solution with respect to the weight of the non-aqueous electrolyte solution. The present invention relates to a non-aqueous electrolyte for a lithium secondary battery , characterized by containing less than 3% by weight . The present invention also provides a lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein at least one pentafluorophenylalkane compound is contained in the non-aqueous electrolyte. The present invention relates to a lithium secondary battery characterized by containing 0.01 to 3% by weight .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, before Symbol pentafluorophenyl alkane compound is represented by the following formula (III),
[Chemical Formula 3]
Figure 0004075416
A compound represented by the formula (wherein R 7 represents an alkyl group having 1 to 12 carbon atoms) is preferred.
[0007]
In the present invention, specific examples of the compound represented by the general formula ( III ) contained in the non-aqueous electrolyte will be described in detail below.
[0009]
In the present invention, one or more pentafluorophenylalkane compounds are contained in the nonaqueous electrolytic solution. If the content of the pentafluorophenylalkane compound contained in the nonaqueous electrolytic solution is excessively large, battery performance may be deteriorated, and sufficient battery performance expected to be excessively small cannot be obtained. Therefore, the content is within the range of 0.01 to 3% by weight , preferably 0.05 to 3% by weight , particularly preferably 0.1 to 3% by weight, based on the weight of the nonaqueous electrolyte. It is good because the characteristics are improved.
[0010]
Prior following general formula (III), R7 is an alkyl group having 1 to 12 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, heptyl group, octyl group, nonyl group, decyl And substituents such as a dodecyl group. In addition, branched alkyl groups such as isopropyl group, tert-butyl group, and 2-ethylhexyl group are exemplified. In addition, an alkyl group in which at least one of the hydrogen atoms of the substituent such as a benzyl group is substituted with an aromatic group, or a methylene group (CH 2 such as an allyl group (CH 2 ═CH—CH 2 —)). And an alkyl group composed of a substituent having an unsaturated bond such as =). As a specific pentafluorophenylalkane compound, 2,3,4,5,6-pentafluorotoluene is preferably exemplified.
[0011]
In the present invention, one or more pentafluorophenyl alkane compound is contained in the nonaqueous electrolytic solution. The content of the pentafluorophenyl alkane compound contained in the nonaqueous electrolytic solution may be excessively large, the battery performance decreases, also sufficient battery performance can not be obtained as expected and too small. Therefore, the cycle characteristics are improved when the content is in the range of 0.01 to 20% by weight, preferably 0.05 to 10% by weight, particularly preferably 0.1 to 5% by weight, based on the weight of the non-aqueous electrolyte. It is good to do.
[0012]
Examples of the non-aqueous solvent used in the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), and lactones such as γ-butyrolactone. , Chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2 -Ethers such as diethoxyethane and 1,2-dibutoxyethane; nitriles such as acetonitrile; esters such as methyl propionate, methyl pivalate and octyl pivalate; and amides such as dimethylformamide .
[0013]
These nonaqueous solvents may be used alone or in combination of two or more. The combination of non-aqueous solvents is not particularly limited. For example, various combinations such as a combination of cyclic carbonates and chain carbonates, a combination of cyclic carbonates and lactones, a combination of three types of cyclic carbonates and chain carbonates, and the like. The combination of is mentioned.
[0014]
Examples of the electrolyte salt used in the present invention include LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3. LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ), etc. Is mentioned. These electrolyte salts may be used alone or in combination of two or more. These electrolyte salts are used by being dissolved in the non-aqueous solvent at a concentration of usually 0.1 to 3M, preferably 0.5 to 1.5M.
[0015]
The electrolytic solution of the present invention can be obtained, for example, by mixing the non-aqueous solvent, dissolving the electrolyte salt therein, and dissolving at least one of the pentafluorophenyl compounds.
[0016]
The nonaqueous electrolytic solution of the present invention is used as a constituent member of a secondary battery, particularly a lithium secondary battery. The constituent members other than the non-aqueous electrolyte constituting the secondary battery are not particularly limited, and various conventionally used constituent members can be used.
[0017]
For example, a composite metal oxide with lithium containing cobalt or nickel is used as the positive electrode active material. Only one type of these positive electrode active materials may be selected and used, or two or more types may be used in combination. Examples of such composite metal oxides include LiCoO 2 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 <x <1). Further, LiCoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 , LiMn 2 O 4 and LiNiO 2 may be appropriately mixed and used.
[0018]
The positive electrode is composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), a copolymer of acrylonitrile and butadiene. After kneading with a binder such as a polymer (NBR) or carboxymethyl cellulose (CMC) to form a positive electrode mixture, this positive electrode material was rolled into an aluminum foil or stainless steel lath plate as a current collector, and 50 It is produced by heat-treating under vacuum at a temperature of from about 0 to 250 ° C. for about 2 hours.
[0019]
Negative electrodes (negative electrode active materials) include lithium metals and lithium alloys, and carbon materials that can occlude and release lithium (pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustion Body, carbon fiber], or composite tin oxide. In particular, it is preferable to use a carbon material having a graphite-type crystal structure in which a lattice spacing ( 002 ) (d 002 ) is 0.335 to 0.340 nm. Only one kind of these negative electrode active materials may be selected and used, or two or more kinds may be used in combination. Powder materials such as carbon materials are ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), and a copolymer of acrylonitrile and butadiene. Kneaded with a binder such as a polymer (NBR) or carboxymethylcellulose (CMC) and used as a negative electrode mixture. The manufacturing method of a negative electrode is not specifically limited, It can manufacture with the method similar to the manufacturing method of said positive electrode.
[0020]
The structure of the lithium secondary battery is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a cylindrical battery or a square type having a positive electrode, a negative electrode, and a roll separator. An example is a battery. A known polyolefin microporous film, woven fabric, non-woven fabric or the like is used as the separator.
[0021]
[Examples] Next, the present invention will be specifically described with reference to Examples and Comparative Examples. (However, Examples 1-4, 6, 7, 9-11 are referred to as Reference Examples 1-4, 6, 7, 9-11, respectively, and the same applies to [Table 1].)
Example 1
[Preparation of Nonaqueous Electrolyte] A nonaqueous solvent of PC: DMC (volume ratio) = 1: 2 is prepared, and LiPF 6 is dissolved in the electrolyte salt to a concentration of 1M to obtain a nonaqueous electrolyte. After the preparation, 2,3,4,5,6-pentafluoroanisole was further added to 0.5 wt% with respect to the non-aqueous electrolyte.
[0022]
[Production of lithium secondary battery and measurement of battery characteristics]
90% by weight of LiCoO 2 (positive electrode active material), 5% by weight of acetylene black (conductive agent), and 5% by weight of polyvinylidene fluoride (binder) are mixed, and this is mixed with 1-methyl-2-pyrrolidone. What mixed and added the solvent was apply | coated on the aluminum foil, and it dried, press-molded, and heat-processed, and prepared the positive electrode. 90% by weight of artificial graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) were mixed, and 1-methyl-2-pyrrolidone solvent was added to this, and the resulting mixture was added to the copper foil. The negative electrode was prepared by drying, pressure molding, and heat treatment. And using the separator of a polypropylene microporous film, said nonaqueous electrolyte solution was inject | poured and the coin battery (diameter 20mm, thickness 3.2mm) was produced.
Using this coin battery, it was charged at a constant current and a constant voltage of 1.1 mA at room temperature (20 ° C.) for 5 hours to a final voltage of 4.2 V, and then at a constant current of 1.1 mA and a final voltage of 2. The battery was discharged to 7 V, and this charge / discharge was repeated. The initial charge / discharge capacity is 1 M LiPF 6 -EC / DEC (capacity ratio 3/7) to which no pentafluorophenyl compound is added as a non-aqueous electrolyte (the initial charge / discharge capacity of Comparative Example 2 is 1). When the battery characteristics after 50 cycles were measured, the discharge capacity retention rate when the initial discharge capacity was 100% was 90.1%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0023]
Example 2
A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as in Example 1 except that 2,3,4,5,6-pentafluoroanisole was used as an additive in an amount of 1% by weight based on the non-aqueous electrolyte. When the battery characteristics after 50 cycles were measured, the discharge capacity retention rate was 90.5%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0024]
Example 3
A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as in Example 1 except that 2,3,4,5,6-pentafluoroanisole was used as an additive in an amount of 2% by weight based on the non-aqueous electrolyte. When the battery characteristics after 50 cycles were measured, the discharge capacity retention rate was 89.5%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0025]
Example 4
A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as in Example 1 except that 1% by weight of decafluorobiphenyl was used as an additive with respect to the non-aqueous electrolyte, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention rate was 90.3%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0026]
Example 5
A coin battery was prepared by preparing a nonaqueous electrolyte in the same manner as in Example 1 except that 2,3,4,5,6-pentafluorotoluene was used as an additive in an amount of 1% by weight based on the nonaqueous electrolyte. Then, when the battery characteristics after 50 cycles were measured, the discharge capacity retention rate was 89.9%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0027]
Example 6
EC / MEC (capacity ratio 3/7) was used as a non-aqueous solvent, and 2,3,4,5,6-pentafluoroanisole was used as an additive in an amount of 1% by weight based on the non-aqueous electrolyte. Prepared a coin battery by preparing a nonaqueous electrolytic solution in the same manner as in Example 1, and measured the battery characteristics after 50 cycles. As a result, the discharge capacity retention rate was 91.7%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0028]
Example 7
Nonaqueous electrolysis as in Example 1 except that EC / MEC (capacity ratio 3/7) was used as the nonaqueous solvent and decafluorobiphenyl was used as an additive in an amount of 1% by weight based on the nonaqueous electrolyte. A coin battery was prepared by preparing a liquid, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention rate was 89.1%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0029]
Example 8
EC / MEC (capacity ratio 3/7) was used as a non-aqueous solvent, and 2,3,4,5,6-pentafluorotoluene was used as an additive in an amount of 1% by weight based on the non-aqueous electrolyte. Prepared a coin battery by preparing a nonaqueous electrolytic solution in the same manner as in Example 1, and measured the battery characteristics after 50 cycles. As a result, the discharge capacity retention rate was 90.7%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0030]
Example 9
EC / DEC (volume ratio 1/2) was used as a non-aqueous solvent, and 2,3,4,5,6-pentafluoroanisole was used as an additive in an amount of 1% by weight based on the non-aqueous electrolyte. Prepared a coin battery by preparing a nonaqueous electrolytic solution in the same manner as in Example 1, and measured the battery characteristics after 50 cycles. As a result, the discharge capacity retention rate was 90.4%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0031]
Example 10
Other than using LiMn 2 O 4 instead of LiCoO 2 as the positive electrode active material and 1% by weight of 2,3,4,5,6-pentafluoroanisole as the additive with respect to the non-aqueous electrolyte A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as in Example 1, and the battery characteristics after 50 cycles were measured. The discharge capacity retention rate was 89.2%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0032]
Example 11
Example except that natural graphite was used instead of artificial graphite as the negative electrode active material, and 1% by weight of 2,3,4,5,6-pentafluoroanisole was used as an additive with respect to the non-aqueous electrolyte. A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as in Example 1, and the battery characteristics after 50 cycles were measured. The discharge capacity retention rate was 89.8%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0033]
Comparative Example 1
A non-aqueous solvent of PC: DMC (volume ratio) = 1: 2 was prepared, and LiPF 6 was dissolved therein to a concentration of 1M. At this time, no pentafluorophenyl compound was added. Using this non-aqueous electrolyte, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured.
[0034]
Comparative Example 2
A non-aqueous solvent of EC: DEC (volume ratio) = 3: 7 was prepared, and LiPF 6 was dissolved therein to a concentration of 1M. At this time, no pentafluorophenyl compound was added. Using this non-aqueous electrolyte, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. With respect to the initial discharge capacity, the discharge capacity retention ratio after 50 cycles was 82.1%. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0035]
Comparative Example 3
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 4-fluoroanisole was used as an additive in an amount of 1% by weight based on the non-aqueous electrolyte, and the battery characteristics after 50 cycles were obtained. Although measured, it was not charged or discharged at all. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0036]
Comparative Example 4
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 1% by weight of 2,4-difluoroanisole was used as an additive with respect to the non-aqueous electrolyte. Although the characteristics were measured, the battery was not charged or discharged at all. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0037]
Comparative Example 5
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 1% by weight of 2,4,5-trifluoroanisole was used as an additive with respect to the non-aqueous electrolyte. The later battery characteristics were measured, but the battery was not charged or discharged at all. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0038]
[Table 1]
Figure 0004075416
[0039]
Note that the present invention is not limited to the described embodiments, and various combinations that can be easily inferred from the gist of the invention are possible. In particular, the combination of solvents in the above examples is not limited. Furthermore, although the said Example is related with a coin battery, this invention is applied also to a cylindrical and prismatic battery.
[0040]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the lithium secondary battery excellent in battery characteristics, such as a cycling characteristic of a battery, an electrical capacity, and a storage characteristic, can be provided.

Claims (2)

非水溶媒に電解質塩が溶解されている非水電解液において、該非水電解液中に、下記一般式(III)で表される少なくとも1種のペンタフルオロフェニルアルカン化合物が非水電解液の重量に対して0.01以上3重量%未満含有されていることを特徴とするリチウム二次電池用非水電解液。
Figure 0004075416
(式中、Rは炭素数1〜12のアルキル基を示す。)
In a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, at least one pentafluorophenylalkane compound represented by the following general formula (III) is contained in the non-aqueous electrolyte. A nonaqueous electrolytic solution for a lithium secondary battery , characterized by being contained in an amount of 0.01 to less than 3% by weight .
Figure 0004075416
(In the formula, R 7 represents an alkyl group having 1 to 12 carbon atoms.)
正極、負極および非水溶媒に電解質塩が溶解されている非水電解液からなるリチウム二次電池において、該非水電解液中に、下記一般式(III)で表される少なくとも1種のペンタフルオロフェニルアルカン化合物が非水電解液の重量に対して0.01以上3重量%未満含有されていることを特徴とするリチウム二次電池。
Figure 0004075416
(式中、Rは炭素数1〜12のアルキル基を示す。)
In a lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, the non-aqueous electrolyte includes at least one kind of pentafluoro represented by the following general formula (III) A lithium secondary battery, wherein a phenylalkane compound is contained in an amount of 0.01 to less than 3% by weight based on the weight of the non-aqueous electrolyte.
Figure 0004075416
(In the formula, R 7 represents an alkyl group having 1 to 12 carbon atoms.)
JP2002069560A 2002-03-14 2002-03-14 Nonaqueous electrolyte and lithium secondary battery using the same Expired - Fee Related JP4075416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002069560A JP4075416B2 (en) 2002-03-14 2002-03-14 Nonaqueous electrolyte and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002069560A JP4075416B2 (en) 2002-03-14 2002-03-14 Nonaqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2003272701A JP2003272701A (en) 2003-09-26
JP4075416B2 true JP4075416B2 (en) 2008-04-16

Family

ID=29200365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002069560A Expired - Fee Related JP4075416B2 (en) 2002-03-14 2002-03-14 Nonaqueous electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4075416B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI342083B (en) * 2003-09-17 2011-05-11 Ube Industries
WO2006077763A1 (en) * 2005-01-20 2006-07-27 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
WO2007083975A1 (en) * 2006-01-23 2007-07-26 Lg Chem, Ltd. Non-aqueous-electrolyte and lithium secondary battery using the same
KR100760763B1 (en) 2006-10-17 2007-10-04 삼성에스디아이 주식회사 Electrolyte for high voltage lithium rechargeable battery and high voltage lithium rechargeable rechargeable battery employing the same
WO2009102604A1 (en) * 2008-02-12 2009-08-20 3M Innovative Properties Company Redox shuttles for high voltage cathodes
US8795904B2 (en) 2010-05-13 2014-08-05 The United States Of America As Represented By The Secretary Of The Army Nonaqueous electrolyte solvents and additives
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry
CN107531830B (en) 2015-08-26 2019-06-28 赢创德固赛有限公司 Purposes of certain polymer as charge accumulator
KR102007112B1 (en) 2015-08-26 2019-08-02 에보니크 데구사 게엠베하 Use of Specific Polymers as Charge Storage

Also Published As

Publication number Publication date
JP2003272701A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3558007B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3951486B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4561013B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2001332297A (en) Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2001313071A (en) Nonaqueous electrolyte and lithium secondary cell using it
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3663897B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4075416B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3610948B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3945004B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2009283473A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Ref document number: 4075416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees